Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import pseudo_normed_group.profinitely_filtered | |
import prop_92.extension_profinite | |
import normed_group.normed_with_aut | |
import analysis.normed.group.hom_completion | |
import locally_constant.analysis | |
import tactic.ring_exp | |
import for_mathlib.nnreal | |
/-! | |
This file builds a concrete version of Proposition 9.2, with almost no category. | |
The exception is that `SemiNormedGroup` is used because this is expected in | |
`normed_with_aut` (we could easily get rid of this but this is very mild category theory hell). | |
There are two independent parts. The first one is all about locally constant maps from | |
compact spaces to seminormed groups. The next one forgets about locally constant functions | |
and does abstract normed space stuff. | |
-/ | |
noncomputable theory | |
section | |
open finset | |
open_locale big_operators | |
-- Why can't I find this in mathlib?!? | |
lemma partial_sum_geom {r : ℝ} (hr : 0 ≤ r) (hr' : r < 1) (n : ℕ) : (∑ k in range n, r^k) = (1 - r^n)/(1 - r) := | |
begin | |
refine (eq_div_iff (sub_ne_zero.mpr hr'.ne')).mpr _, | |
induction n with n ih, | |
{ simp }, | |
{ rw [sum_range_succ, add_mul, ih], | |
ring_exp } | |
end | |
-- Why can't I find this in mathlib?!? | |
lemma partial_sum_geom_le {r : ℝ} (hr : 0 ≤ r) (hr' : r < 1) (n : ℕ) : (∑ k in range n, r^k) ≤ 1/(1 - r) := | |
begin | |
rw partial_sum_geom hr hr', | |
exact div_le_div zero_le_one (sub_le_self _ (pow_nonneg hr n)) (sub_pos.mpr hr') rfl.le, | |
end | |
lemma norm_sum_le_of_le_geom {α : Type*} [seminormed_add_comm_group α] {r C : ℝ} (hC : 0 ≤ C) | |
(hr₀ : 0 ≤ r) (hr₁ : r < 1) {f : ℕ → α} (h : ∀ n, ∥f n∥ ≤ C*r^n) {n : ℕ} : | |
∥∑ k in range n, f k∥ ≤ C/(1-r) := | |
begin | |
calc | |
∥∑ k in range n, f k∥ ≤ ∑ k in range n, ∥f k∥ : norm_sum_le _ _ | |
... ≤ ∑ k in range n, C*r^k : sum_le_sum (λ k hk, h k) | |
... = C*(∑ k in range n, r^k) : by rw mul_sum | |
... ≤ C*(1/(1-r)) : mul_le_mul_of_nonneg_left (partial_sum_geom_le hr₀ hr₁ n) hC | |
... = C/(1-r) : mul_one_div C (1 - r) | |
end | |
end | |
open set | |
@[simp] | |
lemma real.supr_zero (ι : Type*) : (⨆ i : ι, (0 : ℝ)) = 0 := | |
begin | |
rw supr, | |
casesI is_empty_or_nonempty ι, | |
{ rw [set.range_eq_empty, real.Sup_empty] }, | |
{ rw [set.range_const, cSup_singleton] }, | |
end | |
-- Move me | |
lemma real.Sup_eq {s : set ℝ} (hs : s.nonempty) (hs' : ∃ x, ∀ y ∈ s, y ≤ x) {x : ℝ} : | |
Sup s = x ↔ ∀ y, x ≤ y ↔ (∀ z ∈ s, z ≤ y) := | |
begin | |
classical, | |
rw real.Sup_def, | |
rw dif_pos, | |
{ let x₀ := classical.some (real.exists_is_lub s hs hs'), | |
change x₀ = x ↔ _, | |
have H : ∀ y, x₀ ≤ y ↔ ∀ z ∈ s, z ≤ y, | |
{ intros y, | |
exact is_lub_le_iff (classical.some_spec (real.exists_is_lub s hs hs')) }, | |
split, | |
{ dsimp [x₀], | |
rintro rfl, | |
exact H }, | |
{ intro h, | |
replace H : ∀ y, x₀ ≤ y ↔ x ≤ y, | |
{ intro y, | |
rw [h, H] }, | |
apply le_antisymm, | |
{ exact (H _).mpr (le_refl _) }, | |
{ exact (H _).mp (le_refl _) } } }, | |
{ exact ⟨hs, hs'⟩ } | |
end | |
-- Move me | |
lemma is_lub_iff {α : Type*} [preorder α] {s : set α} {x : α} : | |
