Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import hacks_and_tricks.by_exactI_hack | |
import system_of_complexes.basic | |
import facts | |
universe variables v u | |
noncomputable theory | |
open opposite category_theory | |
open_locale nnreal | |
/-! | |
# Systems of double complexes of seminormed groups | |
In this file we define systems of double complexes of seminormed groups, | |
as needed for Definition 9.6 of [Analytic]. | |
## Main declarations | |
* `system_of_double_complexes`: a system of complexes of seminormed groups. | |
* `admissible`: such a system is *admissible* if all maps that occur in the system | |
are norm-nonincreasing. | |
-/ | |
/-- A system of double complexes of seminormed groups, indexed by `ββ₯0`. | |
See also Definition 9.3 of [Analytic]. -/ | |
@[derive category_theory.category] | |
def system_of_double_complexes : Type (u+1) := | |
ββ₯0α΅α΅ β₯€ (cochain_complex (cochain_complex SemiNormedGroup.{u} β) β) | |
namespace system_of_double_complexes | |
variables (C : system_of_double_complexes) | |
/-- `C.X c p q` is the object $C_c^{p,q}$ in a system of double complexes `C`. -/ | |
def X (c : ββ₯0) (p q : β) : SemiNormedGroup := | |
((C.obj $ op c).X p).X q | |
/-- `C.res` is the restriction map `C.X c' p q βΆ C.X c p q` for a system of complexes `C`, | |
and nonnegative reals `c β€ c'`. -/ | |
def res {c' c : ββ₯0} {p q : β} [h : fact (c β€ c')] : | |
C.X c' p q βΆ C.X c p q := | |
((C.map (hom_of_le h.out).op).f p).f q | |
variables (c : ββ₯0) {cβ cβ cβ : ββ₯0} (p p' q q' : β) | |
@[simp] lemma res_refl : @res C c c p q _ = π _ := | |
begin | |
have := (category_theory.functor.map_id C (op $ c)), | |
delta res, erw this, refl | |
end | |
@[simp] lemma norm_res_of_eq (h : cβ = cβ) (x : C.X cβ p q) : β₯@res C _ _ p q β¨h.leβ© xβ₯ = β₯xβ₯ := | |
by { cases h, rw res_refl, refl } | |
@[simp] lemma res_comp_res (hβ : fact (cβ β€ cβ)) (hβ : fact (cβ β€ cβ)) : | |
@res C _ _ p q hβ β« @res C _ _ p q hβ = @res C _ _ p q β¨hβ.out.trans hβ.outβ© := | |
begin | |
have := (category_theory.functor.map_comp C (hom_of_le hβ.out).op (hom_of_le hβ.out).op), | |
rw [β op_comp] at this, | |
delta res, erw this, refl, | |
end | |
@[simp] lemma res_res (hβ : fact (cβ β€ cβ)) (hβ : fact (cβ β€ cβ)) (x : C.X cβ p q) : | |
@res C _ _ p q hβ (@res C _ _ p q hβ x) = @res C _ _ p q β¨hβ.out.trans hβ.outβ© x := | |
by { rw β (C.res_comp_res p q hβ hβ), refl } | |
/-- `C.d` is the differential `C.X c p q βΆ C.X c (p+1) q` for a system of double complexes `C`. -/ | |
def d {c : ββ₯0} (p p' : β) {q : β} : C.X c p q βΆ C.X c p' q := | |
((C.obj $ op c).d p p').f q | |
lemma d_eq_zero (c : ββ₯0) (h : p + 1 β p') : (C.d p p' : C.X c p q βΆ _) = 0 := | |
by { have : (C.obj (op c)).d p p' = 0 := (C.obj $ op c).shape _ _ h, rw [d, this], refl } | |
lemma d_eq_zero_apply (c : ββ₯0) (h : p + 1 β p') (x : C.X c p q) : (C.d p p' x) = 0 := | |
by { rw [d_eq_zero C p p' q c h], refl } | |
@[simp] lemma d_self_apply (c : ββ₯0) (x : C.X c p q) : (C.d p p x) = 0 := | |
d_eq_zero_apply _ _ _ _ _ p.succ_ne_self _ | |
lemma d_comp_res (h : fact (cβ β€ cβ)) : | |
C.d p p' β« @res C _ _ _ q h = @res C _ _ p q _ β« C.d p p' := | |
congr_fun (congr_arg homological_complex.hom.f ((C.map (hom_of_le h.out).op).comm p p')).symm q | |
lemma d_res (h : fact (cβ β€ cβ)) (x) : | |
@d C cβ p p' q (@res C _ _ p q _ x) = @res C _ _ _ _ h (@d C cβ p p' q x) := | |
show (@res C _ _ p q _ β« C.d p p') x = (C.d p p' β« @res C _ _ _ _ h) x, | |
by rw d_comp_res | |
@[simp] lemma d_comp_d {c : ββ₯0} {p p' p'' q : β} : | |
