Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import free_pfpng.basic | |
import condensed.projective_resolution | |
import condensed.condensify | |
import condensed.adjunctions | |
import condensed.sheafification_mono | |
import condensed.coproducts | |
import free_pfpng.lemmas | |
import condensed.exact | |
import for_mathlib.int | |
import for_mathlib.AddCommGroup_instances | |
. | |
noncomputable theory | |
open_locale classical | |
open category_theory | |
open opposite | |
universe u | |
def Profinite.condensed_free_pfpng (S : Profinite.{u}) : Condensed Ab := | |
CompHausFiltPseuNormGrp.to_Condensed.obj $ | |
CHFPNG₁_to_CHFPNGₑₗ.obj | |
(PFPNG₁_to_CHFPNG₁ₑₗ.obj S.free_pfpng) | |
def Profinite.to_free_pfpng_level (S : Profinite.{u}) : | |
S.to_Condensed ⟶ ((ProFiltPseuNormGrp₁.level.obj 1).obj S.free_pfpng).to_Condensed := | |
Profinite_to_Condensed.map $ S.to_free_pfpng | |
def Profinite.to_condensed_free_pfpng (S : Profinite.{u}) : | |
S.to_Condensed ⟶ Condensed_Ab_to_CondensedSet.obj S.condensed_free_pfpng := | |
S.to_free_pfpng_level ≫ | |
(CompHausFiltPseuNormGrp.level_Condensed_diagram_cocone | |
(CHFPNG₁_to_CHFPNGₑₗ.obj | |
(PFPNG₁_to_CHFPNG₁ₑₗ.obj S.free_pfpng))).ι.app ⟨1⟩ | |
@[simp] | |
lemma Profinite.to_condensed_free_pfpng_app (S T : Profinite.{u}) (f) : | |
S.to_condensed_free_pfpng.val.app (op T) f = ulift.up | |
⟨_, 1, S.to_free_pfpng ∘ (ulift.down f).1, | |
S.to_free_pfpng.2.comp (ulift.down f).2, rfl⟩ := | |
rfl | |
/- | |
def profinite_to_condensed_unit : | |
Profinite_to_Condensed ⟶ | |
Profinite.extend free_pfpng_functor ⋙ | |
PFPNG₁_to_CHFPNG₁ₑₗ ⋙ | |
CHFPNG₁_to_CHFPNGₑₗ ⋙ | |
CompHausFiltPseuNormGrp.to_Condensed ⋙ | |
Condensed_Ab_to_CondensedSet := | |
{ app := λ S, S.to_condensed_free_pfpng, | |
naturality' := λ S T f, begin | |
ext X s x, induction X using opposite.rec, | |
dsimp at x, | |
admit | |
end } | |
-/ | |
def Profinite.free' (S : Profinite.{u}) : Condensed.{u} Ab.{u+1} := | |
CondensedSet_to_Condensed_Ab'.obj S.to_Condensed | |
def Profinite.free'_lift (S : Profinite.{u}) {A : Condensed.{u} Ab.{u+1}} | |
(η : S.to_Condensed ⟶ Condensed_Ab_to_CondensedSet.obj A) : | |
S.free' ⟶ A := | |
(Condensed_Ab_CondensedSet_adjunction'.hom_equiv _ _).symm η | |
def free'_lift {X : Type (u+1)} {A : Ab.{u+1}} (f : X → A) : | |
AddCommGroup.free'.obj X ⟶ A := | |
(AddCommGroup.adj'.hom_equiv _ _).symm f | |
-- TODO: Consider redefining `AddCommGroup.free'` so that this is true by rfl. | |
lemma free'_lift_eq_finsupp_lift {X : Type (u+1)} {A : Ab.{u+1}} (f : X → A) : | |
free'_lift f = (finsupp.lift _ _ _ f).to_add_monoid_hom := | |
begin | |
dsimp [free'_lift], | |
apply_fun AddCommGroup.adj'.hom_equiv X A, | |
rw equiv.apply_symm_apply, | |
dsimp [AddCommGroup.adj', adjunction.of_nat_iso_left, | |
AddCommGroup.free_iso_free'], | |
simp only [adjunction.hom_equiv_unit, forget_map_eq_coe], | |
dsimp [AddCommGroup.adj, AddCommGroup.free], | |
ext i, | |
simp only [types_comp_apply, comp_apply, add_equiv.coe_to_add_monoid_hom, | |
free_abelian_group.equiv_finsupp_apply, | |
linear_map.to_add_monoid_hom_coe, finsupp.lift_apply], | |
change _ = (free_abelian_group.to_finsupp (free_abelian_group.of i)).sum _, | |
simp only [free_abelian_group.to_finsupp_of, finsupp.sum_single_index, zero_smul, one_zsmul], | |
end | |
open category_theory.grothendieck_topology | |
lemma Profinite.free'_lift_val_eq_sheafification_lift (S : Profinite.{u}) | |
{A : Condensed.{u} Ab.{u+1}} | |
(η : S.to_Condensed ⟶ Condensed_Ab_to_CondensedSet.obj A) | |
(T : Profinite.{u}) : | |
(S.free'_lift η).val.app (opposite.op T) = | |
(sheafify_lift _ (((AddCommGroup.adj'.whiskering_right _).hom_equiv _ _).symm η.val) | |
A.cond).app (opposite.op T) := rfl | |
def Profinite.free'_to_condensed_free_pfpng (S : Profinite.{u}) : | |
