Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import algebra.big_operators.ring | |
import number_theory.divisors | |
import data.nat.squarefree | |
import algebra.invertible | |
import data.nat.factorization.basic | |
/-! | |
# Arithmetic Functions and Dirichlet Convolution | |
This file defines arithmetic functions, which are functions from `ℕ` to a specified type that map 0 | |
to 0. In the literature, they are often instead defined as functions from `ℕ+`. These arithmetic | |
functions are endowed with a multiplication, given by Dirichlet convolution, and pointwise addition, | |
to form the Dirichlet ring. | |
## Main Definitions | |
* `arithmetic_function R` consists of functions `f : ℕ → R` such that `f 0 = 0`. | |
* An arithmetic function `f` `is_multiplicative` when `x.coprime y → f (x * y) = f x * f y`. | |
* The pointwise operations `pmul` and `ppow` differ from the multiplication | |
and power instances on `arithmetic_function R`, which use Dirichlet multiplication. | |
* `ζ` is the arithmetic function such that `ζ x = 1` for `0 < x`. | |
* `σ k` is the arithmetic function such that `σ k x = ∑ y in divisors x, y ^ k` for `0 < x`. | |
* `pow k` is the arithmetic function such that `pow k x = x ^ k` for `0 < x`. | |
* `id` is the identity arithmetic function on `ℕ`. | |
* `ω n` is the number of distinct prime factors of `n`. | |
* `Ω n` is the number of prime factors of `n` counted with multiplicity. | |
* `μ` is the Möbius function (spelled `moebius` in code). | |
## Main Results | |
* Several forms of Möbius inversion: | |
* `sum_eq_iff_sum_mul_moebius_eq` for functions to a `comm_ring` | |
* `sum_eq_iff_sum_smul_moebius_eq` for functions to an `add_comm_group` | |
* `prod_eq_iff_prod_pow_moebius_eq` for functions to a `comm_group` | |
* `prod_eq_iff_prod_pow_moebius_eq_of_nonzero` for functions to a `comm_group_with_zero` | |
## Notation | |
The arithmetic functions `ζ` and `σ` have Greek letter names, which are localized notation in | |
the namespace `arithmetic_function`. | |
## Tags | |
arithmetic functions, dirichlet convolution, divisors | |
-/ | |
open finset | |
open_locale big_operators | |
namespace nat | |
variable (R : Type*) | |
/-- An arithmetic function is a function from `ℕ` that maps 0 to 0. In the literature, they are | |
often instead defined as functions from `ℕ+`. Multiplication on `arithmetic_functions` is by | |
Dirichlet convolution. -/ | |
@[derive [has_zero, inhabited]] | |
def arithmetic_function [has_zero R] := zero_hom ℕ R | |
variable {R} | |
namespace arithmetic_function | |
section has_zero | |
variable [has_zero R] | |
instance : has_coe_to_fun (arithmetic_function R) (λ _, ℕ → R) := zero_hom.has_coe_to_fun | |
@[simp] lemma to_fun_eq (f : arithmetic_function R) : f.to_fun = f := rfl | |
@[simp] | |
lemma map_zero {f : arithmetic_function R} : f 0 = 0 := | |
zero_hom.map_zero' f | |
theorem coe_inj {f g : arithmetic_function R} : (f : ℕ → R) = g ↔ f = g := | |
⟨λ h, zero_hom.coe_inj h, λ h, h ▸ rfl⟩ | |
@[simp] | |
lemma zero_apply {x : ℕ} : (0 : arithmetic_function R) x = 0 := | |
zero_hom.zero_apply x | |
@[ext] theorem ext ⦃f g : arithmetic_function R⦄ (h : ∀ x, f x = g x) : f = g := | |
zero_hom.ext h | |
theorem ext_iff {f g : arithmetic_function R} : f = g ↔ ∀ x, f x = g x := | |
zero_hom.ext_iff | |
section has_one | |
variable [has_one R] | |
instance : has_one (arithmetic_function R) := ⟨⟨λ x, ite (x = 1) 1 0, rfl⟩⟩ | |
lemma one_apply {x : ℕ} : (1 : arithmetic_function R) x = ite (x = 1) 1 0 := rfl | |
@[simp] lemma one_one : (1 : arithmetic_function R) 1 = 1 := rfl | |
@[simp] lemma one_apply_ne {x : ℕ} (h : x ≠ 1) : (1 : arithmetic_function R) x = 0 := if_neg h | |
end has_one | |
end has_zero | |
instance nat_coe [add_monoid_with_one R] : | |
has_coe (arithmetic_function ℕ) (arithmetic_function R) := | |
⟨λ f, ⟨↑(f : ℕ → ℕ), by { transitivity ↑(f 0), refl, simp }⟩⟩ | |
@[simp] | |
lemma nat_coe_nat (f : arithmetic_function ℕ) : | |
(↑f : arithmetic_function ℕ) = f := | |
ext $ λ _, cast_id _ | |
@[simp] | |
lemma nat_coe_apply [add_monoid_with_one R] {f : arithmetic_function ℕ} {x : ℕ} : | |
(f : arithmetic_function R) x = f x := rfl | |
instance int_coe [add_group_with_one R] : | |
has_coe (arithmetic_function ℤ) (arithmetic_function R) := | |
⟨λ f, ⟨↑(f : ℕ → ℤ), by { transitivity ↑(f 0), refl, simp }⟩⟩ | |
@[simp] | |
lemma int_coe_int (f : arithmetic_function ℤ) : | |
(↑f : arithmetic_function ℤ) = f := | |
ext $ λ _, int.cast_id _ | |
@[simp] | |
lemma int_coe_apply [add_group_with_one R] | |
{f : arithmetic_function ℤ} {x : ℕ} : | |
(f : arithmetic_function R) x = f x := rfl | |
@[simp] | |
lemma coe_coe [add_group_with_one R] {f : arithmetic_function ℕ} : | |