is_lub s x ↔ ∀ y, x ≤ y ↔ ∀ z ∈ s, z ≤ y := | |
begin | |
split, | |
{ rintros ⟨h₁, h₂⟩ y, | |
exact ⟨λ hxy z z_in, (h₁ z_in).trans hxy, λ h, h₂ h⟩ }, | |
{ intro H, | |
exact ⟨λ y y_in, (H x).mp (le_refl x) y y_in, λ z hz, by rwa H⟩ } | |
end | |
-- Move me | |
lemma real.Sup_eq' {s : set ℝ} (hs : s.nonempty) (hs' : ∃ x, ∀ y ∈ s, y ≤ x) {x : ℝ} : | |
Sup s = x ↔ (∀ y ∈ s, y ≤ x) ∧ ∀ z, (∀ y ∈ s, y ≤ z) → x ≤ z := | |
begin | |
rw real.Sup_eq hs hs', | |
change _ ↔ is_lub _ _, | |
rw is_lub_iff | |
end | |
lemma real.supr_comp {α β : Type*} (f : β → α) (g : α → ℝ) : | |
(⨆ b, g (f b)) = Sup (g '' range f) := | |
begin | |
change Sup _ = _, | |
congr, | |
ext x, | |
simp, | |
end | |
instance seminormed_add_comm_group.inhabited (G : Type*) [seminormed_add_comm_group G] : inhabited G := ⟨0⟩ | |
section general_completion_stuff | |
open filter uniform_space | |
open_locale topological_space | |
-- Now we want an abstract machine where we can plug the sequence g from the previous section. | |
variables {M₁ : Type*} [seminormed_add_comm_group M₁] {M₂ : Type*} [seminormed_add_comm_group M₂] | |
(f : normed_add_group_hom M₁ M₂) | |
-- PR very close to the definition of cauchy_seq | |
lemma cauchy_seq.map {β : Type*} [semilattice_sup β] | |
{α : Type*} [uniform_space α] {γ : Type*} [uniform_space γ] | |
{u : β → α} {f : α → γ} (hu : cauchy_seq u) (hf : uniform_continuous f) : | |
cauchy_seq (f ∘ u) := | |
begin | |
change cauchy _, | |
rw ← map_map, | |
exact cauchy.map hu hf | |
end | |
-- actually not used here, but should go somewhere | |
lemma normed_add_group_hom.coe_range : (f.range : set M₂) = set.range f := | |
by { erw add_monoid_hom.coe_range, refl } | |
open normed_add_comm_group | |
lemma bar {C ε : ℝ} (hC : 0 < C) (hε : 0 < ε) | |
(h : ∀ m₂ : M₂, ∃ g : ℕ → M₁, cauchy_seq g ∧ tendsto (f ∘ g) at_top (𝓝 m₂) ∧ ∀ n, ∥g n∥ ≤ C*∥m₂∥) : | |
∀ hatm₂ : completion M₂, ∃ m₁, f.completion m₁ = hatm₂ ∧ ∥m₁∥ ≤ (C+ε)*∥hatm₂∥ := | |
begin | |
intro hatm₂, | |
refine controlled_closure_range_of_complete normed_add_comm_group.norm_to_compl hC hε _ _ | |
(normed_add_comm_group.dense_range_to_compl _), | |
intro m₂, | |
rcases h m₂ with ⟨g, cauchy_g, lim_g, bound_g⟩, | |
have : cauchy_seq (to_compl ∘ g), | |
from cauchy_g.map to_compl.uniform_continuous, | |
rcases cauchy_seq_tendsto_of_complete this with ⟨y, hy⟩, | |
refine ⟨y, _, _⟩, | |
{ have lim : tendsto ((f.completion.comp to_compl) ∘ g) at_top (𝓝 (f.completion y)), | |
from (f.completion.continuous.tendsto _).comp hy, | |
rw f.completion_to_compl at lim, | |
have : tendsto ((to_compl ∘ f) ∘ g) at_top (𝓝 (to_compl m₂)) := | |
(to_compl.continuous.tendsto _).comp lim_g, | |
exact tendsto_nhds_unique lim this }, | |
{ refine le_of_tendsto' (tendsto_norm.comp hy) (_ : ∀ n, ∥to_compl (g n)∥ ≤ C * ∥m₂∥), | |
intro n, | |
rw normed_add_comm_group.norm_to_compl, | |
apply bound_g } | |
end | |
end general_completion_stuff | |
section locally_constant_stuff | |
open topological_space normed_with_aut set | |
open_locale nnreal big_operators | |
local attribute [instance] locally_constant.seminormed_add_comm_group | |
/- Comment below indicate how this will be applied to Prop 9.2 -/ | |
variables | |
