Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin, Kevin Buzzard | |
-/ | |
import algebra.big_operators.nat_antidiagonal | |
import algebra.geom_sum | |
import data.fintype.card | |
import ring_theory.power_series.well_known | |
import tactic.field_simp | |
/-! | |
# Bernoulli numbers | |
The Bernoulli numbers are a sequence of rational numbers that frequently show up in | |
number theory. | |
## Mathematical overview | |
The Bernoulli numbers $(B_0, B_1, B_2, \ldots)=(1, -1/2, 1/6, 0, -1/30, \ldots)$ are | |
a sequence of rational numbers. They show up in the formula for the sums of $k$th | |
powers. They are related to the Taylor series expansions of $x/\tan(x)$ and | |
of $\coth(x)$, and also show up in the values that the Riemann Zeta function | |
takes both at both negative and positive integers (and hence in the | |
theory of modular forms). For example, if $1 \leq n$ is even then | |
$$\zeta(2n)=\sum_{t\geq1}t^{-2n}=(-1)^{n+1}\frac{(2\pi)^{2n}B_{2n}}{2(2n)!}.$$ | |
Note however that this result is not yet formalised in Lean. | |
The Bernoulli numbers can be formally defined using the power series | |
$$\sum B_n\frac{t^n}{n!}=\frac{t}{1-e^{-t}}$$ | |
although that happens to not be the definition in mathlib (this is an *implementation | |
detail* and need not concern the mathematician). | |
Note that $B_1=-1/2$, meaning that we are using the $B_n^-$ of | |
[from Wikipedia](https://en.wikipedia.org/wiki/Bernoulli_number). | |
## Implementation detail | |
The Bernoulli numbers are defined using well-founded induction, by the formula | |
$$B_n=1-\sum_{k\lt n}\frac{\binom{n}{k}}{n-k+1}B_k.$$ | |
This formula is true for all $n$ and in particular $B_0=1$. Note that this is the definition | |
for positive Bernoulli numbers, which we call `bernoulli'`. The negative Bernoulli numbers are | |
then defined as `bernoulli := (-1)^n * bernoulli'`. | |
## Main theorems | |
`sum_bernoulli : β k in finset.range n, (n.choose k : β) * bernoulli k = 0` | |
-/ | |
open_locale nat big_operators | |
open finset nat finset.nat power_series | |
variables (A : Type*) [comm_ring A] [algebra β A] | |
/-! ### Definitions -/ | |
/-- The Bernoulli numbers: | |
the $n$-th Bernoulli number $B_n$ is defined recursively via | |
$$B_n = 1 - \sum_{k < n} \binom{n}{k}\frac{B_k}{n+1-k}$$ -/ | |
def bernoulli' : β β β := | |
well_founded.fix lt_wf $ | |
Ξ» n bernoulli', 1 - β k : fin n, n.choose k / (n - k + 1) * bernoulli' k k.2 | |
lemma bernoulli'_def' (n : β) : | |
bernoulli' n = 1 - β k : fin n, n.choose k / (n - k + 1) * bernoulli' k := | |
well_founded.fix_eq _ _ _ | |
lemma bernoulli'_def (n : β) : | |
bernoulli' n = 1 - β k in range n, n.choose k / (n - k + 1) * bernoulli' k := | |
by { rw [bernoulli'_def', β fin.sum_univ_eq_sum_range], refl } | |
lemma bernoulli'_spec (n : β) : | |