((f : arithmetic_function ℤ) : arithmetic_function R) = f := | |
by { ext, simp, } | |
@[simp] lemma nat_coe_one [add_monoid_with_one R] : | |
((1 : arithmetic_function ℕ) : arithmetic_function R) = 1 := | |
by { ext n, simp [one_apply] } | |
@[simp] lemma int_coe_one [add_group_with_one R] : | |
((1 : arithmetic_function ℤ) : arithmetic_function R) = 1 := | |
by { ext n, simp [one_apply] } | |
section add_monoid | |
variable [add_monoid R] | |
instance : has_add (arithmetic_function R) := ⟨λ f g, ⟨λ n, f n + g n, by simp⟩⟩ | |
@[simp] | |
lemma add_apply {f g : arithmetic_function R} {n : ℕ} : (f + g) n = f n + g n := rfl | |
instance : add_monoid (arithmetic_function R) := | |
{ add_assoc := λ _ _ _, ext (λ _, add_assoc _ _ _), | |
zero_add := λ _, ext (λ _, zero_add _), | |
add_zero := λ _, ext (λ _, add_zero _), | |
.. arithmetic_function.has_zero R, | |
.. arithmetic_function.has_add } | |
end add_monoid | |
instance [add_monoid_with_one R] : add_monoid_with_one (arithmetic_function R) := | |
{ nat_cast := λ n, ⟨λ x, if x = 1 then (n : R) else 0, by simp⟩, | |
nat_cast_zero := by ext; simp [nat.cast], | |
nat_cast_succ := λ _, by ext; by_cases x = 1; simp [nat.cast, *], | |
.. arithmetic_function.add_monoid, .. arithmetic_function.has_one } | |
instance [add_comm_monoid R] : add_comm_monoid (arithmetic_function R) := | |
{ add_comm := λ _ _, ext (λ _, add_comm _ _), | |
.. arithmetic_function.add_monoid } | |
instance [add_group R] : add_group (arithmetic_function R) := | |
{ neg := λ f, ⟨λ n, - f n, by simp⟩, | |
add_left_neg := λ _, ext (λ _, add_left_neg _), | |
.. arithmetic_function.add_monoid } | |
instance [add_comm_group R] : add_comm_group (arithmetic_function R) := | |
{ .. arithmetic_function.add_comm_monoid, | |
.. arithmetic_function.add_group } | |
section has_smul | |
variables {M : Type*} [has_zero R] [add_comm_monoid M] [has_smul R M] | |
/-- The Dirichlet convolution of two arithmetic functions `f` and `g` is another arithmetic function | |
such that `(f * g) n` is the sum of `f x * g y` over all `(x,y)` such that `x * y = n`. -/ | |
instance : has_smul (arithmetic_function R) (arithmetic_function M) := | |
⟨λ f g, ⟨λ n, ∑ x in divisors_antidiagonal n, f x.fst • g x.snd, by simp⟩⟩ | |
@[simp] | |
lemma smul_apply {f : arithmetic_function R} {g : arithmetic_function M} {n : ℕ} : | |
(f • g) n = ∑ x in divisors_antidiagonal n, f x.fst • g x.snd := rfl | |
end has_smul | |
/-- The Dirichlet convolution of two arithmetic functions `f` and `g` is another arithmetic function | |
such that `(f * g) n` is the sum of `f x * g y` over all `(x,y)` such that `x * y = n`. -/ | |
instance [semiring R] : has_mul (arithmetic_function R) := ⟨(•)⟩ | |
@[simp] | |
lemma mul_apply [semiring R] {f g : arithmetic_function R} {n : ℕ} : | |
(f * g) n = ∑ x in divisors_antidiagonal n, f x.fst * g x.snd := rfl | |
lemma mul_apply_one [semiring R] {f g : arithmetic_function R} : | |
(f * g) 1 = f 1 * g 1 := | |
by simp | |
@[simp, norm_cast] lemma nat_coe_mul [semiring R] {f g : arithmetic_function ℕ} : | |
(↑(f * g) : arithmetic_function R) = f * g := | |
by { ext n, simp } | |
@[simp, norm_cast] lemma int_coe_mul [ring R] {f g : arithmetic_function ℤ} : | |
(↑(f * g) : arithmetic_function R) = f * g := | |
by { ext n, simp } | |
section module | |
variables {M : Type*} [semiring R] [add_comm_monoid M] [module R M] | |
lemma mul_smul' (f g : arithmetic_function R) (h : arithmetic_function M) : | |
(f * g) • h = f • g • h := | |
begin | |
ext n, | |
simp only [mul_apply, smul_apply, sum_smul, mul_smul, smul_sum, finset.sum_sigma'], | |
apply finset.sum_bij, | |
swap 5, | |
{ rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, exact ⟨(k, l*j), (l, j)⟩ }, | |
{ rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, | |
simp only [finset.mem_sigma, mem_divisors_antidiagonal] at H ⊢, | |
rcases H with ⟨⟨rfl, n0⟩, rfl, i0⟩, | |
refine ⟨⟨(mul_assoc _ _ _).symm, n0⟩, rfl, _⟩, | |
rw mul_ne_zero_iff at *, | |
exact ⟨i0.2, n0.2⟩, }, | |
{ rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, simp only [mul_assoc] }, | |
{ rintros ⟨⟨a,b⟩, ⟨c,d⟩⟩ ⟨⟨i,j⟩, ⟨k,l⟩⟩ H₁ H₂, | |
simp only [finset.mem_sigma, mem_divisors_antidiagonal, | |
and_imp, prod.mk.inj_iff, add_comm, heq_iff_eq] at H₁ H₂ ⊢, | |
rintros rfl h2 rfl rfl, | |
exact ⟨⟨eq.trans H₁.2.1.symm H₂.2.1, rfl⟩, rfl, rfl⟩ }, | |
{ rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H, refine ⟨⟨(i*k, l), (i, k)⟩, _, _⟩, | |
{ simp only [finset.mem_sigma, mem_divisors_antidiagonal] at H ⊢, | |
rcases H with ⟨⟨rfl, n0⟩, rfl, j0⟩, | |
refine ⟨⟨mul_assoc _ _ _, n0⟩, rfl, _⟩, | |
rw mul_ne_zero_iff at *, | |
exact ⟨n0.1, j0.1⟩ }, | |
{ simp only [true_and, mem_divisors_antidiagonal, and_true, prod.mk.inj_iff, eq_self_iff_true, | |
