Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
62.7 kB
import Lbar.ext_aux1
noncomputable theory
universes v u u'
open opposite category_theory category_theory.limits category_theory.preadditive
open_locale nnreal zero_object
variables (r r' : ℝβ‰₯0)
variables [fact (0 < r)] [fact (r < r')] [fact (r < 1)]
section
open bounded_homotopy_category
variables (BD : breen_deligne.data)
variables (ΞΊ ΞΊβ‚‚ : ℝβ‰₯0 β†’ β„• β†’ ℝβ‰₯0)
variables [βˆ€ (c : ℝβ‰₯0), BD.suitable (ΞΊ c)] [βˆ€ n, fact (monotone (function.swap ΞΊ n))]
variables [βˆ€ (c : ℝβ‰₯0), BD.suitable (ΞΊβ‚‚ c)] [βˆ€ n, fact (monotone (function.swap ΞΊβ‚‚ n))]
variables (M : ProFiltPseuNormGrpWithTinv₁.{u} r')
variables (V : SemiNormedGroup.{u})
lemma QprimeFP_map (c₁ cβ‚‚ : ℝβ‰₯0) (h : c₁ ⟢ cβ‚‚) :
(QprimeFP r' BD ΞΊ M).map h = of'_hom ((QprimeFP_int r' BD ΞΊ _).map h) := rfl
instance aaahrg (X : Profinite) : seminormed_add_comm_group (locally_constant X V) :=
locally_constant.seminormed_add_comm_group
def V_T_inv (r : ℝβ‰₯0) (V : SemiNormedGroup.{u}) [normed_with_aut r V] : V ⟢ V :=
normed_with_aut.T.{u}.inv
variables [fact (0 < r')] [fact (r' < 1)]
section
variables [complete_space V] [separated_space V]
set_option pp.universes true
lemma final_boss_aux₁ (X : Profinite) (x) :
((LCC_iso_Cond_of_top_ab_add_equiv.{u} X V).symm) x =
(LCC_iso_Cond_of_top_ab_equiv X V).symm x := rfl
lemma final_boss_auxβ‚‚ [normed_with_aut r V] (X : Profinite) (x : locally_constant X V) :
((locally_constant.map_hom.{u u u} (V_T_inv r V)).completion)
(uniform_space.completion.cpkg.{u}.coe x) =
uniform_space.completion.map (locally_constant.map_hom (V_T_inv r V)) x := rfl
-- should this be a global instance earlier in mathlib?
local attribute [instance]
abstract_completion.uniform_struct
lemma final_boss_aux₃ [normed_with_aut r V] (X : Profinite) :
continuous.{u u}
(Ξ» (x : C(X,V)),
((locally_constant.map_hom.{u u u} normed_with_aut.T.{u}.inv).completion)
(((uniform_space.completion.cpkg.{u}.compare_equiv (locally_constant.pkg.{u} X β†₯V)).symm) x)) :=
begin
dsimp [abstract_completion.compare_equiv],
refine (normed_add_group_hom.continuous _).comp _,
refine ((locally_constant.pkg X V).uniform_continuous_compare _).continuous,
end
example {Ξ² : Type*} [uniform_space Ξ²] (a : abstract_completion Ξ²) : uniform_space a.space :=
by apply_instance
lemma final_boss_auxβ‚„ [normed_with_aut r V] (X : Profinite) :
@continuous.{u u} _ _ _ (uniform_space.completion.cpkg.uniform_struct.to_topological_space)
(Ξ» (x : C(X,V)),
((locally_constant.pkg X V).compare
uniform_space.completion.cpkg.{u}
{to_fun := (V_T_inv r V) ∘ x.to_fun, continuous_to_fun :=
(normed_with_aut.T.inv.continuous.comp x.2)})) :=
begin
let e : C(X,V) β†’ C(X,V) := Ξ» e, ⟨(V_T_inv r V) ∘ e,
(V_T_inv r V).continuous.comp e.2⟩,
have he : continuous e := continuous_map.continuous_comp
((⟨(V_T_inv r V), (V_T_inv r V).continuous⟩ : C(V,V))),
refine continuous.comp _ he,
refine ((locally_constant.pkg X V).uniform_continuous_compare _).continuous,
end
lemma final_boss [normed_with_aut r V] (X : Profinite)
(x : ((Condensed.of_top_ab.presheaf V).obj (op X))) :
