Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2014 Floris van Doorn (c) 2016 Microsoft Corporation. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad, Mario Carneiro | |
-/ | |
import algebra.group_power.order | |
/-! # `nat.pow` | |
Results on the power operation on natural numbers. | |
-/ | |
namespace nat | |
/-! ### `pow` -/ | |
-- This is redundant with `pow_le_pow_of_le_left'`, | |
-- We leave a version in the `nat` namespace as well. | |
-- (The global `pow_le_pow_of_le_left` needs an extra hypothesis `0 β€ x`.) | |
protected theorem pow_le_pow_of_le_left {x y : β} (H : x β€ y) : β i : β, x^i β€ y^i := | |
pow_le_pow_of_le_left' H | |
theorem pow_le_pow_of_le_right {x : β} (H : 0 < x) {i j : β} (h : i β€ j) : x ^ i β€ x ^ j := | |
pow_le_pow' H h | |
theorem pow_lt_pow_of_lt_left {x y : β} (H : x < y) {i} (h : 0 < i) : x^i < y^i := | |
pow_lt_pow_of_lt_left H (zero_le _) h | |
theorem pow_lt_pow_of_lt_right {x : β} (H : 1 < x) {i j : β} (h : i < j) : x^i < x^j := | |
pow_lt_pow H h | |
lemma pow_lt_pow_succ {p : β} (h : 1 < p) (n : β) : p^n < p^(n+1) := | |
pow_lt_pow_of_lt_right h n.lt_succ_self | |
lemma lt_pow_self {p : β} (h : 1 < p) : β n : β, n < p ^ n | |
| 0 := by simp [zero_lt_one] | |
| (n+1) := calc | |
n + 1 < p^n + 1 : nat.add_lt_add_right (lt_pow_self _) _ | |
... β€ p ^ (n+1) : pow_lt_pow_succ h _ | |
lemma lt_two_pow (n : β) : n < 2^n := | |
lt_pow_self dec_trivial n | |
lemma one_le_pow (n m : β) (h : 0 < m) : 1 β€ m^n := | |
by { rw βone_pow n, exact nat.pow_le_pow_of_le_left h n } | |
lemma one_le_pow' (n m : β) : 1 β€ (m+1)^n := one_le_pow n (m+1) (succ_pos m) | |
lemma one_le_two_pow (n : β) : 1 β€ 2^n := one_le_pow n 2 dec_trivial | |
lemma one_lt_pow (n m : β) (hβ : 0 < n) (hβ : 1 < m) : 1 < m^n := | |
by { rw βone_pow n, exact pow_lt_pow_of_lt_left hβ hβ } | |
lemma one_lt_pow' (n m : β) : 1 < (m+2)^(n+1) := | |
one_lt_pow (n+1) (m+2) (succ_pos n) (nat.lt_of_sub_eq_succ rfl) | |
@[simp] lemma one_lt_pow_iff {k n : β} (h : 0 β k) : 1 < n ^ k β 1 < n := | |
begin | |
cases n, | |
{ cases k; simp [zero_pow_eq] }, | |
cases n, | |
{ rw one_pow }, | |
refine β¨Ξ» _, one_lt_succ_succ n, Ξ» _, _β©, | |
induction k with k hk, | |
{ exact absurd rfl h }, | |
cases k, | |
{ simp }, | |
exact one_lt_mul (one_lt_succ_succ _).le (hk (succ_ne_zero k).symm), | |
end | |
lemma one_lt_two_pow (n : β) (hβ : 0 < n) : 1 < 2^n := one_lt_pow n 2 hβ dec_trivial | |
lemma one_lt_two_pow' (n : β) : 1 < 2^(n+1) := one_lt_pow (n+1) 2 (succ_pos n) dec_trivial | |
lemma pow_right_strict_mono {x : β} (k : 2 β€ x) : strict_mono (Ξ» (n : β), x^n) := | |
Ξ» _ _, pow_lt_pow_of_lt_right k | |
lemma pow_le_iff_le_right {x m n : β} (k : 2 β€ x) : x^m β€ x^n β m β€ n := | |
strict_mono.le_iff_le (pow_right_strict_mono k) | |
lemma pow_lt_iff_lt_right {x m n : β} (k : 2 β€ x) : x^m < x^n β m < n := | |
strict_mono.lt_iff_lt (pow_right_strict_mono k) | |
lemma pow_right_injective {x : β} (k : 2 β€ x) : function.injective (Ξ» (n : β), x^n) := | |
