Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import category_theory.limits.concrete_category | |
universes v u | |
open category_theory | |
namespace category_theory.limits | |
local attribute [instance] concrete_category.has_coe_to_fun concrete_category.has_coe_to_sort | |
variables {C : Type u} [category.{v} C] [concrete_category.{v} C] | |
section equalizer | |
lemma concrete.equalizer_ext {X Y : C} (f g : X ⟶ Y) [has_equalizer f g] | |
[preserves_limit (parallel_pair f g) (forget C)] (x y : equalizer f g) | |
(h : equalizer.ι f g x = equalizer.ι f g y) : x = y := | |
begin | |
apply concrete.limit_ext, | |
rintros (a|a), | |
{ apply h }, | |
{ rw [← limit.w (parallel_pair f g) walking_parallel_pair_hom.right, | |
comp_apply, comp_apply, h] } | |
end | |
def concrete.equalizer_equiv_aux {X Y : C} (f g : X ⟶ Y) : | |
(parallel_pair f g ⋙ forget C).sections ≃ { x : X // f x = g x } := | |
{ to_fun := λ x, ⟨x.1 walking_parallel_pair.zero, begin | |
have h1 := x.2 walking_parallel_pair_hom.left, | |
have h2 := x.2 walking_parallel_pair_hom.right, | |
dsimp at h1 h2, | |
erw [h1, h2], | |
end⟩, | |
inv_fun := λ x, | |
{ val := λ j, | |
match j with | |
| walking_parallel_pair.zero := x.1 | |
| walking_parallel_pair.one := f x.1 | |
end, | |
property := begin | |
dsimp [functor.sections], | |
rintros (a|a) (b|b) (f|f), | |
{ simp, }, | |
{ refl }, | |
{ exact x.2.symm }, | |
{ simp }, | |
end }, | |
left_inv := begin | |
rintros ⟨x,hx⟩, | |
ext (a|a), | |
{ refl }, | |
{ change _ = x _, | |
rw ← hx walking_parallel_pair_hom.left, | |
refl } | |
end, | |
right_inv := by { rintros ⟨_,_⟩, ext, refl } } | |
noncomputable | |
def concrete.equalizer_equiv {X Y : C} (f g : X ⟶ Y) [has_equalizer f g] | |
[preserves_limit (parallel_pair f g) (forget C)] : | |
↥(equalizer f g) ≃ { x // f x = g x } := | |
let h1 := limit.is_limit (parallel_pair f g), | |
h2 := is_limit_of_preserves (forget C) h1, | |
E := h2.cone_point_unique_up_to_iso (types.limit_cone_is_limit.{_ v} _) in | |
E.to_equiv.trans $ concrete.equalizer_equiv_aux _ _ | |
@[simp] | |
lemma concrete.equalizer_equiv_apply {X Y : C} (f g : X ⟶ Y) [has_equalizer f g] | |
[preserves_limit (parallel_pair f g) (forget C)] (x : equalizer f g): | |
(concrete.equalizer_equiv f g x : X) = equalizer.ι f g x := rfl | |
end equalizer | |
end category_theory.limits | |