Zhangir Azerbayev
squashed?
4365a98
raw
history blame
15.8 kB
import pseudo_normed_group.profinitely_filtered
import prop_92.extension_profinite
import normed_group.normed_with_aut
import analysis.normed.group.hom_completion
import locally_constant.analysis
import tactic.ring_exp
import for_mathlib.nnreal
/-!
This file builds a concrete version of Proposition 9.2, with almost no category.
The exception is that `SemiNormedGroup` is used because this is expected in
`normed_with_aut` (we could easily get rid of this but this is very mild category theory hell).
There are two independent parts. The first one is all about locally constant maps from
compact spaces to seminormed groups. The next one forgets about locally constant functions
and does abstract normed space stuff.
-/
noncomputable theory
section
open finset
open_locale big_operators
-- Why can't I find this in mathlib?!?
lemma partial_sum_geom {r : ℝ} (hr : 0 ≤ r) (hr' : r < 1) (n : ℕ) : (∑ k in range n, r^k) = (1 - r^n)/(1 - r) :=
begin
refine (eq_div_iff (sub_ne_zero.mpr hr'.ne')).mpr _,
induction n with n ih,
{ simp },
{ rw [sum_range_succ, add_mul, ih],
ring_exp }
end
-- Why can't I find this in mathlib?!?
lemma partial_sum_geom_le {r : ℝ} (hr : 0 ≤ r) (hr' : r < 1) (n : ℕ) : (∑ k in range n, r^k) ≤ 1/(1 - r) :=
begin
rw partial_sum_geom hr hr',
exact div_le_div zero_le_one (sub_le_self _ (pow_nonneg hr n)) (sub_pos.mpr hr') rfl.le,
end
lemma norm_sum_le_of_le_geom {α : Type*} [seminormed_add_comm_group α] {r C : ℝ} (hC : 0 ≤ C)
(hr₀ : 0 ≤ r) (hr₁ : r < 1) {f : ℕ → α} (h : ∀ n, ∥f n∥ ≤ C*r^n) {n : ℕ} :
∥∑ k in range n, f k∥ ≤ C/(1-r) :=
begin
calc
∥∑ k in range n, f k∥ ≤ ∑ k in range n, ∥f k∥ : norm_sum_le _ _
... ≤ ∑ k in range n, C*r^k : sum_le_sum (λ k hk, h k)
... = C*(∑ k in range n, r^k) : by rw mul_sum
... ≤ C*(1/(1-r)) : mul_le_mul_of_nonneg_left (partial_sum_geom_le hr₀ hr₁ n) hC
... = C/(1-r) : mul_one_div C (1 - r)
end
end
open set
@[simp]
lemma real.supr_zero (ι : Type*) : (⨆ i : ι, (0 : ℝ)) = 0 :=
begin
rw supr,
casesI is_empty_or_nonempty ι,
{ rw [set.range_eq_empty, real.Sup_empty] },
{ rw [set.range_const, cSup_singleton] },
end
-- Move me
lemma real.Sup_eq {s : set ℝ} (hs : s.nonempty) (hs' : ∃ x, ∀ y ∈ s, y ≤ x) {x : ℝ} :
Sup s = x ↔ ∀ y, x ≤ y ↔ (∀ z ∈ s, z ≤ y) :=
begin
classical,
rw real.Sup_def,
rw dif_pos,
{ let x₀ := classical.some (real.exists_is_lub s hs hs'),
change x₀ = x ↔ _,
have H : ∀ y, x₀ ≤ y ↔ ∀ z ∈ s, z ≤ y,
{ intros y,
exact is_lub_le_iff (classical.some_spec (real.exists_is_lub s hs hs')) },
split,
{ dsimp [x₀],
rintro rfl,
exact H },
{ intro h,
replace H : ∀ y, x₀ ≤ y ↔ x ≤ y,
{ intro y,
rw [h, H] },
apply le_antisymm,
{ exact (H _).mpr (le_refl _) },
{ exact (H _).mp (le_refl _) } } },
{ exact ⟨hs, hs'⟩ }
end
-- Move me
lemma is_lub_iff {α : Type*} [preorder α] {s : set α} {x : α} :
is_lub s x ↔ ∀ y, x ≤ y ↔ ∀ z ∈ s, z ≤ y :=
