Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.97 kB
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import data.finset.lattice
/-!
# Relations holding pairwise on finite sets
In this file we prove a few results about the interaction of `set.pairwise_disjoint` and `finset`,
as well as the interaction of `list.pairwise disjoint` and the condition of
`disjoint` on `list.to_finset`, in `set` form.
-/
open finset
variables {α ι ι' : Type*}
instance [decidable_eq α] {r : α → α → Prop} [decidable_rel r] {s : finset α} :
decidable ((s : set α).pairwise r) :=
decidable_of_iff' (∀ a ∈ s, ∀ b ∈ s, a ≠ b → r a b) iff.rfl
lemma finset.pairwise_disjoint_range_singleton [decidable_eq α] :
(set.range (singleton : α → finset α)).pairwise_disjoint id :=
begin
rintro _ ⟨a, rfl⟩ _ ⟨b, rfl⟩ h,
exact disjoint_singleton.2 (ne_of_apply_ne _ h),
end
namespace set
lemma pairwise_disjoint.elim_finset [decidable_eq α] {s : set ι} {f : ι → finset α}
(hs : s.pairwise_disjoint f) {i j : ι} (hi : i ∈ s) (hj : j ∈ s) (a : α) (hai : a ∈ f i)
(haj : a ∈ f j) :
i = j :=
hs.elim hi hj (finset.not_disjoint_iff.2 ⟨a, hai, haj⟩)
lemma pairwise_disjoint.image_finset_of_le [decidable_eq ι] [semilattice_inf α] [order_bot α]
{s : finset ι} {f : ι → α} (hs : (s : set ι).pairwise_disjoint f) {g : ι → ι}
(hf : ∀ a, f (g a) ≤ f a) :
(s.image g : set ι).pairwise_disjoint f :=
begin
rw coe_image,
exact hs.image_of_le hf,
end
variables [lattice α] [order_bot α]
/-- Bind operation for `set.pairwise_disjoint`. In a complete lattice, you can use
`set.pairwise_disjoint.bUnion`. -/
lemma pairwise_disjoint.bUnion_finset {s : set ι'} {g : ι' → finset ι} {f : ι → α}
(hs : s.pairwise_disjoint (λ i' : ι', (g i').sup f))
(hg : ∀ i ∈ s, (g i : set ι).pairwise_disjoint f) :
(⋃ i ∈ s, ↑(g i)).pairwise_disjoint f :=
begin
rintro a ha b hb hab,
simp_rw set.mem_Union at ha hb,
obtain ⟨c, hc, ha⟩ := ha,
obtain ⟨d, hd, hb⟩ := hb,
obtain hcd | hcd := eq_or_ne (g c) (g d),
{ exact hg d hd (by rwa hcd at ha) hb hab },
{ exact (hs hc hd (ne_of_apply_ne _ hcd)).mono (finset.le_sup ha) (finset.le_sup hb) }
end
end set
namespace list
variables {β : Type*} [decidable_eq α] {r : α → α → Prop} {l : list α}
lemma pairwise_of_coe_to_finset_pairwise (hl : (l.to_finset : set α).pairwise r) (hn : l.nodup) :
l.pairwise r :=
begin
induction l with hd tl IH,
{ simp },
simp only [set.pairwise_insert, pairwise_cons, to_finset_cons, finset.coe_insert,
finset.mem_coe, mem_to_finset, ne.def, nodup_cons] at hl hn ⊢,
refine ⟨λ x hx, (hl.right x hx _).left, IH hl.left hn.right⟩,
rintro rfl,
exact hn.left hx
end
lemma pairwise_iff_coe_to_finset_pairwise (hn : l.nodup) (hs : symmetric r) :
(l.to_finset : set α).pairwise r ↔ l.pairwise r :=
begin
refine ⟨λ h, pairwise_of_coe_to_finset_pairwise h hn, λ h, _⟩,
induction l with hd tl IH,
{ simp },
simp only [set.pairwise_insert, to_finset_cons, finset.coe_insert, finset.mem_coe,
mem_to_finset, ne.def, pairwise_cons, nodup_cons] at hn h ⊢,
exact ⟨IH hn.right h.right, λ x hx hne, ⟨h.left _ hx, hs (h.left _ hx)⟩⟩
end
lemma pairwise_disjoint_of_coe_to_finset_pairwise_disjoint {α ι}
[semilattice_inf α] [order_bot α] [decidable_eq ι] {l : list ι} {f : ι → α}
(hl : (l.to_finset : set ι).pairwise_disjoint f) (hn : l.nodup) :
l.pairwise (_root_.disjoint on f) :=
pairwise_of_coe_to_finset_pairwise hl hn
lemma pairwise_disjoint_iff_coe_to_finset_pairwise_disjoint {α ι}
[semilattice_inf α] [order_bot α] [decidable_eq ι] {l : list ι} {f : ι → α} (hn : l.nodup) :
(l.to_finset : set ι).pairwise_disjoint f ↔ l.pairwise (_root_.disjoint on f) :=
pairwise_iff_coe_to_finset_pairwise hn (symmetric_disjoint.comap f)
end list