S.free' ⟶ S.condensed_free_pfpng := | |
S.free'_lift S.to_condensed_free_pfpng | |
--instance : limits.has_limits_of_size.{u u} Ab.{u+1} := | |
--category_theory.limits.has_limits_of_size_shrink.{u u (u+1) (u+1)} Ab.{u+1} | |
/-- the limit `lim_i ℤ[S_i]`. -/ | |
def Profinite.limit_free (S : Profinite.{u}) : Ab.{u+1} := | |
limits.limit $ (S.fintype_diagram ⋙ forget Fintype ⋙ | |
AddCommGroup.free') ⋙ Ab.ulift.{u+1} | |
-- move me | |
lemma _root_.finsupp.map_domain_equiv_fun_on_fintype_symm | |
{α β R : Type*} [fintype α] [semiring R] (f : α → β) (g : α → R) : | |
finsupp.map_domain f (finsupp.equiv_fun_on_fintype.symm g) = | |
finset.univ.sum (λ (x : α), finsupp.single (f x) (g x)) := | |
begin | |
dsimp [finsupp.map_domain], | |
rw [finsupp.sum_fintype], swap, { intro, apply finsupp.single_zero }, | |
simp only [finsupp.equiv_fun_on_fintype_symm_apply_to_fun], | |
end | |
-- move me | |
lemma _root_.finsupp.map_domain_equiv_fun_on_fintype_symm_apply | |
{α β R : Type*} [fintype α] [semiring R] (f : α → β) (g : α → R) (b : β) | |
[decidable_pred (λ (a : α), f a = b)] : | |
finsupp.map_domain f (finsupp.equiv_fun_on_fintype.symm g) b = | |
(finset.filter (λ (a : α), f a = b) finset.univ).sum g := | |
begin | |
rw [finsupp.map_domain_equiv_fun_on_fintype_symm, finset.sum_apply'], | |
classical, | |
simp only [finsupp.single_apply, ← finset.sum_filter], | |
end | |
def Profinite.condensed_free_pfpng_specialize_cone (S B : Profinite.{u}) (b : B) : | |
limits.cone ((S.fintype_diagram ⋙ forget Fintype ⋙ AddCommGroup.free') ⋙ Ab.ulift.{u+1}) := | |
{ X := S.condensed_free_pfpng.val.obj (op B), | |
π := | |
{ app := λ T, add_monoid_hom.mk' | |
(λ t, ⟨finsupp.equiv_fun_on_fintype.symm (S.free_pfpng_π T (t.down.1 b))⟩) | |
begin | |
intros f g, | |
ext x, | |
simp only [ulift.add_down, subtype.val_eq_coe, | |
finsupp.equiv_fun_on_fintype_symm_apply_to_fun, finsupp.coe_add, pi.add_apply], | |
erw strict_comphaus_filtered_pseudo_normed_group_hom.map_add, | |
refl, | |
end, | |
naturality' := λ T₁ T₂ f, begin | |
ext g x, | |
rw [← Profinite.free_pfpng_π_w _ f], | |
simp only [subtype.val_eq_coe, finsupp.equiv_fun_on_fintype_symm_apply_to_fun, | |
functor.const.obj_map, comp_apply, id_apply, add_monoid_hom.mk'_apply, functor.comp_map, | |
forget_map_eq_coe, concrete_category.has_coe_to_fun_Type, AddCommGroup.free'_map, | |
Ab.ulift_map_apply_down, finsupp.map_domain.add_monoid_hom_apply, free_pfpng.map, | |
free_pfpng_functor_map, strict_comphaus_filtered_pseudo_normed_group_hom.coe_mk], | |
classical, | |
rw finsupp.map_domain_equiv_fun_on_fintype_symm_apply, congr', | |
end } } | |
def Profinite.condensed_free_pfpng_specialize (S B : Profinite.{u}) (b : B) : | |
S.condensed_free_pfpng.val.obj (op B) ⟶ S.limit_free := | |
limits.limit.lift _ (S.condensed_free_pfpng_specialize_cone B b) | |
lemma finsupp.fun_ext {α γ : Type*} | |
[add_comm_group γ] | |
(f g : (α →₀ ℤ) → γ) | |
(haddf : ∀ x y, f (x + y) = f x + f y) | |
(haddg : ∀ x y, g (x + y) = g x + g y) | |
(h : ∀ x : α, f (finsupp.single x 1) = g (finsupp.single x 1)) : | |
f = g := | |
congr_arg add_monoid_hom.to_fun $ | |
@finsupp.add_hom_ext α ℤ γ _ _ (add_monoid_hom.mk' f haddf) (add_monoid_hom.mk' g haddg) | |
begin | |
intros x n, | |
apply int.induction_on_iff n; clear n, | |
{ simp only [finsupp.single_zero, map_zero], }, | |
{ intro n, | |
{ simp only [finsupp.single_add, map_add], | |
simp only [h, add_monoid_hom.mk'_apply, add_left_inj], }, }, | |
end | |
def ProFiltPseuNormGrp₁.limit_π_coe_eq | |
{r : nnreal} {J : Type u} [small_category J] | |
(F : J ⥤ ProFiltPseuNormGrp₁.{u}) | |
(k : (ProFiltPseuNormGrp₁.level.obj r).obj (limits.limit F)) | |
(j) : | |
limits.limit.π F j (k.1 : limits.limit F) = | |
(((ProFiltPseuNormGrp₁.level.obj r).map (limits.limit.π F j)) k).1 := rfl | |