ne.def, mem_sigma, heq_iff_eq] at H ⊢, | |
rw H.2.1 } } | |
end | |
lemma one_smul' (b : arithmetic_function M) : | |
(1 : arithmetic_function R) • b = b := | |
begin | |
ext, | |
rw smul_apply, | |
by_cases x0 : x = 0, {simp [x0]}, | |
have h : {(1,x)} ⊆ divisors_antidiagonal x := by simp [x0], | |
rw ← sum_subset h, {simp}, | |
intros y ymem ynmem, | |
have y1ne : y.fst ≠ 1, | |
{ intro con, | |
simp only [con, mem_divisors_antidiagonal, one_mul, ne.def] at ymem, | |
simp only [mem_singleton, prod.ext_iff] at ynmem, | |
tauto }, | |
simp [y1ne], | |
end | |
end module | |
section semiring | |
variable [semiring R] | |
instance : monoid (arithmetic_function R) := | |
{ one_mul := one_smul', | |
mul_one := λ f, | |
begin | |
ext, | |
rw mul_apply, | |
by_cases x0 : x = 0, {simp [x0]}, | |
have h : {(x,1)} ⊆ divisors_antidiagonal x := by simp [x0], | |
rw ← sum_subset h, {simp}, | |
intros y ymem ynmem, | |
have y2ne : y.snd ≠ 1, | |
{ intro con, | |
simp only [con, mem_divisors_antidiagonal, mul_one, ne.def] at ymem, | |
simp only [mem_singleton, prod.ext_iff] at ynmem, | |
tauto }, | |
simp [y2ne], | |
end, | |
mul_assoc := mul_smul', | |
.. arithmetic_function.has_one, | |
.. arithmetic_function.has_mul } | |
instance : semiring (arithmetic_function R) := | |
{ zero_mul := λ f, by { ext, simp only [mul_apply, zero_mul, sum_const_zero, zero_apply] }, | |
mul_zero := λ f, by { ext, simp only [mul_apply, sum_const_zero, mul_zero, zero_apply] }, | |
left_distrib := λ a b c, by { ext, simp only [←sum_add_distrib, mul_add, mul_apply, add_apply] }, | |
right_distrib := λ a b c, by { ext, simp only [←sum_add_distrib, add_mul, mul_apply, add_apply] }, | |
.. arithmetic_function.has_zero R, | |
.. arithmetic_function.has_mul, | |
.. arithmetic_function.has_add, | |
.. arithmetic_function.add_comm_monoid, | |
.. arithmetic_function.add_monoid_with_one, | |
.. arithmetic_function.monoid } | |
end semiring | |
instance [comm_semiring R] : comm_semiring (arithmetic_function R) := | |
{ mul_comm := λ f g, by { ext, | |
rw [mul_apply, ← map_swap_divisors_antidiagonal, sum_map], | |
simp [mul_comm] }, | |
.. arithmetic_function.semiring } | |
instance [comm_ring R] : comm_ring (arithmetic_function R) := | |
{ .. arithmetic_function.add_comm_group, | |
.. arithmetic_function.comm_semiring } | |
instance {M : Type*} [semiring R] [add_comm_monoid M] [module R M] : | |
module (arithmetic_function R) (arithmetic_function M) := | |
{ one_smul := one_smul', | |
mul_smul := mul_smul', | |
smul_add := λ r x y, by { ext, simp only [sum_add_distrib, smul_add, smul_apply, add_apply] }, | |
smul_zero := λ r, by { ext, simp only [smul_apply, sum_const_zero, smul_zero, zero_apply] }, | |
add_smul := λ r s x, by { ext, simp only [add_smul, sum_add_distrib, smul_apply, add_apply] }, | |
zero_smul := λ r, by { ext, simp only [smul_apply, sum_const_zero, zero_smul, zero_apply] }, } | |
section zeta | |
/-- `ζ 0 = 0`, otherwise `ζ x = 1`. The Dirichlet Series is the Riemann ζ. -/ | |
def zeta : arithmetic_function ℕ := | |
⟨λ x, ite (x = 0) 0 1, rfl⟩ | |
localized "notation `ζ` := nat.arithmetic_function.zeta" in arithmetic_function | |
@[simp] | |
lemma zeta_apply {x : ℕ} : ζ x = if (x = 0) then 0 else 1 := rfl | |
lemma zeta_apply_ne {x : ℕ} (h : x ≠ 0) : ζ x = 1 := if_neg h | |
@[simp] | |
theorem coe_zeta_mul_apply [semiring R] {f : arithmetic_function R} {x : ℕ} : | |
(↑ζ * f) x = ∑ i in divisors x, f i := | |
begin | |
rw mul_apply, | |
transitivity ∑ i in divisors_antidiagonal x, f i.snd, | |
{ apply sum_congr rfl, | |
intros i hi, | |
rcases mem_divisors_antidiagonal.1 hi with ⟨rfl, h⟩, | |
rw [nat_coe_apply, zeta_apply_ne (left_ne_zero_of_mul h), cast_one, one_mul] }, | |
{ apply sum_bij (λ i h, prod.snd i), | |
{ rintros ⟨a, b⟩ h, simp [snd_mem_divisors_of_mem_antidiagonal h] }, | |
{ rintros ⟨a, b⟩ h, refl }, | |
{ rintros ⟨a1, b1⟩ ⟨a2, b2⟩ h1 h2 h, | |
dsimp at h, | |
rw h at *, | |
rw mem_divisors_antidiagonal at *, | |
ext, swap, {refl}, | |
simp only [prod.fst, prod.snd] at *, | |
apply nat.eq_of_mul_eq_mul_right _ (eq.trans h1.1 h2.1.symm), | |
rcases h1 with ⟨rfl, h⟩, | |
apply nat.pos_of_ne_zero (right_ne_zero_of_mul h) }, | |
{ intros a ha, | |
rcases mem_divisors.1 ha with ⟨⟨b, rfl⟩, ne0⟩, | |
use (b, a), | |
simp [ne0, mul_comm] } } | |
end | |
theorem coe_zeta_smul_apply {M : Type*} [comm_ring R] [add_comm_group M] [module R M] | |
{f : arithmetic_function M} {x : ℕ} : | |
((↑ζ : arithmetic_function R) • f) x = ∑ i in divisors x, f i := | |
begin | |
rw smul_apply, | |
transitivity ∑ i in divisors_antidiagonal x, f i.snd, | |
{ apply sum_congr rfl, | |
intros i hi, | |
rcases mem_divisors_antidiagonal.1 hi with ⟨rfl, h⟩, | |
