Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import analysis.specific_limits.basic | |
import system_of_complexes.basic | |
import locally_constant.Vhat | |
/-! | |
# A technical lemma | |
This file has the definition of the completion of a system of | |
complexes of seminormed groups, and it proves a technical lemma | |
saying that a system of complexes of seminormed groups is admissible | |
and weak bounded exact, and if the groups in the complex are complete, | |
then it's bounded exact (for some slightly different constants). | |
-/ | |
open finset filter | |
open_locale nnreal big_operators topological_space | |
namespace system_of_complexes | |
universe variables u | |
noncomputable def completion (C : system_of_complexes) : system_of_complexes := | |
C ⋙ SemiNormedGroup.Completion.map_homological_complex _ | |
namespace is_weak_bounded_exact | |
variables (C C₁ C₂ : system_of_complexes.{u}) | |
variables {k k' K K' : ℝ≥0} {m m' : ℕ} {c₀ c₀' : ℝ≥0} | |
-- === We don't need the following two lemmas anytime soon | |
-- lemma controlled_y (hC : C.is_weak_bounded_exact k K m c₀) : | |
-- ∀ c ≥ c₀, ∀ i < m, | |
-- ∀ x : C (k^2 * c) (i+1), | |
-- ∀ (ε > 0) (δ > 0), ∃ y : C c i, ∥res x - C.d _ _ y∥ | |
-- ≤ K * ∥C.d _ (i+1) x∥ + ε ∧ ∥y∥ ≤ K*(K + 1)*∥x∥ + δ := | |
-- by admit | |
-- lemma completion (hC : C.is_weak_bounded_exact k K m c₀) : | |
-- C.completion.is_weak_bounded_exact (k^2) K m c₀ := | |
-- by admit | |
lemma strong_of_complete [hk : fact (1 ≤ k)] | |
[∀ c i, separated_space (C c i)] | |
(hC : C.is_weak_bounded_exact k K m c₀) | |
(hC' : admissible C) [∀ c i, complete_space (C c i)] : | |
∀ δ > 0, C.is_bounded_exact (k^2) (K + δ) m c₀ := | |
begin | |
intros δ hδ, | |
refine (hC.of_le hC' _ ⟨le_rfl⟩ le_rfl ⟨le_rfl⟩).to_exact hδ _, | |
{ constructor, | |
calc k = k * 1 : by rw mul_one | |
... ≤ k * k : mul_le_mul' le_rfl hk.out | |
... = k ^ 2 : by rw pow_two }, | |
rintros c hc i hi x _ rfl hx, | |
haveI : fact (k * c ≤ k ^ 2 * c) := by { rw [pow_two, mul_assoc], apply_instance }, | |
haveI : fact (k * (k * c) ≤ k ^ 2 * c) := by { rw [pow_two, mul_assoc], exact ⟨le_rfl⟩ }, | |
-- we need to consider the case `i = 0` separately | |
obtain (rfl|⟨i,rfl⟩) : i = 0 ∨ ∃ i', i = i' + 1, | |
{ cases i, { left, refl }, { right, exact ⟨_, rfl⟩ } }, | |
{ refine ⟨0, rfl, 0, _⟩, | |
rw [map_zero, ← norm_le_zero_iff'], | |
apply le_of_forall_pos_le_add, | |
intros γ hγ, | |
rw zero_add, | |
obtain ⟨_, _, rfl, rfl, y, hy⟩ := hC c ⟨hc⟩ 0 (nat.zero_le m) (res x) γ hγ, | |
