Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Bhavik Mehta. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Bhavik Mehta | |
-/ | |
import algebra.is_prime_pow | |
import number_theory.arithmetic_function | |
import analysis.special_functions.log.basic | |
/-! | |
# The von Mangoldt Function | |
In this file we define the von Mangoldt function: the function on natural numbers that returns | |
`log p` if the input can be expressed as `p^k` for a prime `p`. | |
## Main Results | |
The main definition for this file is | |
- `nat.arithmetic_function.von_mangoldt`: The von Mangoldt function `Λ`. | |
We then prove the classical summation property of the von Mangoldt function in | |
`nat.arithmetic_function.von_mangoldt_sum`, that `∑ i in n.divisors, Λ i = real.log n`, and use this | |
to deduce alternative expressions for the von Mangoldt function via Möbius inversion, see | |
`nat.arithmetic_function.sum_moebius_mul_log_eq`. | |
## Notation | |
We use the standard notation `Λ` to represent the von Mangoldt function. | |
-/ | |
namespace nat | |
namespace arithmetic_function | |
open finset | |
open_locale arithmetic_function | |
/-- `log` as an arithmetic function `ℕ → ℝ`. Note this is in the `nat.arithmetic_function` | |
namespace to indicate that it is bundled as an `arithmetic_function` rather than being the usual | |
real logarithm. -/ | |
noncomputable def log : arithmetic_function ℝ := | |
⟨λ n, real.log n, by simp⟩ | |
@[simp] lemma log_apply {n : ℕ} : log n = real.log n := rfl | |
/-- | |
The `von_mangoldt` function is the function on natural numbers that returns `log p` if the input can | |
be expressed as `p^k` for a prime `p`. | |
In the case when `n` is a prime power, `min_fac` will give the appropriate prime, as it is the | |
smallest prime factor. | |
In the `arithmetic_function` locale, we have the notation `Λ` for this function. | |
-/ | |
noncomputable def von_mangoldt : arithmetic_function ℝ := | |
⟨λ n, if is_prime_pow n then real.log (min_fac n) else 0, if_neg not_is_prime_pow_zero⟩ | |
localized "notation `Λ` := nat.arithmetic_function.von_mangoldt" in arithmetic_function | |
lemma von_mangoldt_apply {n : ℕ} : | |
Λ n = if is_prime_pow n then real.log (min_fac n) else 0 := rfl | |
@[simp] lemma von_mangoldt_apply_one : Λ 1 = 0 := by simp [von_mangoldt_apply] | |
@[simp] lemma von_mangoldt_nonneg {n : ℕ} : 0 ≤ Λ n := | |
begin | |
rw [von_mangoldt_apply], | |
split_ifs, | |
{ exact real.log_nonneg (one_le_cast.2 (nat.min_fac_pos n)) }, | |
refl | |
end | |
lemma von_mangoldt_apply_pow {n k : ℕ} (hk : k ≠ 0) : Λ (n ^ k) = Λ n := | |
by simp only [von_mangoldt_apply, is_prime_pow_pow_iff hk, pow_min_fac hk] | |
lemma von_mangoldt_apply_prime {p : ℕ} (hp : p.prime) : Λ p = real.log p := | |
by rw [von_mangoldt_apply, prime.min_fac_eq hp, if_pos (nat.prime_iff.1 hp).is_prime_pow] | |
lemma von_mangoldt_ne_zero_iff {n : ℕ} : Λ n ≠ 0 ↔ is_prime_pow n := | |
begin | |
