Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.14 kB
/-
Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Adam Topaz
-/
import algebraic_topology.simplex_category
import topology.category.Top.basic
import topology.instances.nnreal
/-!
# Topological simplices
We define the natural functor from `simplex_category` to `Top` sending `[n]` to the
topological `n`-simplex.
This is used to define `Top.to_sSet` in `algebraic_topology.simpliciaL_set`.
-/
noncomputable theory
namespace simplex_category
open_locale simplicial nnreal big_operators classical
local attribute [instance]
category_theory.concrete_category.has_coe_to_sort
category_theory.concrete_category.has_coe_to_fun
/-- The topological simplex associated to `x : simplex_category`.
This is the object part of the functor `simplex_category.to_Top`. -/
def to_Top_obj (x : simplex_category) := { f : x → ℝ≥0 | ∑ i, f i = 1 }
instance (x : simplex_category) : has_coe_to_fun x.to_Top_obj (λ _, x → ℝ≥0) :=
⟨λ f, (f : x → ℝ≥0)⟩
@[ext]
lemma to_Top_obj.ext {x : simplex_category} (f g : x.to_Top_obj) :
(f : x → ℝ≥0) = g → f = g := subtype.ext
/-- A morphism in `simplex_category` induces a map on the associated topological spaces. -/
def to_Top_map {x y : simplex_category} (f : x ⟶ y) : x.to_Top_obj → y.to_Top_obj :=
λ g, ⟨λ i, ∑ j in (finset.univ.filter (λ k, f k = i)), g j,
begin
dsimp [to_Top_obj],
simp only [finset.filter_congr_decidable, finset.sum_congr],
rw ← finset.sum_bUnion,
convert g.2,
{ rw finset.eq_univ_iff_forall,
intros i,
rw finset.mem_bUnion,
exact ⟨f i, by simp, by simp⟩ },
{ intros i hi j hj h e he,
apply h,
simp only [true_and, finset.inf_eq_inter,
finset.mem_univ, finset.mem_filter, finset.mem_inter] at he,
rw [← he.1, ← he.2] }
end
@[simp]
lemma coe_to_Top_map {x y : simplex_category} (f : x ⟶ y) (g : x.to_Top_obj) (i : y) :
to_Top_map f g i = ∑ j in (finset.univ.filter (λ k, f k = i)), g j := rfl
@[continuity]
lemma continuous_to_Top_map {x y : simplex_category} (f : x ⟶ y) :
continuous (to_Top_map f) :=
continuous_subtype_mk _ $ continuous_pi $ λ i, continuous_finset_sum _ $
λ j hj, continuous.comp (continuous_apply _) continuous_subtype_val
/-- The functor associating the topological `n`-simplex to `[n] : simplex_category`. -/
@[simps]
def to_Top : simplex_category ⥤ Top :=
{ obj := λ x, Top.of x.to_Top_obj,
map := λ x y f, ⟨to_Top_map f⟩,
map_id' := begin
intros x,
ext f i : 3,
change (finset.univ.filter (λ k, k = i)).sum _ = _,
simp [finset.sum_filter]
end,
map_comp' := begin
intros x y z f g,
ext h i : 3,
dsimp,
erw ← finset.sum_bUnion,
apply finset.sum_congr,
{ exact finset.ext (λ j, ⟨λ hj, by simpa using hj, λ hj, by simpa using hj⟩) },
{ tauto },
{ intros j hj k hk h e he,
apply h,
simp only [true_and, finset.inf_eq_inter,
finset.mem_univ, finset.mem_filter, finset.mem_inter] at he,
rw [← he.1, ← he.2] },
end }
end simplex_category