Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.1 kB
import free_pfpng.setup
.
noncomputable theory
open_locale classical
open category_theory
open opposite
universe u
lemma Profinite.mono_free'_to_condensed_free_pfpng_aux
(S B : Profinite.{u}) (b : B) (T : discrete_quotient S)
(t : S.to_Condensed.val.obj (op B) →₀ ℤ) :
let e : S.to_Condensed.val.obj (op B) →
S.condensed_free_pfpng.val.obj (op B) :=
λ f, (S.to_condensed_free_pfpng.val.app (op B) f),
ι : S.to_Condensed.val.obj (op B) → S :=
λ f, (ulift.down f).1 b in
((limits.limit.π (S.fintype_diagram ⋙ forget Fintype ⋙
AddCommGroup.free' ⋙ Ab.ulift) T)
(S.condensed_free_pfpng_specialize B b (free'_lift e t))).down
= t.map_domain (T.proj ∘ ι) :=
begin
dsimp,
revert t,
rw ← function.funext_iff,
dsimp,
change ulift.down ∘ _ = _,
apply finsupp.fun_ext,
{ intros, simp only [function.comp_app, map_add, ulift.add_down,
eq_self_iff_true, forall_const] },
{ intros, simp only [function.comp_app, map_zero, ulift.zero_down,
finsupp.map_domain_add] },
{ intros,
simp only [function.comp_app, finsupp.map_domain_single,
free'_lift_eq_finsupp_lift],
dsimp [Profinite.condensed_free_pfpng_specialize],
simp only [← comp_apply],
erw limits.limit.lift_π,
simp only [finsupp.sum_single_index, zero_smul, one_zsmul],
ext i,
dsimp [Profinite.condensed_free_pfpng_specialize_cone,
finsupp.single, Profinite.free_pfpng_π, Profinite.to_free_pfpng],
erw ProFiltPseuNormGrp₁.limit_π_coe_eq,
simp only [← comp_apply, category.assoc],
dsimp [Profinite.free_pfpng_level_iso,
limits.is_limit.cone_point_unique_up_to_iso],
simp only [← comp_apply, category.assoc],
erw (limits.is_limit_of_preserves (ProFiltPseuNormGrp₁.level.obj 1)
(limits.limit.is_limit (S.fintype_diagram ⋙ free_pfpng_functor))).fac,
erw limits.limit.lift_π,
refl },
end
lemma Profinite.specialization_eq_zero_of_eq_zero (S B : Profinite.{u}) (b : B)
(t : S.to_Condensed.val.obj (op B) →₀ ℤ)
(ht : free'_lift (S.to_condensed_free_pfpng.val.app (op B)) t = 0) :
t.map_domain (λ f, (ulift.down f).1 b) = 0 :=
begin
apply free_pfpng.discrete_quotient_separates_points' S,
intros T,
apply_fun (λ e, S.condensed_free_pfpng_specialize B b e) at ht,
rw add_monoid_hom.map_zero at ht,
apply_fun (λ e, limits.limit.π (S.fintype_diagram ⋙ forget Fintype ⋙
AddCommGroup.free' ⋙ Ab.ulift) T e) at ht,
rw add_monoid_hom.map_zero at ht,
apply_fun ulift.down at ht,
dsimp [AddCommGroup.free'],
rw ← finsupp.map_domain_comp,
have := S.mono_free'_to_condensed_free_pfpng_aux B b T t,
dsimp at this, erw ← this, exact ht
end
lemma Profinite.adj'_hom_equiv_symm_eq_free'_lift (S B : Profinite.{u}) :
(((AddCommGroup.adj'.whisker_right Profinite.{u}ᵒᵖ).hom_equiv
S.to_Condensed.val S.condensed_free_pfpng.val).symm
S.to_condensed_free_pfpng.val).app (op B) =
free'_lift (S.to_condensed_free_pfpng.val.app (op B)) :=
begin
ext u v, dsimp [free'_lift],
simp only [adjunction.hom_equiv_counit, whiskering_right_obj_map,
nat_trans.comp_app, whisker_right_app,
adjunction.whisker_right_counit_app_app],
end
open_locale big_operators
lemma finsupp.map_domain_ne_zero_of_ne_zero_of_inj_on {α β γ : Type*} [add_comm_group β]
