Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.41 kB
import for_mathlib.ab5
namespace category_theory
universes v u
variables {A : Type u} [category.{v} A] [abelian A]
[limits.has_colimits A] [AB5 A]
def mono_colim_map_of_mono {J : Type v}
[small_category J] [is_filtered J] {F G : J ⥤ A}
(η : F ⟶ G) [∀ i, mono (η.app i)] :
mono (limits.colim_map η) :=
begin
haveI : limits.preserves_finite_limits (limits.colim : (J ⥤ A) ⥤ A) :=
functor.preserves_finite_limits_of_exact _ (AB5.cond A J),
rw abelian.mono_iff_kernel_ι_eq_zero,
let e : limits.kernel (limits.colim_map η) ≅ limits.colimit (limits.kernel η) :=
(limits.preserves_kernel.iso (limits.colim : (J ⥤ A) ⥤ A) η).symm,
have he : limits.kernel.ι (limits.colim_map η) =
e.hom ≫ limits.colim_map (limits.kernel.ι η),
{ dsimp [e], rw iso.eq_inv_comp, simp, dsimp [limits.kernel_comparison],
erw limits.kernel.lift_ι, refl, },
rw he,
simp only [preadditive.is_iso.comp_left_eq_zero],
ext j,
simp only [limits.ι_colim_map, limits.comp_zero],
let q : (limits.kernel η).obj j ≅ limits.kernel.app j) :=
limits.preserves_kernel.iso ((evaluation _ A).obj j) η,
have : (limits.kernel.ι η).app j = q.hom ≫ limits.kernel.ι _,
{ simp, dsimp [limits.kernel_comparison], simp, },
rw this,
have : mono (η.app j) := infer_instance,
rw abelian.mono_iff_kernel_ι_eq_zero at this,
simp [this],
end
end category_theory