Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Yaël Dillies. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yaël Dillies | |
-/ | |
import data.finset.locally_finite | |
/-! | |
# Intervals of finsets as finsets | |
This file provides the `locally_finite_order` instance for `finset α` and calculates the cardinality | |
of finite intervals of finsets. | |
If `s t : finset α`, then `finset.Icc s t` is the finset of finsets which include `s` and are | |
included in `t`. For example, | |
`finset.Icc {0, 1} {0, 1, 2, 3} = {{0, 1}, {0, 1, 2}, {0, 1, 3}, {0, 1, 2, 3}}` | |
and | |
`finset.Icc {0, 1, 2} {0, 1, 3} = {}`. | |
-/ | |
variables {α : Type*} | |
namespace finset | |
variables [decidable_eq α] (s t : finset α) | |
instance : locally_finite_order (finset α) := | |
{ finset_Icc := λ s t, t.powerset.filter ((⊆) s), | |
finset_Ico := λ s t, t.ssubsets.filter ((⊆) s), | |
finset_Ioc := λ s t, t.powerset.filter ((⊂) s), | |
finset_Ioo := λ s t, t.ssubsets.filter ((⊂) s), | |
finset_mem_Icc := λ s t u, by {rw [mem_filter, mem_powerset], exact and_comm _ _ }, | |
finset_mem_Ico := λ s t u, by {rw [mem_filter, mem_ssubsets], exact and_comm _ _ }, | |
finset_mem_Ioc := λ s t u, by {rw [mem_filter, mem_powerset], exact and_comm _ _ }, | |
finset_mem_Ioo := λ s t u, by {rw [mem_filter, mem_ssubsets], exact and_comm _ _ } } | |
lemma Icc_eq_filter_powerset : Icc s t = t.powerset.filter ((⊆) s) := rfl | |
lemma Ico_eq_filter_ssubsets : Ico s t = t.ssubsets.filter ((⊆) s) := rfl | |
lemma Ioc_eq_filter_powerset : Ioc s t = t.powerset.filter ((⊂) s) := rfl | |
lemma Ioo_eq_filter_ssubsets : Ioo s t = t.ssubsets.filter ((⊂) s) := rfl | |
lemma Iic_eq_powerset : Iic s = s.powerset := filter_true_of_mem $ λ t _, empty_subset t | |
lemma Iio_eq_ssubsets : Iio s = s.ssubsets := filter_true_of_mem $ λ t _, empty_subset t | |
variables {s t} | |
lemma Icc_eq_image_powerset (h : s ⊆ t) : Icc s t = (t \ s).powerset.image ((∪) s) := | |
begin | |
ext u, | |
simp_rw [mem_Icc, mem_image, exists_prop, mem_powerset], | |
split, | |
{ rintro ⟨hs, ht⟩, | |
exact ⟨u \ s, sdiff_le_sdiff_right ht, sup_sdiff_cancel_right hs⟩ }, | |
{ rintro ⟨v, hv, rfl⟩, | |
exact ⟨le_sup_left, union_subset h $ hv.trans $ sdiff_subset _ _⟩ } | |
end | |
lemma Ico_eq_image_ssubsets (h : s ⊆ t) : Ico s t = (t \ s).ssubsets.image ((∪) s) := | |
begin | |
ext u, | |
simp_rw [mem_Ico, mem_image, exists_prop, mem_ssubsets], | |
split, | |
{ rintro ⟨hs, ht⟩, | |
exact ⟨u \ s, sdiff_lt_sdiff_right ht hs, sup_sdiff_cancel_right hs⟩ }, | |
{ rintro ⟨v, hv, rfl⟩, | |
exact ⟨le_sup_left, sup_lt_of_lt_sdiff_left hv h⟩ } | |
end | |
/-- Cardinality of a non-empty `Icc` of finsets. -/ | |
lemma card_Icc_finset (h : s ⊆ t) : (Icc s t).card = 2 ^ (t.card - s.card) := | |
begin | |
rw [←card_sdiff h, ←card_powerset, Icc_eq_image_powerset h, finset.card_image_iff], | |
rintro u hu v hv (huv : s ⊔ u = s ⊔ v), | |
rw [mem_coe, mem_powerset] at hu hv, | |
rw [←(disjoint_sdiff.mono_right hu : disjoint s u).sup_sdiff_cancel_left, | |
←(disjoint_sdiff.mono_right hv : disjoint s v).sup_sdiff_cancel_left, huv], | |
end | |
/-- Cardinality of an `Ico` of finsets. -/ | |
lemma card_Ico_finset (h : s ⊆ t) : (Ico s t).card = 2 ^ (t.card - s.card) - 1 := | |
by rw [card_Ico_eq_card_Icc_sub_one, card_Icc_finset h] | |
/-- Cardinality of an `Ioc` of finsets. -/ | |
lemma card_Ioc_finset (h : s ⊆ t) : (Ioc s t).card = 2 ^ (t.card - s.card) - 1 := | |
by rw [card_Ioc_eq_card_Icc_sub_one, card_Icc_finset h] | |
/-- Cardinality of an `Ioo` of finsets. -/ | |
lemma card_Ioo_finset (h : s ⊆ t) : (Ioo s t).card = 2 ^ (t.card - s.card) - 2 := | |
by rw [card_Ioo_eq_card_Icc_sub_two, card_Icc_finset h] | |
end finset | |