/- this will be M_{≤ r'c}^a -/ | |
{X : Type*} [topological_space X] [compact_space X] | |
/- this will be M_{≤ c}^a -/ | |
{Y : Type*} [topological_space Y] [compact_space Y] [t2_space Y] [totally_disconnected_space Y] | |
/- This will be inclusion -/ | |
{e : X → Y} (he : embedding e) | |
/- This is used only for premilinary lemma not need the T action on V -/ | |
{G : Type*} [seminormed_add_comm_group G] | |
@[simp] | |
lemma locally_constant.norm_of_is_empty [is_empty X] (f : locally_constant X G) : ∥f∥ = 0 := | |
by rw [locally_constant.norm_def, supr, range_eq_empty, real.Sup_empty] | |
@[simp] | |
lemma embedding.locally_constant_extend_of_empty (hX : ¬ nonempty X) (f : locally_constant X G) : | |
he.locally_constant_extend f = 0 := | |
begin | |
ext y, dsimp [embedding.locally_constant_extend, embedding.extend], | |
rw dif_neg, | |
{ refl }, | |
{ intro h, exact hX h.2 } | |
end | |
@[simp] | |
lemma locally_constant.map_zero {Z : Type*} (g : G → Z) : | |
(0 : locally_constant X G).map g = locally_constant.const X (g 0) := | |
begin | |
ext x, | |
simp only [function.comp_app, locally_constant.map_apply, locally_constant.zero_apply], | |
refl, | |
end | |
@[simp] | |
lemma locally_constant.norm_const [h : nonempty X] (g : G) : ∥locally_constant.const X g∥ = ∥g∥ := | |
by simp only [locally_constant.norm_def, locally_constant.const, csupr_const, | |
function.const_apply, locally_constant.coe_mk] | |
@[simp] | |
lemma locally_constant.norm_zero : ∥(0 : locally_constant X G)∥ = 0 := | |
by simp only [locally_constant.norm_def, norm_zero, real.supr_zero, locally_constant.zero_apply] | |
@[simp] | |
lemma locally_constant.norm_const_zero : ∥locally_constant.const X (0 : G)∥ = 0 := | |
locally_constant.norm_zero | |
-- Should go in mathlib topology/algebra/ordered, next to is_compast.exists_Sup_image_eq | |
lemma continuous.exists_forall_le_of_compact {X : Type*} [topological_space X] [compact_space X] [nonempty X] | |
{β : Type*} [conditionally_complete_linear_order β] [topological_space β] [order_topology β] {f : X → β} | |
(hf : continuous f) : ∃ x, Sup (range f) = f x := | |
by simpa using compact_univ.exists_Sup_image_eq univ_nonempty hf.continuous_on | |
lemma locally_constant.exists_norm_eq [nonempty X] (f : locally_constant X G) : ∃ x, ∥f∥ = ∥f x∥ := | |
(continuous_norm.comp f.continuous).exists_forall_le_of_compact | |
lemma locally_constant.norm_eq_iff (f : locally_constant X G) {x : X} : | |
∥f∥ = ∥f x∥ ↔ ∀ x', ∥f x'∥ ≤ ∥f x∥ := | |
begin | |
have fin_range : (range (λ (x : X), ∥f x∥)).finite, | |
{ rw range_comp, | |
apply finite.image, | |
exact f.range_finite }, | |
have bound : ∃ b, ∀ y ∈ range (λ (x : X), ∥f x∥), y ≤ b, | |
from exists_upper_bound_image _ _ fin_range, | |
rw [locally_constant.norm_def], | |
split, | |
{ intros h x', | |
rw ← h, | |
exact le_cSup bound (mem_range_self _) } , | |
{ intro h, | |
erw real.Sup_eq _ bound, | |
{ intro y, | |
rw forall_range_iff, | |
split, | |
{ intros h' x', | |
exact (h x').trans h' }, | |
{ exact λ i, i x } }, | |
{ exact ⟨∥f x∥, mem_range_self _⟩ } } | |
end | |
lemma locally_constant.norm_eq_iff' (f : locally_constant X G) {x : X} : | |
