Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import ring_theory.int.basic | |
import data.nat.factorization.prime_pow | |
import algebra.squarefree | |
/-! | |
# Lemmas about squarefreeness of natural numbers | |
A number is squarefree when it is not divisible by any squares except the squares of units. | |
## Main Results | |
- `nat.squarefree_iff_nodup_factors`: A positive natural number `x` is squarefree iff | |
the list `factors x` has no duplicate factors. | |
## Tags | |
squarefree, multiplicity | |
-/ | |
namespace nat | |
lemma squarefree_iff_nodup_factors {n : β} (h0 : n β 0) : | |
squarefree n β n.factors.nodup := | |
begin | |
rw [unique_factorization_monoid.squarefree_iff_nodup_normalized_factors h0, nat.factors_eq], | |
simp, | |
end | |
theorem squarefree_iff_prime_squarefree {n : β} : squarefree n β β x, prime x β Β¬ x * x β£ n := | |
squarefree_iff_irreducible_sq_not_dvd_of_exists_irreducible β¨_, prime_twoβ© | |
lemma squarefree.factorization_le_one {n : β} (p : β) (hn : squarefree n) : | |
n.factorization p β€ 1 := | |
begin | |
rcases eq_or_ne n 0 with rfl | hn', | |
{ simp }, | |
rw [multiplicity.squarefree_iff_multiplicity_le_one] at hn, | |
by_cases hp : p.prime, | |
{ have := hn p, | |
simp only [multiplicity_eq_factorization hp hn', nat.is_unit_iff, hp.ne_one, or_false] at this, | |
exact_mod_cast this }, | |
{ rw factorization_eq_zero_of_non_prime _ hp, | |
exact zero_le_one } | |
end | |
lemma squarefree_of_factorization_le_one {n : β} (hn : n β 0) (hn' : β p, n.factorization p β€ 1) : | |
squarefree n := | |
begin | |
rw [squarefree_iff_nodup_factors hn, list.nodup_iff_count_le_one], | |
intro a, | |
rw factors_count_eq, | |
apply hn', | |
end | |
lemma squarefree_iff_factorization_le_one {n : β} (hn : n β 0) : | |
squarefree n β β p, n.factorization p β€ 1 := | |
β¨Ξ» p hn, squarefree.factorization_le_one hn p, squarefree_of_factorization_le_one hnβ© | |
lemma squarefree.ext_iff {n m : β} (hn : squarefree n) (hm : squarefree m) : | |
n = m β β p, prime p β (p β£ n β p β£ m) := | |
begin | |
refine β¨by { rintro rfl, simp }, Ξ» h, eq_of_factorization_eq hn.ne_zero hm.ne_zero (Ξ» p, _)β©, | |
by_cases hp : p.prime, | |
{ have hβ := h _ hp, | |
rw [βnot_iff_not, hp.dvd_iff_one_le_factorization hn.ne_zero, not_le, lt_one_iff, | |
hp.dvd_iff_one_le_factorization hm.ne_zero, not_le, lt_one_iff] at hβ, | |
have hβ := squarefree.factorization_le_one p hn, | |
have hβ := squarefree.factorization_le_one p hm, | |
rw [nat.le_add_one_iff, le_zero_iff] at hβ hβ, | |
cases hβ, | |
{ rwa [hβ, eq_comm, βhβ] }, | |
{ rw [hβ, hβ.resolve_left], | |
rw [βhβ, hβ], | |
simp only [nat.one_ne_zero, not_false_iff] } }, | |
rw [factorization_eq_zero_of_non_prime _ hp, factorization_eq_zero_of_non_prime _ hp], | |