β k in range n.succ, (n.choose (n - k) : β) / (n - k + 1) * bernoulli' k = 1 := | |
begin | |
rw [sum_range_succ_comm, bernoulli'_def n, tsub_self], | |
conv in (n.choose (_ - _)) { rw choose_symm (mem_range.1 H).le }, | |
simp only [one_mul, cast_one, sub_self, sub_add_cancel, choose_zero_right, zero_add, div_one], | |
end | |
lemma bernoulli'_spec' (n : β) : | |
β k in antidiagonal n, ((k.1 + k.2).choose k.2 : β) / (k.2 + 1) * bernoulli' k.1 = 1 := | |
begin | |
refine ((sum_antidiagonal_eq_sum_range_succ_mk _ n).trans _).trans (bernoulli'_spec n), | |
refine sum_congr rfl (Ξ» x hx, _), | |
simp only [add_tsub_cancel_of_le, mem_range_succ_iff.mp hx, cast_sub], | |
end | |
/-! ### Examples -/ | |
section examples | |
@[simp] lemma bernoulli'_zero : bernoulli' 0 = 1 := | |
by { rw bernoulli'_def, norm_num } | |
@[simp] lemma bernoulli'_one : bernoulli' 1 = 1/2 := | |
by { rw bernoulli'_def, norm_num } | |
@[simp] lemma bernoulli'_two : bernoulli' 2 = 1/6 := | |
by { rw bernoulli'_def, norm_num [sum_range_succ] } | |
@[simp] lemma bernoulli'_three : bernoulli' 3 = 0 := | |
by { rw bernoulli'_def, norm_num [sum_range_succ] } | |
@[simp] lemma bernoulli'_four : bernoulli' 4 = -1/30 := | |
have nat.choose 4 2 = 6 := dec_trivial, -- shrug | |
by { rw bernoulli'_def, norm_num [sum_range_succ, this] } | |
end examples | |
@[simp] lemma sum_bernoulli' (n : β) : | |
β k in range n, (n.choose k : β) * bernoulli' k = n := | |
begin | |
cases n, { simp }, | |
suffices : (n + 1 : β) * β k in range n, β(n.choose k) / (n - k + 1) * bernoulli' k = | |
β x in range n, β(n.succ.choose x) * bernoulli' x, | |
{ rw_mod_cast [sum_range_succ, bernoulli'_def, β this, choose_succ_self_right], ring }, | |
simp_rw [mul_sum, β mul_assoc], | |
refine sum_congr rfl (Ξ» k hk, _), | |
congr', | |
have : ((n - k : β) : β) + 1 β 0 := by apply_mod_cast succ_ne_zero, | |
field_simp [β cast_sub (mem_range.1 hk).le, mul_comm], | |
rw_mod_cast [tsub_add_eq_add_tsub (mem_range.1 hk).le, choose_mul_succ_eq], | |
end | |
/-- The exponential generating function for the Bernoulli numbers `bernoulli' n`. -/ | |
def bernoulli'_power_series := mk $ Ξ» n, algebra_map β A (bernoulli' n / n!) | |
theorem bernoulli'_power_series_mul_exp_sub_one : | |
bernoulli'_power_series A * (exp A - 1) = X * exp A := | |
begin | |
ext n, | |
-- constant coefficient is a special case | |
cases n, { simp }, | |
rw [bernoulli'_power_series, coeff_mul, mul_comm X, sum_antidiagonal_succ'], | |
suffices : β p in antidiagonal n, (bernoulli' p.1 / p.1!) * ((p.2 + 1) * p.2!)β»ΒΉ = n!β»ΒΉ, | |
{ simpa [ring_hom.map_sum] using congr_arg (algebra_map β A) this }, | |
apply eq_inv_of_mul_eq_one_left, | |
rw sum_mul, | |
convert bernoulli'_spec' n using 1, | |
apply sum_congr rfl, | |
simp_rw [mem_antidiagonal], | |
rintro β¨i, jβ© rfl, | |