strict_mono.injective (pow_right_strict_mono k) | |
lemma pow_left_strict_mono {m : β} (k : 1 β€ m) : strict_mono (Ξ» (x : β), x^m) := | |
Ξ» _ _ h, pow_lt_pow_of_lt_left h k | |
lemma mul_lt_mul_pow_succ {n a q : β} (a0 : 0 < a) (q1 : 1 < q) : | |
n * q < a * q ^ (n + 1) := | |
begin | |
rw [pow_succ', β mul_assoc, mul_lt_mul_right (zero_lt_one.trans q1)], | |
exact lt_mul_of_one_le_of_lt (nat.succ_le_iff.mpr a0) (nat.lt_pow_self q1 n), | |
end | |
end nat | |
lemma strict_mono.nat_pow {n : β} (hn : 1 β€ n) {f : β β β} (hf : strict_mono f) : | |
strict_mono (Ξ» m, (f m) ^ n) := | |
(nat.pow_left_strict_mono hn).comp hf | |
namespace nat | |
lemma pow_le_iff_le_left {m x y : β} (k : 1 β€ m) : x^m β€ y^m β x β€ y := | |
strict_mono.le_iff_le (pow_left_strict_mono k) | |
lemma pow_lt_iff_lt_left {m x y : β} (k : 1 β€ m) : x^m < y^m β x < y := | |
strict_mono.lt_iff_lt (pow_left_strict_mono k) | |
lemma pow_left_injective {m : β} (k : 1 β€ m) : function.injective (Ξ» (x : β), x^m) := | |
strict_mono.injective (pow_left_strict_mono k) | |
theorem sq_sub_sq (a b : β) : a ^ 2 - b ^ 2 = (a + b) * (a - b) := | |
by { rw [sq, sq], exact nat.mul_self_sub_mul_self_eq a b } | |
alias sq_sub_sq β pow_two_sub_pow_two | |
/-! ### `pow` and `mod` / `dvd` -/ | |
theorem pow_mod (a b n : β) : a ^ b % n = (a % n) ^ b % n := | |
begin | |
induction b with b ih, | |
refl, simp [pow_succ, nat.mul_mod, ih], | |
end | |
theorem mod_pow_succ {b : β} (w m : β) : | |
m % (b^succ w) = b * (m/b % b^w) + m % b := | |
begin | |
by_cases b_h : b = 0, | |
{ simp [b_h, pow_succ], }, | |
have b_pos := nat.pos_of_ne_zero b_h, | |
apply nat.strong_induction_on m, | |
clear m, | |
intros p IH, | |
cases lt_or_ge p (b^succ w) with hβ hβ, | |
-- base case: p < b^succ w | |
{ have hβ : p / b < b^w, | |
{ rw [div_lt_iff_lt_mul b_pos], | |
simpa [pow_succ'] using hβ }, | |
rw [mod_eq_of_lt hβ, mod_eq_of_lt hβ], | |
simp [div_add_mod] }, | |
-- step: p β₯ b^succ w | |
{ -- Generate condition for induction hypothesis | |
have hβ : p - b^succ w < p, | |
{ exact tsub_lt_self ((pow_pos b_pos _).trans_le hβ) (pow_pos b_pos _) }, | |
-- Apply induction | |
rw [mod_eq_sub_mod hβ, IH _ hβ], | |
-- Normalize goal and h1 | |
simp only [pow_succ], | |
simp only [ge, pow_succ] at hβ, | |
-- Pull subtraction outside mod and div | |
rw [sub_mul_mod _ _ _ hβ, sub_mul_div _ _ _ hβ], | |
-- Cancel subtraction inside mod b^w | |
have p_b_ge : b^w β€ p / b, | |
{ rw [le_div_iff_mul_le b_pos, mul_comm], | |
exact hβ }, | |
rw [eq.symm (mod_eq_sub_mod p_b_ge)] } | |
end | |
lemma pow_dvd_pow_iff_pow_le_pow {k l : β} : Ξ {x : β} (w : 0 < x), x^k β£ x^l β x^k β€ x^l | |
| (x+1) w := | |
begin | |
split, | |
{ intro a, exact le_of_dvd (pow_pos (succ_pos x) l) a, }, | |
{ intro a, cases x with x, | |
{ simp only [one_pow], }, | |
{ have le := (pow_le_iff_le_right (nat.le_add_left _ _)).mp a, | |
use (x+2)^(l-k), | |
