Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.3 kB
import hacks_and_tricks.by_exactI_hack
import system_of_complexes.basic
import facts
universe variables v u
noncomputable theory
open opposite category_theory
open_locale nnreal
/-!
# Systems of double complexes of seminormed groups
In this file we define systems of double complexes of seminormed groups,
as needed for Definition 9.6 of [Analytic].
## Main declarations
* `system_of_double_complexes`: a system of complexes of seminormed groups.
* `admissible`: such a system is *admissible* if all maps that occur in the system
are norm-nonincreasing.
-/
/-- A system of double complexes of seminormed groups, indexed by `ℝβ‰₯0`.
See also Definition 9.3 of [Analytic]. -/
@[derive category_theory.category]
def system_of_double_complexes : Type (u+1) :=
ℝβ‰₯0α΅’α΅– β₯€ (cochain_complex (cochain_complex SemiNormedGroup.{u} β„•) β„•)
namespace system_of_double_complexes
variables (C : system_of_double_complexes)
/-- `C.X c p q` is the object $C_c^{p,q}$ in a system of double complexes `C`. -/
def X (c : ℝβ‰₯0) (p q : β„•) : SemiNormedGroup :=
((C.obj $ op c).X p).X q
/-- `C.res` is the restriction map `C.X c' p q ⟢ C.X c p q` for a system of complexes `C`,
and nonnegative reals `c ≀ c'`. -/
def res {c' c : ℝβ‰₯0} {p q : β„•} [h : fact (c ≀ c')] :
C.X c' p q ⟢ C.X c p q :=
((C.map (hom_of_le h.out).op).f p).f q
variables (c : ℝβ‰₯0) {c₁ cβ‚‚ c₃ : ℝβ‰₯0} (p p' q q' : β„•)
@[simp] lemma res_refl : @res C c c p q _ = πŸ™ _ :=
begin
have := (category_theory.functor.map_id C (op $ c)),
delta res, erw this, refl
end
@[simp] lemma norm_res_of_eq (h : cβ‚‚ = c₁) (x : C.X c₁ p q) : βˆ₯@res C _ _ p q ⟨h.le⟩ xβˆ₯ = βˆ₯xβˆ₯ :=
by { cases h, rw res_refl, refl }
@[simp] lemma res_comp_res (h₁ : fact (cβ‚‚ ≀ c₁)) (hβ‚‚ : fact (c₃ ≀ cβ‚‚)) :
@res C _ _ p q h₁ ≫ @res C _ _ p q hβ‚‚ = @res C _ _ p q ⟨hβ‚‚.out.trans h₁.out⟩ :=
begin
have := (category_theory.functor.map_comp C (hom_of_le h₁.out).op (hom_of_le hβ‚‚.out).op),
rw [← op_comp] at this,
delta res, erw this, refl,
end
@[simp] lemma res_res (h₁ : fact (cβ‚‚ ≀ c₁)) (hβ‚‚ : fact (c₃ ≀ cβ‚‚)) (x : C.X c₁ p q) :
@res C _ _ p q hβ‚‚ (@res C _ _ p q h₁ x) = @res C _ _ p q ⟨hβ‚‚.out.trans h₁.out⟩ x :=
by { rw ← (C.res_comp_res p q h₁ hβ‚‚), refl }
/-- `C.d` is the differential `C.X c p q ⟢ C.X c (p+1) q` for a system of double complexes `C`. -/
def d {c : ℝβ‰₯0} (p p' : β„•) {q : β„•} : C.X c p q ⟢ C.X c p' q :=
((C.obj $ op c).d p p').f q
lemma d_eq_zero (c : ℝβ‰₯0) (h : p + 1 β‰  p') : (C.d p p' : C.X c p q ⟢ _) = 0 :=
by { have : (C.obj (op c)).d p p' = 0 := (C.obj $ op c).shape _ _ h, rw [d, this], refl }
lemma d_eq_zero_apply (c : ℝβ‰₯0) (h : p + 1 β‰  p') (x : C.X c p q) : (C.d p p' x) = 0 :=
by { rw [d_eq_zero C p p' q c h], refl }
@[simp] lemma d_self_apply (c : ℝβ‰₯0) (x : C.X c p q) : (C.d p p x) = 0 :=