rwa [res_res, d_eq_zero_apply, sub_zero, d_res, hx, map_zero, norm_zero, mul_zero, zero_add] at hy, | |
dec_trivial }, | |
-- we continue with the case `i + 1` | |
have hc₀kc : k * c ≥ c₀, | |
calc c₀ ≤ c : hc | |
... ≤ 1*c : by rw one_mul | |
... ≤ k*c : mul_le_mul' hk.out (le_refl _), | |
let K' := if K = 0 then 1 else K, | |
have hK' : (0 : ℝ) < K', | |
{ dsimp [K'], | |
split_ifs, | |
norm_num, | |
exact zero_lt_iff.mpr h }, | |
let ε : ℕ → ℝ := λ j, (2⁻¹*2⁻¹ ^ j) / K' / 2, | |
have ε_pos : ∀ j, 0 < ε j, | |
{ intro j, | |
dsimp [ε], | |
refine div_pos (div_pos (mul_pos _ _) hK') zero_lt_two; norm_num }, | |
have ε_decr : ∀ j, ε (j+1) ≤ ε j, | |
{ intros j, | |
dsimp [ε], | |
field_simp, | |
apply one_div_le_one_div_of_le; | |
norm_num [hK', pow_succ], | |
calc (2 : ℝ)^j = 1*2^j : (one_mul _).symm | |
... ≤ 2*2^j : mul_le_mul_of_nonneg_right one_le_two (pow_nonneg zero_le_two _) }, | |
have seq : ∀ j : ℕ, ∃ w : C (k*c) i, ∥res x - C.d i (i+1) w∥ ≤ ε j, | |
{ intro j, | |
specialize hC (k*c) ⟨hc₀kc⟩ _ hi (res x) (ε j) (ε_pos j), | |
obtain ⟨_, _, rfl, rfl, y, hy⟩ := hC, | |
simp only [d_res, res_res, map_zero, hx, norm_zero, zero_add, mul_zero] at hy, | |
refine ⟨y, hy⟩ }, | |
choose w hw using seq, | |
let δ : ℕ → ℝ := λ j, 2⁻¹*2⁻¹ ^ j, | |
have δ_pos : ∀ j, 0 < δ j, { norm_num [δ] }, | |
have hεδ : ∀ j, (K : ℝ) * (2 * ε j) + δ j ≤ 1 * 2⁻¹ ^ j, | |
{ intro j, | |
dsimp [ε, δ], | |
conv_rhs { congr, rw [show (1 : ℝ) = 2⁻¹ + 2⁻¹, by norm_num] }, | |
rw add_mul (2⁻¹ : ℝ) 2⁻¹, | |
by_cases hK : K = 0, | |
{ simp only [hK, div_zero, nnreal.coe_zero, zero_div, zero_add, le_add_iff_nonneg_left, mul_zero, K', if_pos, zero_mul], | |
apply mul_nonneg, | |
norm_num, | |
apply pow_nonneg, | |
norm_num }, | |
{ apply le_of_eq, | |
congr' 1, | |
simp only [K', if_neg hK], | |
rw [mul_div_cancel' _ (two_ne_zero : (2 : ℝ) ≠ 0), | |
mul_div_cancel' _ (nnreal.coe_ne_zero.mpr hK)]} }, | |
set i₀ := i - 1 with hi₀, | |
have seq : ∀ j : ℕ, ∃ z : C c i₀, ∥res (w (j+1) - w j) - C.d i₀ i z∥ | |
≤ K*∥C.d i (i+1) (w (j+1) - w j)∥ + δ j, | |
{ intro j, | |
have : i ≤ m, { exact i.le_succ.trans hi }, | |
obtain ⟨i', -, hi', rfl, hy⟩ := hC c ⟨hc⟩ i this (w (j+1) - w j) _ (δ_pos j), | |
rw [← hi₀] at hi', subst i', exact hy }, | |
choose z hz using seq, | |
let y : ℕ → C c i := λ j, res (w j) - ∑ l in range j, C.d _ _ (z l), | |
have cau_y : cauchy_seq y, | |
{ apply cauchy_seq_of_le_geometric (2⁻¹ : ℝ) 1 (nnreal.two_inv_lt_one), | |
intros j, | |
