Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.13 kB
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import linear_algebra.basis
import algebra.free_algebra
import linear_algebra.finsupp_vector_space
/-!
# Linear algebra properties of `free_algebra R X`
This file provides a `free_monoid X` basis on the `free_algebra R X`, and uses it to show the
dimension of the algebra is the cardinality of `list X`
-/
universes u v
namespace free_algebra
/-- The `free_monoid X` basis on the `free_algebra R X`,
mapping `[x₁, x₂, ..., xₙ]` to the "monomial" `1 • x₁ * x₂ * ⋯ * xₙ` -/
@[simps]
noncomputable def basis_free_monoid (R : Type u) (X : Type v) [comm_ring R] :
basis (free_monoid X) R (free_algebra R X) :=
finsupp.basis_single_one.map
(equiv_monoid_algebra_free_monoid.symm.to_linear_equiv : _ ≃ₗ[R] free_algebra R X)
-- TODO: generalize to `X : Type v`
lemma dim_eq {K : Type u} {X : Type (max u v)} [field K] :
module.rank K (free_algebra K X) = cardinal.mk (list X) :=
(cardinal.lift_inj.mp (basis_free_monoid K X).mk_eq_dim).symm
end free_algebra