Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import free_pfpng.setup | |
. | |
noncomputable theory | |
open_locale classical | |
open category_theory | |
open opposite | |
universe u | |
lemma Profinite.mono_free'_to_condensed_free_pfpng_aux | |
(S B : Profinite.{u}) (b : B) (T : discrete_quotient S) | |
(t : S.to_Condensed.val.obj (op B) →₀ ℤ) : | |
let e : S.to_Condensed.val.obj (op B) → | |
S.condensed_free_pfpng.val.obj (op B) := | |
λ f, (S.to_condensed_free_pfpng.val.app (op B) f), | |
ι : S.to_Condensed.val.obj (op B) → S := | |
λ f, (ulift.down f).1 b in | |
((limits.limit.π (S.fintype_diagram ⋙ forget Fintype ⋙ | |
AddCommGroup.free' ⋙ Ab.ulift) T) | |
(S.condensed_free_pfpng_specialize B b (free'_lift e t))).down | |
= t.map_domain (T.proj ∘ ι) := | |
begin | |
dsimp, | |
revert t, | |
rw ← function.funext_iff, | |
dsimp, | |
change ulift.down ∘ _ = _, | |
apply finsupp.fun_ext, | |
{ intros, simp only [function.comp_app, map_add, ulift.add_down, | |
eq_self_iff_true, forall_const] }, | |
{ intros, simp only [function.comp_app, map_zero, ulift.zero_down, | |
finsupp.map_domain_add] }, | |
{ intros, | |
simp only [function.comp_app, finsupp.map_domain_single, | |
free'_lift_eq_finsupp_lift], | |
dsimp [Profinite.condensed_free_pfpng_specialize], | |
simp only [← comp_apply], | |
erw limits.limit.lift_π, | |
simp only [finsupp.sum_single_index, zero_smul, one_zsmul], | |
ext i, | |
dsimp [Profinite.condensed_free_pfpng_specialize_cone, | |
finsupp.single, Profinite.free_pfpng_π, Profinite.to_free_pfpng], | |
erw ProFiltPseuNormGrp₁.limit_π_coe_eq, | |
simp only [← comp_apply, category.assoc], | |
dsimp [Profinite.free_pfpng_level_iso, | |
limits.is_limit.cone_point_unique_up_to_iso], | |
simp only [← comp_apply, category.assoc], | |
erw (limits.is_limit_of_preserves (ProFiltPseuNormGrp₁.level.obj 1) | |
(limits.limit.is_limit (S.fintype_diagram ⋙ free_pfpng_functor))).fac, | |
erw limits.limit.lift_π, | |
refl }, | |
end | |
lemma Profinite.specialization_eq_zero_of_eq_zero (S B : Profinite.{u}) (b : B) | |
(t : S.to_Condensed.val.obj (op B) →₀ ℤ) | |
(ht : free'_lift (S.to_condensed_free_pfpng.val.app (op B)) t = 0) : | |
t.map_domain (λ f, (ulift.down f).1 b) = 0 := | |
begin | |
apply free_pfpng.discrete_quotient_separates_points' S, | |
intros T, | |
apply_fun (λ e, S.condensed_free_pfpng_specialize B b e) at ht, | |
rw add_monoid_hom.map_zero at ht, | |
apply_fun (λ e, limits.limit.π (S.fintype_diagram ⋙ forget Fintype ⋙ | |
AddCommGroup.free' ⋙ Ab.ulift) T e) at ht, | |
rw add_monoid_hom.map_zero at ht, | |
apply_fun ulift.down at ht, | |
dsimp [AddCommGroup.free'], | |
rw ← finsupp.map_domain_comp, | |
have := S.mono_free'_to_condensed_free_pfpng_aux B b T t, | |
dsimp at this, erw ← this, exact ht | |
end | |
lemma Profinite.adj'_hom_equiv_symm_eq_free'_lift (S B : Profinite.{u}) : | |
(((AddCommGroup.adj'.whisker_right Profinite.{u}ᵒᵖ).hom_equiv | |