begin
split,
{ rintros ⟨h₁, h₂⟩ y,
exact ⟨λ hxy z z_in, (h₁ z_in).trans hxy, λ h, h₂ h⟩ },
{ intro H,
exact ⟨λ y y_in, (H x).mp (le_refl x) y y_in, λ z hz, by rwa H⟩ }
end
-- Move me
lemma real.Sup_eq' {s : set ℝ} (hs : s.nonempty) (hs' : ∃ x, ∀ y ∈ s, y ≤ x) {x : ℝ} :
Sup s = x ↔ (∀ y ∈ s, y ≤ x) ∧ ∀ z, (∀ y ∈ s, y ≤ z) → x ≤ z :=
begin
rw real.Sup_eq hs hs',
change _ ↔ is_lub _ _,
rw is_lub_iff
end
lemma real.supr_comp {α β : Type*} (f : β → α) (g : α → ℝ) :
(⨆ b, g (f b)) = Sup (g '' range f) :=
begin
change Sup _ = _,
congr,
ext x,
simp,
end
instance seminormed_add_comm_group.inhabited (G : Type*) [seminormed_add_comm_group G] : inhabited G := ⟨0
section general_completion_stuff
open filter uniform_space
open_locale topological_space
-- Now we want an abstract machine where we can plug the sequence g from the previous section.
variables {M₁ : Type*} [seminormed_add_comm_group M₁] {M₂ : Type*} [seminormed_add_comm_group M₂]
(f : normed_add_group_hom M₁ M₂)
-- PR very close to the definition of cauchy_seq
lemma cauchy_seq.map {β : Type*} [semilattice_sup β]
{α : Type*} [uniform_space α] {γ : Type*} [uniform_space γ]
{u : β → α} {f : α → γ} (hu : cauchy_seq u) (hf : uniform_continuous f) :
cauchy_seq (f ∘ u) :=
begin
change cauchy _,
rw ← map_map,
exact cauchy.map hu hf
end
-- actually not used here, but should go somewhere
lemma normed_add_group_hom.coe_range : (f.range : set M₂) = set.range f :=
by { erw add_monoid_hom.coe_range, refl }
open normed_add_comm_group
lemma bar {C ε : ℝ} (hC : 0 < C) (hε : 0 < ε)
(h : ∀ m₂ : M₂, ∃ g : ℕ → M₁, cauchy_seq g ∧ tendsto (f ∘ g) at_top (𝓝 m₂) ∧ ∀ n, ∥g n∥ ≤ C*∥m₂∥) :
hatm₂ : completion M₂, ∃ m₁, f.completion m₁ = hatm₂ ∧ ∥m₁∥ ≤ (C+ε)*∥hatm₂∥ :=
begin
intro hatm₂,
refine controlled_closure_range_of_complete normed_add_comm_group.norm_to_compl hC hε _ _
(normed_add_comm_group.dense_range_to_compl _),
intro m₂,
rcases h m₂ with ⟨g, cauchy_g, lim_g, bound_g⟩,
have : cauchy_seq (to_compl ∘ g),
from cauchy_g.map to_compl.uniform_continuous,
rcases cauchy_seq_tendsto_of_complete this with ⟨y, hy⟩,
refine ⟨y, _, _⟩,
{ have lim : tendsto ((f.completion.comp to_compl) ∘ g) at_top (𝓝 (f.completion y)),
from (f.completion.continuous.tendsto _).comp hy,
rw f.completion_to_compl at lim,
have : tendsto ((to_compl ∘ f) ∘ g) at_top (𝓝 (to_compl m₂)) :=
(to_compl.continuous.tendsto _).comp lim_g,
exact tendsto_nhds_unique lim this },
{ refine le_of_tendsto' (tendsto_norm.comp hy) (_ : ∀ n, ∥to_compl (g n)∥ ≤ C * ∥m₂∥),
intro n,
rw normed_add_comm_group.norm_to_compl,
apply bound_g }
end
end general_completion_stuff
section locally_constant_stuff
open topological_space normed_with_aut set
open_locale nnreal big_operators
local attribute [instance] locally_constant.seminormed_add_comm_group
/- Comment below indicate how this will be applied to Prop 9.2 -/
variables
/- this will be M_{≤ r'c}^a -/