d_eq_zero_apply _ _ _ _ _ p.succ_ne_self _
lemma d_comp_res (h : fact (cβ‚‚ ≀ c₁)) :
C.d p p' ≫ @res C _ _ _ q h = @res C _ _ p q _ ≫ C.d p p' :=
congr_fun (congr_arg homological_complex.hom.f ((C.map (hom_of_le h.out).op).comm p p')).symm q
lemma d_res (h : fact (cβ‚‚ ≀ c₁)) (x) :
@d C cβ‚‚ p p' q (@res C _ _ p q _ x) = @res C _ _ _ _ h (@d C c₁ p p' q x) :=
show (@res C _ _ p q _ ≫ C.d p p') x = (C.d p p' ≫ @res C _ _ _ _ h) x,
by rw d_comp_res
@[simp] lemma d_comp_d {c : ℝβ‰₯0} {p p' p'' q : β„•} :
@d C c p p' q ≫ C.d p' p'' = 0 :=
congr_fun (congr_arg homological_complex.hom.f ((C.obj $ op c).d_comp_d p p' p'')) q
@[simp] lemma d_d {c : ℝβ‰₯0} {p p' p'' q : β„•} (x : C.X c p q) :
C.d p' p'' (C.d p p' x) = 0 :=
show (C.d _ _ ≫ C.d _ _) x = 0, by { rw d_comp_d, refl }
/-- `C.d'` is the differential `C.X c p q ⟢ C.X c p (q+1)` for a system of double complexes `C`. -/
def d' {c : ℝβ‰₯0} {p : β„•} (q q' : β„•) : C.X c p q ⟢ C.X c p q' :=
((C.obj $ op c).X p).d q q'
lemma d'_eq_zero (c : ℝβ‰₯0) (h : q + 1 β‰  q') : (C.d' q q' : C.X c p q ⟢ _) = 0 :=
((C.obj $ op c).X p).shape _ _ h
lemma d'_eq_zero_apply (c : ℝβ‰₯0) (h : q + 1 β‰  q') (x : C.X c p q) : (C.d' q q' x) = 0 :=
by { rw [d'_eq_zero C p q q' c h], refl }
@[simp] lemma d'_self_apply (c : ℝβ‰₯0) (x : C.X c p q) : (C.d' q q x) = 0 :=
d'_eq_zero_apply _ _ _ _ _ q.succ_ne_self _
lemma d'_comp_res (h : fact (cβ‚‚ ≀ c₁)) :
@d' C c₁ p q q' ≫ @res C _ _ _ _ h = @res C _ _ p q _ ≫ @d' C cβ‚‚ p q q' :=
(((C.map (hom_of_le h.out).op).f p).comm q q').symm
lemma d'_res (h : fact (cβ‚‚ ≀ c₁)) (x) :
C.d' q q' (@res C _ _ p q _ x) = @res C _ _ _ _ h (C.d' q q' x) :=
show (@res C _ _ p q _ ≫ C.d' q q') x = (C.d' q q' ≫ @res C _ _ _ _ h) x,
by rw d'_comp_res
@[simp] lemma d'_comp_d' {c : ℝβ‰₯0} {p q q' q'' : β„•} :
@d' C c p q q' ≫ C.d' q' q'' = 0 :=
((C.obj $ op c).X p).d_comp_d q q' q''
@[simp] lemma d'_d' {c : ℝβ‰₯0} {p q q' q'' : β„•} (x : C.X c p q) :
C.d' q' q'' (C.d' q q' x) = 0 :=
show (C.d' _ _ ≫ C.d' _ _) x = 0, by { rw d'_comp_d', refl }
lemma d'_comp_d (c : ℝβ‰₯0) (p p' q q' : β„•) :
C.d' q q' ≫ C.d p p' = C.d p p' ≫ (C.d' q q' : C.X c p' q ⟢ _) :=
(((C.obj $ op c).d p p').comm q q').symm
lemma d'_d (c : ℝβ‰₯0) (p p' q q' : β„•) (x : C.X c p q) :
C.d' q q' (C.d p p' x) = C.d p p' (C.d' q q' x) :=
show (C.d p p' ≫ C.d' q q') x = (C.d' q q' ≫ C.d p p') x,
by rw [d'_comp_d]
/-- Convenience definition:
The identity morphism of an object in the system of double complexes
when it is given by different indices that are not
definitionally equal. -/
def congr {c c' : ℝβ‰₯0} {p p' q q' : β„•} (hc : c = c') (hp : p = p') (hq : q = q') :
C.X c p q ⟢ C.X c' p' q' :=
eq_to_hom $ by { subst hc, subst hp, subst hq, }
/-- The `p`-th row in a system of double complexes, as system of complexes.