have fact : ∥C.d _ (i+1) (w (j + 1) - w j)∥ ≤ 2*ε j := | |
calc ∥C.d _ (i+1) (w (j + 1) - w j)∥ | |
= ∥(C.d _ _ (w (j + 1)) - res x) + (res x - C.d _ _ (w j))∥ : by simp only [sub_add_sub_cancel, _root_.map_sub] | |
... ≤ ∥C.d _ _ (w (j + 1)) - res x∥ + ∥res x - C.d _ _ (w j)∥ : norm_add_le _ _ | |
... = ∥res x - C.d _ _ (w (j + 1))∥ + ∥res x - C.d _ _ (w j)∥ : by { rw norm_sub_rev } | |
... ≤ ε (j+1) + ε j : add_le_add (hw $ j+1) (hw j) | |
... ≤ 2*ε j : by linarith [ε_decr j], | |
calc dist (y j) (y (j + 1)) = ∥y (j+1) - y j∥ : by rw dist_eq_norm' | |
... = ∥res (w (j + 1)) - res (w j) - (∑ (l : ℕ) in range (j + 1), C.d _ _ (z l) | |
- ∑ (l : ℕ) in range j, C.d _ _ (z l))∥ : by { dsimp [y], congr' 1, abel } | |
... = ∥res (w (j + 1) - (w j)) - C.d _ _ (z j)∥ : by simp [_root_.map_sub, sum_range_succ] | |
... ≤ K * ∥C.d _ _ (w (j + 1) - w j)∥ + δ j : hz j | |
... ≤ K * (2* ε j) + δ j : by {apply add_le_add_right, apply mul_le_mul_of_nonneg_left fact (nnreal.coe_nonneg K)} | |
... ≤ 1 * 2⁻¹ ^ j : hεδ j }, | |
have hdyj : ∀ j, C.d _ _ (y j) = res (C.d _ _ $ w j), | |
{ intro j, | |
calc C.d _ _ (y j) = C.d _ _ (res (w j) - ∑ l in range j, C.d _ i (z l)) : rfl | |
... = C.d _ _ (res (w j)) - ∑ l in range j, C.d i (i+1) (C.d _ _ (z l)) : by rw [_root_.map_sub, map_sum] | |
... = res (C.d _ _ (w j)) : by simp only [d_res, d_d, sum_const_zero, sub_zero] }, | |
have hblop : ∀ j, ∥res x - C.d _ _ (y j)∥ ≤ ε j, | |
{ intro j, | |
calc ∥res x - C.d _ _ (y j)∥ = ∥res x - res (C.d _ _ $ w j)∥ : by rw hdyj | |
... = ∥(res (res x : C (k*c) (i+1)) - res (C.d _ _ $ w j) : C c _)∥ : by { rw C.res_res } | |
... = ∥res (res x - (C.d _ _ $ w j))∥ : by simp only [_root_.map_sub] | |
... ≤ ∥res x - C.d _ _ (w j)∥ : by apply hC'.res_norm_noninc | |
... ≤ ε j : hw _}, | |
rcases cauchy_seq_tendsto_of_complete cau_y with ⟨y₀, hy₀⟩, | |
refine ⟨_, rfl, y₀, _⟩, | |
refine sub_eq_zero.1 (norm_le_zero_iff'.1 _), | |
have lim_norm : tendsto (λ j, ∥res x - C.d _ _ (y j)∥) at_top (𝓝 ∥res x - C.d _ _ y₀∥), | |
{ have cont : continuous (λ y : C c i, ∥res x - C.d _ _ y∥), | |
from continuous_norm.comp (continuous_const.sub $ normed_add_group_hom.continuous _), | |
exact (cont.tendsto y₀).comp hy₀ }, | |
have lim_ε : tendsto ε at_top (𝓝 0), | |
{ rw show (0 : ℝ) = (2⁻¹*0)/K'/2, by norm_num, | |
refine (tendsto.const_mul 2⁻¹ (tendsto_pow_at_top_nhds_0_of_lt_1 _ _)).div_const.div_const; | |
norm_num }, | |
exact le_of_tendsto_of_tendsto' lim_norm lim_ε hblop, | |
end | |
end is_weak_bounded_exact | |
end system_of_complexes | |