end | |
lemma squarefree_pow_iff {n k : β} (hn : n β 1) (hk : k β 0) : | |
squarefree (n ^ k) β squarefree n β§ k = 1 := | |
begin | |
refine β¨Ξ» h, _, by { rintro β¨hn, rflβ©, simpa }β©, | |
rcases eq_or_ne n 0 with rfl | hnβ, | |
{ simpa [zero_pow hk.bot_lt] using h }, | |
refine β¨squarefree_of_dvd_of_squarefree (dvd_pow_self _ hk) h, by_contradiction $ Ξ» hβ, _β©, | |
have : 2 β€ k := k.two_le_iff.mpr β¨hk, hββ©, | |
apply hn (nat.is_unit_iff.1 (h _ _)), | |
rw βsq, | |
exact pow_dvd_pow _ this | |
end | |
lemma squarefree_and_prime_pow_iff_prime {n : β} : | |
squarefree n β§ is_prime_pow n β prime n := | |
begin | |
refine iff.symm β¨Ξ» hn, β¨hn.squarefree, hn.is_prime_powβ©, _β©, | |
rw is_prime_pow_nat_iff, | |
rintro β¨h, p, k, hp, hk, rflβ©, | |
rw squarefree_pow_iff hp.ne_one hk.ne' at h, | |
rwa [h.2, pow_one], | |
end | |
/-- Assuming that `n` has no factors less than `k`, returns the smallest prime `p` such that | |
`p^2 β£ n`. -/ | |
def min_sq_fac_aux : β β β β option β | |
| n k := | |
if h : n < k * k then none else | |
have nat.sqrt n + 2 - (k + 2) < nat.sqrt n + 2 - k, | |
by { rw nat.add_sub_add_right, exact nat.min_fac_lemma n k h }, | |
if k β£ n then | |
let n' := n / k in | |
have nat.sqrt n' + 2 - (k + 2) < nat.sqrt n + 2 - k, from | |
lt_of_le_of_lt (nat.sub_le_sub_right | |
(nat.add_le_add_right (nat.sqrt_le_sqrt $ nat.div_le_self _ _) _) _) this, | |
if k β£ n' then some k else min_sq_fac_aux n' (k + 2) | |
else min_sq_fac_aux n (k + 2) | |
using_well_founded {rel_tac := | |
Ξ» _ _, `[exact β¨_, measure_wf (Ξ» β¨n, kβ©, nat.sqrt n + 2 - k)β©]} | |
/-- Returns the smallest prime factor `p` of `n` such that `p^2 β£ n`, or `none` if there is no | |
such `p` (that is, `n` is squarefree). See also `squarefree_iff_min_sq_fac`. -/ | |
def min_sq_fac (n : β) : option β := | |
if 2 β£ n then | |
let n' := n / 2 in | |
if 2 β£ n' then some 2 else min_sq_fac_aux n' 3 | |
else min_sq_fac_aux n 3 | |
/-- The correctness property of the return value of `min_sq_fac`. | |
* If `none`, then `n` is squarefree; | |
* If `some d`, then `d` is a minimal square factor of `n` -/ | |
def min_sq_fac_prop (n : β) : option β β Prop | |
| none := squarefree n | |
| (some d) := prime d β§ d * d β£ n β§ β p, prime p β p * p β£ n β d β€ p | |
theorem min_sq_fac_prop_div (n) {k} (pk : prime k) (dk : k β£ n) (dkk : Β¬ k * k β£ n) | |
{o} (H : min_sq_fac_prop (n / k) o) : min_sq_fac_prop n o := | |
begin | |
have : β p, prime p β p*p β£ n β k*(p*p) β£ n := Ξ» p pp dp, | |
have _ := (coprime_primes pk pp).2 (Ξ» e, by { subst e, contradiction }), | |
(coprime_mul_iff_right.2 β¨this, thisβ©).mul_dvd_of_dvd_of_dvd dk dp, | |
cases o with d, | |
{ rw [min_sq_fac_prop, squarefree_iff_prime_squarefree] at H β’, | |