(t : α →₀ β) (ht : t ≠ 0) (f : α → γ)
(hinj : set.inj_on f t.support) :
t.map_domain f ≠ 0 :=
begin
contrapose! ht,
have : ∀ (e : γ) (he : e ∈ (t.map_domain f).support), ∃ (q : α) (hq : q ∈ t.support), f q = e,
{ intros e he, by_contra c, push_neg at c,
simp only [finsupp.mem_support_iff, ne.def] at he,
apply he,
erw finset.sum_apply',
apply finset.sum_eq_zero,
intros a ha,
dsimp [finsupp.single], rw if_neg, apply c, exact ha },
choose q hq hh using this,
let ι : (t.map_domain f).support → t.support :=
λ e, ⟨q e.1 e.2, hq e.1 e.2⟩,
have hι : function.surjective ι,
{ rintros ⟨e,he⟩, use f e,
{ simp only [finsupp.mem_support_iff, ne.def],
rw finsupp.map_domain_apply' _ _ (set.subset.refl _) hinj he,
simpa using he },
{ ext, dsimp,
apply hinj, apply hq, apply he, apply hh } },
have : (t.map_domain f).support = ∅, by simpa using ht,
suffices : t.support = ∅, by simpa using this,
by_contra c, change _ ≠ _ at c,
erw ← finset.nonempty_iff_ne_empty at c,
obtain ⟨c,hc⟩ := c, obtain ⟨⟨c,hc⟩,ee⟩ := hι ⟨c,hc⟩,
rw this at hc, simpa using hc,
end
lemma finsupp.lift_map_domain {γ α β : Type*} [add_comm_group β]
(f : α → β) (ι : γ → α) :
(finsupp.lift _ ℤ _ f) ∘ finsupp.map_domain ι = finsupp.lift _ ℤ _ (f ∘ ι) :=
begin
apply finsupp.fun_ext,
{ intros x y,
dsimp only [function.comp_apply],
simp only [finsupp.map_domain_add],
erw ((finsupp.lift β ℤ α) f).to_add_monoid_hom.map_add, refl },
{ intros x y,
erw ((finsupp.lift β ℤ γ) (f ∘ ι)).to_add_monoid_hom.map_add, refl },
{ intros x, simp },
end
lemma finsupp.lift_map_domain_apply {γ α β : Type*} [add_comm_group β]
(f : α → β) (ι : γ → α) (e : γ →₀ ℤ) :
(finsupp.lift _ ℤ _ f).to_add_monoid_hom (e.map_domain ι) =
finsupp.lift _ ℤ _ (f ∘ ι) e :=
begin
rw ← finsupp.lift_map_domain, refl,
end
lemma finsupp.card_supp_map_domain_lt {α β γ : Type*} [add_comm_group γ]
(f : α → β) (t : α →₀ γ) (u v : α)
(huv : u ≠ v) (hu : u ∈ t.support) (hv : v ∈ t.support)
(hf : f u = f v) : (t.map_domain f).support.card < t.support.card :=
begin
classical,
have key : (finsupp.map_domain f t).support ⊆ _ := finsupp.map_domain_support,
have : (finsupp.map_domain f t).support.card ≤ (t.support.image f).card :=
finset.card_le_of_subset key,
refine lt_of_le_of_lt this _,
have key' : (t.support.image f).card ≤ t.support.card := finset.card_image_le,
apply lt_of_le_of_ne key',
change ¬ _,
rw finset.card_image_iff,
dsimp [set.inj_on],
push_neg, use [u, hu, v, hv, hf],
end
lemma Profinite.mono_free'_to_condensed_free_pfpng_induction_aux (n : ℕ) :
∀ (S B : Profinite.{u}) (t : S.to_Condensed.val.obj (op B) →₀ ℤ),
t.support.card ≤ n →
(free'_lift (S.to_condensed_free_pfpng.val.app (op B))) t = 0
(∀ (b : ↥B), finsupp.map_domain (λ f : S.to_Condensed.val.obj (op B),
(ulift.down f).1 b) t = 0) →
(∃ (α : Type u) [_inst_1 : fintype α] (X : α → Profinite) (π : Π (a : α), X a ⟶ B)
(surj : ∀ (b : ↥B), ∃ (a : α) (x : ↥(X a)), (π a) x = b),
∀ (a : α), finsupp.map_domain (S.to_Condensed.val.map (π a).op) t = 0) :=
begin
/-
TODO: This proof is very slow. It would be better to pull out a few
of the `have` statements into separate lemmas to (hopefully)
speed this up.