rw [nat_coe_apply, zeta_apply_ne (left_ne_zero_of_mul h), cast_one, one_smul] }, | |
{ apply sum_bij (λ i h, prod.snd i), | |
{ rintros ⟨a, b⟩ h, simp [snd_mem_divisors_of_mem_antidiagonal h] }, | |
{ rintros ⟨a, b⟩ h, refl }, | |
{ rintros ⟨a1, b1⟩ ⟨a2, b2⟩ h1 h2 h, | |
dsimp at h, | |
rw h at *, | |
rw mem_divisors_antidiagonal at *, | |
ext, swap, {refl}, | |
simp only [prod.fst, prod.snd] at *, | |
apply nat.eq_of_mul_eq_mul_right _ (eq.trans h1.1 h2.1.symm), | |
rcases h1 with ⟨rfl, h⟩, | |
apply nat.pos_of_ne_zero (right_ne_zero_of_mul h) }, | |
{ intros a ha, | |
rcases mem_divisors.1 ha with ⟨⟨b, rfl⟩, ne0⟩, | |
use (b, a), | |
simp [ne0, mul_comm] } } | |
end | |
@[simp] | |
theorem coe_mul_zeta_apply [semiring R] {f : arithmetic_function R} {x : ℕ} : | |
(f * ζ) x = ∑ i in divisors x, f i := | |
begin | |
apply mul_opposite.op_injective, | |
rw [op_sum], | |
convert @coe_zeta_mul_apply Rᵐᵒᵖ _ { to_fun := mul_opposite.op ∘ f, map_zero' := by simp} x, | |
rw [mul_apply, mul_apply, op_sum], | |
conv_lhs { rw ← map_swap_divisors_antidiagonal, }, | |
rw sum_map, | |
apply sum_congr rfl, | |
intros y hy, | |
by_cases h1 : y.fst = 0, | |
{ simp [function.comp_apply, h1] }, | |
{ simp only [h1, mul_one, one_mul, prod.fst_swap, function.embedding.coe_fn_mk, prod.snd_swap, | |
if_false, zeta_apply, zero_hom.coe_mk, nat_coe_apply, cast_one] } | |
end | |
theorem zeta_mul_apply {f : arithmetic_function ℕ} {x : ℕ} : | |
(ζ * f) x = ∑ i in divisors x, f i := | |
by rw [← nat_coe_nat ζ, coe_zeta_mul_apply] | |
theorem mul_zeta_apply {f : arithmetic_function ℕ} {x : ℕ} : | |
(f * ζ) x = ∑ i in divisors x, f i := | |
by rw [← nat_coe_nat ζ, coe_mul_zeta_apply] | |
end zeta | |
open_locale arithmetic_function | |
section pmul | |
/-- This is the pointwise product of `arithmetic_function`s. -/ | |
def pmul [mul_zero_class R] (f g : arithmetic_function R) : | |
arithmetic_function R := | |
⟨λ x, f x * g x, by simp⟩ | |
@[simp] | |
lemma pmul_apply [mul_zero_class R] {f g : arithmetic_function R} {x : ℕ} : | |
f.pmul g x = f x * g x := rfl | |
lemma pmul_comm [comm_monoid_with_zero R] (f g : arithmetic_function R) : | |
f.pmul g = g.pmul f := | |
by { ext, simp [mul_comm] } | |
section non_assoc_semiring | |
variable [non_assoc_semiring R] | |
@[simp] | |
lemma pmul_zeta (f : arithmetic_function R) : f.pmul ↑ζ = f := | |
begin | |
ext x, | |
cases x; | |
simp [nat.succ_ne_zero], | |
end | |
@[simp] | |
lemma zeta_pmul (f : arithmetic_function R) : (ζ : arithmetic_function R).pmul f = f := | |
begin | |
ext x, | |
cases x; | |
simp [nat.succ_ne_zero], | |
end | |
end non_assoc_semiring | |
variables [semiring R] | |
/-- This is the pointwise power of `arithmetic_function`s. -/ | |
def ppow (f : arithmetic_function R) (k : ℕ) : | |
arithmetic_function R := | |
if h0 : k = 0 then ζ else ⟨λ x, (f x) ^ k, | |
by { rw [map_zero], exact zero_pow (nat.pos_of_ne_zero h0) }⟩ | |
@[simp] | |
lemma ppow_zero {f : arithmetic_function R} : f.ppow 0 = ζ := | |
by rw [ppow, dif_pos rfl] | |
@[simp] | |
lemma ppow_apply {f : arithmetic_function R} {k x : ℕ} (kpos : 0 < k) : | |
f.ppow k x = (f x) ^ k := | |
by { rw [ppow, dif_neg (ne_of_gt kpos)], refl } | |
lemma ppow_succ {f : arithmetic_function R} {k : ℕ} : | |
f.ppow (k + 1) = f.pmul (f.ppow k) := | |
begin | |
ext x, | |
rw [ppow_apply (nat.succ_pos k), pow_succ], | |
induction k; simp, | |
end | |
lemma ppow_succ' {f : arithmetic_function R} {k : ℕ} {kpos : 0 < k} : | |
f.ppow (k + 1) = (f.ppow k).pmul f := | |
begin | |
ext x, | |
rw [ppow_apply (nat.succ_pos k), pow_succ'], | |
induction k; simp, | |
end | |
end pmul | |
/-- Multiplicative functions -/ | |
def is_multiplicative [monoid_with_zero R] (f : arithmetic_function R) : Prop := | |
f 1 = 1 ∧ (∀ {m n : ℕ}, m.coprime n → f (m * n) = f m * f n) | |
namespace is_multiplicative | |
section monoid_with_zero | |
variable [monoid_with_zero R] | |
@[simp] | |
lemma map_one {f : arithmetic_function R} (h : f.is_multiplicative) : f 1 = 1 := | |
h.1 | |
@[simp] | |
lemma map_mul_of_coprime {f : arithmetic_function R} (hf : f.is_multiplicative) | |
{m n : ℕ} (h : m.coprime n) : f (m * n) = f m * f n := | |
hf.2 h | |
end monoid_with_zero | |
lemma map_prod {ι : Type*} [comm_monoid_with_zero R] (g : ι → ℕ) {f : nat.arithmetic_function R} | |
(hf : f.is_multiplicative) (s : finset ι) (hs : (s : set ι).pairwise (coprime on g)): | |
f (∏ i in s, g i) = ∏ i in s, f (g i) := | |
begin | |
classical, | |
induction s using finset.induction_on with a s has ih hs, | |
{ simp [hf] }, | |
rw [coe_insert, set.pairwise_insert_of_symmetric (coprime.symmetric.comap g)] at hs, | |
rw [prod_insert has, prod_insert has, hf.map_mul_of_coprime, ih hs.1], | |