exact Ξ» p pp dp, H p pp ((dvd_div_iff dk).2 (this _ pp dp)) }, | |
{ obtain β¨H1, H2, H3β© := H, | |
simp only [dvd_div_iff dk] at H2 H3, | |
exact β¨H1, dvd_trans (dvd_mul_left _ _) H2, Ξ» p pp dp, H3 _ pp (this _ pp dp)β© } | |
end | |
theorem min_sq_fac_aux_has_prop : β {n : β} k, 0 < n β β i, k = 2*i+3 β | |
(β m, prime m β m β£ n β k β€ m) β min_sq_fac_prop n (min_sq_fac_aux n k) | |
| n k := Ξ» n0 i e ih, begin | |
rw min_sq_fac_aux, | |
by_cases h : n < k*k; simp [h], | |
{ refine squarefree_iff_prime_squarefree.2 (Ξ» p pp d, _), | |
have := ih p pp (dvd_trans β¨_, rflβ© d), | |
have := nat.mul_le_mul this this, | |
exact not_le_of_lt h (le_trans this (le_of_dvd n0 d)) }, | |
have k2 : 2 β€ k, { subst e, exact dec_trivial }, | |
have k0 : 0 < k := lt_of_lt_of_le dec_trivial k2, | |
have IH : β n', n' β£ n β Β¬ k β£ n' β min_sq_fac_prop n' (n'.min_sq_fac_aux (k + 2)), | |
{ intros n' nd' nk, | |
have hn' := le_of_dvd n0 nd', | |
refine | |
have nat.sqrt n' - k < nat.sqrt n + 2 - k, from | |
lt_of_le_of_lt (nat.sub_le_sub_right (nat.sqrt_le_sqrt hn') _) (nat.min_fac_lemma n k h), | |
@min_sq_fac_aux_has_prop n' (k+2) (pos_of_dvd_of_pos nd' n0) | |
(i+1) (by simp [e, left_distrib]) (Ξ» m m2 d, _), | |
cases nat.eq_or_lt_of_le (ih m m2 (dvd_trans d nd')) with me ml, | |
{ subst me, contradiction }, | |
apply (nat.eq_or_lt_of_le ml).resolve_left, intro me, | |
rw [β me, e] at d, change 2 * (i + 2) β£ n' at d, | |
have := ih _ prime_two (dvd_trans (dvd_of_mul_right_dvd d) nd'), | |
rw e at this, exact absurd this dec_trivial }, | |
have pk : k β£ n β prime k, | |
{ refine Ξ» dk, prime_def_min_fac.2 β¨k2, le_antisymm (min_fac_le k0) _β©, | |
exact ih _ (min_fac_prime (ne_of_gt k2)) (dvd_trans (min_fac_dvd _) dk) }, | |
split_ifs with dk dkk, | |
{ exact β¨pk dk, (nat.dvd_div_iff dk).1 dkk, Ξ» p pp d, ih p pp (dvd_trans β¨_, rflβ© d)β© }, | |
{ specialize IH (n/k) (div_dvd_of_dvd dk) dkk, | |
exact min_sq_fac_prop_div _ (pk dk) dk (mt (nat.dvd_div_iff dk).2 dkk) IH }, | |
{ exact IH n (dvd_refl _) dk } | |
end | |
using_well_founded {rel_tac := | |
Ξ» _ _, `[exact β¨_, measure_wf (Ξ» β¨n, kβ©, nat.sqrt n + 2 - k)β©]} | |
theorem min_sq_fac_has_prop (n : β) : min_sq_fac_prop n (min_sq_fac n) := | |
begin | |
dunfold min_sq_fac, split_ifs with d2 d4, | |
{ exact β¨prime_two, (dvd_div_iff d2).1 d4, Ξ» p pp _, pp.two_leβ© }, | |
{ cases nat.eq_zero_or_pos n with n0 n0, { subst n0, cases d4 dec_trivial }, | |
refine min_sq_fac_prop_div _ prime_two d2 (mt (dvd_div_iff d2).2 d4) _, | |
refine min_sq_fac_aux_has_prop 3 (nat.div_pos (le_of_dvd n0 d2) dec_trivial) 0 rfl _, | |
refine Ξ» p pp dp, succ_le_of_lt (lt_of_le_of_ne pp.two_le _), | |
rintro rfl, contradiction }, | |
{ cases nat.eq_zero_or_pos n with n0 n0, { subst n0, cases d2 dec_trivial }, | |
