Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.82 kB
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import data.sum.order
import order.locally_finite
/-!
# Finite intervals in a disjoint union
This file provides the `locally_finite_order` instance for the disjoint sum of two orders.
## TODO
Do the same for the lexicographic sum of orders.
-/
open function sum
namespace finset
variables {α₁ α₂ β₁ β₂ γ₁ γ₂ : Type*}
section sum_lift₂
variables (f f₁ g₁ : α₁ → β₁ → finset γ₁) (g f₂ g₂ : α₂ → β₂ → finset γ₂)
/-- Lifts maps `α₁ → β₁ → finset γ₁` and `α₂ → β₂ → finset γ₂` to a map
`α₁ ⊕ α₂ → β₁ ⊕ β₂ → finset (γ₁ ⊕ γ₂)`. Could be generalized to `alternative` functors if we can
make sure to keep computability and universe polymorphism. -/
@[simp] def sum_lift₂ : Π (a : α₁ ⊕ α₂) (b : β₁ ⊕ β₂), finset (γ₁ ⊕ γ₂)
| (inl a) (inl b) := (f a b).map embedding.inl
| (inl a) (inr b) := ∅
| (inr a) (inl b) := ∅
| (inr a) (inr b) := (g a b).map embedding.inr
variables {f f₁ g₁ g f₂ g₂} {a : α₁ ⊕ α₂} {b : β₁ ⊕ β₂} {c : γ₁ ⊕ γ₂}
lemma mem_sum_lift₂ :
c ∈ sum_lift₂ f g a b ↔ (∃ a₁ b₁ c₁, a = inl a₁ ∧ b = inl b₁ ∧ c = inl c₁ ∧ c₁ ∈ f a₁ b₁)
∨ ∃ a₂ b₂ c₂, a = inr a₂ ∧ b = inr b₂ ∧ c = inr c₂ ∧ c₂ ∈ g a₂ b₂ :=
begin
split,
{ cases a; cases b,
{ rw [sum_lift₂, mem_map],
rintro ⟨c, hc, rfl⟩,
exact or.inl ⟨a, b, c, rfl, rfl, rfl, hc⟩ },
{ refine λ h, (not_mem_empty _ h).elim },
{ refine λ h, (not_mem_empty _ h).elim },
{ rw [sum_lift₂, mem_map],
rintro ⟨c, hc, rfl⟩,
exact or.inr ⟨a, b, c, rfl, rfl, rfl, hc⟩ } },
{ rintro (⟨a, b, c, rfl, rfl, rfl, h⟩ | ⟨a, b, c, rfl, rfl, rfl, h⟩); exact mem_map_of_mem _ h }
end
lemma inl_mem_sum_lift₂ {c₁ : γ₁} :
inl c₁ ∈ sum_lift₂ f g a b ↔ ∃ a₁ b₁, a = inl a₁ ∧ b = inl b₁ ∧ c₁ ∈ f a₁ b₁ :=
begin
rw [mem_sum_lift₂, or_iff_left],
simp only [exists_and_distrib_left, exists_eq_left'],
rintro ⟨_, _, c₂, _, _, h, _⟩,
exact inl_ne_inr h,
end
lemma inr_mem_sum_lift₂ {c₂ : γ₂} :
inr c₂ ∈ sum_lift₂ f g a b ↔ ∃ a₂ b₂, a = inr a₂ ∧ b = inr b₂ ∧ c₂ ∈ g a₂ b₂ :=
begin
rw [mem_sum_lift₂, or_iff_right],
simp only [exists_and_distrib_left, exists_eq_left'],
rintro ⟨_, _, c₂, _, _, h, _⟩,
exact inr_ne_inl h,
end
lemma sum_lift₂_eq_empty :
(sum_lift₂ f g a b) = ∅ ↔ (∀ a₁ b₁, a = inl a₁ → b = inl b₁ → f a₁ b₁ = ∅)
∧ ∀ a₂ b₂, a = inr a₂ → b = inr b₂ → g a₂ b₂ = ∅ :=
begin
refine ⟨λ h, _, λ h, _⟩,
{ split; { rintro a b rfl rfl, exact map_eq_empty.1 h } },
cases a; cases b,
{ exact map_eq_empty.2 (h.1 _ _ rfl rfl) },
{ refl },
{ refl },