{X : Type*} [topological_space X] [compact_space X]
/- this will be M_{≤ c}^a -/
{Y : Type*} [topological_space Y] [compact_space Y] [t2_space Y] [totally_disconnected_space Y]
/- This will be inclusion -/
{e : X → Y} (he : embedding e)
/- This is used only for premilinary lemma not need the T action on V -/
{G : Type*} [seminormed_add_comm_group G]
@[simp]
lemma locally_constant.norm_of_is_empty [is_empty X] (f : locally_constant X G) : ∥f∥ = 0 :=
by rw [locally_constant.norm_def, supr, range_eq_empty, real.Sup_empty]
@[simp]
lemma embedding.locally_constant_extend_of_empty (hX : ¬ nonempty X) (f : locally_constant X G) :
he.locally_constant_extend f = 0 :=
begin
ext y, dsimp [embedding.locally_constant_extend, embedding.extend],
rw dif_neg,
{ refl },
{ intro h, exact hX h.2 }
end
@[simp]
lemma locally_constant.map_zero {Z : Type*} (g : G → Z) :
(0 : locally_constant X G).map g = locally_constant.const X (g 0) :=
begin
ext x,
simp only [function.comp_app, locally_constant.map_apply, locally_constant.zero_apply],
refl,
end
@[simp]
lemma locally_constant.norm_const [h : nonempty X] (g : G) : ∥locally_constant.const X g∥ = ∥g∥ :=
by simp only [locally_constant.norm_def, locally_constant.const, csupr_const,
function.const_apply, locally_constant.coe_mk]
@[simp]
lemma locally_constant.norm_zero : ∥(0 : locally_constant X G)∥ = 0 :=
by simp only [locally_constant.norm_def, norm_zero, real.supr_zero, locally_constant.zero_apply]
@[simp]
lemma locally_constant.norm_const_zero : ∥locally_constant.const X (0 : G)∥ = 0 :=
locally_constant.norm_zero
-- Should go in mathlib topology/algebra/ordered, next to is_compast.exists_Sup_image_eq
lemma continuous.exists_forall_le_of_compact {X : Type*} [topological_space X] [compact_space X] [nonempty X]
{β : Type*} [conditionally_complete_linear_order β] [topological_space β] [order_topology β] {f : X → β}
(hf : continuous f) : ∃ x, Sup (range f) = f x :=
by simpa using compact_univ.exists_Sup_image_eq univ_nonempty hf.continuous_on
lemma locally_constant.exists_norm_eq [nonempty X] (f : locally_constant X G) : ∃ x, ∥f∥ = ∥f x∥ :=
(continuous_norm.comp f.continuous).exists_forall_le_of_compact
lemma locally_constant.norm_eq_iff (f : locally_constant X G) {x : X} :
f∥ = ∥f x∥ ↔ ∀ x', ∥f x'∥ ≤ ∥f x∥ :=
begin
have fin_range : (range (λ (x : X), ∥f x∥)).finite,
{ rw range_comp,
apply finite.image,
exact f.range_finite },
have bound : ∃ b, ∀ y ∈ range (λ (x : X), ∥f x∥), y ≤ b,
from exists_upper_bound_image _ _ fin_range,
rw [locally_constant.norm_def],
split,
{ intros h x',
rw ← h,
exact le_cSup bound (mem_range_self _) } ,
{ intro h,
erw real.Sup_eq _ bound,
{ intro y,
rw forall_range_iff,
split,
{ intros h' x',
exact (h x').trans h' },
{ exact λ i, i x } },
{ exact ⟨∥f x∥, mem_range_self _⟩ } }
end
lemma locally_constant.norm_eq_iff' (f : locally_constant X G) {x : X} :
f∥ = ∥f x∥ ↔ ∀ g ∈ range f, ∥g∥ ≤ ∥f x∥ :=