rw [βpow_add, add_comm k, tsub_add_cancel_of_le le], } } | |
end | |
/-- If `1 < x`, then `x^k` divides `x^l` if and only if `k` is at most `l`. -/ | |
lemma pow_dvd_pow_iff_le_right {x k l : β} (w : 1 < x) : x^k β£ x^l β k β€ l := | |
by rw [pow_dvd_pow_iff_pow_le_pow (lt_of_succ_lt w), pow_le_iff_le_right w] | |
lemma pow_dvd_pow_iff_le_right' {b k l : β} : (b+2)^k β£ (b+2)^l β k β€ l := | |
pow_dvd_pow_iff_le_right (nat.lt_of_sub_eq_succ rfl) | |
lemma not_pos_pow_dvd : β {p k : β} (hp : 1 < p) (hk : 1 < k), Β¬ p^k β£ p | |
| (succ p) (succ k) hp hk h := | |
have succ p * (succ p)^k β£ succ p * 1, by simpa [pow_succ] using h, | |
have (succ p) ^ k β£ 1, from dvd_of_mul_dvd_mul_left (succ_pos _) this, | |
have he : (succ p) ^ k = 1, from eq_one_of_dvd_one this, | |
have k < (succ p) ^ k, from lt_pow_self hp k, | |
have k < 1, by rwa [he] at this, | |
have k = 0, from nat.eq_zero_of_le_zero $ le_of_lt_succ this, | |
have 1 < 1, by rwa [this] at hk, | |
absurd this dec_trivial | |
lemma pow_dvd_of_le_of_pow_dvd {p m n k : β} (hmn : m β€ n) (hdiv : p ^ n β£ k) : p ^ m β£ k := | |
(pow_dvd_pow _ hmn).trans hdiv | |
lemma dvd_of_pow_dvd {p k m : β} (hk : 1 β€ k) (hpk : p^k β£ m) : p β£ m := | |
by rw βpow_one p; exact pow_dvd_of_le_of_pow_dvd hk hpk | |
lemma pow_div {x m n : β} (h : n β€ m) (hx : 0 < x) : x ^ m / x ^ n = x ^ (m - n) := | |
by rw [nat.div_eq_iff_eq_mul_left (pow_pos hx n) (pow_dvd_pow _ h), pow_sub_mul_pow _ h] | |
lemma lt_of_pow_dvd_right {p i n : β} (hn : n β 0) (hp : 2 β€ p) (h : p ^ i β£ n) : i < n := | |
begin | |
rw βpow_lt_iff_lt_right hp, | |
exact lt_of_le_of_lt (le_of_dvd hn.bot_lt h) (lt_pow_self (succ_le_iff.mp hp) n), | |
end | |
/-! ### `shiftl` and `shiftr` -/ | |
lemma shiftl_eq_mul_pow (m) : β n, shiftl m n = m * 2 ^ n | |
| 0 := (nat.mul_one _).symm | |
| (k+1) := show bit0 (shiftl m k) = m * (2 * 2 ^ k), | |
by rw [bit0_val, shiftl_eq_mul_pow, mul_left_comm, mul_comm 2] | |
lemma shiftl'_tt_eq_mul_pow (m) : β n, shiftl' tt m n + 1 = (m + 1) * 2 ^ n | |
| 0 := by simp [shiftl, shiftl', pow_zero, nat.one_mul] | |
| (k+1) := | |
begin | |
change bit1 (shiftl' tt m k) + 1 = (m + 1) * (2 * 2 ^ k), | |
rw bit1_val, | |
change 2 * (shiftl' tt m k + 1) = _, | |
rw [shiftl'_tt_eq_mul_pow, mul_left_comm, mul_comm 2], | |
end | |
lemma one_shiftl (n) : shiftl 1 n = 2 ^ n := | |
(shiftl_eq_mul_pow _ _).trans (nat.one_mul _) | |
@[simp] lemma zero_shiftl (n) : shiftl 0 n = 0 := | |
(shiftl_eq_mul_pow _ _).trans (nat.zero_mul _) | |
lemma shiftr_eq_div_pow (m) : β n, shiftr m n = m / 2 ^ n | |
| 0 := (nat.div_one _).symm | |
| (k+1) := (congr_arg div2 (shiftr_eq_div_pow k)).trans $ | |
by rw [div2_val, nat.div_div_eq_div_mul, mul_comm]; refl | |
@[simp] lemma zero_shiftr (n) : shiftr 0 n = 0 := | |
(shiftr_eq_div_pow _ _).trans (nat.zero_div _) | |
theorem shiftl'_ne_zero_left (b) {m} (h : m β 0) (n) : shiftl' b m n β 0 := | |
by induction n; simp [shiftl', bit_ne_zero, *] | |
theorem shiftl'_tt_ne_zero (m) : β {n} (h : n β 0), shiftl' tt m n β 0 | |
