Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Eric Wieser. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Eric Wieser | |
-/ | |
import linear_algebra.basis | |
import algebra.free_algebra | |
import linear_algebra.finsupp_vector_space | |
/-! | |
# Linear algebra properties of `free_algebra R X` | |
This file provides a `free_monoid X` basis on the `free_algebra R X`, and uses it to show the | |
dimension of the algebra is the cardinality of `list X` | |
-/ | |
universes u v | |
namespace free_algebra | |
/-- The `free_monoid X` basis on the `free_algebra R X`, | |
mapping `[x₁, x₂, ..., xₙ]` to the "monomial" `1 • x₁ * x₂ * ⋯ * xₙ` -/ | |
@[simps] | |
noncomputable def basis_free_monoid (R : Type u) (X : Type v) [comm_ring R] : | |
basis (free_monoid X) R (free_algebra R X) := | |
finsupp.basis_single_one.map | |
(equiv_monoid_algebra_free_monoid.symm.to_linear_equiv : _ ≃ₗ[R] free_algebra R X) | |
-- TODO: generalize to `X : Type v` | |
lemma dim_eq {K : Type u} {X : Type (max u v)} [field K] : | |
module.rank K (free_algebra K X) = cardinal.mk (list X) := | |
(cardinal.lift_inj.mp (basis_free_monoid K X).mk_eq_dim).symm | |
end free_algebra | |