exact nat.coprime_prod_right (λ i hi, hs.2 _ hi (hi.ne_of_not_mem has).symm), | |
end | |
lemma nat_cast {f : arithmetic_function ℕ} [semiring R] (h : f.is_multiplicative) : | |
is_multiplicative (f : arithmetic_function R) := | |
⟨by simp [h], λ m n cop, by simp [cop, h]⟩ | |
lemma int_cast {f : arithmetic_function ℤ} [ring R] (h : f.is_multiplicative) : | |
is_multiplicative (f : arithmetic_function R) := | |
⟨by simp [h], λ m n cop, by simp [cop, h]⟩ | |
lemma mul [comm_semiring R] {f g : arithmetic_function R} | |
(hf : f.is_multiplicative) (hg : g.is_multiplicative) : | |
is_multiplicative (f * g) := | |
⟨by { simp [hf, hg], }, begin | |
simp only [mul_apply], | |
intros m n cop, | |
rw sum_mul_sum, | |
symmetry, | |
apply sum_bij (λ (x : (ℕ × ℕ) × ℕ × ℕ) h, (x.1.1 * x.2.1, x.1.2 * x.2.2)), | |
{ rintros ⟨⟨a1, a2⟩, ⟨b1, b2⟩⟩ h, | |
simp only [mem_divisors_antidiagonal, ne.def, mem_product] at h, | |
rcases h with ⟨⟨rfl, ha⟩, ⟨rfl, hb⟩⟩, | |
simp only [mem_divisors_antidiagonal, nat.mul_eq_zero, ne.def], | |
split, {ring}, | |
rw nat.mul_eq_zero at *, | |
apply not_or ha hb }, | |
{ rintros ⟨⟨a1, a2⟩, ⟨b1, b2⟩⟩ h, | |
simp only [mem_divisors_antidiagonal, ne.def, mem_product] at h, | |
rcases h with ⟨⟨rfl, ha⟩, ⟨rfl, hb⟩⟩, | |
dsimp only, | |
rw [hf.map_mul_of_coprime cop.coprime_mul_right.coprime_mul_right_right, | |
hg.map_mul_of_coprime cop.coprime_mul_left.coprime_mul_left_right], | |
ring, }, | |
{ rintros ⟨⟨a1, a2⟩, ⟨b1, b2⟩⟩ ⟨⟨c1, c2⟩, ⟨d1, d2⟩⟩ hab hcd h, | |
simp only [mem_divisors_antidiagonal, ne.def, mem_product] at hab, | |
rcases hab with ⟨⟨rfl, ha⟩, ⟨rfl, hb⟩⟩, | |
simp only [mem_divisors_antidiagonal, ne.def, mem_product] at hcd, | |
simp only [prod.mk.inj_iff] at h, | |
ext; dsimp only, | |
{ transitivity nat.gcd (a1 * a2) (a1 * b1), | |
{ rw [nat.gcd_mul_left, cop.coprime_mul_left.coprime_mul_right_right.gcd_eq_one, mul_one] }, | |
{ rw [← hcd.1.1, ← hcd.2.1] at cop, | |
rw [← hcd.1.1, h.1, nat.gcd_mul_left, | |
cop.coprime_mul_left.coprime_mul_right_right.gcd_eq_one, mul_one] } }, | |
{ transitivity nat.gcd (a1 * a2) (a2 * b2), | |
{ rw [mul_comm, nat.gcd_mul_left, cop.coprime_mul_right.coprime_mul_left_right.gcd_eq_one, | |
mul_one] }, | |
{ rw [← hcd.1.1, ← hcd.2.1] at cop, | |
rw [← hcd.1.1, h.2, mul_comm, nat.gcd_mul_left, | |
cop.coprime_mul_right.coprime_mul_left_right.gcd_eq_one, mul_one] } }, | |
{ transitivity nat.gcd (b1 * b2) (a1 * b1), | |
{ rw [mul_comm, nat.gcd_mul_right, | |
cop.coprime_mul_right.coprime_mul_left_right.symm.gcd_eq_one, one_mul] }, | |
{ rw [← hcd.1.1, ← hcd.2.1] at cop, | |
rw [← hcd.2.1, h.1, mul_comm c1 d1, nat.gcd_mul_left, | |
cop.coprime_mul_right.coprime_mul_left_right.symm.gcd_eq_one, mul_one] } }, | |
{ transitivity nat.gcd (b1 * b2) (a2 * b2), | |
{ rw [nat.gcd_mul_right, | |
cop.coprime_mul_left.coprime_mul_right_right.symm.gcd_eq_one, one_mul] }, | |
{ rw [← hcd.1.1, ← hcd.2.1] at cop, | |
rw [← hcd.2.1, h.2, nat.gcd_mul_right, | |
cop.coprime_mul_left.coprime_mul_right_right.symm.gcd_eq_one, one_mul] } } }, | |
{ rintros ⟨b1, b2⟩ h, | |
simp only [mem_divisors_antidiagonal, ne.def, mem_product] at h, | |
use ((b1.gcd m, b2.gcd m), (b1.gcd n, b2.gcd n)), | |
simp only [exists_prop, prod.mk.inj_iff, ne.def, mem_product, mem_divisors_antidiagonal], | |
rw [← cop.gcd_mul _, ← cop.gcd_mul _, ← h.1, nat.gcd_mul_gcd_of_coprime_of_mul_eq_mul cop h.1, | |
nat.gcd_mul_gcd_of_coprime_of_mul_eq_mul cop.symm _], | |
{ rw [nat.mul_eq_zero, decidable.not_or_iff_and_not] at h, simp [h.2.1, h.2.2] }, | |
rw [mul_comm n m, h.1] } | |
end⟩ | |
lemma pmul [comm_semiring R] {f g : arithmetic_function R} | |
(hf : f.is_multiplicative) (hg : g.is_multiplicative) : | |
is_multiplicative (f.pmul g) := | |
⟨by { simp [hf, hg], }, λ m n cop, begin | |
simp only [pmul_apply, hf.map_mul_of_coprime cop, hg.map_mul_of_coprime cop], | |
ring, | |
end⟩ | |
/-- For any multiplicative function `f` and any `n > 0`, | |
we can evaluate `f n` by evaluating `f` at `p ^ k` over the factorization of `n` -/ | |
lemma multiplicative_factorization [comm_monoid_with_zero R] (f : arithmetic_function R) | |
(hf : f.is_multiplicative) : | |
∀ {n : ℕ}, n ≠ 0 → f n = n.factorization.prod (λ p k, f (p ^ k)) := | |
λ n hn, multiplicative_factorization f hf.2 hf.1 hn | |
/-- A recapitulation of the definition of multiplicative that is simpler for proofs -/ | |
lemma iff_ne_zero [monoid_with_zero R] {f : arithmetic_function R} : | |
is_multiplicative f ↔ | |
f 1 = 1 ∧ (∀ {m n : ℕ}, m ≠ 0 → n ≠ 0 → m.coprime n → f (m * n) = f m * f n) := | |
begin | |
refine and_congr_right' (forall₂_congr (λ m n, ⟨λ h _ _, h, λ h hmn, _⟩)), | |
rcases eq_or_ne m 0 with rfl | hm, | |
{ simp }, | |
rcases eq_or_ne n 0 with rfl | hn, | |
