Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.82 kB
import analysis.specific_limits.basic
import system_of_complexes.basic
import locally_constant.Vhat
/-!
# A technical lemma
This file has the definition of the completion of a system of
complexes of seminormed groups, and it proves a technical lemma
saying that a system of complexes of seminormed groups is admissible
and weak bounded exact, and if the groups in the complex are complete,
then it's bounded exact (for some slightly different constants).
-/
open finset filter
open_locale nnreal big_operators topological_space
namespace system_of_complexes
universe variables u
noncomputable def completion (C : system_of_complexes) : system_of_complexes :=
C ⋙ SemiNormedGroup.Completion.map_homological_complex _
namespace is_weak_bounded_exact
variables (C C₁ C₂ : system_of_complexes.{u})
variables {k k' K K' : ℝ≥0} {m m' : ℕ} {c₀ c₀' : ℝ≥0}
-- === We don't need the following two lemmas anytime soon
-- lemma controlled_y (hC : C.is_weak_bounded_exact k K m c₀) :
-- ∀ c ≥ c₀, ∀ i < m,
-- ∀ x : C (k^2 * c) (i+1),
-- ∀ (ε > 0) (δ > 0), ∃ y : C c i, ∥res x - C.d _ _ y∥
-- ≤ K * ∥C.d _ (i+1) x∥ + ε ∧ ∥y∥ ≤ K*(K + 1)*∥x∥ + δ :=
-- by admit
-- lemma completion (hC : C.is_weak_bounded_exact k K m c₀) :
-- C.completion.is_weak_bounded_exact (k^2) K m c₀ :=
-- by admit
lemma strong_of_complete [hk : fact (1 ≤ k)]
[∀ c i, separated_space (C c i)]
(hC : C.is_weak_bounded_exact k K m c₀)
(hC' : admissible C) [∀ c i, complete_space (C c i)] :
∀ δ > 0, C.is_bounded_exact (k^2) (K + δ) m c₀ :=
begin
intros δ hδ,
refine (hC.of_le hC' _ ⟨le_rfl⟩ le_rfl ⟨le_rfl⟩).to_exact hδ _,
{ constructor,
calc k = k * 1 : by rw mul_one
... ≤ k * k : mul_le_mul' le_rfl hk.out
... = k ^ 2 : by rw pow_two },
rintros c hc i hi x _ rfl hx,
haveI : fact (k * c ≤ k ^ 2 * c) := by { rw [pow_two, mul_assoc], apply_instance },
haveI : fact (k * (k * c) ≤ k ^ 2 * c) := by { rw [pow_two, mul_assoc], exact ⟨le_rfl⟩ },
-- we need to consider the case `i = 0` separately
obtain (rfl|⟨i,rfl⟩) : i = 0 ∨ ∃ i', i = i' + 1,
{ cases i, { left, refl }, { right, exact ⟨_, rfl⟩ } },
{ refine ⟨0, rfl, 0, _⟩,
rw [map_zero, ← norm_le_zero_iff'],
apply le_of_forall_pos_le_add,
intros γ hγ,
rw zero_add,
obtain ⟨_, _, rfl, rfl, y, hy⟩ := hC c ⟨hc⟩ 0 (nat.zero_le m) (res x) γ hγ,
rwa [res_res, d_eq_zero_apply, sub_zero, d_res, hx, map_zero, norm_zero, mul_zero, zero_add] at hy,
dec_trivial },
-- we continue with the case `i + 1`
have hc₀kc : k * c ≥ c₀,
calc c₀ ≤ c : hc
... ≤ 1*c : by rw one_mul
... ≤ k*c : mul_le_mul' hk.out (le_refl _),
let K' := if K = 0 then 1 else K,
have hK' : (0 : ℝ) < K',
{ dsimp [K'],
split_ifs,
norm_num,
exact zero_lt_iff.mpr h },
let ε : ℕ → ℝ := λ j, (2⁻¹*2⁻¹ ^ j) / K' / 2,
have ε_pos : ∀ j, 0 < ε j,
{ intro j,
dsimp [ε],
refine div_pos (div_pos (mul_pos _ _) hK') zero_lt_two; norm_num },
have ε_decr : ∀ j, ε (j+1) ≤ ε j,
{ intros j,
dsimp [ε],
field_simp,
apply one_div_le_one_div_of_le;
norm_num [hK', pow_succ],
calc (2 : ℝ)^j = 1*2^j : (one_mul _).symm
... ≤ 2*2^j : mul_le_mul_of_nonneg_right one_le_two (pow_nonneg zero_le_two _) },
have seq : ∀ j : ℕ, ∃ w : C (k*c) i, ∥res x - C.d i (i+1) w∥ ≤ ε j,
{ intro j,
specialize hC (k*c) ⟨hc₀kc⟩ _ hi (res x) (ε j) (ε_pos j),
obtain ⟨_, _, rfl, rfl, y, hy⟩ := hC,
simp only [d_res, res_res, map_zero, hx, norm_zero, zero_add, mul_zero] at hy,
refine ⟨y, hy⟩ },
choose w hw using seq,
let δ : ℕ → ℝ := λ j, 2⁻¹*2⁻¹ ^ j,