refine min_sq_fac_aux_has_prop _ n0 0 rfl _, | |
refine Ξ» p pp dp, succ_le_of_lt (lt_of_le_of_ne pp.two_le _), | |
rintro rfl, contradiction }, | |
end | |
theorem min_sq_fac_prime {n d : β} (h : n.min_sq_fac = some d) : prime d := | |
by { have := min_sq_fac_has_prop n, rw h at this, exact this.1 } | |
theorem min_sq_fac_dvd {n d : β} (h : n.min_sq_fac = some d) : d * d β£ n := | |
by { have := min_sq_fac_has_prop n, rw h at this, exact this.2.1 } | |
theorem min_sq_fac_le_of_dvd {n d : β} (h : n.min_sq_fac = some d) | |
{m} (m2 : 2 β€ m) (md : m * m β£ n) : d β€ m := | |
begin | |
have := min_sq_fac_has_prop n, rw h at this, | |
have fd := min_fac_dvd m, | |
exact le_trans | |
(this.2.2 _ (min_fac_prime $ ne_of_gt m2) (dvd_trans (mul_dvd_mul fd fd) md)) | |
(min_fac_le $ lt_of_lt_of_le dec_trivial m2), | |
end | |
lemma squarefree_iff_min_sq_fac {n : β} : | |
squarefree n β n.min_sq_fac = none := | |
begin | |
have := min_sq_fac_has_prop n, | |
split; intro H, | |
{ cases n.min_sq_fac with d, {refl}, | |
cases squarefree_iff_prime_squarefree.1 H _ this.1 this.2.1 }, | |
{ rwa H at this } | |
end | |
instance : decidable_pred (squarefree : β β Prop) := | |
Ξ» n, decidable_of_iff' _ squarefree_iff_min_sq_fac | |
theorem squarefree_two : squarefree 2 := by rw squarefree_iff_nodup_factors; norm_num | |
open unique_factorization_monoid | |
lemma divisors_filter_squarefree {n : β} (h0 : n β 0) : | |
(n.divisors.filter squarefree).val = | |
(unique_factorization_monoid.normalized_factors n).to_finset.powerset.val.map | |
(Ξ» x, x.val.prod) := | |
begin | |
rw (finset.nodup _).ext ((finset.nodup _).map_on _), | |
{ intro a, | |
simp only [multiset.mem_filter, id.def, multiset.mem_map, finset.filter_val, β finset.mem_def, | |
mem_divisors], | |
split, | |
{ rintro β¨β¨an, h0β©, hsqβ©, | |
use (unique_factorization_monoid.normalized_factors a).to_finset, | |
simp only [id.def, finset.mem_powerset], | |
rcases an with β¨b, rflβ©, | |
rw mul_ne_zero_iff at h0, | |
rw unique_factorization_monoid.squarefree_iff_nodup_normalized_factors h0.1 at hsq, | |
rw [multiset.to_finset_subset, multiset.to_finset_val, hsq.dedup, β associated_iff_eq, | |
normalized_factors_mul h0.1 h0.2], | |
exact β¨multiset.subset_of_le (multiset.le_add_right _ _), normalized_factors_prod h0.1β© }, | |
{ rintro β¨s, hs, rflβ©, | |
rw [finset.mem_powerset, β finset.val_le_iff, multiset.to_finset_val] at hs, | |
have hs0 : s.val.prod β 0, | |
{ rw [ne.def, multiset.prod_eq_zero_iff], | |
simp only [exists_prop, id.def, exists_eq_right], | |
intro con, | |
apply not_irreducible_zero (irreducible_of_normalized_factor 0 | |
(multiset.mem_dedup.1 (multiset.mem_of_le hs con))) }, | |
rw (normalized_factors_prod h0).symm.dvd_iff_dvd_right, | |