{ simp }, | |
exact h hm hn hmn, | |
end | |
/-- Two multiplicative functions `f` and `g` are equal if and only if | |
they agree on prime powers -/ | |
lemma eq_iff_eq_on_prime_powers [comm_monoid_with_zero R] | |
(f : arithmetic_function R) (hf : f.is_multiplicative) | |
(g : arithmetic_function R) (hg : g.is_multiplicative) : | |
f = g ↔ ∀ (p i : ℕ), nat.prime p → f (p ^ i) = g (p ^ i) := | |
begin | |
split, | |
{ intros h p i _, rw [h] }, | |
intros h, | |
ext n, | |
by_cases hn : n = 0, | |
{ rw [hn, arithmetic_function.map_zero, arithmetic_function.map_zero] }, | |
rw [multiplicative_factorization f hf hn, multiplicative_factorization g hg hn], | |
refine finset.prod_congr rfl _, | |
simp only [support_factorization, list.mem_to_finset], | |
intros p hp, | |
exact h p _ (nat.prime_of_mem_factors hp), | |
end | |
end is_multiplicative | |
section special_functions | |
/-- The identity on `ℕ` as an `arithmetic_function`. -/ | |
def id : arithmetic_function ℕ := ⟨id, rfl⟩ | |
@[simp] | |
lemma id_apply {x : ℕ} : id x = x := rfl | |
/-- `pow k n = n ^ k`, except `pow 0 0 = 0`. -/ | |
def pow (k : ℕ) : arithmetic_function ℕ := id.ppow k | |
@[simp] | |
lemma pow_apply {k n : ℕ} : pow k n = if (k = 0 ∧ n = 0) then 0 else n ^ k := | |
begin | |
cases k, | |
{ simp [pow] }, | |
simp [pow, (ne_of_lt (nat.succ_pos k)).symm], | |
end | |
lemma pow_zero_eq_zeta : pow 0 = ζ := by { ext n, simp } | |
/-- `σ k n` is the sum of the `k`th powers of the divisors of `n` -/ | |
def sigma (k : ℕ) : arithmetic_function ℕ := | |
⟨λ n, ∑ d in divisors n, d ^ k, by simp⟩ | |
localized "notation `σ` := nat.arithmetic_function.sigma" in arithmetic_function | |
lemma sigma_apply {k n : ℕ} : σ k n = ∑ d in divisors n, d ^ k := rfl | |
lemma sigma_one_apply (n : ℕ) : σ 1 n = ∑ d in divisors n, d := by simp [sigma_apply] | |
lemma sigma_zero_apply (n : ℕ) : σ 0 n = (divisors n).card := by simp [sigma_apply] | |
lemma sigma_zero_apply_prime_pow {p i : ℕ} (hp : p.prime) : | |
σ 0 (p ^ i) = i + 1 := | |
by rw [sigma_zero_apply, divisors_prime_pow hp, card_map, card_range] | |
lemma zeta_mul_pow_eq_sigma {k : ℕ} : ζ * pow k = σ k := | |
begin | |
ext, | |
rw [sigma, zeta_mul_apply], | |
apply sum_congr rfl, | |
intros x hx, | |
rw [pow_apply, if_neg (not_and_of_not_right _ _)], | |
contrapose! hx, | |
simp [hx], | |
end | |
lemma is_multiplicative_one [monoid_with_zero R] : is_multiplicative (1 : arithmetic_function R) := | |
is_multiplicative.iff_ne_zero.2 ⟨by simp, | |
begin | |
intros m n hm hn hmn, | |
rcases eq_or_ne m 1 with rfl | hm', | |
{ simp }, | |
rw [one_apply_ne, one_apply_ne hm', zero_mul], | |
rw [ne.def, nat.mul_eq_one_iff, not_and_distrib], | |
exact or.inl hm' | |
end⟩ | |
lemma is_multiplicative_zeta : is_multiplicative ζ := | |
is_multiplicative.iff_ne_zero.2 ⟨by simp, by simp {contextual := tt}⟩ | |
lemma is_multiplicative_id : is_multiplicative arithmetic_function.id := | |
⟨rfl, λ _ _ _, rfl⟩ | |
lemma is_multiplicative.ppow [comm_semiring R] {f : arithmetic_function R} | |
(hf : f.is_multiplicative) {k : ℕ} : | |
is_multiplicative (f.ppow k) := | |
begin | |
induction k with k hi, | |
{ exact is_multiplicative_zeta.nat_cast }, | |
{ rw ppow_succ, | |
apply hf.pmul hi }, | |
end | |
lemma is_multiplicative_pow {k : ℕ} : is_multiplicative (pow k) := | |
is_multiplicative_id.ppow | |
lemma is_multiplicative_sigma {k : ℕ} : | |
is_multiplicative (σ k) := | |
begin | |
rw [← zeta_mul_pow_eq_sigma], | |
apply ((is_multiplicative_zeta).mul is_multiplicative_pow) | |
end | |
/-- `Ω n` is the number of prime factors of `n`. -/ | |
def card_factors : arithmetic_function ℕ := | |
⟨λ n, n.factors.length, by simp⟩ | |
localized "notation `Ω` := nat.arithmetic_function.card_factors" in arithmetic_function | |
lemma card_factors_apply {n : ℕ} : | |
Ω n = n.factors.length := rfl | |
@[simp] | |
lemma card_factors_one : Ω 1 = 0 := by simp [card_factors] | |
lemma card_factors_eq_one_iff_prime {n : ℕ} : | |
Ω n = 1 ↔ n.prime := | |
begin | |
refine ⟨λ h, _, λ h, list.length_eq_one.2 ⟨n, factors_prime h⟩⟩, | |
cases n, | |
{ contrapose! h, | |
simp }, | |
rcases list.length_eq_one.1 h with ⟨x, hx⟩, | |
rw [← prod_factors n.succ_ne_zero, hx, list.prod_singleton], | |
apply prime_of_mem_factors, | |
rw [hx, list.mem_singleton] | |
end | |
lemma card_factors_mul {m n : ℕ} (m0 : m ≠ 0) (n0 : n ≠ 0) : | |
Ω (m * n) = Ω m + Ω n := | |
by rw [card_factors_apply, card_factors_apply, card_factors_apply, ← multiset.coe_card, | |
← factors_eq, unique_factorization_monoid.normalized_factors_mul m0 n0, factors_eq, factors_eq, | |
multiset.card_add, multiset.coe_card, multiset.coe_card] | |
lemma card_factors_multiset_prod {s : multiset ℕ} (h0 : s.prod ≠ 0) : | |