It has object `(C.obj c).X p`over `c`. -/
def row (C : system_of_double_complexes.{u}) (p : β„•) : system_of_complexes.{u} :=
C β‹™ homological_complex.forget _ _ β‹™ pi.eval _ p
@[simp] lemma row_X (C : system_of_double_complexes) (p q : β„•) (c : ℝβ‰₯0) :
C.row p c q = C.X c p q :=
rfl
@[simp] lemma row_res (C : system_of_double_complexes) (p q : β„•) {c' c : ℝβ‰₯0} [h : fact (c ≀ c')] :
@system_of_complexes.res (C.row p) _ _ q h = @res C _ _ p q h :=
rfl
@[simp] lemma row_d (C : system_of_double_complexes) (c : ℝβ‰₯0) (p : β„•) :
(C.row p).d = @d' C c p :=
rfl
/-- The differential between rows in a system of double complexes,
as map of system of complexes. -/
@[simps app_f]
def row_map (C : system_of_double_complexes.{u}) (p p' : β„•) :
C.row p ⟢ C.row p' :=
{ app := Ξ» c,
{ f := λ q, (C.d p p' : C.X c.unop p q ⟢ C.X c.unop p' q),
comm' := Ξ» q q' _, (C.d'_comp_d _ p p' q q').symm },
naturality' := Ξ» c₁ cβ‚‚ h, (C.map h).comm p p' }
@[simp] lemma row_map_apply (C : system_of_double_complexes.{u})
(c : ℝβ‰₯0) (p p' q : β„•) (x : C.X c p q) :
C.row_map p p' x = C.d p p' x := rfl
-- -- this should be found by TC, but we first need to make `pi.eval` and `graded_object` additive
-- instance aux : (homological_complex.forget SemiNormedGroup (complex_shape.up β„•) β‹™
-- pi.eval (Ξ» (_ : β„•), SemiNormedGroup) q).additive :=
-- { map_zero' := Ξ» C₁ Cβ‚‚, by { dsimp, refl },
-- map_add' := by { intros, dsimp, refl } }
/-- The `q`-th column in a system of double complexes, as system of complexes. -/
@[simps]
def col (C : system_of_double_complexes.{u}) (q : β„•) : system_of_complexes.{u} :=
C β‹™ functor.map_homological_complex (homological_complex.eval _ _ q) _
@[simp] lemma col_X (C : system_of_double_complexes) (p q : β„•) (c : ℝβ‰₯0) :
C.col q c p = C.X c p q :=
rfl
@[simp] lemma col_res (C : system_of_double_complexes) (p q : β„•) {c' c : ℝβ‰₯0} [h : fact (c ≀ c')] :
(@system_of_complexes.res (C.col q) _ _ p h : C.col q c' p ⟢ C.col q c p) =
-- (@res C _ _ p q h : C.X c' p q ⟢ C.X c p q) :=
by dsimp_result { dsimp, exact (@res C _ _ p q h : C.X c' p q ⟢ C.X c p q) } :=
rfl
@[simp] lemma col_d (C : system_of_double_complexes) (c : ℝβ‰₯0) (p p' q : β„•) :
@system_of_complexes.d (C.col q) c p p' =
by dsimp_result { dsimp, exact @d C c p p' q } :=
rfl
/-- The differential between columns in a system of double complexes,
as map of system of complexes. -/
def col_map (C : system_of_double_complexes.{u}) (q q' : β„•) :
C.col q ⟢ C.col q' :=
{ app := Ξ» c,
{ f := λ p, (C.d' q q' : C.X c.unop p q ⟢ C.X c.unop p q'),
comm' := Ξ» p p' _, (C.d'_comp_d _ p p' q q') },
naturality' := Ξ» c₁ cβ‚‚ h, by { ext p : 2, exact ((C.map h).f p).comm q q' } }
/-- A system of double complexes is *admissible*
if all the differentials and restriction maps are norm-nonincreasing.
See Definition 9.3 of [Analytic]. -/
structure admissible (C : system_of_double_complexes) : Prop :=
(d_norm_noninc' : βˆ€ c p p' q (h : p + 1 = p'), (@d C c p p' q).norm_noninc)
(d'_norm_noninc' : βˆ€ c p q q' (h : q + 1 = q'), (@d' C c p q q').norm_noninc)
(res_norm_noninc : βˆ€ c' c p q h, (@res C c' c p q h).norm_noninc)
namespace admissible
variables {C}
lemma d_norm_noninc (hC : C.admissible) (c : ℝβ‰₯0) (p p' q : β„•) :
(C.d p p' : C.X c p q ⟢ _).norm_noninc :=
begin
by_cases h : p + 1 = p',
{ exact hC.d_norm_noninc' c p p' q h },
{ rw C.d_eq_zero p p' q c h, intro v, simp }
end
lemma d'_norm_noninc (hC : C.admissible) (c : ℝβ‰₯0) (p q q' : β„•) :
(C.d' q q' : C.X c p q ⟢ _).norm_noninc :=
begin
by_cases h : q + 1 = q',
{ exact hC.d'_norm_noninc' c p q q' h },
{ rw C.d'_eq_zero p q q' c h, intro v, simp }
end
lemma col (hC : C.admissible) (q : β„•) : (C.col q).admissible :=
{ d_norm_noninc' := Ξ» c i j h, hC.d_norm_noninc _ _ _ _,
res_norm_noninc := Ξ» c i j h, hC.res_norm_noninc _ _ _ _ _ }
lemma row (hC : C.admissible) (p : β„•) : (C.row p).admissible :=
{ d_norm_noninc' := Ξ» c i j h, hC.d'_norm_noninc _ _ _ _,
res_norm_noninc := Ξ» c i j h, hC.res_norm_noninc _ _ _ _ _ }
lemma mk' (h : βˆ€ p, (C.row p).admissible)
(hd : βˆ€ c p p' q (h : p + 1 = p'), (@d C c p p' q).norm_noninc) :
C.admissible :=
{ d_norm_noninc' := Ξ» c p p' q h', hd c p p' q h',
d'_norm_noninc' := Ξ» c p q q' h', (h p).d_norm_noninc' _ _ _ h',
res_norm_noninc := Ξ» c₁ cβ‚‚ p q h', by { resetI, apply (h p).res_norm_noninc } }
end admissible
end system_of_double_complexes