Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Chris Hughes. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Chris Hughes | |
-/ | |
import ring_theory.finiteness | |
import linear_algebra.dimension | |
/-! | |
# A module over a division ring is noetherian if and only if it is finite. | |
-/ | |
universes u v | |
open_locale classical cardinal | |
open cardinal submodule module function | |
namespace is_noetherian | |
variables {K : Type u} {V : Type v} [division_ring K] [add_comm_group V] [module K V] | |
/-- | |
A module over a division ring is noetherian if and only if | |
its dimension (as a cardinal) is strictly less than the first infinite cardinal `ℵ₀`. | |
-/ | |
lemma iff_dim_lt_aleph_0 : is_noetherian K V ↔ module.rank K V < ℵ₀ := | |
begin | |
let b := basis.of_vector_space K V, | |
rw [← b.mk_eq_dim'', lt_aleph_0_iff_set_finite], | |
split, | |
{ introI, | |
exact finite_of_linear_independent (basis.of_vector_space_index.linear_independent K V) }, | |
{ assume hbfinite, | |
refine @is_noetherian_of_linear_equiv K (⊤ : submodule K V) V _ | |
_ _ _ _ (linear_equiv.of_top _ rfl) (id _), | |
refine is_noetherian_of_fg_of_noetherian _ ⟨set.finite.to_finset hbfinite, _⟩, | |
rw [set.finite.coe_to_finset, ← b.span_eq, basis.coe_of_vector_space, subtype.range_coe] } | |
end | |
variables (K V) | |
/-- The dimension of a noetherian module over a division ring, as a cardinal, | |
is strictly less than the first infinite cardinal `ℵ₀`. -/ | |
lemma dim_lt_aleph_0 : ∀ [is_noetherian K V], module.rank K V < ℵ₀ := | |
is_noetherian.iff_dim_lt_aleph_0.1 | |
variables {K V} | |
/-- In a noetherian module over a division ring, all bases are indexed by a finite type. -/ | |
noncomputable def fintype_basis_index {ι : Type*} [is_noetherian K V] (b : basis ι K V) : | |
fintype ι := | |
b.fintype_index_of_dim_lt_aleph_0 (dim_lt_aleph_0 K V) | |
/-- In a noetherian module over a division ring, | |
`basis.of_vector_space` is indexed by a finite type. -/ | |
noncomputable instance [is_noetherian K V] : fintype (basis.of_vector_space_index K V) := | |
fintype_basis_index (basis.of_vector_space K V) | |
/-- In a noetherian module over a division ring, | |
if a basis is indexed by a set, that set is finite. -/ | |
lemma finite_basis_index {ι : Type*} {s : set ι} [is_noetherian K V] (b : basis s K V) : | |
s.finite := | |
b.finite_index_of_dim_lt_aleph_0 (dim_lt_aleph_0 K V) | |
variables (K V) | |
/-- In a noetherian module over a division ring, | |
there exists a finite basis. This is the indexing `finset`. -/ | |
noncomputable def finset_basis_index [is_noetherian K V] : | |
finset V := | |
(finite_basis_index (basis.of_vector_space K V)).to_finset | |
@[simp] lemma coe_finset_basis_index [is_noetherian K V] : | |
(↑(finset_basis_index K V) : set V) = basis.of_vector_space_index K V := | |
set.finite.coe_to_finset _ | |
@[simp] lemma coe_sort_finset_basis_index [is_noetherian K V] : | |
((finset_basis_index K V) : Type*) = basis.of_vector_space_index K V := | |
set.finite.coe_sort_to_finset _ | |
/-- | |
In a noetherian module over a division ring, there exists a finite basis. | |
This is indexed by the `finset` `finite_dimensional.finset_basis_index`. | |
This is in contrast to the result `finite_basis_index (basis.of_vector_space K V)`, | |
which provides a set and a `set.finite`. | |
-/ | |
noncomputable def finset_basis [is_noetherian K V] : | |
basis (finset_basis_index K V) K V := | |
(basis.of_vector_space K V).reindex (by simp) | |
@[simp] lemma range_finset_basis [is_noetherian K V] : | |
set.range (finset_basis K V) = basis.of_vector_space_index K V := | |
by rw [finset_basis, basis.range_reindex, basis.range_of_vector_space] | |
variables {K V} | |
/-- A module over a division ring is noetherian if and only if it is finitely generated. -/ | |
lemma iff_fg : | |
is_noetherian K V ↔ module.finite K V := | |
begin | |
split, | |
{ introI h, | |
exact ⟨⟨finset_basis_index K V, by { convert (finset_basis K V).span_eq, simp }⟩⟩ }, | |
{ rintros ⟨s, hs⟩, | |
rw [is_noetherian.iff_dim_lt_aleph_0, ← dim_top, ← hs], | |
exact lt_of_le_of_lt (dim_span_le _) s.finite_to_set.lt_aleph_0 } | |
end | |
end is_noetherian | |