by rw [forall_range_iff, locally_constant.norm_eq_iff]
lemma locally_constant.norm_comap_le {α : Type*} [topological_space α] [compact_space α]
(f : locally_constant X G) {g : α → X} (h : continuous g) : ∥f.comap g∥ ≤ ∥f∥ :=
locally_constant.comap_hom_norm_noninc g h f
lemma locally_constant.comap_map {W X Y Z : Type*} [topological_space W] [topological_space X] [topological_space Y]
(f : locally_constant X Y) (g : W → X) (h : Y → Z) (hg : continuous g) : (f.comap g).map h = (f.map h).comap g :=
by { ext, simp [hg] }
lemma locally_constant.map_comp' {W X Y Z : Type*} [topological_space W]
(f : locally_constant W X) (g : X → Y) (h : Y → Z) : (f.map g).map h = f.map (h ∘ g) :=
rfl
lemma embedding.norm_extend (f : locally_constant X G) : ∥he.locally_constant_extend f∥ = ∥f∥ :=
begin
casesI is_empty_or_nonempty X,
{ rw [f.norm_of_is_empty],
dsimp [embedding.locally_constant_extend, embedding.extend],
have hX : ¬ nonempty X, { rwa not_nonempty_iff },
suffices : (⨆ (y : Y), ∥(0 : G)∥) = 0, { simpa only [hX, dif_neg, not_false_iff, and_false] },
simp only [norm_zero, real.supr_zero] },
{ change (⨆ y : Y, _) = (⨆ x : X, _),
rw [real.supr_comp, real.supr_comp, he.range_locally_constant_extend f] },
end
variables
(φ : X → Y) -- this will be φ is T⁻¹ : M_{≤ r'c}^a → M_{≤ c}^a
{r : ℝ≥0} {V : SemiNormedGroup} [normed_with_aut r V] -- this is indeed V!
include r
lemma locally_constant.norm_map_aut (g : locally_constant Y V) : ∥g.map T.hom∥ = r*∥g∥ :=
begin
casesI is_empty_or_nonempty Y,
{ simp only [mul_zero, locally_constant.norm_of_is_empty] },
{ cases g.exists_norm_eq with y hy,
erw [hy, ← norm_T, locally_constant.norm_eq_iff],
intro y',
erw [norm_T, norm_T],
cases (eq_zero_or_pos : r = 00 < r) with hr hr,
{ simp only [hr, nnreal.coe_zero, zero_mul] },
{ simp only [hr, ←hy, g.norm_apply_le, mul_le_mul_left, nnreal.coe_pos] } },
end
@[simp]
lemma normed_with_aut.T_inv_T_hom : (T.inv : V → V) ∘ T.hom = id :=
begin
ext,
simp,
end
open locally_constant
variables {φ} (hφ : continuous φ)
include hφ
noncomputable
def embedding.h (f : locally_constant X V) : ℕ → locally_constant Y V
| 0 := map_hom T.hom (he.locally_constant_extend f)
| (i+1) := map_hom T.hom (he.locally_constant_extend $ (comap_hom φ hφ $ embedding.h i))
variables (f : locally_constant X V)
lemma norm_h (i : ℕ) : ∥he.h hφ f i∥ ≤ r^(i+1)*∥f∥ :=
begin
induction i with i ih ; dsimp [embedding.h],
{ rw [locally_constant.norm_map_aut, he.norm_extend, zero_add, pow_one] },
{ rw [locally_constant.norm_map_aut, he.norm_extend, pow_succ, mul_assoc],
exact mul_le_mul_of_nonneg_left (((he.h hφ f i).norm_comap_le hφ).trans ih) r.coe_nonneg },
end
open finset
def embedding.g (f : locally_constant X V) (N : ℕ) : locally_constant Y V :=
∑ i in range (N + 1), he.h hφ f i
/-- T⁻¹ g_N e - g_N φ = f - h_N φ-/
lemma one (hφ : continuous φ) (N : ℕ) :