have : (j + 1 : β) β 0 := by exact_mod_cast succ_ne_zero j, | |
have : (j + 1 : β) * j! * i! β 0 := by simpa [factorial_ne_zero], | |
have := factorial_mul_factorial_dvd_factorial_add i j, | |
field_simp [mul_comm _ (bernoulli' i), mul_assoc, add_choose], | |
rw_mod_cast [mul_comm (j + 1), mul_div_assoc, β mul_assoc], | |
rw [cast_mul, cast_mul, mul_div_mul_right, cast_div_char_zero, cast_mul], | |
assumption, rwa nat.cast_succ, | |
end | |
/-- Odd Bernoulli numbers (greater than 1) are zero. -/ | |
theorem bernoulli'_odd_eq_zero {n : β} (h_odd : odd n) (hlt : 1 < n) : bernoulli' n = 0 := | |
begin | |
let B := mk (Ξ» n, bernoulli' n / n!), | |
suffices : (B - eval_neg_hom B) * (exp β - 1) = X * (exp β - 1), | |
{ cases mul_eq_mul_right_iff.mp this; | |
simp only [power_series.ext_iff, eval_neg_hom, coeff_X] at h, | |
{ apply eq_zero_of_neg_eq, | |
specialize h n, | |
split_ifs at h; | |
simp [h_odd.neg_one_pow, factorial_ne_zero, *] at * }, | |
{ simpa using h 1 } }, | |
have h : B * (exp β - 1) = X * exp β, | |
{ simpa [bernoulli'_power_series] using bernoulli'_power_series_mul_exp_sub_one β }, | |
rw [sub_mul, h, mul_sub X, sub_right_inj, β neg_sub, mul_neg, neg_eq_iff_neg_eq], | |
suffices : eval_neg_hom (B * (exp β - 1)) * exp β = eval_neg_hom (X * exp β) * exp β, | |
{ simpa [mul_assoc, sub_mul, mul_comm (eval_neg_hom (exp β)), exp_mul_exp_neg_eq_one, eq_comm] }, | |
congr', | |
end | |
/-- The Bernoulli numbers are defined to be `bernoulli'` with a parity sign. -/ | |
def bernoulli (n : β) : β := (-1)^n * bernoulli' n | |
lemma bernoulli'_eq_bernoulli (n : β) : bernoulli' n = (-1)^n * bernoulli n := | |
by simp [bernoulli, β mul_assoc, β sq, β pow_mul, mul_comm n 2, pow_mul] | |
@[simp] lemma bernoulli_zero : bernoulli 0 = 1 := by simp [bernoulli] | |
@[simp] lemma bernoulli_one : bernoulli 1 = -1/2 := | |
by norm_num [bernoulli] | |
theorem bernoulli_eq_bernoulli'_of_ne_one {n : β} (hn : n β 1) : bernoulli n = bernoulli' n := | |
begin | |
by_cases h0 : n = 0, { simp [h0] }, | |
rw [bernoulli, neg_one_pow_eq_pow_mod_two], | |
cases mod_two_eq_zero_or_one n, { simp [h] }, | |
simp [bernoulli'_odd_eq_zero (odd_iff.mpr h) (one_lt_iff_ne_zero_and_ne_one.mpr β¨h0, hnβ©)], | |
end | |
@[simp] theorem sum_bernoulli (n : β): | |
β k in range n, (n.choose k : β) * bernoulli k = if n = 1 then 1 else 0 := | |
begin | |
cases n, { simp }, | |
cases n, { simp }, | |
suffices : β i in range n, β((n + 2).choose (i + 2)) * bernoulli (i + 2) = n / 2, | |
{ simp only [this, sum_range_succ', cast_succ, bernoulli_one, bernoulli_zero, choose_one_right, | |
mul_one, choose_zero_right, cast_zero, if_false, zero_add, succ_succ_ne_one], ring }, | |
have f := sum_bernoulli' n.succ.succ, | |
simp_rw [sum_range_succ', bernoulli'_one, choose_one_right, cast_succ, β eq_sub_iff_add_eq] at f, | |
convert f, | |