∥f∥ = ∥f x∥ ↔ ∀ g ∈ range f, ∥g∥ ≤ ∥f x∥ := | |
by rw [forall_range_iff, locally_constant.norm_eq_iff] | |
lemma locally_constant.norm_comap_le {α : Type*} [topological_space α] [compact_space α] | |
(f : locally_constant X G) {g : α → X} (h : continuous g) : ∥f.comap g∥ ≤ ∥f∥ := | |
locally_constant.comap_hom_norm_noninc g h f | |
lemma locally_constant.comap_map {W X Y Z : Type*} [topological_space W] [topological_space X] [topological_space Y] | |
(f : locally_constant X Y) (g : W → X) (h : Y → Z) (hg : continuous g) : (f.comap g).map h = (f.map h).comap g := | |
by { ext, simp [hg] } | |
lemma locally_constant.map_comp' {W X Y Z : Type*} [topological_space W] | |
(f : locally_constant W X) (g : X → Y) (h : Y → Z) : (f.map g).map h = f.map (h ∘ g) := | |
rfl | |
lemma embedding.norm_extend (f : locally_constant X G) : ∥he.locally_constant_extend f∥ = ∥f∥ := | |
begin | |
casesI is_empty_or_nonempty X, | |
{ rw [f.norm_of_is_empty], | |
dsimp [embedding.locally_constant_extend, embedding.extend], | |
have hX : ¬ nonempty X, { rwa not_nonempty_iff }, | |
suffices : (⨆ (y : Y), ∥(0 : G)∥) = 0, { simpa only [hX, dif_neg, not_false_iff, and_false] }, | |
simp only [norm_zero, real.supr_zero] }, | |
{ change (⨆ y : Y, _) = (⨆ x : X, _), | |
rw [real.supr_comp, real.supr_comp, he.range_locally_constant_extend f] }, | |
end | |
variables | |
(φ : X → Y) -- this will be φ is T⁻¹ : M_{≤ r'c}^a → M_{≤ c}^a | |
{r : ℝ≥0} {V : SemiNormedGroup} [normed_with_aut r V] -- this is indeed V! | |
include r | |
lemma locally_constant.norm_map_aut (g : locally_constant Y V) : ∥g.map T.hom∥ = r*∥g∥ := | |
begin | |
casesI is_empty_or_nonempty Y, | |
{ simp only [mul_zero, locally_constant.norm_of_is_empty] }, | |
{ cases g.exists_norm_eq with y hy, | |
erw [hy, ← norm_T, locally_constant.norm_eq_iff], | |
intro y', | |
erw [norm_T, norm_T], | |
cases (eq_zero_or_pos : r = 0 ∨ 0 < r) with hr hr, | |
{ simp only [hr, nnreal.coe_zero, zero_mul] }, | |
{ simp only [hr, ←hy, g.norm_apply_le, mul_le_mul_left, nnreal.coe_pos] } }, | |
end | |
@[simp] | |
lemma normed_with_aut.T_inv_T_hom : (T.inv : V → V) ∘ T.hom = id := | |
begin | |
ext, | |
simp, | |
end | |
open locally_constant | |
variables {φ} (hφ : continuous φ) | |
include hφ | |
noncomputable | |
def embedding.h (f : locally_constant X V) : ℕ → locally_constant Y V | |
| 0 := map_hom T.hom (he.locally_constant_extend f) | |
| (i+1) := map_hom T.hom (he.locally_constant_extend $ (comap_hom φ hφ $ embedding.h i)) | |
variables (f : locally_constant X V) | |
lemma norm_h (i : ℕ) : ∥he.h hφ f i∥ ≤ r^(i+1)*∥f∥ := | |
begin | |
induction i with i ih ; dsimp [embedding.h], | |
{ rw [locally_constant.norm_map_aut, he.norm_extend, zero_add, pow_one] }, | |
{ rw [locally_constant.norm_map_aut, he.norm_extend, pow_succ, mul_assoc], | |
exact mul_le_mul_of_nonneg_left (((he.h hφ f i).norm_comap_le hφ).trans ih) r.coe_nonneg }, | |
end | |
open finset | |
def embedding.g (f : locally_constant X V) (N : ℕ) : locally_constant Y V := | |
∑ i in range (N + 1), he.h hφ f i | |
/-- T⁻¹ g_N e - g_N φ = f - h_N φ-/ | |
lemma one (hφ : continuous φ) (N : ℕ) : | |
map_hom T.inv (comap_hom e he.continuous (he.g hφ f N)) - (comap_hom φ hφ (he.g hφ f N)) = | |