| 0 h := absurd rfl h | |
| (succ n) _ := nat.bit1_ne_zero _ | |
/-! ### `size` -/ | |
@[simp] theorem size_zero : size 0 = 0 := by simp [size] | |
@[simp] theorem size_bit {b n} (h : bit b n β 0) : size (bit b n) = succ (size n) := | |
begin | |
rw size, | |
conv { to_lhs, rw [binary_rec], simp [h] }, | |
rw div2_bit, | |
end | |
@[simp] theorem size_bit0 {n} (h : n β 0) : size (bit0 n) = succ (size n) := | |
@size_bit ff n (nat.bit0_ne_zero h) | |
@[simp] theorem size_bit1 (n) : size (bit1 n) = succ (size n) := | |
@size_bit tt n (nat.bit1_ne_zero n) | |
@[simp] theorem size_one : size 1 = 1 := | |
show size (bit1 0) = 1, by rw [size_bit1, size_zero] | |
@[simp] theorem size_shiftl' {b m n} (h : shiftl' b m n β 0) : | |
size (shiftl' b m n) = size m + n := | |
begin | |
induction n with n IH; simp [shiftl'] at h β’, | |
rw [size_bit h, nat.add_succ], | |
by_cases s0 : shiftl' b m n = 0; [skip, rw [IH s0]], | |
rw s0 at h β’, | |
cases b, {exact absurd rfl h}, | |
have : shiftl' tt m n + 1 = 1 := congr_arg (+1) s0, | |
rw [shiftl'_tt_eq_mul_pow] at this, | |
obtain rfl := succ.inj (eq_one_of_dvd_one β¨_, this.symmβ©), | |
rw one_mul at this, | |
obtain rfl : n = 0 := nat.eq_zero_of_le_zero (le_of_not_gt $ Ξ» hn, | |
ne_of_gt (pow_lt_pow_of_lt_right dec_trivial hn) this), | |
refl | |
end | |
@[simp] theorem size_shiftl {m} (h : m β 0) (n) : | |
size (shiftl m n) = size m + n := | |
size_shiftl' (shiftl'_ne_zero_left _ h _) | |
theorem lt_size_self (n : β) : n < 2^size n := | |
begin | |
rw [β one_shiftl], | |
have : β {n}, n = 0 β n < shiftl 1 (size n), { simp }, | |
apply binary_rec _ _ n, {apply this rfl}, | |
intros b n IH, | |
by_cases bit b n = 0, {apply this h}, | |
rw [size_bit h, shiftl_succ], | |
exact bit_lt_bit0 _ IH | |
end | |
theorem size_le {m n : β} : size m β€ n β m < 2^n := | |
β¨Ξ» h, lt_of_lt_of_le (lt_size_self _) (pow_le_pow_of_le_right dec_trivial h), | |
begin | |
rw [β one_shiftl], revert n, | |
apply binary_rec _ _ m, | |
{ intros n h, simp }, | |
{ intros b m IH n h, | |
by_cases e : bit b m = 0, { simp [e] }, | |
rw [size_bit e], | |
cases n with n, | |
{ exact e.elim (nat.eq_zero_of_le_zero (le_of_lt_succ h)) }, | |
{ apply succ_le_succ (IH _), | |
apply lt_imp_lt_of_le_imp_le (Ξ» h', bit0_le_bit _ h') h } } | |
endβ© | |
theorem lt_size {m n : β} : m < size n β 2^m β€ n := | |
by rw [β not_lt, decidable.iff_not_comm, not_lt, size_le] | |
theorem size_pos {n : β} : 0 < size n β 0 < n := | |
by rw lt_size; refl | |
theorem size_eq_zero {n : β} : size n = 0 β n = 0 := | |
by have := @size_pos n; simp [pos_iff_ne_zero] at this; | |
exact decidable.not_iff_not.1 this | |
theorem size_pow {n : β} : size (2^n) = n+1 := | |
le_antisymm | |
(size_le.2 $ pow_lt_pow_of_lt_right dec_trivial (lt_succ_self _)) | |
(lt_size.2 $ le_rfl) | |
theorem size_le_size {m n : β} (h : m β€ n) : size m β€ size n := | |
size_le.2 $ lt_of_le_of_lt h (lt_size_self _) | |
end nat | |