Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /data /W /constructions.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.87 kB
/-
Copyright (c) 2015 Joseph Hua. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Hua
-/
import data.W.basic
/-!
# Examples of W-types
We take the view of W types as inductive types.
Given `α : Type` and `β : α → Type`, the W type determined by this data, `W_type β`, is the
inductively with constructors from `α` and arities of each constructor `a : α` given by `β a`.
This file contains `nat` and `list` as examples of W types.
## Main results
* `W_type.equiv_nat`: the construction of the naturals as a W-type is equivalent
to `nat`
* `W_type.equiv_list`: the construction of lists on a type `γ` as a W-type is equivalent to
`list γ`
-/
universes u v
namespace W_type
section nat
/-- The constructors for the naturals -/
inductive nat_α : Type
| zero : nat_α
| succ : nat_α
instance : inhabited nat_α := ⟨ nat_α.zero ⟩
/-- The arity of the constructors for the naturals, `zero` takes no arguments, `succ` takes one -/
def nat_β : nat_α → Type
| nat_α.zero := empty
| nat_α.succ := unit
instance : inhabited (nat_β nat_α.succ) := ⟨ () ⟩
/-- The isomorphism from the naturals to its corresponding `W_type` -/
@[simp] def of_nat : ℕ → W_type nat_β
| nat.zero := ⟨ nat_α.zero , empty.elim ⟩
| (nat.succ n) := ⟨ nat_α.succ , λ _ , of_nat n ⟩
/-- The isomorphism from the `W_type` of the naturals to the naturals -/
@[simp] def to_nat : W_type nat_β → ℕ
| (W_type.mk nat_α.zero f) := 0
| (W_type.mk nat_α.succ f) := (to_nat (f ())).succ
lemma left_inv_nat : function.left_inverse of_nat to_nat
| (W_type.mk nat_α.zero f) := by { simp, tidy }
| (W_type.mk nat_α.succ f) := by { simp, tidy }
lemma right_inv_nat : function.right_inverse of_nat to_nat
| nat.zero := rfl
| (nat.succ n) := by rw [of_nat, to_nat, right_inv_nat n]
/-- The naturals are equivalent to their associated `W_type` -/
def equiv_nat : W_type nat_β ≃ ℕ :=
{ to_fun := to_nat,
inv_fun := of_nat,
left_inv := left_inv_nat,
right_inv := right_inv_nat }
open sum punit
/--
`W_type.nat_α` is equivalent to `punit ⊕ punit`.
This is useful when considering the associated polynomial endofunctor.
-/
@[simps] def nat_α_equiv_punit_sum_punit : nat_α ≃ punit.{u + 1} ⊕ punit :=
{ to_fun := λ c, match c with | nat_α.zero := inl star | nat_α.succ := inr star end,
inv_fun := λ b, match b with | inl x := nat_α.zero | inr x := nat_α.succ end,
left_inv := λ c, match c with | nat_α.zero := rfl | nat_α.succ := rfl end,
right_inv := λ b, match b with | inl star := rfl | inr star := rfl end }
end nat
section list
variable (γ : Type u)
/--
The constructors for lists.
There is "one constructor `cons x` for each `x : γ`",
since we view `list γ` as
```
| nil : list γ
| cons x₀ : list γ → list γ
| cons x₁ : list γ → list γ
| ⋮ γ many times
```
-/
inductive list_α : Type u
| nil : list_α
| cons : γ → list_α
instance : inhabited (list_α γ) := ⟨ list_α.nil ⟩
/-- The arities of each constructor for lists, `nil` takes no arguments, `cons hd` takes one -/
def list_β : list_α γ → Type u
| list_α.nil := pempty
| (list_α.cons hd) := punit
instance (hd : γ) : inhabited (list_β γ (list_α.cons hd)) := ⟨ punit.star ⟩
/-- The isomorphism from lists to the `W_type` construction of lists -/
@[simp] def of_list : list γ → W_type (list_β γ)
| list.nil := ⟨ list_α.nil, pempty.elim ⟩
| (list.cons hd tl) := ⟨ list_α.cons hd, λ _ , of_list tl ⟩
/-- The isomorphism from the `W_type` construction of lists to lists -/
@[simp] def to_list : W_type (list_β γ) → list γ
| (W_type.mk list_α.nil f) := []
| (W_type.mk (list_α.cons hd) f) := hd :: to_list (f punit.star)
lemma left_inv_list : function.left_inverse (of_list γ) (to_list _)
| (W_type.mk list_α.nil f) := by { simp, tidy }
| (W_type.mk (list_α.cons x) f) := by { simp, tidy }
lemma right_inv_list : function.right_inverse (of_list γ) (to_list _)
| list.nil := rfl
| (list.cons hd tl) := by simp [right_inv_list tl]
/-- Lists are equivalent to their associated `W_type` -/
def equiv_list : W_type (list_β γ) ≃ list γ :=
{ to_fun := to_list _,
inv_fun := of_list _,
left_inv := left_inv_list _,
right_inv := right_inv_list _ }
/--
`W_type.list_α` is equivalent to `γ` with an extra point.
This is useful when considering the associated polynomial endofunctor
-/
def list_α_equiv_punit_sum : list_α γ ≃ punit.{v + 1} ⊕ γ :=
{ to_fun := λ c, match c with | list_α.nil := sum.inl punit.star | list_α.cons x := sum.inr x end,
inv_fun := sum.elim (λ _, list_α.nil) (λ x, list_α.cons x),
left_inv := λ c, match c with | list_α.nil := rfl | list_α.cons x := rfl end,
right_inv := λ x, match x with | sum.inl punit.star := rfl | sum.inr x := rfl end, }
end list
end W_type