((locally_constant.map_hom (V_T_inv r V)).completion)
(((LCC_iso_Cond_of_top_ab_add_equiv X V).symm) x) =
((LCC_iso_Cond_of_top_ab_add_equiv X V).symm)
{to_fun := (normed_with_aut.T.inv) ∘ x.1, continuous_to_fun :=
(normed_with_aut.T.inv.continuous.comp x.2)} :=
begin
rw final_boss_aux₁,
rw final_boss_aux₁,
dsimp only [V_T_inv],
dsimp only [LCC_iso_Cond_of_top_ab_equiv],
change C(X,V) at x,
apply abstract_completion.induction_on (locally_constant.pkg.{u} X β†₯V) x,
{ apply is_closed_eq,
{ apply final_boss_aux₃ },
{ apply final_boss_auxβ‚„ } },
clear x,
intros x,
change ((locally_constant.map_hom.{u u u} normed_with_aut.T.{u}.inv).completion)
((locally_constant.pkg.{u} X β†₯V).compare uniform_space.completion.cpkg.{u}
((locally_constant.pkg.{u} X β†₯V).coe x)) = _,
--dsimp [abstract_completion.compare_equiv],
rw abstract_completion.compare_coe,
erw final_boss_auxβ‚‚,
erw uniform_space.completion.map_coe,
let q : C(X,V) :=
{to_fun := (normed_with_aut.T.{u}.inv) ∘ ((locally_constant.pkg.{u} X β†₯V).coe x).to_fun,
continuous_to_fun := _},
swap,
{ apply continuous.comp,
apply normed_add_group_hom.continuous,
refine ((locally_constant.pkg.{u} X β†₯V).coe x).2 },
have hq : q = (locally_constant.pkg X V).coe
((locally_constant.map_hom.{u u u} (V_T_inv.{u} r V)) x),
{ ext, refl },
change _ =
((locally_constant.pkg.{u} X β†₯V).compare uniform_space.completion.cpkg) q,
rw hq,
rw abstract_completion.compare_coe,
refl,
apply normed_add_group_hom.uniform_continuous,
end
end
@[reassoc]
lemma massive_aux₁ (X Y : Profinite.{u}) (f : X ⟢ Y) :
(preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map (freeCond.{u}.map f).op ≫
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond X).hom =
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond Y).hom ≫
V.to_Cond.val.map f.op :=
begin
erw preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_natural',
refl,
end
lemma add_equiv.mk_symm {A B : Type*} [add_comm_group A] [add_comm_group B]
(f : A β†’+ B) (g : B β†’+ A) (h1 h2 h3) :
(add_equiv.mk f g h1 h2 h3).symm =
add_equiv.mk g f h2 h1 (by { intros x y, apply h1.injective, rw [h3, h2, h2, h2] }) := rfl
lemma add_equiv.mk_symm_apply {A B : Type*} [add_comm_group A] [add_comm_group B]
(f : A β†’+ B) (g : B β†’+ A) (h1 h2 h3) (x : B) :
(add_equiv.mk f g h1 h2 h3).symm x = g x := rfl
lemma locally_constant.comap_hom_map_hom {X Y V W : Type*}
[topological_space X] [compact_space X]
[topological_space Y] [compact_space Y]
[seminormed_add_comm_group V] [seminormed_add_comm_group W]
(f : X β†’ Y) (hf : continuous f) (g : normed_add_group_hom V W) (Ο† : locally_constant Y V) :
locally_constant.comap_hom f hf (locally_constant.map_hom g Ο†) =
((locally_constant.map_hom g) ∘ (locally_constant.comap_hom f hf)) Ο† :=
begin
dsimp only [locally_constant.comap_hom_apply, locally_constant.map_hom_apply, function.comp],
rw locally_constant.comap_map,
exact hf
end
instance (X : Profinite) :
uniform_space.{u} (locally_constant.{u u} X V) :=
@pseudo_metric_space.to_uniform_space.{u}
(@locally_constant.{u u} (@coe_sort.{u+2 u+2} Profinite.{u} (Type u) Profinite.has_coe_to_sort.{u} X)
(@coe_sort.{u+2 u+2} SemiNormedGroup.{u} (Type u) SemiNormedGroup.has_coe_to_sort.{u} V)
