Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.13 kB
/-
Copyright (c) 2021 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import data.mv_polynomial.variables
/-!
# Polynomials supported by a set of variables
This file contains the definition and lemmas about `mv_polynomial.supported`.
## Main definitions
* `mv_polynomial.supported` : Given a set `s : set Οƒ`, `supported R s` is the subalgebra of
`mv_polynomial Οƒ R` consisting of polynomials whose set of variables is contained in `s`.
This subalgebra is isomorphic to `mv_polynomial s R`
## Tags
variables, polynomial, vars
-/
universes u v w
namespace mv_polynomial
variables {Οƒ Ο„ : Type*} {R : Type u} {S : Type v} {r : R} {e : β„•} {n m : Οƒ}
section comm_semiring
variables [comm_semiring R] {p q : mv_polynomial Οƒ R}
variables (R)
/-- The set of polynomials whose variables are contained in `s` as a `subalgebra` over `R`. -/
noncomputable def supported (s : set Οƒ) : subalgebra R (mv_polynomial Οƒ R) :=
algebra.adjoin R (X '' s)
variables {Οƒ R}
open_locale classical
open algebra
lemma supported_eq_range_rename (s : set Οƒ) :
supported R s = (rename (coe : s β†’ Οƒ)).range :=
by rw [supported, set.image_eq_range, adjoin_range_eq_range_aeval, rename]
/--The isomorphism between the subalgebra of polynomials supported by `s` and `mv_polynomial s R`-/
noncomputable def supported_equiv_mv_polynomial (s : set Οƒ) :
supported R s ≃ₐ[R] mv_polynomial s R :=
(subalgebra.equiv_of_eq _ _ (supported_eq_range_rename s)).trans
(alg_equiv.of_injective (rename (coe : s β†’ Οƒ))
(rename_injective _ subtype.val_injective)).symm
@[simp] lemma supported_equiv_mv_polynomial_symm_C (s : set Οƒ) (x : R) :
(supported_equiv_mv_polynomial s).symm (C x) = algebra_map R (supported R s) x :=
begin
ext1,
simp [supported_equiv_mv_polynomial, mv_polynomial.algebra_map_eq],
end
@[simp] lemma supported_equiv_mv_polynomial_symm_X (s : set Οƒ) (i : s) :
(↑((supported_equiv_mv_polynomial s).symm (X i : mv_polynomial s R)) : mv_polynomial Οƒ R) = X i :=
by simp [supported_equiv_mv_polynomial]
variables {s t : set Οƒ}
lemma mem_supported : p ∈ (supported R s) ↔ ↑p.vars βŠ† s :=
begin
rw [supported_eq_range_rename, alg_hom.mem_range],
split,
{ rintros ⟨p, rfl⟩,
refine trans (finset.coe_subset.2 (vars_rename _ _)) _,
simp },
{ intros hs,
exact exists_rename_eq_of_vars_subset_range p (coe : s β†’ Οƒ) subtype.val_injective (by simpa) }
end
lemma supported_eq_vars_subset : (supported R s : set (mv_polynomial Οƒ R)) = {p | ↑p.vars βŠ† s} :=
set.ext $ Ξ» _, mem_supported
@[simp] lemma mem_supported_vars (p : mv_polynomial Οƒ R) : p ∈ supported R (↑p.vars : set Οƒ) :=
by rw [mem_supported]
variable (s)
lemma supported_eq_adjoin_X : supported R s = algebra.adjoin R (X '' s) := rfl
@[simp] lemma supported_univ : supported R (set.univ : set Οƒ) = ⊀ :=
by simp [algebra.eq_top_iff, mem_supported]
@[simp] lemma supported_empty : supported R (βˆ… : set Οƒ) = βŠ₯ :=
by simp [supported_eq_adjoin_X]
variables {s}
lemma supported_mono (st : s βŠ† t) : supported R s ≀ supported R t :=
algebra.adjoin_mono (set.image_subset _ st)
@[simp] lemma X_mem_supported [nontrivial R] {i : Οƒ} : (X i) ∈ supported R s ↔ i ∈ s :=
by simp [mem_supported]
@[simp] lemma supported_le_supported_iff [nontrivial R] :
supported R s ≀ supported R t ↔ s βŠ† t :=
begin
split,
{ intros h i,
simpa using @h (X i) },
{ exact supported_mono }
end
lemma supported_strict_mono [nontrivial R] :
strict_mono (supported R : set Οƒ β†’ subalgebra R (mv_polynomial Οƒ R)) :=
strict_mono_of_le_iff_le (Ξ» _ _, supported_le_supported_iff.symm)
lemma exists_restrict_to_vars (R : Type*) [comm_ring R] {F : mv_polynomial Οƒ β„€} (hF : ↑F.vars βŠ† s) :
βˆƒ f : (s β†’ R) β†’ R, βˆ€ x : Οƒ β†’ R, f (x ∘ coe : s β†’ R) = aeval x F :=
begin
classical,
rw [← mem_supported, supported_eq_range_rename, alg_hom.mem_range] at hF,
cases hF with F' hF',
use Ξ» z, aeval z F',
intro x,
simp only [←hF', aeval_rename],
end
end comm_semiring
end mv_polynomial