refine β¨β¨multiset.prod_dvd_prod_of_le (le_trans hs (multiset.dedup_le _)), h0β©, _β©, | |
have h := unique_factorization_monoid.factors_unique irreducible_of_normalized_factor | |
(Ξ» x hx, irreducible_of_normalized_factor x (multiset.mem_of_le | |
(le_trans hs (multiset.dedup_le _)) hx)) (normalized_factors_prod hs0), | |
rw [associated_eq_eq, multiset.rel_eq] at h, | |
rw [unique_factorization_monoid.squarefree_iff_nodup_normalized_factors hs0, h], | |
apply s.nodup } }, | |
{ intros x hx y hy h, | |
rw [β finset.val_inj, β multiset.rel_eq, β associated_eq_eq], | |
rw [β finset.mem_def, finset.mem_powerset] at hx hy, | |
apply unique_factorization_monoid.factors_unique _ _ (associated_iff_eq.2 h), | |
{ intros z hz, | |
apply irreducible_of_normalized_factor z, | |
rw β multiset.mem_to_finset, | |
apply hx hz }, | |
{ intros z hz, | |
apply irreducible_of_normalized_factor z, | |
rw β multiset.mem_to_finset, | |
apply hy hz } } | |
end | |
open_locale big_operators | |
lemma sum_divisors_filter_squarefree {n : β} (h0 : n β 0) | |
{Ξ± : Type*} [add_comm_monoid Ξ±] {f : β β Ξ±} : | |
β i in (n.divisors.filter squarefree), f i = | |
β i in (unique_factorization_monoid.normalized_factors n).to_finset.powerset, f (i.val.prod) := | |
by rw [finset.sum_eq_multiset_sum, divisors_filter_squarefree h0, multiset.map_map, | |
finset.sum_eq_multiset_sum] | |
lemma sq_mul_squarefree_of_pos {n : β} (hn : 0 < n) : | |
β a b : β, 0 < a β§ 0 < b β§ b ^ 2 * a = n β§ squarefree a := | |
begin | |
let S := {s β finset.range (n + 1) | s β£ n β§ β x, s = x ^ 2}, | |
have hSne : S.nonempty, | |
{ use 1, | |
have h1 : 0 < n β§ β (x : β), 1 = x ^ 2 := β¨hn, β¨1, (one_pow 2).symmβ©β©, | |
simpa [S] }, | |
let s := finset.max' S hSne, | |
have hs : s β S := finset.max'_mem S hSne, | |
simp only [finset.sep_def, S, finset.mem_filter, finset.mem_range] at hs, | |
obtain β¨hsn1, β¨a, hsaβ©, β¨b, hsbβ©β© := hs, | |
rw hsa at hn, | |
obtain β¨hlts, hltaβ© := canonically_ordered_comm_semiring.mul_pos.mp hn, | |
rw hsb at hsa hn hlts, | |
refine β¨a, b, hlta, (pow_pos_iff zero_lt_two).mp hlts, hsa.symm, _β©, | |
rintro x β¨y, hyβ©, | |
rw nat.is_unit_iff, | |
by_contra hx, | |
refine lt_le_antisymm _ (finset.le_max' S ((b * x) ^ 2) _), | |
{ simp_rw [S, hsa, finset.sep_def, finset.mem_filter, finset.mem_range], | |
refine β¨lt_succ_iff.mpr (le_of_dvd hn _), _, β¨b * x, rflβ©β©; use y; rw hy; ring }, | |
{ convert lt_mul_of_one_lt_right hlts | |
(one_lt_pow 2 x zero_lt_two (one_lt_iff_ne_zero_and_ne_one.mpr β¨Ξ» h, by simp * at *, hxβ©)), | |
rw mul_pow }, | |
end | |
lemma sq_mul_squarefree_of_pos' {n : β} (h : 0 < n) : | |
β a b : β, (b + 1) ^ 2 * (a + 1) = n β§ squarefree (a + 1) := | |
begin | |