(Top.topological_space.{u} X.to_CompHaus.to_Top))
(@seminormed_add_comm_group.to_pseudo_metric_space.{u}
(@locally_constant.{u u} (@coe_sort.{u+2 u+2} Profinite.{u} (Type u) Profinite.has_coe_to_sort.{u} X)
(@coe_sort.{u+2 u+2} SemiNormedGroup.{u} (Type u) SemiNormedGroup.has_coe_to_sort.{u} V)
(Top.topological_space.{u} X.to_CompHaus.to_Top))
locally_constant.seminormed_add_comm_group)
instance (X : Profinite) : topological_space β†₯(V.to_Cond.val.obj (op X)) :=
@ulift.topological_space _ (continuous_map.compact_open.{u u})
variables [complete_space V] [separated_space V]
lemma to_Cond_val_map_apply (X Y : Profinite.{u}) (f : X ⟢ Y) (x) :
V.to_Cond.val.map f.op x = ⟨continuous_map.comp_right_continuous_map V f x.down⟩ :=
rfl
lemma to_Cond_val_map (X Y : Profinite.{u}) (f : X ⟢ Y) :
⇑(V.to_Cond.val.map f.op) =
(Ξ» x, ⟨continuous_map.comp_right_continuous_map V f x.down⟩ : β†₯(V.to_Cond.val.obj (op Y)) β†’ β†₯(V.to_Cond.val.obj (op X))) :=
by { ext x, rw to_Cond_val_map_apply }
lemma massive_auxβ‚‚ (X Y : Profinite.{u}) (f : X ⟢ Y) (x : (V.to_Cond.val.obj (op.{u+2} Y))) :
uniform_space.completion.map.{u u} (locally_constant.comap_hom.{u u u} f f.continuous)
((locally_constant.pkg.{u} Y β†₯V).compare uniform_space.completion.cpkg.{u} x.down) =
((locally_constant.pkg.{u} X β†₯V).compare uniform_space.completion.cpkg.{u})
((V.to_Cond.val.map f.op) x).down :=
begin
cases x,
apply abstract_completion.induction_on (locally_constant.pkg.{u} Y V) x,
{ apply is_closed_eq,
{ apply uniform_space.completion.continuous_map.comp,
apply (abstract_completion.uniform_continuous_compare _ _).continuous },
{ apply (abstract_completion.uniform_continuous_compare _ _).continuous.comp,
let Ο† : C(Y, V) β†’ C(X, V) := _, change continuous Ο†,
let ψ := V.to_Cond.val.map f.op, have hψ : Ο† = ulift.down ∘ ψ ∘ ulift.up := rfl,
rw hψ, clear hψ,
refine continuous_induced_dom.comp _,
refine continuous.comp _ continuous_ulift_up,
rw [to_Cond_val_map],
refine continuous.comp _ _, { exact continuous_ulift_up },
dsimp only [Condensed.of_top_ab, Condensed.of_top_ab.presheaf],
exact (map_continuous (continuous_map.comp_right_continuous_map β†₯V f)).comp continuous_induced_dom, } },
{ intro Ο†,
dsimp only,
simp only [abstract_completion.compare_coe, to_Cond_val_map_apply,
uniform_space.completion.map],
rw [abstract_completion.map_coe],
swap,
{ letI : seminormed_add_comm_group (locally_constant β†₯(X.to_CompHaus.to_Top) β†₯V),
{ exact locally_constant.seminormed_add_comm_group },
letI : seminormed_add_comm_group (locally_constant β†₯(Y.to_CompHaus.to_Top) β†₯V),
{ exact locally_constant.seminormed_add_comm_group },
exact normed_add_group_hom.uniform_continuous _, },
have : (continuous_map.comp_right_continuous_map β†₯V f) ((locally_constant.pkg Y V).coe Ο†) =
(locally_constant.pkg X V).coe _ := _,
rw [this, abstract_completion.compare_coe],
ext1,
erw [locally_constant.coe_comap],
refl,
exact f.continuous },
end
lemma massive_aux (X Y : Profinite.{u}) (f : X ⟢ Y) :
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond Y).hom ≫
Ab.ulift.{u+1 u}.map ((LCC_iso_Cond_of_top_ab.{u} V).inv.app (op.{u+2} Y)) ≫