map_hom T.inv (comap_hom e he.continuous (he.g hφ f N)) - (comap_hom φ hφ (he.g hφ f N)) =
f - comap_hom φ hφ (he.h hφ f N) :=
begin
induction N with N ih,
{ dsimp [embedding.g],
simp only [embedding.h, finset.sum_singleton, sub_left_inj],
ext x,
simp [he.continuous, he.locally_constant_extend_extends] },
{ set c_φ : normed_add_group_hom (locally_constant Y V) (locally_constant X V) := comap_hom φ hφ,
set c_e : normed_add_group_hom (locally_constant Y V) (locally_constant X V) := comap_hom e he.continuous,
set m_T : normed_add_group_hom (locally_constant X V) (locally_constant X V) := map_hom T.inv,
set G := he.g hφ f,
set H := he.h hφ f,
change m_T _ - _ = _,
rw sub_eq_iff_eq_add at ih,
dsimp [embedding.g, embedding.h],
change m_T (c_e ∑ i in range (N.succ + 1), H i) -
c_φ ∑ i in range (N.succ + 1), H i = _,
erw [finset.sum_range_succ, map_add, map_add, map_add, ih],
change f - c_φ (H N) + c_φ (G N) + m_T (c_e (H N.succ)) - (c_φ (G N) + c_φ (H N.succ)) = f - comap φ (H N.succ),
dsimp [H, embedding.h],
rw [← (he.locally_constant_extend $ comap φ $ H N).comap_map e T.hom he.continuous,
he.comap_locally_constant_extend, locally_constant.map_comp', normed_with_aut.T_inv_T_hom],
simp [H],
abel },
end
open filter
open_locale topological_space
variables [fact ((r : ℝ) < 1)]
lemma limit : tendsto (λ N, map_hom T.inv (comap_hom e he.continuous (he.g hφ f N)) - (comap_hom φ hφ (he.g hφ f N))) at_top (𝓝 f) :=
begin
simp_rw one,
rw show 𝓝 f = 𝓝 (f - 0), by simp,
refine tendsto_const_nhds.sub _,
apply squeeze_zero_norm,
intro n,
apply ((he.h hφ f n).norm_comap_le hφ).trans (norm_h he hφ _ _),
rw ← zero_mul (∥f∥),
apply tendsto.mul_const,
rw tendsto_add_at_top_iff_nat,
exact tendsto_pow_at_top_nhds_0_of_lt_1 r.coe_nonneg (fact.out _)
end
lemma cauchy_seq_g : cauchy_seq (he.g hφ f) :=
begin
apply cauchy_seq_of_le_geometric r (r^2*∥f∥) (fact.out _),
intro n,
dsimp [embedding.g],
rw [dist_eq_norm, sum_range_succ _ (n+1), sub_add_eq_sub_sub, sub_self, zero_sub, norm_neg],
convert norm_h he hφ f (n+1) using 1,
ring_exp
end
lemma norm_g_le (N : ℕ) : ∥he.g hφ f N∥ ≤ r/(1 - r) * ∥f∥ :=
begin
have : ∀ (n : ℕ), ∥he.h hφ f n∥ ≤ r * ∥f∥ * r ^ n,
{ intro n,
convert norm_h he hφ f n using 1,
ring_exp },
convert norm_sum_le_of_le_geom (mul_nonneg r.coe_nonneg $ norm_nonneg f) r.coe_nonneg (fact.out _) this using 1,
exact div_mul_eq_mul_div _ _ _,
end
open uniform_space
lemma concrete_92 [fact (0 < r)] (f : completion (locally_constant X V)) {ε : ℝ} (hε : 0 < ε) :
g : completion (locally_constant Y V),
((map_hom T.inv).comp (comap_hom e he.continuous) - comap_hom φ hφ).completion g = f ∧
∥g∥ ≤ (r/(1-r) + ε)*∥f∥ :=
begin
have : (0 : ℝ) < r / (1 - r),
{ have : 0 < r := fact.out _,
apply div_pos,
{ exact_mod_cast this },
{ exact sub_pos.mpr (fact.out _) } },
apply bar _ this hε,
intro m₂,
exact ⟨he.g hφ m₂, cauchy_seq_g he hφ m₂, limit he hφ m₂, norm_g_le he hφ m₂⟩
end
end locally_constant_stuff