obtain β¨aβ, bβ, haβ, hbβ, habβ, habββ© := sq_mul_squarefree_of_pos h, | |
refine β¨aβ.pred, bβ.pred, _, _β©; | |
simpa only [add_one, succ_pred_eq_of_pos, haβ, hbβ], | |
end | |
lemma sq_mul_squarefree (n : β) : β a b : β, b ^ 2 * a = n β§ squarefree a := | |
begin | |
cases n, | |
{ exact β¨1, 0, (by simp), squarefree_oneβ© }, | |
{ obtain β¨a, b, -, -, hβ, hββ© := sq_mul_squarefree_of_pos (succ_pos n), | |
exact β¨a, b, hβ, hββ© }, | |
end | |
/-- `squarefree` is multiplicative. Note that the β direction does not require `hmn` | |
and generalizes to arbitrary commutative monoids. See `squarefree.of_mul_left` and | |
`squarefree.of_mul_right` above for auxiliary lemmas. -/ | |
lemma squarefree_mul {m n : β} (hmn : m.coprime n) : | |
squarefree (m * n) β squarefree m β§ squarefree n := | |
begin | |
simp only [squarefree_iff_prime_squarefree, βsq, βforall_and_distrib], | |
refine ball_congr (Ξ» p hp, _), | |
simp only [hmn.is_prime_pow_dvd_mul (hp.is_prime_pow.pow two_ne_zero), not_or_distrib], | |
end | |
end nat | |
/-! ### Square-free prover -/ | |
open norm_num | |
namespace tactic | |
namespace norm_num | |
/-- A predicate representing partial progress in a proof of `squarefree`. -/ | |
def squarefree_helper (n k : β) : Prop := | |
0 < k β (β m, nat.prime m β m β£ bit1 n β bit1 k β€ m) β squarefree (bit1 n) | |
lemma squarefree_bit10 (n : β) (h : squarefree_helper n 1) : | |
squarefree (bit0 (bit1 n)) := | |
begin | |
refine @nat.min_sq_fac_prop_div _ _ nat.prime_two two_dvd_bit0 _ none _, | |
{ rw [bit0_eq_two_mul (bit1 n), mul_dvd_mul_iff_left (@two_ne_zero β _ _)], | |
exact nat.not_two_dvd_bit1 _ }, | |
{ rw [bit0_eq_two_mul, nat.mul_div_right _ (dec_trivial:0<2)], | |
refine h dec_trivial (Ξ» p pp dp, nat.succ_le_of_lt (lt_of_le_of_ne pp.two_le _)), | |
rintro rfl, exact nat.not_two_dvd_bit1 _ dp } | |
end | |
lemma squarefree_bit1 (n : β) (h : squarefree_helper n 1) : | |
squarefree (bit1 n) := | |
begin | |
refine h dec_trivial (Ξ» p pp dp, nat.succ_le_of_lt (lt_of_le_of_ne pp.two_le _)), | |
rintro rfl, exact nat.not_two_dvd_bit1 _ dp | |
end | |
lemma squarefree_helper_0 {k} (k0 : 0 < k) | |
{p : β} (pp : nat.prime p) (h : bit1 k β€ p) : bit1 (k + 1) β€ p β¨ bit1 k = p := | |
begin | |
rcases lt_or_eq_of_le h with (hp:_+1β€_) | hp, | |
{ rw [bit1, bit0_eq_two_mul] at hp, change 2*(_+1) β€ _ at hp, | |
rw [bit1, bit0_eq_two_mul], | |
refine or.inl (lt_of_le_of_ne hp _), unfreezingI { rintro rfl }, | |
exact nat.not_prime_mul dec_trivial (lt_add_of_pos_left _ k0) pp }, | |
{ exact or.inr hp } | |
end | |
lemma squarefree_helper_1 (n k k' : β) (e : k + 1 = k') | |
(hk : nat.prime (bit1 k) β Β¬ bit1 k β£ bit1 n) | |
(H : squarefree_helper n k') : squarefree_helper n k := | |
Ξ» k0 ih, begin | |
subst e, | |
refine H (nat.succ_pos _) (Ξ» p pp dp, _), | |