(ExtQprime_iso_aux_system_obj_aux'.{u} V Y).hom ≫
(forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map
((FreeAb.eval.{u+1 u+2} SemiNormedGroup.{u+1}α΅’α΅–).map
((CLC.{u+1 u} (SemiNormedGroup.ulift.{u+1 u}.obj V)).right_op.map_FreeAb.map
((FreeAb.of_functor.{u+1 u} Profinite.{u}).map f))).unop =
(preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map
((FreeAb.eval.{u+1 u+2} (Condensed.{u u+1 u+2} Ab.{u+1})).map
(freeCond.{u}.map_FreeAb.map ((FreeAb.of_functor.{u+1 u} Profinite.{u}).map f))).op ≫
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond X).hom ≫
Ab.ulift.{u+1 u}.map ((LCC_iso_Cond_of_top_ab.{u} V).inv.app (op.{u+2} X)) ≫
(ExtQprime_iso_aux_system_obj_aux'.{u} V X).hom :=
begin
dsimp only [functor.map_FreeAb, FreeAb.of_functor, FreeAb.eval],
simp only [free_abelian_group.map_of_apply, free_abelian_group.lift.of, id],
dsimp only [functor.right_op_map, quiver.hom.op_unop, quiver.hom.unop_op],
rw massive_aux₁_assoc, congr' 1,
ext1 x, simp only [comp_apply],
dsimp only [ExtQprime_iso_aux_system_obj_aux', LCC_iso_Cond_of_top_ab,
LCC_iso_Cond_of_top_ab_add_equiv, LCC_iso_Cond_of_top_ab_equiv, CLC, LC, functor.comp_map,
Condensed.of_top_ab],
simp only [add_equiv.to_fun_eq_coe, normed_add_group_hom.completion_coe_to_fun,
add_equiv.to_AddCommGroup_iso_hom, add_equiv.coe_to_add_monoid_hom, add_equiv.trans_apply,
add_equiv.ulift_apply, equiv.to_fun_as_coe, equiv.ulift_apply_2,
Ab.ulift_map_apply_down, add_equiv.coe_mk, nat_iso.of_components.inv_app,
add_equiv.to_AddCommGroup_iso, add_equiv.mk_symm,
SemiNormedGroup.forgetβ‚‚_Ab_map, normed_add_group_hom.coe_to_add_monoid_hom],
let F := SemiNormedGroup.Completion.{u+1}.map ((SemiNormedGroup.LocallyConstant.{u+1 u}.obj
(SemiNormedGroup.ulift.{u+1 u}.obj V)).map f.op),
let g := _,
let Z := _,
change F ((uniform_space.completion.map g) Z) = _,
change (F ∘ uniform_space.completion.map g) Z = _,
erw [uniform_space.completion.map_comp],
rotate,
{ apply normed_add_group_hom.uniform_continuous, },
{ apply normed_add_group_hom.uniform_continuous, },
conv_lhs
{ dsimp only [function.comp, normed_add_group_hom.coe_to_add_monoid_hom, g,
SemiNormedGroup.LocallyConstant_obj_map], },
simp only [locally_constant.comap_hom_map_hom],
letI : uniform_space.{u} (locally_constant.{u u} β†₯(unop.{u+2} (op.{u+2} X)) β†₯V) := _,
erw [← uniform_space.completion.map_comp],
rotate,
{ apply normed_add_group_hom.uniform_continuous, },
{ apply normed_add_group_hom.uniform_continuous, },
dsimp only [function.comp, Z, quiver.hom.unop_op],
congr' 1, clear Z g F,
exact massive_auxβ‚‚ V X Y f x,
end
lemma massive (X Y : FreeAb Profinite.{u}) (f : X ⟢ Y) :
(((preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond Y.as).hom ≫
(Condensed_Ab_to_presheaf.{u}.map (Condensed_LCC_iso_of_top_ab.{u} V).inv).app (op.{u+2} Y.as) ≫
(ExtQprime_iso_aux_system_obj_aux'.{u} V Y.as).hom) ≫
(πŸ™ _)) ≫
(forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map
(((CLC.{u+1 u} (SemiNormedGroup.ulift.{u+1 u}.obj V)).right_op.map_FreeAb β‹™
FreeAb.eval.{u+1 u+2} SemiNormedGroup.{u+1}α΅’α΅–).map f).unop =
(preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map
((freeCond.{u}.map_FreeAb β‹™ FreeAb.eval.{u+1 u+2} (Condensed.{u u+1 u+2} Ab.{u+1})).map f).op ≫
((preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond X.as).hom ≫
(Condensed_Ab_to_presheaf.{u}.map (Condensed_LCC_iso_of_top_ab.{u} V).inv).app (op.{u+2} X.as) ≫
(ExtQprime_iso_aux_system_obj_aux'.{u} V X.as).hom) ≫ πŸ™ _ :=
begin
simp only [Condensed_Ab_to_presheaf_map, category.assoc, category.comp_id, functor.comp_map],
dsimp only [Condensed_LCC_iso_of_top_ab, Sheaf.iso.mk_inv_val,
iso_whisker_right_inv, whisker_right_app],
apply free_abelian_group.induction_on f; clear f,
{ simp only [functor.map_zero, unop_zero, comp_zero, op_zero, zero_comp], },
{ apply massive_aux },
{ intros f hf,
simp only [functor.map_neg, unop_neg, op_neg, comp_neg, neg_comp, hf], },
{ intros f g hf hg,
simp only [functor.map_add, unop_add, op_add, comp_add, add_comp, hf, hg], },
end
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_c (c₁ cβ‚‚) (h : c₁ ⟢ cβ‚‚) :
(hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V cβ‚‚).hom ≫
(category_theory.functor.map _ h.op) =
(category_theory.functor.map _
begin
refine homological_complex.op_functor.map (quiver.hom.op _),
refine category_theory.functor.map _ h,
end) ≫ (hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V c₁).hom :=
begin
ext n : 2,
have aux : βˆ€ (n : β„•), (monotone.{0 0} (function.swap.{1 1 1} ΞΊ n)),
{ intro n, exact fact.out _ },
haveI : fact (ΞΊ c₁ n ≀ ΞΊ cβ‚‚ n) := ⟨aux n h.le⟩,
have := massive V
(breen_deligne.FPsystem.X.{u} r' BD ⟨M⟩ ΞΊ c₁ n)
(breen_deligne.FPsystem.X.{u} r' BD ⟨M⟩ ΞΊ cβ‚‚ n)
((breen_deligne.FP2.res.{u} r' _ _ _).app ⟨M⟩),
exact this
end
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_ΞΊ (c : (ℝβ‰₯0))
[βˆ€ (c : ℝβ‰₯0) (n : β„•), fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)] :
(hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V c).hom ≫
(whisker_right (aux_system.res _ _ _ _ _ _) _).app _ =
begin
refine category_theory.functor.map _ _,
refine homological_complex.op_functor.map (quiver.hom.op _),
refine (QprimeFP_nat.ΞΉ BD ΞΊβ‚‚ ΞΊ M).app _,
end ≫ (hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊβ‚‚ M V c).hom :=
begin
ext n : 2,
have := massive V
(breen_deligne.FPsystem.X.{u} r' BD ⟨M⟩ ΞΊβ‚‚ c n)
(breen_deligne.FPsystem.X.{u} r' BD ⟨M⟩ κ c n)
((breen_deligne.FP2.res.{u} r' _ _ _).app ⟨M⟩),
exact this
end
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_Tinv (c : ℝβ‰₯0)
[βˆ€ (c : ℝβ‰₯0) (n : β„•), fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)] :
(hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V c).hom ≫
(whisker_right
(aux_system.Tinv _ _ _ _ _ _) _).app _ =
begin
refine category_theory.functor.map _ _,
refine homological_complex.op_functor.map (quiver.hom.op _),
refine (QprimeFP_nat.Tinv BD ΞΊβ‚‚ ΞΊ M).app _,
end
≫ (hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊβ‚‚ M V c).hom :=
begin
ext n : 2,
have := massive V
(breen_deligne.FPsystem.X.{u} r' BD ⟨M⟩ ΞΊβ‚‚ c n)
(breen_deligne.FPsystem.X.{u} r' BD ⟨M⟩ κ c n)
(((breen_deligne.FPsystem.Tinv.{u} r' BD ⟨M⟩ ΞΊβ‚‚ ΞΊ).app c).f n),
exact this,
end