Ω s.prod = (multiset.map Ω s).sum := | |
begin | |
revert h0, | |
apply s.induction_on, by simp, | |
intros a t h h0, | |
rw [multiset.prod_cons, mul_ne_zero_iff] at h0, | |
simp [h0, card_factors_mul, h], | |
end | |
@[simp] lemma card_factors_apply_prime {p : ℕ} (hp : p.prime) : Ω p = 1 := | |
card_factors_eq_one_iff_prime.2 hp | |
@[simp] lemma card_factors_apply_prime_pow {p k : ℕ} (hp : p.prime) : Ω (p ^ k) = k := | |
by rw [card_factors_apply, hp.factors_pow, list.length_repeat] | |
/-- `ω n` is the number of distinct prime factors of `n`. -/ | |
def card_distinct_factors : arithmetic_function ℕ := | |
⟨λ n, n.factors.dedup.length, by simp⟩ | |
localized "notation `ω` := nat.arithmetic_function.card_distinct_factors" in arithmetic_function | |
lemma card_distinct_factors_zero : ω 0 = 0 := by simp | |
@[simp] lemma card_distinct_factors_one : ω 1 = 0 := by simp [card_distinct_factors] | |
lemma card_distinct_factors_apply {n : ℕ} : | |
ω n = n.factors.dedup.length := rfl | |
lemma card_distinct_factors_eq_card_factors_iff_squarefree {n : ℕ} (h0 : n ≠ 0) : | |
ω n = Ω n ↔ squarefree n := | |
begin | |
rw [squarefree_iff_nodup_factors h0, card_distinct_factors_apply], | |
split; intro h, | |
{ rw ← list.eq_of_sublist_of_length_eq n.factors.dedup_sublist h, | |
apply list.nodup_dedup }, | |
{ rw h.dedup, | |
refl } | |
end | |
@[simp] lemma card_distinct_factors_apply_prime_pow {p k : ℕ} (hp : p.prime) (hk : k ≠ 0) : | |
ω (p ^ k) = 1 := | |
by rw [card_distinct_factors_apply, hp.factors_pow, list.repeat_dedup hk, list.length_singleton] | |
@[simp] lemma card_distinct_factors_apply_prime {p : ℕ} (hp : p.prime) : ω p = 1 := | |
by rw [←pow_one p, card_distinct_factors_apply_prime_pow hp one_ne_zero] | |
/-- `μ` is the Möbius function. If `n` is squarefree with an even number of distinct prime factors, | |
`μ n = 1`. If `n` is squarefree with an odd number of distinct prime factors, `μ n = -1`. | |
If `n` is not squarefree, `μ n = 0`. -/ | |
def moebius : arithmetic_function ℤ := | |
⟨λ n, if squarefree n then (-1) ^ (card_factors n) else 0, by simp⟩ | |
localized "notation `μ` := nat.arithmetic_function.moebius" in arithmetic_function | |
@[simp] | |
lemma moebius_apply_of_squarefree {n : ℕ} (h : squarefree n) : μ n = (-1) ^ card_factors n := | |
if_pos h | |
@[simp] lemma moebius_eq_zero_of_not_squarefree {n : ℕ} (h : ¬ squarefree n) : μ n = 0 := if_neg h | |
lemma moebius_apply_one : μ 1 = 1 := by simp | |
lemma moebius_ne_zero_iff_squarefree {n : ℕ} : μ n ≠ 0 ↔ squarefree n := | |
begin | |
split; intro h, | |
{ contrapose! h, | |
simp [h] }, | |
{ simp [h, pow_ne_zero] } | |
end | |
lemma moebius_ne_zero_iff_eq_or {n : ℕ} : μ n ≠ 0 ↔ μ n = 1 ∨ μ n = -1 := | |
begin | |
split; intro h, | |
{ rw moebius_ne_zero_iff_squarefree at h, | |
rw moebius_apply_of_squarefree h, | |
apply neg_one_pow_eq_or }, | |
{ rcases h with h | h; simp [h] } | |
end | |
lemma moebius_apply_prime {p : ℕ} (hp : p.prime) : μ p = -1 := | |
by rw [moebius_apply_of_squarefree hp.squarefree, card_factors_apply_prime hp, pow_one] | |
lemma moebius_apply_prime_pow {p k : ℕ} (hp : p.prime) (hk : k ≠ 0) : | |
μ (p ^ k) = if k = 1 then -1 else 0 := | |
begin | |
split_ifs, | |
{ rw [h, pow_one, moebius_apply_prime hp] }, | |
rw [moebius_eq_zero_of_not_squarefree], | |
rw [squarefree_pow_iff hp.ne_one hk, not_and_distrib], | |
exact or.inr h, | |
end | |
lemma moebius_apply_is_prime_pow_not_prime {n : ℕ} (hn : is_prime_pow n) (hn' : ¬ n.prime) : | |
μ n = 0 := | |
begin | |
obtain ⟨p, k, hp, hk, rfl⟩ := (is_prime_pow_nat_iff _).1 hn, | |
rw [moebius_apply_prime_pow hp hk.ne', if_neg], | |
rintro rfl, | |
exact hn' (by simpa), | |
end | |
lemma is_multiplicative_moebius : is_multiplicative μ := | |
begin | |
rw is_multiplicative.iff_ne_zero, | |
refine ⟨by simp, λ n m hn hm hnm, _⟩, | |
simp only [moebius, zero_hom.coe_mk, squarefree_mul hnm, ite_and, card_factors_mul hn hm], | |
rw [pow_add, mul_comm, ite_mul_zero_left, ite_mul_zero_right, mul_comm], | |
end | |
open unique_factorization_monoid | |
@[simp] lemma moebius_mul_coe_zeta : (μ * ζ : arithmetic_function ℤ) = 1 := | |
begin | |
ext n, | |
refine rec_on_pos_prime_pos_coprime _ _ _ _ n, | |
{ intros p n hp hn, | |
rw [coe_mul_zeta_apply, sum_divisors_prime_pow hp, sum_range_succ'], | |
simp_rw [function.embedding.coe_fn_mk, pow_zero, moebius_apply_one, | |
moebius_apply_prime_pow hp (nat.succ_ne_zero _), nat.succ_inj', sum_ite_eq', mem_range, | |
if_pos hn, add_left_neg], | |
rw one_apply_ne, | |
rw [ne.def, pow_eq_one_iff], | |
{ exact hp.ne_one }, | |
{ exact hn.ne' } }, | |
{ rw [zero_hom.map_zero, zero_hom.map_zero] }, | |
{ simp }, | |
{ intros a b ha hb hab ha' hb', | |