refine (squarefree_helper_0 k0 pp (ih p pp dp)).resolve_right (Ξ» hp, _), | |
subst hp, cases hk pp dp | |
end | |
lemma squarefree_helper_2 (n k k' c : β) (e : k + 1 = k') | |
(hc : bit1 n % bit1 k = c) (c0 : 0 < c) | |
(h : squarefree_helper n k') : squarefree_helper n k := | |
begin | |
refine squarefree_helper_1 _ _ _ e (Ξ» _, _) h, | |
refine mt _ (ne_of_gt c0), intro eβ, | |
rwa [β hc, β nat.dvd_iff_mod_eq_zero], | |
end | |
lemma squarefree_helper_3 (n n' k k' c : β) (e : k + 1 = k') | |
(hn' : bit1 n' * bit1 k = bit1 n) | |
(hc : bit1 n' % bit1 k = c) (c0 : 0 < c) | |
(H : squarefree_helper n' k') : squarefree_helper n k := | |
Ξ» k0 ih, begin | |
subst e, | |
have k0' : 0 < bit1 k := bit1_pos (nat.zero_le _), | |
have dn' : bit1 n' β£ bit1 n := β¨_, hn'.symmβ©, | |
have dk : bit1 k β£ bit1 n := β¨_, ((mul_comm _ _).trans hn').symmβ©, | |
have : bit1 n / bit1 k = bit1 n', | |
{ rw [β hn', nat.mul_div_cancel _ k0'] }, | |
have k2 : 2 β€ bit1 k := nat.succ_le_succ (bit0_pos k0), | |
have pk : (bit1 k).prime, | |
{ refine nat.prime_def_min_fac.2 β¨k2, le_antisymm (nat.min_fac_le k0') _β©, | |
exact ih _ (nat.min_fac_prime (ne_of_gt k2)) (dvd_trans (nat.min_fac_dvd _) dk) }, | |
have dkk' : Β¬ bit1 k β£ bit1 n', {rw [nat.dvd_iff_mod_eq_zero, hc], exact ne_of_gt c0}, | |
have dkk : Β¬ bit1 k * bit1 k β£ bit1 n, {rwa [β nat.dvd_div_iff dk, this]}, | |
refine @nat.min_sq_fac_prop_div _ _ pk dk dkk none _, | |
rw this, refine H (nat.succ_pos _) (Ξ» p pp dp, _), | |
refine (squarefree_helper_0 k0 pp (ih p pp $ dvd_trans dp dn')).resolve_right (Ξ» e, _), | |
subst e, contradiction | |
end | |
lemma squarefree_helper_4 (n k k' : β) (e : bit1 k * bit1 k = k') | |
(hd : bit1 n < k') : squarefree_helper n k := | |
begin | |
cases nat.eq_zero_or_pos n with h h, | |
{ subst n, exact Ξ» _ _, squarefree_one }, | |
subst e, | |
refine Ξ» k0 ih, irreducible.squarefree (nat.prime_def_le_sqrt.2 β¨bit1_lt_bit1.2 h, _β©), | |
intros m m2 hm md, | |
obtain β¨p, pp, hpβ© := nat.exists_prime_and_dvd (ne_of_gt m2), | |
have := (ih p pp (dvd_trans hp md)).trans | |
(le_trans (nat.le_of_dvd (lt_of_lt_of_le dec_trivial m2) hp) hm), | |
rw nat.le_sqrt at this, | |
exact not_le_of_lt hd this | |
end | |
lemma not_squarefree_mul (a aa b n : β) (ha : a * a = aa) (hb : aa * b = n) | |
(hβ : 1 < a) : Β¬ squarefree n := | |
by { rw [β hb, β ha], exact Ξ» H, ne_of_gt hβ (nat.is_unit_iff.1 $ H _ β¨_, rflβ©) } | |
/-- Given `e` a natural numeral and `a : nat` with `a^2 β£ n`, return `β’ Β¬ squarefree e`. -/ | |
meta def prove_non_squarefree (e : expr) (n a : β) : tactic expr := do | |
let ea := reflect a, | |
let eaa := reflect (a*a), | |
c β mk_instance_cache `(nat), | |
(c, pβ) β prove_lt_nat c `(1) ea, | |