def to_Cond_T_inv (r : ℝβ‰₯0) (V : SemiNormedGroup.{u}) [normed_with_aut r V] : V.to_Cond ⟢ V.to_Cond :=
(Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u} normed_with_aut.T.{u}.inv)
(normed_add_group_hom.continuous _))
lemma uniform_space.completion.map_comp'
{Ξ± Ξ² Ξ³ : Type*} [uniform_space Ξ±] [uniform_space Ξ²] [uniform_space Ξ³]
{g : Ξ² β†’ Ξ³} {f : Ξ± β†’ Ξ²}
(hg : uniform_continuous g) (hf : uniform_continuous f) (x) :
uniform_space.completion.map g (uniform_space.completion.map f x) =
uniform_space.completion.map (g ∘ f) x :=
begin
rw [← uniform_space.completion.map_comp hg hf],
end
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux_helper
(r : ℝβ‰₯0) (V : SemiNormedGroup.{u}) [normed_with_aut r V] [complete_space V] [separated_space V]
(X : Profinite.{u}) :
(ExtQprime_iso_aux_system_obj_aux' V X).hom ≫
category_theory.functor.map _
(SemiNormedGroup.Completion.map
(nat_trans.app
(SemiNormedGroup.LocallyConstant.map
(category_theory.functor.map _ $ V_T_inv _ _)) _)) =
Ab.ulift.map
(category_theory.functor.map _ $
category_theory.functor.map _ $
nat_trans.app
(SemiNormedGroup.LocallyConstant.map $ V_T_inv _ _) _) ≫
(ExtQprime_iso_aux_system_obj_aux' V X).hom
:=
begin
ext1 ⟨f⟩,
simp only [comp_apply],
dsimp only [ExtQprime_iso_aux_system_obj_aux', add_equiv.to_AddCommGroup_iso,
add_equiv.coe_to_add_monoid_hom, add_equiv.trans_apply],
simp only [add_equiv.to_fun_eq_coe, SemiNormedGroup.LocallyConstant_map_app, SemiNormedGroup.Completion_map,
normed_add_group_hom.completion_coe_to_fun, add_equiv.ulift_apply, equiv.to_fun_as_coe, equiv.ulift_apply_2,
add_equiv.coe_mk, Ab.ulift_map_apply_down, SemiNormedGroup.forgetβ‚‚_Ab_map,
normed_add_group_hom.coe_to_add_monoid_hom],
rw uniform_space.completion.map_comp',
rotate,
{ apply normed_add_group_hom.uniform_continuous },
{ apply normed_add_group_hom.uniform_continuous },
rw uniform_space.completion.map_comp',
rotate,
{ apply normed_add_group_hom.uniform_continuous },
{ apply normed_add_group_hom.uniform_continuous },
refl
end
lemma another_aux_lemma [normed_with_aut r V] (X : Profinite) :
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab V.to_Cond X).hom
≫ (Condensed_Ab_to_presheaf.map_iso (Condensed_LCC_iso_of_top_ab V)).inv.app (op X)
≫
begin
refine nat_trans.app _ _,
refine Condensed_Ab_to_presheaf.map _,
refine Sheaf.hom.mk _,
dsimp [Condensed_LCC],
refine whisker_right _ _,
refine whisker_right _ _,
refine SemiNormedGroup.LCC.map _,
exact V_T_inv r V,
end =
(preadditive_yoneda.map
(to_Cond_T_inv r V)).app _ ≫
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab V.to_Cond X).hom ≫
(Condensed_Ab_to_presheaf.map_iso (Condensed_LCC_iso_of_top_ab V)).inv.app _ :=
begin
have := preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_natural
(to_Cond_T_inv r V) X,
erw ← reassoc_of this,
congr' 1,
dsimp only [Condensed_Ab_to_presheaf, functor.map_iso_inv, nat_iso.app_inv,
Sheaf_to_presheaf_map, id, whisker_right_app, SemiNormedGroup.LCC,
curry, uncurry, curry_obj, functor.comp_map],
simp only [category_theory.functor.map_id, category.comp_id],
rw ← nat_trans.comp_app,
rw ← Sheaf.hom.comp_val, -- how to make those commute?
