Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Yaël Dillies. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yaël Dillies | |
-/ | |
import data.sum.order | |
import order.locally_finite | |
/-! | |
# Finite intervals in a disjoint union | |
This file provides the `locally_finite_order` instance for the disjoint sum of two orders. | |
## TODO | |
Do the same for the lexicographic sum of orders. | |
-/ | |
open function sum | |
namespace finset | |
variables {α₁ α₂ β₁ β₂ γ₁ γ₂ : Type*} | |
section sum_lift₂ | |
variables (f f₁ g₁ : α₁ → β₁ → finset γ₁) (g f₂ g₂ : α₂ → β₂ → finset γ₂) | |
/-- Lifts maps `α₁ → β₁ → finset γ₁` and `α₂ → β₂ → finset γ₂` to a map | |
`α₁ ⊕ α₂ → β₁ ⊕ β₂ → finset (γ₁ ⊕ γ₂)`. Could be generalized to `alternative` functors if we can | |
make sure to keep computability and universe polymorphism. -/ | |
@[simp] def sum_lift₂ : Π (a : α₁ ⊕ α₂) (b : β₁ ⊕ β₂), finset (γ₁ ⊕ γ₂) | |
| (inl a) (inl b) := (f a b).map embedding.inl | |
| (inl a) (inr b) := ∅ | |
| (inr a) (inl b) := ∅ | |
| (inr a) (inr b) := (g a b).map embedding.inr | |
variables {f f₁ g₁ g f₂ g₂} {a : α₁ ⊕ α₂} {b : β₁ ⊕ β₂} {c : γ₁ ⊕ γ₂} | |
lemma mem_sum_lift₂ : | |
c ∈ sum_lift₂ f g a b ↔ (∃ a₁ b₁ c₁, a = inl a₁ ∧ b = inl b₁ ∧ c = inl c₁ ∧ c₁ ∈ f a₁ b₁) | |
∨ ∃ a₂ b₂ c₂, a = inr a₂ ∧ b = inr b₂ ∧ c = inr c₂ ∧ c₂ ∈ g a₂ b₂ := | |
begin | |
split, | |
{ cases a; cases b, | |
{ rw [sum_lift₂, mem_map], | |
rintro ⟨c, hc, rfl⟩, | |
exact or.inl ⟨a, b, c, rfl, rfl, rfl, hc⟩ }, | |
{ refine λ h, (not_mem_empty _ h).elim }, | |
{ refine λ h, (not_mem_empty _ h).elim }, | |
{ rw [sum_lift₂, mem_map], | |
rintro ⟨c, hc, rfl⟩, | |
exact or.inr ⟨a, b, c, rfl, rfl, rfl, hc⟩ } }, | |
{ rintro (⟨a, b, c, rfl, rfl, rfl, h⟩ | ⟨a, b, c, rfl, rfl, rfl, h⟩); exact mem_map_of_mem _ h } | |
end | |
lemma inl_mem_sum_lift₂ {c₁ : γ₁} : | |
inl c₁ ∈ sum_lift₂ f g a b ↔ ∃ a₁ b₁, a = inl a₁ ∧ b = inl b₁ ∧ c₁ ∈ f a₁ b₁ := | |
begin | |
rw [mem_sum_lift₂, or_iff_left], | |
simp only [exists_and_distrib_left, exists_eq_left'], | |
rintro ⟨_, _, c₂, _, _, h, _⟩, | |
exact inl_ne_inr h, | |
end | |
lemma inr_mem_sum_lift₂ {c₂ : γ₂} : | |
inr c₂ ∈ sum_lift₂ f g a b ↔ ∃ a₂ b₂, a = inr a₂ ∧ b = inr b₂ ∧ c₂ ∈ g a₂ b₂ := | |
begin | |
rw [mem_sum_lift₂, or_iff_right], | |
simp only [exists_and_distrib_left, exists_eq_left'], | |
rintro ⟨_, _, c₂, _, _, h, _⟩, | |
exact inr_ne_inl h, | |
end | |
lemma sum_lift₂_eq_empty : | |
(sum_lift₂ f g a b) = ∅ ↔ (∀ a₁ b₁, a = inl a₁ → b = inl b₁ → f a₁ b₁ = ∅) | |
∧ ∀ a₂ b₂, a = inr a₂ → b = inr b₂ → g a₂ b₂ = ∅ := | |
begin | |
refine ⟨λ h, _, λ h, _⟩, | |
{ split; { rintro a b rfl rfl, exact map_eq_empty.1 h } }, | |
cases a; cases b, | |
{ exact map_eq_empty.2 (h.1 _ _ rfl rfl) }, | |
