Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.36 kB
/-
Copyright (c) 2021 Bolton Bailey. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bolton Bailey
-/
import data.nat.prime
import data.nat.totient
import algebra.periodic
import data.finset.locally_finite
import data.nat.count
import data.nat.nth
/-!
# The Prime Counting Function
In this file we define the prime counting function: the function on natural numbers that returns
the number of primes less than or equal to its input.
## Main Results
The main definitions for this file are
- `nat.prime_counting`: The prime counting function π
- `nat.prime_counting'`: π(n - 1)
We then prove that these are monotone in `nat.monotone_prime_counting` and
`nat.monotone_prime_counting'`. The last main theorem `nat.prime_counting'_add_le` is an upper
bound on `π'` which arises by observing that all numbers greater than `k` and not coprime to `k`
are not prime, and so only at most `φ(k)/k` fraction of the numbers from `k` to `n` are prime.
## Notation
We use the standard notation `π` to represent the prime counting function (and `π'` to represent
the reindexed version).
-/
namespace nat
open finset
/--
A variant of the traditional prime counting function which gives the number of primes
*strictly* less than the input. More convenient for avoiding off-by-one errors.
-/
def prime_counting' : ℕ → ℕ := nat.count prime
/-- The prime counting function: Returns the number of primes less than or equal to the input. -/
def prime_counting (n : ℕ) : ℕ := prime_counting' (n + 1)
localized "notation `π` := nat.prime_counting" in nat
localized "notation `π'` := nat.prime_counting'" in nat
lemma monotone_prime_counting' : monotone prime_counting' := count_monotone prime
lemma monotone_prime_counting : monotone prime_counting :=
λ a b a_le_b, monotone_prime_counting' (add_le_add_right a_le_b 1)
@[simp] lemma prime_counting'_nth_eq (n : ℕ) : π' (nth prime n) = n :=
count_nth_of_infinite _ infinite_set_of_prime _
@[simp] lemma prime_nth_prime (n : ℕ) : prime (nth prime n) :=
nth_mem_of_infinite _ infinite_set_of_prime _
/-- A linear upper bound on the size of the `prime_counting'` function -/
lemma prime_counting'_add_le {a k : ℕ} (h0 : 0 < a) (h1 : a < k) (n : ℕ) :
π' (k + n) ≤ π' k + nat.totient a * (n / a + 1) :=
calc π' (k + n)
≤ ((range k).filter (prime)).card + ((Ico k (k + n)).filter (prime)).card :
begin
rw [prime_counting', count_eq_card_filter_range, range_eq_Ico,
←Ico_union_Ico_eq_Ico (zero_le k) (le_self_add), filter_union],
apply card_union_le,
end
... ≤ π' k + ((Ico k (k + n)).filter (prime)).card :
by rw [prime_counting', count_eq_card_filter_range]
... ≤ π' k + ((Ico k (k + n)).filter (coprime a)).card :
begin
refine add_le_add_left (card_le_of_subset _) k.prime_counting',
simp only [subset_iff, and_imp, mem_filter, mem_Ico],
intros p succ_k_le_p p_lt_n p_prime,
split,
{ exact ⟨succ_k_le_p, p_lt_n⟩, },
{ rw coprime_comm,
exact coprime_of_lt_prime h0 (gt_of_ge_of_gt succ_k_le_p h1) p_prime, },
end
... ≤ π' k + totient a * (n / a + 1) :
begin
rw [add_le_add_iff_left],
exact Ico_filter_coprime_le k n h0,
end
end nat