@d C c p p' q β« C.d p' p'' = 0 := | |
congr_fun (congr_arg homological_complex.hom.f ((C.obj $ op c).d_comp_d p p' p'')) q | |
@[simp] lemma d_d {c : ββ₯0} {p p' p'' q : β} (x : C.X c p q) : | |
C.d p' p'' (C.d p p' x) = 0 := | |
show (C.d _ _ β« C.d _ _) x = 0, by { rw d_comp_d, refl } | |
/-- `C.d'` is the differential `C.X c p q βΆ C.X c p (q+1)` for a system of double complexes `C`. -/ | |
def d' {c : ββ₯0} {p : β} (q q' : β) : C.X c p q βΆ C.X c p q' := | |
((C.obj $ op c).X p).d q q' | |
lemma d'_eq_zero (c : ββ₯0) (h : q + 1 β q') : (C.d' q q' : C.X c p q βΆ _) = 0 := | |
((C.obj $ op c).X p).shape _ _ h | |
lemma d'_eq_zero_apply (c : ββ₯0) (h : q + 1 β q') (x : C.X c p q) : (C.d' q q' x) = 0 := | |
by { rw [d'_eq_zero C p q q' c h], refl } | |
@[simp] lemma d'_self_apply (c : ββ₯0) (x : C.X c p q) : (C.d' q q x) = 0 := | |
d'_eq_zero_apply _ _ _ _ _ q.succ_ne_self _ | |
lemma d'_comp_res (h : fact (cβ β€ cβ)) : | |
@d' C cβ p q q' β« @res C _ _ _ _ h = @res C _ _ p q _ β« @d' C cβ p q q' := | |
(((C.map (hom_of_le h.out).op).f p).comm q q').symm | |
lemma d'_res (h : fact (cβ β€ cβ)) (x) : | |
C.d' q q' (@res C _ _ p q _ x) = @res C _ _ _ _ h (C.d' q q' x) := | |
show (@res C _ _ p q _ β« C.d' q q') x = (C.d' q q' β« @res C _ _ _ _ h) x, | |
by rw d'_comp_res | |
@[simp] lemma d'_comp_d' {c : ββ₯0} {p q q' q'' : β} : | |
@d' C c p q q' β« C.d' q' q'' = 0 := | |
((C.obj $ op c).X p).d_comp_d q q' q'' | |
@[simp] lemma d'_d' {c : ββ₯0} {p q q' q'' : β} (x : C.X c p q) : | |
C.d' q' q'' (C.d' q q' x) = 0 := | |
show (C.d' _ _ β« C.d' _ _) x = 0, by { rw d'_comp_d', refl } | |
lemma d'_comp_d (c : ββ₯0) (p p' q q' : β) : | |
C.d' q q' β« C.d p p' = C.d p p' β« (C.d' q q' : C.X c p' q βΆ _) := | |
(((C.obj $ op c).d p p').comm q q').symm | |
lemma d'_d (c : ββ₯0) (p p' q q' : β) (x : C.X c p q) : | |
C.d' q q' (C.d p p' x) = C.d p p' (C.d' q q' x) := | |
show (C.d p p' β« C.d' q q') x = (C.d' q q' β« C.d p p') x, | |
by rw [d'_comp_d] | |
/-- Convenience definition: | |
The identity morphism of an object in the system of double complexes | |
when it is given by different indices that are not | |
definitionally equal. -/ | |
def congr {c c' : ββ₯0} {p p' q q' : β} (hc : c = c') (hp : p = p') (hq : q = q') : | |
C.X c p q βΆ C.X c' p' q' := | |
eq_to_hom $ by { subst hc, subst hp, subst hq, } | |
/-- The `p`-th row in a system of double complexes, as system of complexes. | |
It has object `(C.obj c).X p`over `c`. -/ | |
def row (C : system_of_double_complexes.{u}) (p : β) : system_of_complexes.{u} := | |
C β homological_complex.forget _ _ β pi.eval _ p | |
@[simp] lemma row_X (C : system_of_double_complexes) (p q : β) (c : ββ₯0) : | |
C.row p c q = C.X c p q := | |
rfl | |
@[simp] lemma row_res (C : system_of_double_complexes) (p q : β) {c' c : ββ₯0} [h : fact (c β€ c')] : | |
@system_of_complexes.res (C.row p) _ _ q h = @res C _ _ p q h := | |
rfl | |
@[simp] lemma row_d (C : system_of_double_complexes) (c : ββ₯0) (p : β) : | |
(C.row p).d = @d' C c p := | |
rfl | |
/-- The differential between rows in a system of double complexes, | |
as map of system of complexes. -/ | |
@[simps app_f] | |
def row_map (C : system_of_double_complexes.{u}) (p p' : β) : | |
C.row p βΆ C.row p' := | |
{ app := Ξ» c, | |
{ f := Ξ» q, (C.d p p' : C.X c.unop p q βΆ C.X c.unop p' q), | |
comm' := Ξ» q q' _, (C.d'_comp_d _ p p' q q').symm }, | |
naturality' := Ξ» cβ cβ h, (C.map h).comm p p' } | |
@[simp] lemma row_map_apply (C : system_of_double_complexes.{u}) | |
(c : ββ₯0) (p p' q : β) (x : C.X c p q) : | |