f - comap_hom φ hφ (he.h hφ f N) := | |
begin | |
induction N with N ih, | |
{ dsimp [embedding.g], | |
simp only [embedding.h, finset.sum_singleton, sub_left_inj], | |
ext x, | |
simp [he.continuous, he.locally_constant_extend_extends] }, | |
{ set c_φ : normed_add_group_hom (locally_constant Y V) (locally_constant X V) := comap_hom φ hφ, | |
set c_e : normed_add_group_hom (locally_constant Y V) (locally_constant X V) := comap_hom e he.continuous, | |
set m_T : normed_add_group_hom (locally_constant X V) (locally_constant X V) := map_hom T.inv, | |
set G := he.g hφ f, | |
set H := he.h hφ f, | |
change m_T _ - _ = _, | |
rw sub_eq_iff_eq_add at ih, | |
dsimp [embedding.g, embedding.h], | |
change m_T (c_e ∑ i in range (N.succ + 1), H i) - | |
c_φ ∑ i in range (N.succ + 1), H i = _, | |
erw [finset.sum_range_succ, map_add, map_add, map_add, ih], | |
change f - c_φ (H N) + c_φ (G N) + m_T (c_e (H N.succ)) - (c_φ (G N) + c_φ (H N.succ)) = f - comap φ (H N.succ), | |
dsimp [H, embedding.h], | |
rw [← (he.locally_constant_extend $ comap φ $ H N).comap_map e T.hom he.continuous, | |
he.comap_locally_constant_extend, locally_constant.map_comp', normed_with_aut.T_inv_T_hom], | |
simp [H], | |
abel }, | |
end | |
open filter | |
open_locale topological_space | |
variables [fact ((r : ℝ) < 1)] | |
lemma limit : tendsto (λ N, map_hom T.inv (comap_hom e he.continuous (he.g hφ f N)) - (comap_hom φ hφ (he.g hφ f N))) at_top (𝓝 f) := | |
begin | |
simp_rw one, | |
rw show 𝓝 f = 𝓝 (f - 0), by simp, | |
refine tendsto_const_nhds.sub _, | |
apply squeeze_zero_norm, | |
intro n, | |
apply ((he.h hφ f n).norm_comap_le hφ).trans (norm_h he hφ _ _), | |
rw ← zero_mul (∥f∥), | |
apply tendsto.mul_const, | |
rw tendsto_add_at_top_iff_nat, | |
exact tendsto_pow_at_top_nhds_0_of_lt_1 r.coe_nonneg (fact.out _) | |
end | |
lemma cauchy_seq_g : cauchy_seq (he.g hφ f) := | |
begin | |
apply cauchy_seq_of_le_geometric r (r^2*∥f∥) (fact.out _), | |
intro n, | |
dsimp [embedding.g], | |
rw [dist_eq_norm, sum_range_succ _ (n+1), sub_add_eq_sub_sub, sub_self, zero_sub, norm_neg], | |
convert norm_h he hφ f (n+1) using 1, | |
ring_exp | |
end | |
lemma norm_g_le (N : ℕ) : ∥he.g hφ f N∥ ≤ r/(1 - r) * ∥f∥ := | |
begin | |
have : ∀ (n : ℕ), ∥he.h hφ f n∥ ≤ r * ∥f∥ * r ^ n, | |
{ intro n, | |
convert norm_h he hφ f n using 1, | |
ring_exp }, | |
convert norm_sum_le_of_le_geom (mul_nonneg r.coe_nonneg $ norm_nonneg f) r.coe_nonneg (fact.out _) this using 1, | |
exact div_mul_eq_mul_div _ _ _, | |
end | |
open uniform_space | |
lemma concrete_92 [fact (0 < r)] (f : completion (locally_constant X V)) {ε : ℝ} (hε : 0 < ε) : | |
∃ g : completion (locally_constant Y V), | |
((map_hom T.inv).comp (comap_hom e he.continuous) - comap_hom φ hφ).completion g = f ∧ | |
∥g∥ ≤ (r/(1-r) + ε)*∥f∥ := | |
begin | |
have : (0 : ℝ) < r / (1 - r), | |
{ have : 0 < r := fact.out _, | |
apply div_pos, | |
{ exact_mod_cast this }, | |
{ exact sub_pos.mpr (fact.out _) } }, | |
apply bar _ this hε, | |
intro m₂, | |
exact ⟨he.g hφ m₂, cauchy_seq_g he hφ m₂, limit he hφ m₂, norm_g_le he hφ m₂⟩ | |
end | |
end locally_constant_stuff | |