{ refl }, | |
{ refl }, | |
{ exact map_eq_empty.2 (h.2 _ _ rfl rfl) } | |
end | |
lemma sum_lift₂_nonempty : | |
(sum_lift₂ f g a b).nonempty ↔ (∃ a₁ b₁, a = inl a₁ ∧ b = inl b₁ ∧ (f a₁ b₁).nonempty) | |
∨ ∃ a₂ b₂, a = inr a₂ ∧ b = inr b₂ ∧ (g a₂ b₂).nonempty := | |
by simp [nonempty_iff_ne_empty, sum_lift₂_eq_empty, not_and_distrib] | |
lemma sum_lift₂_mono (h₁ : ∀ a b, f₁ a b ⊆ g₁ a b) (h₂ : ∀ a b, f₂ a b ⊆ g₂ a b) : | |
∀ a b, sum_lift₂ f₁ f₂ a b ⊆ sum_lift₂ g₁ g₂ a b | |
| (inl a) (inl b) := map_subset_map.2 (h₁ _ _) | |
| (inl a) (inr b) := subset.rfl | |
| (inr a) (inl b) := subset.rfl | |
| (inr a) (inr b) := map_subset_map.2 (h₂ _ _) | |
end sum_lift₂ | |
end finset | |
open finset function | |
namespace sum | |
variables {α β : Type*} | |
/-! ### Disjoint sum of orders -/ | |
section disjoint | |
variables [preorder α] [preorder β] [locally_finite_order α] [locally_finite_order β] | |
instance : locally_finite_order (α ⊕ β) := | |
{ finset_Icc := sum_lift₂ Icc Icc, | |
finset_Ico := sum_lift₂ Ico Ico, | |
finset_Ioc := sum_lift₂ Ioc Ioc, | |
finset_Ioo := sum_lift₂ Ioo Ioo, | |
finset_mem_Icc := by rintro (a | a) (b | b) (x | x); simp, | |
finset_mem_Ico := by rintro (a | a) (b | b) (x | x); simp, | |
finset_mem_Ioc := by rintro (a | a) (b | b) (x | x); simp, | |
finset_mem_Ioo := by rintro (a | a) (b | b) (x | x); simp } | |
variables (a₁ a₂ : α) (b₁ b₂ : β) (a b : α ⊕ β) | |
lemma Icc_inl_inl : Icc (inl a₁ : α ⊕ β) (inl a₂) = (Icc a₁ a₂).map embedding.inl := rfl | |
lemma Ico_inl_inl : Ico (inl a₁ : α ⊕ β) (inl a₂) = (Ico a₁ a₂).map embedding.inl := rfl | |
lemma Ioc_inl_inl : Ioc (inl a₁ : α ⊕ β) (inl a₂) = (Ioc a₁ a₂).map embedding.inl := rfl | |
lemma Ioo_inl_inl : Ioo (inl a₁ : α ⊕ β) (inl a₂) = (Ioo a₁ a₂).map embedding.inl := rfl | |
@[simp] lemma Icc_inl_inr : Icc (inl a₁) (inr b₂) = ∅ := rfl | |
@[simp] lemma Ico_inl_inr : Ico (inl a₁) (inr b₂) = ∅ := rfl | |
@[simp] lemma Ioc_inl_inr : Ioc (inl a₁) (inr b₂) = ∅ := rfl | |
@[simp] lemma Ioo_inl_inr : Ioo (inl a₁) (inr b₂) = ∅ := rfl | |
@[simp] lemma Icc_inr_inl : Icc (inr b₁) (inl a₂) = ∅ := rfl | |
@[simp] lemma Ico_inr_inl : Ico (inr b₁) (inl a₂) = ∅ := rfl | |
@[simp] lemma Ioc_inr_inl : Ioc (inr b₁) (inl a₂) = ∅ := rfl | |
@[simp] lemma Ioo_inr_inl : Ioo (inr b₁) (inl a₂) = ∅ := rfl | |
lemma Icc_inr_inr : Icc (inr b₁ : α ⊕ β) (inr b₂) = (Icc b₁ b₂).map embedding.inr := rfl | |
lemma Ico_inr_inr : Ico (inr b₁ : α ⊕ β) (inr b₂) = (Ico b₁ b₂).map embedding.inr := rfl | |
lemma Ioc_inr_inr : Ioc (inr b₁ : α ⊕ β) (inr b₂) = (Ioc b₁ b₂).map embedding.inr := rfl | |
lemma Ioo_inr_inr : Ioo (inr b₁ : α ⊕ β) (inr b₂) = (Ioo b₁ b₂).map embedding.inr := rfl | |
end disjoint | |
end sum | |