S.to_Condensed.val S.condensed_free_pfpng.val).symm | |
S.to_condensed_free_pfpng.val).app (op B) = | |
free'_lift (S.to_condensed_free_pfpng.val.app (op B)) := | |
begin | |
ext u v, dsimp [free'_lift], | |
simp only [adjunction.hom_equiv_counit, whiskering_right_obj_map, | |
nat_trans.comp_app, whisker_right_app, | |
adjunction.whisker_right_counit_app_app], | |
end | |
open_locale big_operators | |
lemma finsupp.map_domain_ne_zero_of_ne_zero_of_inj_on {α β γ : Type*} [add_comm_group β] | |
(t : α →₀ β) (ht : t ≠ 0) (f : α → γ) | |
(hinj : set.inj_on f t.support) : | |
t.map_domain f ≠ 0 := | |
begin | |
contrapose! ht, | |
have : ∀ (e : γ) (he : e ∈ (t.map_domain f).support), ∃ (q : α) (hq : q ∈ t.support), f q = e, | |
{ intros e he, by_contra c, push_neg at c, | |
simp only [finsupp.mem_support_iff, ne.def] at he, | |
apply he, | |
erw finset.sum_apply', | |
apply finset.sum_eq_zero, | |
intros a ha, | |
dsimp [finsupp.single], rw if_neg, apply c, exact ha }, | |
choose q hq hh using this, | |
let ι : (t.map_domain f).support → t.support := | |
λ e, ⟨q e.1 e.2, hq e.1 e.2⟩, | |
have hι : function.surjective ι, | |
{ rintros ⟨e,he⟩, use f e, | |
{ simp only [finsupp.mem_support_iff, ne.def], | |
rw finsupp.map_domain_apply' _ _ (set.subset.refl _) hinj he, | |
simpa using he }, | |
{ ext, dsimp, | |
apply hinj, apply hq, apply he, apply hh } }, | |
have : (t.map_domain f).support = ∅, by simpa using ht, | |
suffices : t.support = ∅, by simpa using this, | |
by_contra c, change _ ≠ _ at c, | |
erw ← finset.nonempty_iff_ne_empty at c, | |
obtain ⟨c,hc⟩ := c, obtain ⟨⟨c,hc⟩,ee⟩ := hι ⟨c,hc⟩, | |
rw this at hc, simpa using hc, | |
end | |
lemma finsupp.lift_map_domain {γ α β : Type*} [add_comm_group β] | |
(f : α → β) (ι : γ → α) : | |
(finsupp.lift _ ℤ _ f) ∘ finsupp.map_domain ι = finsupp.lift _ ℤ _ (f ∘ ι) := | |
begin | |
apply finsupp.fun_ext, | |
{ intros x y, | |
dsimp only [function.comp_apply], | |
simp only [finsupp.map_domain_add], | |
erw ((finsupp.lift β ℤ α) f).to_add_monoid_hom.map_add, refl }, | |
{ intros x y, | |
erw ((finsupp.lift β ℤ γ) (f ∘ ι)).to_add_monoid_hom.map_add, refl }, | |
{ intros x, simp }, | |
end | |
lemma finsupp.lift_map_domain_apply {γ α β : Type*} [add_comm_group β] | |
(f : α → β) (ι : γ → α) (e : γ →₀ ℤ) : | |
(finsupp.lift _ ℤ _ f).to_add_monoid_hom (e.map_domain ι) = | |
finsupp.lift _ ℤ _ (f ∘ ι) e := | |
begin | |
rw ← finsupp.lift_map_domain, refl, | |
end | |
lemma finsupp.card_supp_map_domain_lt {α β γ : Type*} [add_comm_group γ] | |
(f : α → β) (t : α →₀ γ) (u v : α) | |
(huv : u ≠ v) (hu : u ∈ t.support) (hv : v ∈ t.support) | |
(hf : f u = f v) : (t.map_domain f).support.card < t.support.card := | |
begin | |
classical, | |
have key : (finsupp.map_domain f t).support ⊆ _ := finsupp.map_domain_support, | |
have : (finsupp.map_domain f t).support.card ≤ (t.support.image f).card := | |
finset.card_le_of_subset key, | |