have δ_pos : ∀ j, 0 < δ j, { norm_num [δ] },
have hεδ : ∀ j, (K : ℝ) * (2 * ε j) + δ j ≤ 1 * 2⁻¹ ^ j,
{ intro j,
dsimp [ε, δ],
conv_rhs { congr, rw [show (1 : ℝ) = 2⁻¹ + 2⁻¹, by norm_num] },
rw add_mul (2⁻¹ : ℝ) 2⁻¹,
by_cases hK : K = 0,
{ simp only [hK, div_zero, nnreal.coe_zero, zero_div, zero_add, le_add_iff_nonneg_left, mul_zero, K', if_pos, zero_mul],
apply mul_nonneg,
norm_num,
apply pow_nonneg,
norm_num },
{ apply le_of_eq,
congr' 1,
simp only [K', if_neg hK],
rw [mul_div_cancel' _ (two_ne_zero : (2 : ℝ) ≠ 0),
mul_div_cancel' _ (nnreal.coe_ne_zero.mpr hK)]} },
set i₀ := i - 1 with hi₀,
have seq : ∀ j : ℕ, ∃ z : C c i₀, ∥res (w (j+1) - w j) - C.d i₀ i z∥
≤ K*∥C.d i (i+1) (w (j+1) - w j)∥ + δ j,
{ intro j,
have : i ≤ m, { exact i.le_succ.trans hi },
obtain ⟨i', -, hi', rfl, hy⟩ := hC c ⟨hc⟩ i this (w (j+1) - w j) _ (δ_pos j),
rw [← hi₀] at hi', subst i', exact hy },
choose z hz using seq,
let y : ℕ → C c i := λ j, res (w j) - ∑ l in range j, C.d _ _ (z l),
have cau_y : cauchy_seq y,
{ apply cauchy_seq_of_le_geometric (2⁻¹ : ℝ) 1 (nnreal.two_inv_lt_one),
intros j,
have fact : ∥C.d _ (i+1) (w (j + 1) - w j)∥ ≤ 2*ε j :=
calc ∥C.d _ (i+1) (w (j + 1) - w j)∥
= ∥(C.d _ _ (w (j + 1)) - res x) + (res x - C.d _ _ (w j))∥ : by simp only [sub_add_sub_cancel, _root_.map_sub]
... ≤ ∥C.d _ _ (w (j + 1)) - res x∥ + ∥res x - C.d _ _ (w j)∥ : norm_add_le _ _
... = ∥res x - C.d _ _ (w (j + 1))∥ + ∥res x - C.d _ _ (w j)∥ : by { rw norm_sub_rev }
... ≤ ε (j+1) + ε j : add_le_add (hw $ j+1) (hw j)
... ≤ 2*ε j : by linarith [ε_decr j],
calc dist (y j) (y (j + 1)) = ∥y (j+1) - y j∥ : by rw dist_eq_norm'
... = ∥res (w (j + 1)) - res (w j) - (∑ (l : ℕ) in range (j + 1), C.d _ _ (z l)
- ∑ (l : ℕ) in range j, C.d _ _ (z l))∥ : by { dsimp [y], congr' 1, abel }
... = ∥res (w (j + 1) - (w j)) - C.d _ _ (z j)∥ : by simp [_root_.map_sub, sum_range_succ]
... ≤ K * ∥C.d _ _ (w (j + 1) - w j)∥ + δ j : hz j
... ≤ K * (2* ε j) + δ j : by {apply add_le_add_right, apply mul_le_mul_of_nonneg_left fact (nnreal.coe_nonneg K)}
... ≤ 1 * 2⁻¹ ^ j : hεδ j },
have hdyj : ∀ j, C.d _ _ (y j) = res (C.d _ _ $ w j),
{ intro j,
calc C.d _ _ (y j) = C.d _ _ (res (w j) - ∑ l in range j, C.d _ i (z l)) : rfl
... = C.d _ _ (res (w j)) - ∑ l in range j, C.d i (i+1) (C.d _ _ (z l)) : by rw [_root_.map_sub, map_sum]
... = res (C.d _ _ (w j)) : by simp only [d_res, d_d, sum_const_zero, sub_zero] },
have hblop : ∀ j, ∥res x - C.d _ _ (y j)∥ ≤ ε j,
{ intro j,
calc ∥res x - C.d _ _ (y j)∥ = ∥res x - res (C.d _ _ $ w j)∥ : by rw hdyj
... = ∥(res (res x : C (k*c) (i+1)) - res (C.d _ _ $ w j) : C c _)∥ : by { rw C.res_res }
... = ∥res (res x - (C.d _ _ $ w j))∥ : by simp only [_root_.map_sub]
... ≤ ∥res x - C.d _ _ (w j)∥ : by apply hC'.res_norm_noninc
... ≤ ε j : hw _},
rcases cauchy_seq_tendsto_of_complete cau_y with ⟨y₀, hy₀⟩,
refine ⟨_, rfl, y₀, _⟩,
refine sub_eq_zero.1 (norm_le_zero_iff'.1 _),
have lim_norm : tendsto (λ j, ∥res x - C.d _ _ (y j)∥) at_top (𝓝 ∥res x - C.d _ _ y₀∥),
{ have cont : continuous (λ y : C c i, ∥res x - C.d _ _ y∥),
from continuous_norm.comp (continuous_const.sub $ normed_add_group_hom.continuous _),
exact (cont.tendsto y₀).comp hy₀ },
have lim_ε : tendsto ε at_top (𝓝 0),
{ rw show (0 : ℝ) = (2⁻¹*0)/K'/2, by norm_num,
refine (tendsto.const_mul 2⁻¹ (tendsto_pow_at_top_nhds_0_of_lt_1 _ _)).div_const.div_const;
norm_num },
exact le_of_tendsto_of_tendsto' lim_norm lim_ε hblop,
end
end is_weak_bounded_exact
end system_of_complexes