let b := n / (a*a), let eb := reflect b, | |
(c, eaa, pa) β prove_mul_nat c ea ea, | |
(c, e', pb) β prove_mul_nat c eaa eb, | |
guard (e' =β e), | |
return $ `(@not_squarefree_mul).mk_app [ea, eaa, eb, e, pa, pb, pβ] | |
/-- Given `en`,`en1 := bit1 en`, `n1` the value of `en1`, `ek`, | |
returns `β’ squarefree_helper en ek`. -/ | |
meta def prove_squarefree_aux : β (ic : instance_cache) (en en1 : expr) (n1 : β) | |
(ek : expr) (k : β), tactic expr | |
| ic en en1 n1 ek k := do | |
let k1 := bit1 k, | |
let ek1 := `(bit1:βββ).mk_app [ek], | |
if n1 < k1*k1 then do | |
(ic, ek', pβ) β prove_mul_nat ic ek1 ek1, | |
(ic, pβ) β prove_lt_nat ic en1 ek', | |
pure $ `(squarefree_helper_4).mk_app [en, ek, ek', pβ, pβ] | |
else do | |
let c := n1 % k1, | |
let k' := k+1, let ek' := reflect k', | |
(ic, pβ) β prove_succ ic ek ek', | |
if c = 0 then do | |
let n1' := n1 / k1, | |
let n' := n1' / 2, let en' := reflect n', | |
let en1' := `(bit1:βββ).mk_app [en'], | |
(ic, _, pn') β prove_mul_nat ic en1' ek1, | |
let c := n1' % k1, | |
guard (c β 0), | |
(ic, ec, pc) β prove_div_mod ic en1' ek1 tt, | |
(ic, pβ) β prove_pos ic ec, | |
pβ β prove_squarefree_aux ic en' en1' n1' ek' k', | |
pure $ `(squarefree_helper_3).mk_app [en, en', ek, ek', ec, pβ, pn', pc, pβ, pβ] | |
else do | |
(ic, ec, pc) β prove_div_mod ic en1 ek1 tt, | |
(ic, pβ) β prove_pos ic ec, | |
pβ β prove_squarefree_aux ic en en1 n1 ek' k', | |
pure $ `(squarefree_helper_2).mk_app [en, ek, ek', ec, pβ, pc, pβ, pβ] | |
/-- Given `n > 0` a squarefree natural numeral, returns `β’ squarefree n`. -/ | |
meta def prove_squarefree (en : expr) (n : β) : tactic expr := | |
match match_numeral en with | |
| match_numeral_result.one := pure `(@squarefree_one β _) | |
| match_numeral_result.bit0 en1 := match match_numeral en1 with | |
| match_numeral_result.one := pure `(nat.squarefree_two) | |
| match_numeral_result.bit1 en := do | |
ic β mk_instance_cache `(β), | |
p β prove_squarefree_aux ic en en1 (n / 2) `(1:β) 1, | |
pure $ `(squarefree_bit10).mk_app [en, p] | |
| _ := failed | |
end | |
| match_numeral_result.bit1 en' := do | |
ic β mk_instance_cache `(β), | |
p β prove_squarefree_aux ic en' en n `(1:β) 1, | |
pure $ `(squarefree_bit1).mk_app [en', p] | |
| _ := failed | |
end | |
/-- Evaluates the `squarefree` predicate on naturals. -/ | |
@[norm_num] meta def eval_squarefree : expr β tactic (expr Γ expr) | |
| `(squarefree (%%e : β)) := do | |
n β e.to_nat, | |
match n with | |
| 0 := false_intro `(@not_squarefree_zero β _ _) | |
| 1 := true_intro `(@squarefree_one β _) | |
| _ := match n.min_sq_fac with | |
| some d := prove_non_squarefree e n d >>= false_intro | |
| none := prove_squarefree e n >>= true_intro | |
end | |
end | |
| _ := failed | |
end norm_num | |
end tactic | |