{ exact map_eq_empty.2 (h.2 _ _ rfl rfl) }
end
lemma sum_lift₂_nonempty :
(sum_lift₂ f g a b).nonempty ↔ (∃ a₁ b₁, a = inl a₁ ∧ b = inl b₁ ∧ (f a₁ b₁).nonempty)
∨ ∃ a₂ b₂, a = inr a₂ ∧ b = inr b₂ ∧ (g a₂ b₂).nonempty :=
by simp [nonempty_iff_ne_empty, sum_lift₂_eq_empty, not_and_distrib]
lemma sum_lift₂_mono (h₁ : ∀ a b, f₁ a b ⊆ g₁ a b) (h₂ : ∀ a b, f₂ a b ⊆ g₂ a b) :
∀ a b, sum_lift₂ f₁ f₂ a b ⊆ sum_lift₂ g₁ g₂ a b
| (inl a) (inl b) := map_subset_map.2 (h₁ _ _)
| (inl a) (inr b) := subset.rfl
| (inr a) (inl b) := subset.rfl
| (inr a) (inr b) := map_subset_map.2 (h₂ _ _)
end sum_lift₂
end finset
open finset function
namespace sum
variables {α β : Type*}
/-! ### Disjoint sum of orders -/
section disjoint
variables [preorder α] [preorder β] [locally_finite_order α] [locally_finite_order β]
instance : locally_finite_order (α ⊕ β) :=
{ finset_Icc := sum_lift₂ Icc Icc,
finset_Ico := sum_lift₂ Ico Ico,
finset_Ioc := sum_lift₂ Ioc Ioc,
finset_Ioo := sum_lift₂ Ioo Ioo,
finset_mem_Icc := by rintro (a | a) (b | b) (x | x); simp,
finset_mem_Ico := by rintro (a | a) (b | b) (x | x); simp,
finset_mem_Ioc := by rintro (a | a) (b | b) (x | x); simp,
finset_mem_Ioo := by rintro (a | a) (b | b) (x | x); simp }
variables (a₁ a₂ : α) (b₁ b₂ : β) (a b : α ⊕ β)
lemma Icc_inl_inl : Icc (inl a₁ : α ⊕ β) (inl a₂) = (Icc a₁ a₂).map embedding.inl := rfl
lemma Ico_inl_inl : Ico (inl a₁ : α ⊕ β) (inl a₂) = (Ico a₁ a₂).map embedding.inl := rfl
lemma Ioc_inl_inl : Ioc (inl a₁ : α ⊕ β) (inl a₂) = (Ioc a₁ a₂).map embedding.inl := rfl
lemma Ioo_inl_inl : Ioo (inl a₁ : α ⊕ β) (inl a₂) = (Ioo a₁ a₂).map embedding.inl := rfl
@[simp] lemma Icc_inl_inr : Icc (inl a₁) (inr b₂) = ∅ := rfl
@[simp] lemma Ico_inl_inr : Ico (inl a₁) (inr b₂) = ∅ := rfl
@[simp] lemma Ioc_inl_inr : Ioc (inl a₁) (inr b₂) = ∅ := rfl
@[simp] lemma Ioo_inl_inr : Ioo (inl a₁) (inr b₂) = ∅ := rfl
@[simp] lemma Icc_inr_inl : Icc (inr b₁) (inl a₂) = ∅ := rfl
@[simp] lemma Ico_inr_inl : Ico (inr b₁) (inl a₂) = ∅ := rfl
@[simp] lemma Ioc_inr_inl : Ioc (inr b₁) (inl a₂) = ∅ := rfl
@[simp] lemma Ioo_inr_inl : Ioo (inr b₁) (inl a₂) = ∅ := rfl
lemma Icc_inr_inr : Icc (inr b₁ : α ⊕ β) (inr b₂) = (Icc b₁ b₂).map embedding.inr := rfl
lemma Ico_inr_inr : Ico (inr b₁ : α ⊕ β) (inr b₂) = (Ico b₁ b₂).map embedding.inr := rfl
lemma Ioc_inr_inr : Ioc (inr b₁ : α ⊕ β) (inr b₂) = (Ioc b₁ b₂).map embedding.inr := rfl
lemma Ioo_inr_inr : Ioo (inr b₁ : α ⊕ β) (inr b₂) = (Ioo b₁ b₂).map embedding.inr := rfl
end disjoint
end sum