{ funext x, rw bernoulli_eq_bernoulli'_of_ne_one (succ_ne_zero x β succ.inj) }, | |
{ simp only [one_div, mul_one, bernoulli'_zero, cast_one, choose_zero_right, add_sub_cancel], | |
ring }, | |
end | |
lemma bernoulli_spec' (n : β) : | |
β k in antidiagonal n, ((k.1 + k.2).choose k.2 : β) / (k.2 + 1) * bernoulli k.1 = | |
if n = 0 then 1 else 0 := | |
begin | |
cases n, { simp }, | |
rw if_neg (succ_ne_zero _), | |
-- algebra facts | |
have hβ : (1, n) β antidiagonal n.succ := by simp [mem_antidiagonal, add_comm], | |
have hβ : (n : β) + 1 β 0 := by apply_mod_cast succ_ne_zero, | |
have hβ : (1 + n).choose n = n + 1 := by simp [add_comm], | |
-- key equation: the corresponding fact for `bernoulli'` | |
have H := bernoulli'_spec' n.succ, | |
-- massage it to match the structure of the goal, then convert piece by piece | |
rw sum_eq_add_sum_diff_singleton hβ at H β’, | |
apply add_eq_of_eq_sub', | |
convert eq_sub_of_add_eq' H using 1, | |
{ refine sum_congr rfl (Ξ» p h, _), | |
obtain β¨h', h''β© : p β _ β§ p β _ := by rwa [mem_sdiff, mem_singleton] at h, | |
simp [bernoulli_eq_bernoulli'_of_ne_one ((not_congr (antidiagonal_congr h' hβ)).mp h'')] }, | |
{ field_simp [hβ], | |
norm_num }, | |
end | |
/-- The exponential generating function for the Bernoulli numbers `bernoulli n`. -/ | |
def bernoulli_power_series := mk $ Ξ» n, algebra_map β A (bernoulli n / n!) | |
theorem bernoulli_power_series_mul_exp_sub_one : | |
bernoulli_power_series A * (exp A - 1) = X := | |
begin | |
ext n, | |
-- constant coefficient is a special case | |
cases n, { simp }, | |
simp only [bernoulli_power_series, coeff_mul, coeff_X, sum_antidiagonal_succ', one_div, coeff_mk, | |
coeff_one, coeff_exp, linear_map.map_sub, factorial, if_pos, cast_succ, cast_one, cast_mul, | |
sub_zero, ring_hom.map_one, add_eq_zero_iff, if_false, _root_.inv_one, zero_add, one_ne_zero, | |
mul_zero, and_false, sub_self, β ring_hom.map_mul, β ring_hom.map_sum], | |
cases n, { simp }, | |
rw if_neg n.succ_succ_ne_one, | |
have hfact : β m, (m! : β) β 0 := Ξ» m, by exact_mod_cast factorial_ne_zero m, | |
have hite2 : ite (n.succ = 0) 1 0 = (0 : β) := if_neg n.succ_ne_zero, | |
rw [βmap_zero (algebra_map β A), βzero_div (n.succ! : β), βhite2, β bernoulli_spec', sum_div], | |
refine congr_arg (algebra_map β A) (sum_congr rfl $ Ξ» x h, eq_div_of_mul_eq (hfact n.succ) _), | |
rw mem_antidiagonal at h, | |
have hj : (x.2 + 1 : β) β 0 := by exact_mod_cast succ_ne_zero _, | |
field_simp [β h, mul_ne_zero hj (hfact x.2), hfact x.1, mul_comm _ (bernoulli x.1), mul_assoc, | |
add_choose, cast_div_char_zero (factorial_mul_factorial_dvd_factorial_add _ _), | |
nat.factorial_ne_zero, hj], | |
cc, | |
end | |
section faulhaber | |
/-- **Faulhaber's theorem** relating the **sum of of p-th powers** to the Bernoulli numbers: | |
