Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Mario Carneiro. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Mario Carneiro | |
-/ | |
import deprecated.group | |
/-! | |
# Unbundled semiring and ring homomorphisms (deprecated) | |
This file is deprecated, and is no longer imported by anything in mathlib other than other | |
deprecated files, and test files. You should not need to import it. | |
This file defines predicates for unbundled semiring and ring homomorphisms. Instead of using | |
this file, please use `ring_hom`, defined in `algebra.hom.ring`, with notation `→+*`, for | |
morphisms between semirings or rings. For example use `φ : A →+* B` to represent a | |
ring homomorphism. | |
## Main Definitions | |
`is_semiring_hom` (deprecated), `is_ring_hom` (deprecated) | |
## Tags | |
is_semiring_hom, is_ring_hom | |
-/ | |
universes u v w | |
variable {α : Type u} | |
/-- Predicate for semiring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/ | |
structure is_semiring_hom {α : Type u} {β : Type v} [semiring α] [semiring β] (f : α → β) : Prop := | |
(map_zero [] : f 0 = 0) | |
(map_one [] : f 1 = 1) | |
(map_add [] : ∀ {x y}, f (x + y) = f x + f y) | |
(map_mul [] : ∀ {x y}, f (x * y) = f x * f y) | |
namespace is_semiring_hom | |
variables {β : Type v} [semiring α] [semiring β] | |
variables {f : α → β} (hf : is_semiring_hom f) {x y : α} | |
/-- The identity map is a semiring homomorphism. -/ | |
lemma id : is_semiring_hom (@id α) := by refine {..}; intros; refl | |
/-- The composition of two semiring homomorphisms is a semiring homomorphism. -/ | |
lemma comp (hf : is_semiring_hom f) {γ} [semiring γ] {g : β → γ} (hg : is_semiring_hom g) : | |
is_semiring_hom (g ∘ f) := | |
{ map_zero := by simpa [map_zero hf] using map_zero hg, | |
map_one := by simpa [map_one hf] using map_one hg, | |
map_add := λ x y, by simp [map_add hf, map_add hg], | |
map_mul := λ x y, by simp [map_mul hf, map_mul hg] } | |
/-- A semiring homomorphism is an additive monoid homomorphism. -/ | |
lemma to_is_add_monoid_hom (hf : is_semiring_hom f) : is_add_monoid_hom f := | |
{ ..‹is_semiring_hom f› } | |
/-- A semiring homomorphism is a monoid homomorphism. -/ | |
lemma to_is_monoid_hom (hf : is_semiring_hom f) : is_monoid_hom f := | |
{ ..‹is_semiring_hom f› } | |
end is_semiring_hom | |
/-- Predicate for ring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/ | |
structure is_ring_hom {α : Type u} {β : Type v} [ring α] [ring β] (f : α → β) : Prop := | |
(map_one [] : f 1 = 1) | |
(map_mul [] : ∀ {x y}, f (x * y) = f x * f y) | |
(map_add [] : ∀ {x y}, f (x + y) = f x + f y) | |
namespace is_ring_hom | |
variables {β : Type v} [ring α] [ring β] | |
/-- A map of rings that is a semiring homomorphism is also a ring homomorphism. -/ | |
lemma of_semiring {f : α → β} (H : is_semiring_hom f) : is_ring_hom f := {..H} | |
variables {f : α → β} (hf : is_ring_hom f) {x y : α} | |
/-- Ring homomorphisms map zero to zero. -/ | |
lemma map_zero (hf : is_ring_hom f) : f 0 = 0 := | |
calc f 0 = f (0 + 0) - f 0 : by rw [hf.map_add]; simp | |
... = 0 : by simp | |
/-- Ring homomorphisms preserve additive inverses. -/ | |
lemma map_neg (hf : is_ring_hom f) : f (-x) = -f x := | |
calc f (-x) = f (-x + x) - f x : by rw [hf.map_add]; simp | |
... = -f x : by simp [hf.map_zero] | |
/-- Ring homomorphisms preserve subtraction. -/ | |
lemma map_sub (hf : is_ring_hom f) : f (x - y) = f x - f y := | |
by simp [sub_eq_add_neg, hf.map_add, hf.map_neg] | |
/-- The identity map is a ring homomorphism. -/ | |
lemma id : is_ring_hom (@id α) := by refine {..}; intros; refl | |
/-- The composition of two ring homomorphisms is a ring homomorphism. -/ | |
-- see Note [no instance on morphisms] | |
lemma comp (hf : is_ring_hom f) {γ} [ring γ] {g : β → γ} (hg : is_ring_hom g) : | |
is_ring_hom (g ∘ f) := | |
{ map_add := λ x y, by simp [map_add hf]; rw map_add hg; refl, | |
map_mul := λ x y, by simp [map_mul hf]; rw map_mul hg; refl, | |
map_one := by simp [map_one hf]; exact map_one hg } | |
/-- A ring homomorphism is also a semiring homomorphism. -/ | |
lemma to_is_semiring_hom (hf : is_ring_hom f) : is_semiring_hom f := | |
{ map_zero := map_zero hf, ..‹is_ring_hom f› } | |
lemma to_is_add_group_hom (hf : is_ring_hom f) : is_add_group_hom f := { map_add := hf.map_add } | |
end is_ring_hom | |
variables {β : Type v} {γ : Type w} [rα : semiring α] [rβ : semiring β] | |
namespace ring_hom | |
section | |
include rα rβ | |
/-- Interpret `f : α → β` with `is_semiring_hom f` as a ring homomorphism. -/ | |
def of {f : α → β} (hf : is_semiring_hom f) : α →+* β := | |
{ to_fun := f, | |
.. monoid_hom.of hf.to_is_monoid_hom, | |
.. add_monoid_hom.of hf.to_is_add_monoid_hom } | |
@[simp] lemma coe_of {f : α → β} (hf : is_semiring_hom f) : ⇑(of hf) = f := rfl | |
lemma to_is_semiring_hom (f : α →+* β) : is_semiring_hom f := | |
{ map_zero := f.map_zero, | |
map_one := f.map_one, | |
map_add := f.map_add, | |
map_mul := f.map_mul } | |
end | |
lemma to_is_ring_hom {α γ} [ring α] [ring γ] (g : α →+* γ) : is_ring_hom g := | |
is_ring_hom.of_semiring g.to_is_semiring_hom | |
end ring_hom | |