C.row_map p p' x = C.d p p' x := rfl | |
-- -- this should be found by TC, but we first need to make `pi.eval` and `graded_object` additive | |
-- instance aux : (homological_complex.forget SemiNormedGroup (complex_shape.up β) β | |
-- pi.eval (Ξ» (_ : β), SemiNormedGroup) q).additive := | |
-- { map_zero' := Ξ» Cβ Cβ, by { dsimp, refl }, | |
-- map_add' := by { intros, dsimp, refl } } | |
/-- The `q`-th column in a system of double complexes, as system of complexes. -/ | |
@[simps] | |
def col (C : system_of_double_complexes.{u}) (q : β) : system_of_complexes.{u} := | |
C β functor.map_homological_complex (homological_complex.eval _ _ q) _ | |
@[simp] lemma col_X (C : system_of_double_complexes) (p q : β) (c : ββ₯0) : | |
C.col q c p = C.X c p q := | |
rfl | |
@[simp] lemma col_res (C : system_of_double_complexes) (p q : β) {c' c : ββ₯0} [h : fact (c β€ c')] : | |
(@system_of_complexes.res (C.col q) _ _ p h : C.col q c' p βΆ C.col q c p) = | |
-- (@res C _ _ p q h : C.X c' p q βΆ C.X c p q) := | |
by dsimp_result { dsimp, exact (@res C _ _ p q h : C.X c' p q βΆ C.X c p q) } := | |
rfl | |
@[simp] lemma col_d (C : system_of_double_complexes) (c : ββ₯0) (p p' q : β) : | |
@system_of_complexes.d (C.col q) c p p' = | |
by dsimp_result { dsimp, exact @d C c p p' q } := | |
rfl | |
/-- The differential between columns in a system of double complexes, | |
as map of system of complexes. -/ | |
def col_map (C : system_of_double_complexes.{u}) (q q' : β) : | |
C.col q βΆ C.col q' := | |
{ app := Ξ» c, | |
{ f := Ξ» p, (C.d' q q' : C.X c.unop p q βΆ C.X c.unop p q'), | |
comm' := Ξ» p p' _, (C.d'_comp_d _ p p' q q') }, | |
naturality' := Ξ» cβ cβ h, by { ext p : 2, exact ((C.map h).f p).comm q q' } } | |
/-- A system of double complexes is *admissible* | |
if all the differentials and restriction maps are norm-nonincreasing. | |
See Definition 9.3 of [Analytic]. -/ | |
structure admissible (C : system_of_double_complexes) : Prop := | |
(d_norm_noninc' : β c p p' q (h : p + 1 = p'), (@d C c p p' q).norm_noninc) | |
(d'_norm_noninc' : β c p q q' (h : q + 1 = q'), (@d' C c p q q').norm_noninc) | |
(res_norm_noninc : β c' c p q h, (@res C c' c p q h).norm_noninc) | |
namespace admissible | |
variables {C} | |
lemma d_norm_noninc (hC : C.admissible) (c : ββ₯0) (p p' q : β) : | |
(C.d p p' : C.X c p q βΆ _).norm_noninc := | |
begin | |
by_cases h : p + 1 = p', | |
{ exact hC.d_norm_noninc' c p p' q h }, | |
{ rw C.d_eq_zero p p' q c h, intro v, simp } | |
end | |
lemma d'_norm_noninc (hC : C.admissible) (c : ββ₯0) (p q q' : β) : | |
(C.d' q q' : C.X c p q βΆ _).norm_noninc := | |
begin | |
by_cases h : q + 1 = q', | |
{ exact hC.d'_norm_noninc' c p q q' h }, | |
{ rw C.d'_eq_zero p q q' c h, intro v, simp } | |
end | |
lemma col (hC : C.admissible) (q : β) : (C.col q).admissible := | |
{ d_norm_noninc' := Ξ» c i j h, hC.d_norm_noninc _ _ _ _, | |
res_norm_noninc := Ξ» c i j h, hC.res_norm_noninc _ _ _ _ _ } | |
lemma row (hC : C.admissible) (p : β) : (C.row p).admissible := | |
{ d_norm_noninc' := Ξ» c i j h, hC.d'_norm_noninc _ _ _ _, | |
res_norm_noninc := Ξ» c i j h, hC.res_norm_noninc _ _ _ _ _ } | |
lemma mk' (h : β p, (C.row p).admissible) | |
(hd : β c p p' q (h : p + 1 = p'), (@d C c p p' q).norm_noninc) : | |
C.admissible := | |
{ d_norm_noninc' := Ξ» c p p' q h', hd c p p' q h', | |
d'_norm_noninc' := Ξ» c p q q' h', (h p).d_norm_noninc' _ _ _ h', | |
res_norm_noninc := Ξ» cβ cβ p q h', by { resetI, apply (h p).res_norm_noninc } } | |
end admissible | |
end system_of_double_complexes | |