-/
induction n,
case nat.zero
{ intros S B t ht, simp at ht, rw ht, intros h1 h2,
use [punit, infer_instance, λ _, B, λ _, 𝟙 _],
split, { intros b, use [punit.star, b], refl },
{ intros _, rw finsupp.map_domain_zero, } },
case nat.succ : n hn
{ intros S B t ht1 ht2 H,
by_cases ht1' : t.support.card = n+1, swap,
{ apply hn, exact nat.le_of_lt_succ (nat.lt_of_le_and_ne ht1 ht1'),
assumption' },
clear ht1,
let F := t.support,
let e : F → (B ⟶ S) := λ f, f.1.1,
obtain ⟨Q,h1,h2,ee,-⟩ : ∃ (α : Type u) (hα1 : fintype α)
(hα2 : linear_order α) (ee : α ≃ F), true,
{ refine ⟨ulift (fin (fintype.card F)), infer_instance,
is_well_order.linear_order well_ordering_rel,
equiv.ulift.trans (fintype.equiv_fin _).symm, trivial⟩, },
resetI,
let E₀ := { a : Q × Q | a.1 < a.2 },
let X₀ : E₀ → Profinite.{u} := λ i, Profinite.equalizer (e (ee i.1.1)) (e (ee i.1.2)),
let π₀ : Π (i : E₀), X₀ i ⟶ B := λ i, Profinite.equalizer.ι _ _,
have surj₀ : ∀ (b : B), ∃ (e₀ : E₀) (x : X₀ e₀), π₀ _ x = b,
{ intro b, specialize H b,
contrapose! H,
have key : ∀ (i j : Q) (h : i < j), e (ee i) b ≠ e (ee j) b,
{ intros i j h, specialize H ⟨⟨i,j⟩, h⟩, intro c,
specialize H, dsimp [X₀] at H, specialize H ⟨b, c⟩,
apply H, refl },
apply finsupp.map_domain_ne_zero_of_ne_zero_of_inj_on,
{ intro c, rw c at ht1', simpa using ht1' },
{ intros x hx y hy hxy, dsimp at hxy,
let i : Q := ee.symm ⟨x,hx⟩,
let j : Q := ee.symm ⟨y,hy⟩,
rcases lt_trichotomy i j with (hhh|hhh|hhh),
{ specialize key i j hhh, contrapose hxy, convert key,
{ dsimp [i], rw ee.apply_symm_apply, refl },
{ dsimp [j], rw ee.apply_symm_apply, refl } },
{ apply_fun (λ q, (ee q).1) at hhh, dsimp [i,j] at hhh,
simp_rw ee.apply_symm_apply at hhh, exact hhh },
{ specialize key j i hhh, contrapose hxy, convert key.symm,
{ dsimp [j], rw ee.apply_symm_apply, refl },
{ dsimp [i], rw ee.apply_symm_apply, refl } } } },
let f₀ : Π (i : E₀), S.to_Condensed.val.obj (op B) → S.to_Condensed.val.obj (op (X₀ i)) :=
λ i, S.to_Condensed.val.map (π₀ i).op,
let t₀ : Π (i : E₀), S.to_Condensed.val.obj (op (X₀ i)) →₀ ℤ :=
λ i, t.map_domain (f₀ i),
have card₀ : ∀ (i : E₀), (t₀ i).support.card ≤ n,
{ intros i, suffices : (t₀ i).support.card < n + 1,