$$\sum_{k=0}^{n-1} k^p = \sum_{i=0}^p B_i\binom{p+1}{i}\frac{n^{p+1-i}}{p+1}.$$ | |
See https://proofwiki.org/wiki/Faulhaber%27s_Formula and [orosi2018faulhaber] for | |
the proof provided here. -/ | |
theorem sum_range_pow (n p : β) : | |
β k in range n, (k : β) ^ p = | |
β i in range (p + 1), bernoulli i * (p + 1).choose i * n ^ (p + 1 - i) / (p + 1) := | |
begin | |
have hne : β m : β, (m! : β) β 0 := Ξ» m, by exact_mod_cast factorial_ne_zero m, | |
-- compute the Cauchy product of two power series | |
have h_cauchy : mk (Ξ» p, bernoulli p / p!) * mk (Ξ» q, coeff β (q + 1) (exp β ^ n)) | |
= mk (Ξ» p, β i in range (p + 1), | |
bernoulli i * (p + 1).choose i * n ^ (p + 1 - i) / (p + 1)!), | |
{ ext q : 1, | |
let f := Ξ» a b, bernoulli a / a! * coeff β (b + 1) (exp β ^ n), | |
-- key step: use `power_series.coeff_mul` and then rewrite sums | |
simp only [coeff_mul, coeff_mk, cast_mul, sum_antidiagonal_eq_sum_range_succ f], | |
apply sum_congr rfl, | |
simp_intros m h only [finset.mem_range], | |
simp only [f, exp_pow_eq_rescale_exp, rescale, one_div, coeff_mk, ring_hom.coe_mk, coeff_exp, | |
ring_hom.id_apply, cast_mul, algebra_map_rat_rat], | |
-- manipulate factorials and binomial coefficients | |
rw [choose_eq_factorial_div_factorial h.le, eq_comm, div_eq_iff (hne q.succ), succ_eq_add_one, | |
mul_assoc _ _ βq.succ!, mul_comm _ βq.succ!, β mul_assoc, div_mul_eq_mul_div, | |
mul_comm (βn ^ (q - m + 1)), β mul_assoc _ _ (βn ^ (q - m + 1)), β one_div, mul_one_div, | |
div_div, tsub_add_eq_add_tsub (le_of_lt_succ h), cast_div, cast_mul], | |
{ ring }, | |
{ exact factorial_mul_factorial_dvd_factorial h.le }, | |
{ simp [hne] } }, | |
-- same as our goal except we pull out `p!` for convenience | |
have hps : β k in range n, βk ^ p | |
= (β i in range (p + 1), bernoulli i * (p + 1).choose i * n ^ (p + 1 - i) / (p + 1)!) | |
* p!, | |
{ suffices : mk (Ξ» p, β k in range n, βk ^ p * algebra_map β β p!β»ΒΉ) | |
= mk (Ξ» p, β i in range (p + 1), | |
bernoulli i * (p + 1).choose i * n ^ (p + 1 - i) / (p + 1)!), | |
{ rw [β div_eq_iff (hne p), div_eq_mul_inv, sum_mul], | |
rw power_series.ext_iff at this, | |
simpa using this p }, | |
-- the power series `exp β - 1` is non-zero, a fact we need in order to use `mul_right_inj'` | |
have hexp : exp β - 1 β 0, | |
{ simp only [exp, power_series.ext_iff, ne, not_forall], | |
use 1, | |
simp }, | |
have h_r : exp β ^ n - 1 = X * mk (Ξ» p, coeff β (p + 1) (exp β ^ n)), | |
{ have h_const : C β (constant_coeff β (exp β ^ n)) = 1 := by simp, | |
rw [β h_const, sub_const_eq_X_mul_shift] }, | |
-- key step: a chain of equalities of power series | |
rw [β mul_right_inj' hexp, mul_comm, β exp_pow_sum, geom_sum_mul, h_r, | |
β bernoulli_power_series_mul_exp_sub_one, bernoulli_power_series, mul_right_comm], | |
simp [h_cauchy, mul_comm] }, | |