refine lt_of_le_of_lt this _, | |
have key' : (t.support.image f).card ≤ t.support.card := finset.card_image_le, | |
apply lt_of_le_of_ne key', | |
change ¬ _, | |
rw finset.card_image_iff, | |
dsimp [set.inj_on], | |
push_neg, use [u, hu, v, hv, hf], | |
end | |
lemma Profinite.mono_free'_to_condensed_free_pfpng_induction_aux (n : ℕ) : | |
∀ (S B : Profinite.{u}) (t : S.to_Condensed.val.obj (op B) →₀ ℤ), | |
t.support.card ≤ n → | |
(free'_lift (S.to_condensed_free_pfpng.val.app (op B))) t = 0 → | |
(∀ (b : ↥B), finsupp.map_domain (λ f : S.to_Condensed.val.obj (op B), | |
(ulift.down f).1 b) t = 0) → | |
(∃ (α : Type u) [_inst_1 : fintype α] (X : α → Profinite) (π : Π (a : α), X a ⟶ B) | |
(surj : ∀ (b : ↥B), ∃ (a : α) (x : ↥(X a)), (π a) x = b), | |
∀ (a : α), finsupp.map_domain (S.to_Condensed.val.map (π a).op) t = 0) := | |
begin | |
/- | |
TODO: This proof is very slow. It would be better to pull out a few | |
of the `have` statements into separate lemmas to (hopefully) | |
speed this up. | |
-/ | |
induction n, | |
case nat.zero | |
{ intros S B t ht, simp at ht, rw ht, intros h1 h2, | |
use [punit, infer_instance, λ _, B, λ _, 𝟙 _], | |
split, { intros b, use [punit.star, b], refl }, | |
{ intros _, rw finsupp.map_domain_zero, } }, | |
case nat.succ : n hn | |
{ intros S B t ht1 ht2 H, | |
by_cases ht1' : t.support.card = n+1, swap, | |
{ apply hn, exact nat.le_of_lt_succ (nat.lt_of_le_and_ne ht1 ht1'), | |
assumption' }, | |
clear ht1, | |
let F := t.support, | |
let e : F → (B ⟶ S) := λ f, f.1.1, | |
obtain ⟨Q,h1,h2,ee,-⟩ : ∃ (α : Type u) (hα1 : fintype α) | |
(hα2 : linear_order α) (ee : α ≃ F), true, | |
{ refine ⟨ulift (fin (fintype.card F)), infer_instance, | |
is_well_order.linear_order well_ordering_rel, | |
equiv.ulift.trans (fintype.equiv_fin _).symm, trivial⟩, }, | |
resetI, | |
let E₀ := { a : Q × Q | a.1 < a.2 }, | |
let X₀ : E₀ → Profinite.{u} := λ i, Profinite.equalizer (e (ee i.1.1)) (e (ee i.1.2)), | |
let π₀ : Π (i : E₀), X₀ i ⟶ B := λ i, Profinite.equalizer.ι _ _, | |
have surj₀ : ∀ (b : B), ∃ (e₀ : E₀) (x : X₀ e₀), π₀ _ x = b, | |
{ intro b, specialize H b, | |
contrapose! H, | |
have key : ∀ (i j : Q) (h : i < j), e (ee i) b ≠ e (ee j) b, | |
{ intros i j h, specialize H ⟨⟨i,j⟩, h⟩, intro c, | |
specialize H, dsimp [X₀] at H, specialize H ⟨b, c⟩, | |
apply H, refl }, | |
apply finsupp.map_domain_ne_zero_of_ne_zero_of_inj_on, | |
{ intro c, rw c at ht1', simpa using ht1' }, | |
{ intros x hx y hy hxy, dsimp at hxy, | |
let i : Q := ee.symm ⟨x,hx⟩, | |
let j : Q := ee.symm ⟨y,hy⟩, | |
rcases lt_trichotomy i j with (hhh|hhh|hhh), | |
{ specialize key i j hhh, contrapose hxy, convert key, | |
{ dsimp [i], rw ee.apply_symm_apply, refl }, | |
{ dsimp [j], rw ee.apply_symm_apply, refl } }, | |
{ apply_fun (λ q, (ee q).1) at hhh, dsimp [i,j] at hhh, | |
simp_rw ee.apply_symm_apply at hhh, exact hhh }, | |