rcases eq_or_ne n 1 with rfl | hn, { simp [not_is_prime_pow_one] }, | |
exact (real.log_pos (one_lt_cast.2 (min_fac_prime hn).one_lt)).ne'.ite_ne_right_iff | |
end | |
lemma von_mangoldt_pos_iff {n : ℕ} : 0 < Λ n ↔ is_prime_pow n := | |
von_mangoldt_nonneg.lt_iff_ne.trans (ne_comm.trans von_mangoldt_ne_zero_iff) | |
lemma von_mangoldt_eq_zero_iff {n : ℕ} : Λ n = 0 ↔ ¬is_prime_pow n := | |
von_mangoldt_ne_zero_iff.not_right | |
open_locale big_operators | |
lemma von_mangoldt_sum {n : ℕ} : | |
∑ i in n.divisors, Λ i = real.log n := | |
begin | |
refine rec_on_prime_coprime _ _ _ n, | |
{ simp }, | |
{ intros p k hp, | |
rw [sum_divisors_prime_pow hp, cast_pow, real.log_pow, finset.sum_range_succ', pow_zero, | |
von_mangoldt_apply_one], | |
simp [von_mangoldt_apply_pow (nat.succ_ne_zero _), von_mangoldt_apply_prime hp] }, | |
intros a b ha' hb' hab ha hb, | |
simp only [von_mangoldt_apply, ←sum_filter] at ha hb ⊢, | |
rw [mul_divisors_filter_prime_pow hab, filter_union, | |
sum_union (disjoint_divisors_filter_prime_pow hab), ha, hb, nat.cast_mul, | |
real.log_mul (cast_ne_zero.2 (pos_of_gt ha').ne') (cast_ne_zero.2 (pos_of_gt hb').ne')], | |
end | |
@[simp] lemma von_mangoldt_mul_zeta : Λ * ζ = log := | |
by { ext n, rw [coe_mul_zeta_apply, von_mangoldt_sum], refl } | |
@[simp] lemma zeta_mul_von_mangoldt : (ζ : arithmetic_function ℝ) * Λ = log := | |
by { rw [mul_comm], simp } | |
@[simp] lemma log_mul_moebius_eq_von_mangoldt : log * μ = Λ := | |
by rw [←von_mangoldt_mul_zeta, mul_assoc, coe_zeta_mul_coe_moebius, mul_one] | |
@[simp] lemma moebius_mul_log_eq_von_mangoldt : (μ : arithmetic_function ℝ) * log = Λ := | |
by { rw [mul_comm], simp } | |
lemma sum_moebius_mul_log_eq {n : ℕ} : | |
∑ d in n.divisors, (μ d : ℝ) * log d = - Λ n := | |
begin | |
simp only [←log_mul_moebius_eq_von_mangoldt, mul_comm log, mul_apply, log_apply, int_coe_apply, | |
←finset.sum_neg_distrib, neg_mul_eq_mul_neg], | |
rw sum_divisors_antidiagonal (λ i j, (μ i : ℝ) * -real.log j), | |
have : ∑ (i : ℕ) in n.divisors, (μ i : ℝ) * -real.log (n / i : ℕ) = | |
∑ (i : ℕ) in n.divisors, ((μ i : ℝ) * real.log i - μ i * real.log n), | |
{ apply sum_congr rfl, | |
simp only [and_imp, int.cast_eq_zero, mul_eq_mul_left_iff, ne.def, neg_inj, mem_divisors], | |
intros m mn hn, | |
have : (m : ℝ) ≠ 0, | |
{ rw [cast_ne_zero], | |
rintro rfl, | |
exact hn (by simpa using mn) }, | |
rw [nat.cast_div mn this, real.log_div (cast_ne_zero.2 hn) this, neg_sub, mul_sub] }, | |
rw [this, sum_sub_distrib, ←sum_mul, ←int.cast_sum, ←coe_mul_zeta_apply, eq_comm, sub_eq_self, | |
moebius_mul_coe_zeta, mul_eq_zero, int.cast_eq_zero], | |
rcases eq_or_ne n 1 with hn | hn; | |
simp [hn], | |
end | |
lemma von_mangoldt_le_log : ∀ {n : ℕ}, Λ n ≤ real.log (n : ℝ) | |
| 0 := by simp | |
| (n+1) := | |
begin | |
rw ←von_mangoldt_sum, | |
exact single_le_sum (λ _ _, von_mangoldt_nonneg) (mem_divisors_self _ n.succ_ne_zero), | |
end | |
end arithmetic_function | |
end nat | |