by exact nat.lt_succ_iff.mp this,
rw ← ht1',
fapply finsupp.card_supp_map_domain_lt,
refine (ee i.1.1).1,
refine (ee i.1.2).1,
{ change ¬ _,
erw ← subtype.ext_iff,
apply ee.injective.ne,
apply ne_of_lt,
exact i.2 },
refine (ee i.1.1).2,
refine (ee i.1.2).2,
{ dsimp [f₀, π₀, Profinite.to_Condensed], ext1, dsimp,
-- missing Profinite.equalizer.condition
ext t, exact t.2 } },
have lift₀ : ∀ (i : E₀), free'_lift (S.to_condensed_free_pfpng.val.app (op (X₀ i))) (t₀ i) = 0,
{ intros i, rw free'_lift_eq_finsupp_lift, dsimp only [t₀, f₀],
apply_fun (λ q, S.condensed_free_pfpng.val.map (π₀ i).op q) at ht2,
rw [add_monoid_hom.map_zero, free'_lift_eq_finsupp_lift] at ht2,
convert ht2,
rw finsupp.lift_map_domain_apply,
dsimp [finsupp.lift],
rw (S.condensed_free_pfpng.val.map (π₀ i).op).map_finsupp_sum,
refl },
have map₀ : ∀ (i : E₀) (b : ↥(X₀ i)),
finsupp.map_domain
(λ (f : S.to_Condensed.val.obj (op (X₀ i))), f.down.to_fun b) (t₀ i) = 0,
{ intros i b, dsimp [t₀], rw ← finsupp.map_domain_comp,
exact H (π₀ i b) },
have key := λ i, hn S (X₀ i) (t₀ i) (card₀ i) (lift₀ i) (map₀ i),
choose A hA X₁ π₁ surj₁ key using key, resetI,
let E := Σ (e : E₀), A e,
let X : E → Profinite.{u} := λ i, X₁ i.1 i.2,
let π : Π (e : E), X e ⟶ B := λ e, π₁ e.1 e.2 ≫ π₀ e.1,
use [E, infer_instance, X, π], split,
{ intros b,
obtain ⟨e₀,x,hx⟩ := surj₀ b,
obtain ⟨i,q,hq⟩ := surj₁ e₀ x,
use [⟨e₀,i⟩,q], dsimp [π], rw [hq, hx] },
{ intros a,
dsimp [π], rw functor.map_comp,
erw finsupp.map_domain_comp,
apply key } },
end
instance Profinite.mono_free'_to_condensed_free_pfpng
(S : Profinite.{u}) : mono S.free'_to_condensed_free_pfpng :=
begin
apply presheaf_to_Condensed_Ab_map_mono_of_exists, intros B t ht,
let e : S.to_Condensed.val.obj (op B) →
S.condensed_free_pfpng.val.obj (op B) :=
λ f, (S.to_condensed_free_pfpng.val.app (op B) f),
dsimp at t ht,
replace ht : free'_lift e t = 0, by rwa ← S.adj'_hom_equiv_symm_eq_free'_lift,
let ι : Π b : B, S.to_Condensed.val.obj (op B) → S :=
λ b f, (ulift.down f).1 b,
have aux : ∀ b : B, t.map_domain (ι b) = 0 :=
λ b, S.specialization_eq_zero_of_eq_zero B b t ht,
dsimp,
apply Profinite.mono_free'_to_condensed_free_pfpng_induction_aux,
refl,
assumption',
end