{ specialize key j i hhh, contrapose hxy, convert key.symm, | |
{ dsimp [j], rw ee.apply_symm_apply, refl }, | |
{ dsimp [i], rw ee.apply_symm_apply, refl } } } }, | |
let f₀ : Π (i : E₀), S.to_Condensed.val.obj (op B) → S.to_Condensed.val.obj (op (X₀ i)) := | |
λ i, S.to_Condensed.val.map (π₀ i).op, | |
let t₀ : Π (i : E₀), S.to_Condensed.val.obj (op (X₀ i)) →₀ ℤ := | |
λ i, t.map_domain (f₀ i), | |
have card₀ : ∀ (i : E₀), (t₀ i).support.card ≤ n, | |
{ intros i, suffices : (t₀ i).support.card < n + 1, | |
by exact nat.lt_succ_iff.mp this, | |
rw ← ht1', | |
fapply finsupp.card_supp_map_domain_lt, | |
refine (ee i.1.1).1, | |
refine (ee i.1.2).1, | |
{ change ¬ _, | |
erw ← subtype.ext_iff, | |
apply ee.injective.ne, | |
apply ne_of_lt, | |
exact i.2 }, | |
refine (ee i.1.1).2, | |
refine (ee i.1.2).2, | |
{ dsimp [f₀, π₀, Profinite.to_Condensed], ext1, dsimp, | |
-- missing Profinite.equalizer.condition | |
ext t, exact t.2 } }, | |
have lift₀ : ∀ (i : E₀), free'_lift (S.to_condensed_free_pfpng.val.app (op (X₀ i))) (t₀ i) = 0, | |
{ intros i, rw free'_lift_eq_finsupp_lift, dsimp only [t₀, f₀], | |
apply_fun (λ q, S.condensed_free_pfpng.val.map (π₀ i).op q) at ht2, | |
rw [add_monoid_hom.map_zero, free'_lift_eq_finsupp_lift] at ht2, | |
convert ht2, | |
rw finsupp.lift_map_domain_apply, | |
dsimp [finsupp.lift], | |
rw (S.condensed_free_pfpng.val.map (π₀ i).op).map_finsupp_sum, | |
refl }, | |
have map₀ : ∀ (i : E₀) (b : ↥(X₀ i)), | |
finsupp.map_domain | |
(λ (f : S.to_Condensed.val.obj (op (X₀ i))), f.down.to_fun b) (t₀ i) = 0, | |
{ intros i b, dsimp [t₀], rw ← finsupp.map_domain_comp, | |
exact H (π₀ i b) }, | |
have key := λ i, hn S (X₀ i) (t₀ i) (card₀ i) (lift₀ i) (map₀ i), | |
choose A hA X₁ π₁ surj₁ key using key, resetI, | |
let E := Σ (e : E₀), A e, | |
let X : E → Profinite.{u} := λ i, X₁ i.1 i.2, | |
let π : Π (e : E), X e ⟶ B := λ e, π₁ e.1 e.2 ≫ π₀ e.1, | |
use [E, infer_instance, X, π], split, | |
{ intros b, | |
obtain ⟨e₀,x,hx⟩ := surj₀ b, | |
obtain ⟨i,q,hq⟩ := surj₁ e₀ x, | |
use [⟨e₀,i⟩,q], dsimp [π], rw [hq, hx] }, | |
{ intros a, | |
dsimp [π], rw functor.map_comp, | |
erw finsupp.map_domain_comp, | |
apply key } }, | |
end | |
instance Profinite.mono_free'_to_condensed_free_pfpng | |
(S : Profinite.{u}) : mono S.free'_to_condensed_free_pfpng := | |
begin | |
apply presheaf_to_Condensed_Ab_map_mono_of_exists, intros B t ht, | |
let e : S.to_Condensed.val.obj (op B) → | |
S.condensed_free_pfpng.val.obj (op B) := | |
λ f, (S.to_condensed_free_pfpng.val.app (op B) f), | |
dsimp at t ht, | |
replace ht : free'_lift e t = 0, by rwa ← S.adj'_hom_equiv_symm_eq_free'_lift, | |
let ι : Π b : B, S.to_Condensed.val.obj (op B) → S := | |
λ b f, (ulift.down f).1 b, | |
have aux : ∀ b : B, t.map_domain (ι b) = 0 := | |
λ b, S.specialization_eq_zero_of_eq_zero B b t ht, | |
dsimp, | |
apply Profinite.mono_free'_to_condensed_free_pfpng_induction_aux, | |
refl, | |
assumption', | |
end | |