-- massage `hps` into our goal | |
rw [hps, sum_mul], | |
refine sum_congr rfl (Ξ» x hx, _), | |
field_simp [mul_right_comm _ βp!, β mul_assoc _ _ βp!, cast_add_one_ne_zero, hne], | |
end | |
/-- Alternate form of **Faulhaber's theorem**, relating the sum of p-th powers to the Bernoulli | |
numbers: $$\sum_{k=1}^{n} k^p = \sum_{i=0}^p (-1)^iB_i\binom{p+1}{i}\frac{n^{p+1-i}}{p+1}.$$ | |
Deduced from `sum_range_pow`. -/ | |
theorem sum_Ico_pow (n p : β) : | |
β k in Ico 1 (n + 1), (k : β) ^ p = | |
β i in range (p + 1), bernoulli' i * (p + 1).choose i * n ^ (p + 1 - i) / (p + 1) := | |
begin | |
rw β nat.cast_succ, | |
-- dispose of the trivial case | |
cases p, { simp }, | |
let f := Ξ» i, bernoulli i * p.succ.succ.choose i * n ^ (p.succ.succ - i) / p.succ.succ, | |
let f' := Ξ» i, bernoulli' i * p.succ.succ.choose i * n ^ (p.succ.succ - i) / p.succ.succ, | |
suffices : β k in Ico 1 n.succ, βk ^ p.succ = β i in range p.succ.succ, f' i, { convert this }, | |
-- prove some algebraic facts that will make things easier for us later on | |
have hle := nat.le_add_left 1 n, | |
have hne : (p + 1 + 1 : β) β 0 := by exact_mod_cast succ_ne_zero p.succ, | |
have h1 : β r : β, r * (p + 1 + 1) * n ^ p.succ / (p + 1 + 1 : β) = r * n ^ p.succ := | |
Ξ» r, by rw [mul_div_right_comm, mul_div_cancel _ hne], | |
have h2 : f 1 + n ^ p.succ = 1 / 2 * n ^ p.succ, | |
{ simp_rw [f, bernoulli_one, choose_one_right, succ_sub_succ_eq_sub, cast_succ, tsub_zero, h1], | |
ring }, | |
have : β i in range p, bernoulli (i + 2) * (p + 2).choose (i + 2) * n ^ (p - i) / β(p + 2) | |
= β i in range p, bernoulli' (i + 2) * (p + 2).choose (i + 2) * n ^ (p - i) / β(p + 2) := | |
sum_congr rfl (Ξ» i h, by rw bernoulli_eq_bernoulli'_of_ne_one (succ_succ_ne_one i)), | |
calc β k in Ico 1 n.succ, βk ^ p.succ | |
-- replace sum over `Ico` with sum over `range` and simplify | |
= β k in range n.succ, βk ^ p.succ : by simp [sum_Ico_eq_sub _ hle, succ_ne_zero] | |
-- extract the last term of the sum | |
... = β k in range n, (k : β) ^ p.succ + n ^ p.succ : by rw sum_range_succ | |
-- apply the key lemma, `sum_range_pow` | |
... = β i in range p.succ.succ, f i + n ^ p.succ : by simp [f, sum_range_pow] | |
-- extract the first two terms of the sum | |
... = β i in range p, f i.succ.succ + f 1 + f 0 + n ^ p.succ : by simp_rw [sum_range_succ'] | |
... = β i in range p, f i.succ.succ + (f 1 + n ^ p.succ) + f 0 : by ring | |
... = β i in range p, f i.succ.succ + 1 / 2 * n ^ p.succ + f 0 : by rw h2 | |
-- convert from `bernoulli` to `bernoulli'` | |
... = β i in range p, f' i.succ.succ + f' 1 + f' 0 : | |
by { simp only [f, f'], simpa [h1, Ξ» i, show i + 2 = i + 1 + 1, from rfl] } | |
-- rejoin the first two terms of the sum | |
... = β i in range p.succ.succ, f' i : by simp_rw [sum_range_succ'], | |
end | |
end faulhaber | |