rw [is_multiplicative.map_mul_of_coprime _ hab, ha', hb', | |
is_multiplicative.map_mul_of_coprime is_multiplicative_one hab], | |
exact is_multiplicative_moebius.mul is_multiplicative_zeta.nat_cast } | |
end | |
@[simp] lemma coe_zeta_mul_moebius : (ζ * μ : arithmetic_function ℤ) = 1 := | |
by rw [mul_comm, moebius_mul_coe_zeta] | |
@[simp] lemma coe_moebius_mul_coe_zeta [ring R] : (μ * ζ : arithmetic_function R) = 1 := | |
by rw [←coe_coe, ←int_coe_mul, moebius_mul_coe_zeta, int_coe_one] | |
@[simp] lemma coe_zeta_mul_coe_moebius [ring R] : (ζ * μ : arithmetic_function R) = 1 := | |
by rw [←coe_coe, ←int_coe_mul, coe_zeta_mul_moebius, int_coe_one] | |
section comm_ring | |
variable [comm_ring R] | |
instance : invertible (ζ : arithmetic_function R) := | |
{ inv_of := μ, | |
inv_of_mul_self := coe_moebius_mul_coe_zeta, | |
mul_inv_of_self := coe_zeta_mul_coe_moebius} | |
/-- A unit in `arithmetic_function R` that evaluates to `ζ`, with inverse `μ`. -/ | |
def zeta_unit : (arithmetic_function R)ˣ := | |
⟨ζ, μ, coe_zeta_mul_coe_moebius, coe_moebius_mul_coe_zeta⟩ | |
@[simp] | |
lemma coe_zeta_unit : | |
((zeta_unit : (arithmetic_function R)ˣ) : arithmetic_function R) = ζ := rfl | |
@[simp] | |
lemma inv_zeta_unit : | |
((zeta_unit⁻¹ : (arithmetic_function R)ˣ) : arithmetic_function R) = μ := rfl | |
end comm_ring | |
/-- Möbius inversion for functions to an `add_comm_group`. -/ | |
theorem sum_eq_iff_sum_smul_moebius_eq | |
[add_comm_group R] {f g : ℕ → R} : | |
(∀ (n : ℕ), 0 < n → ∑ i in (n.divisors), f i = g n) ↔ | |
∀ (n : ℕ), 0 < n → ∑ (x : ℕ × ℕ) in n.divisors_antidiagonal, μ x.fst • g x.snd = f n := | |
begin | |
let f' : arithmetic_function R := ⟨λ x, if x = 0 then 0 else f x, if_pos rfl⟩, | |
let g' : arithmetic_function R := ⟨λ x, if x = 0 then 0 else g x, if_pos rfl⟩, | |
transitivity (ζ : arithmetic_function ℤ) • f' = g', | |
{ rw ext_iff, | |
apply forall_congr, | |
intro n, | |
cases n, { simp }, | |
rw coe_zeta_smul_apply, | |
simp only [n.succ_ne_zero, forall_prop_of_true, succ_pos', if_false, zero_hom.coe_mk], | |
rw sum_congr rfl (λ x hx, _), | |
rw (if_neg (ne_of_gt (nat.pos_of_mem_divisors hx))) }, | |
transitivity μ • g' = f', | |
{ split; intro h, | |
{ rw [← h, ← mul_smul, moebius_mul_coe_zeta, one_smul] }, | |
{ rw [← h, ← mul_smul, coe_zeta_mul_moebius, one_smul] } }, | |
{ rw ext_iff, | |
apply forall_congr, | |
intro n, | |
cases n, { simp }, | |
simp only [n.succ_ne_zero, forall_prop_of_true, succ_pos', smul_apply, | |
if_false, zero_hom.coe_mk], | |
rw sum_congr rfl (λ x hx, _), | |
rw (if_neg (ne_of_gt (nat.pos_of_mem_divisors (snd_mem_divisors_of_mem_antidiagonal hx)))) }, | |
end | |
/-- Möbius inversion for functions to a `ring`. -/ | |
theorem sum_eq_iff_sum_mul_moebius_eq [ring R] {f g : ℕ → R} : | |
(∀ (n : ℕ), 0 < n → ∑ i in (n.divisors), f i = g n) ↔ | |
∀ (n : ℕ), 0 < n → ∑ (x : ℕ × ℕ) in n.divisors_antidiagonal, (μ x.fst : R) * g x.snd = f n := | |
begin | |
rw sum_eq_iff_sum_smul_moebius_eq, | |
apply forall_congr, | |
refine λ a, imp_congr_right (λ _, (sum_congr rfl $ λ x hx, _).congr_left), | |
rw [zsmul_eq_mul], | |
end | |
/-- Möbius inversion for functions to a `comm_group`. -/ | |
theorem prod_eq_iff_prod_pow_moebius_eq [comm_group R] {f g : ℕ → R} : | |
(∀ (n : ℕ), 0 < n → ∏ i in (n.divisors), f i = g n) ↔ | |
∀ (n : ℕ), 0 < n → ∏ (x : ℕ × ℕ) in n.divisors_antidiagonal, g x.snd ^ (μ x.fst) = f n := | |
@sum_eq_iff_sum_smul_moebius_eq (additive R) _ _ _ | |
/-- Möbius inversion for functions to a `comm_group_with_zero`. -/ | |
theorem prod_eq_iff_prod_pow_moebius_eq_of_nonzero [comm_group_with_zero R] {f g : ℕ → R} | |
(hf : ∀ (n : ℕ), 0 < n → f n ≠ 0) (hg : ∀ (n : ℕ), 0 < n → g n ≠ 0) : | |
(∀ (n : ℕ), 0 < n → ∏ i in (n.divisors), f i = g n) ↔ | |
∀ (n : ℕ), 0 < n → ∏ (x : ℕ × ℕ) in n.divisors_antidiagonal, g x.snd ^ (μ x.fst) = f n := | |
begin | |
refine iff.trans (iff.trans (forall_congr (λ n, _)) (@prod_eq_iff_prod_pow_moebius_eq Rˣ _ | |
(λ n, if h : 0 < n then units.mk0 (f n) (hf n h) else 1) | |
(λ n, if h : 0 < n then units.mk0 (g n) (hg n h) else 1))) (forall_congr (λ n, _)); | |
refine imp_congr_right (λ hn, _), | |
{ dsimp, | |
rw [dif_pos hn, ← units.eq_iff, ← units.coe_hom_apply, monoid_hom.map_prod, units.coe_mk0, | |
prod_congr rfl _], | |
intros x hx, | |
rw [dif_pos (nat.pos_of_mem_divisors hx), units.coe_hom_apply, units.coe_mk0] }, | |
{ dsimp, | |
rw [dif_pos hn, ← units.eq_iff, ← units.coe_hom_apply, monoid_hom.map_prod, units.coe_mk0, | |
prod_congr rfl _], | |
intros x hx, | |
rw [dif_pos (nat.pos_of_mem_divisors (nat.snd_mem_divisors_of_mem_antidiagonal hx)), | |
units.coe_hom_apply, units.coe_zpow, units.coe_mk0] } | |
end | |
end special_functions | |
end arithmetic_function | |
end nat | |