Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import for_mathlib.ab5 | |
namespace category_theory | |
universes v u | |
variables {A : Type u} [category.{v} A] [abelian A] | |
[limits.has_colimits A] [AB5 A] | |
def mono_colim_map_of_mono {J : Type v} | |
[small_category J] [is_filtered J] {F G : J ⥤ A} | |
(η : F ⟶ G) [∀ i, mono (η.app i)] : | |
mono (limits.colim_map η) := | |
begin | |
haveI : limits.preserves_finite_limits (limits.colim : (J ⥤ A) ⥤ A) := | |
functor.preserves_finite_limits_of_exact _ (AB5.cond A J), | |
rw abelian.mono_iff_kernel_ι_eq_zero, | |
let e : limits.kernel (limits.colim_map η) ≅ limits.colimit (limits.kernel η) := | |
(limits.preserves_kernel.iso (limits.colim : (J ⥤ A) ⥤ A) η).symm, | |
have he : limits.kernel.ι (limits.colim_map η) = | |
e.hom ≫ limits.colim_map (limits.kernel.ι η), | |
{ dsimp [e], rw iso.eq_inv_comp, simp, dsimp [limits.kernel_comparison], | |
erw limits.kernel.lift_ι, refl, }, | |
rw he, | |
simp only [preadditive.is_iso.comp_left_eq_zero], | |
ext j, | |
simp only [limits.ι_colim_map, limits.comp_zero], | |
let q : (limits.kernel η).obj j ≅ limits.kernel (η.app j) := | |
limits.preserves_kernel.iso ((evaluation _ A).obj j) η, | |
have : (limits.kernel.ι η).app j = q.hom ≫ limits.kernel.ι _, | |
{ simp, dsimp [limits.kernel_comparison], simp, }, | |
rw this, | |
have : mono (η.app j) := infer_instance, | |
rw abelian.mono_iff_kernel_ι_eq_zero at this, | |
simp [this], | |
end | |
end category_theory | |