ext ⟨x⟩,
dsimp only [Condensed_LCC_iso_of_top_ab, Sheaf.iso.mk, iso_whisker_right, to_Cond_T_inv,
Ab.ulift],
simp only [comp_apply],
dsimp [Condensed.of_top_ab_map],
simp only [comp_apply],
dsimp [LCC_iso_Cond_of_top_ab, forgetβ‚‚, has_forgetβ‚‚.forgetβ‚‚],
rw nat_iso.of_components.inv_app,
apply final_boss,
end
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux (c : ℝβ‰₯0)
[normed_with_aut r V] (n : β„•) (t) :
((forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map
(((aux_system.T_inv.{u u+1} r r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) κ).app
(op.{1} c)).f n))
((((ExtQprime_iso_aux_system_obj_aux.{u} V).hom.app
(((breen_deligne.FPsystem.{u} r' BD ⟨M⟩ κ).obj c).X n)).unop) t) =
(((ExtQprime_iso_aux_system_obj_aux.{u} V).hom.app
(((breen_deligne.FPsystem.{u} r' BD ⟨M⟩ κ).obj c).X n)).unop)
(t ≫ to_Cond_T_inv.{u} r V) :=
begin
/-
Note: This should reduce to some calcuation with the sheafification adjunction,
as well as something about completion/ulift compatibiity.
If we can reduce this to such statements, we will be in pretty good shape.
-/
/- This code block is pretty slow.
dsimp [ExtQprime_iso_aux_system_obj_aux, ExtQprime_iso_aux_system_obj_aux'],
simp only [comp_apply],
dsimp [forgetβ‚‚, has_forgetβ‚‚.forgetβ‚‚, aux_system.T_inv,
Condensed_LCC_iso_of_top_ab, LCC_iso_Cond_of_top_ab],
rw nat_iso.of_components.inv_app,
dsimp only [unop_op],
-/
dsimp only [forgetβ‚‚, has_forgetβ‚‚.forgetβ‚‚, ExtQprime_iso_aux_system_obj_aux,
nat_iso.of_components.hom_app, id, iso.op, iso.trans_hom, iso.symm,
nat_iso.app_inv, aux_system.T_inv, quiver.hom.op_unop, quiver.hom.unop_op,
homological_complex.unop],
simp only [comp_apply],
let X : Profinite := (((breen_deligne.FPsystem r' BD ⟨M⟩ κ).obj c).X n).as,
have := preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_natural
(to_Cond_T_inv r V) X,
apply_fun (Ξ» e, e t) at this,
erw this, clear this,
simp only [comp_apply],
dsimp only [SemiNormedGroup.LocallyConstant],
have := hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux_helper r V X,
let s := ((Condensed_Ab_to_presheaf.map_iso (Condensed_LCC_iso_of_top_ab V)).inv.app (op X))
(((preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab V.to_Cond X).hom)
(t)),
apply_fun (Ξ» e, e s) at this,
erw this, clear this,
simp only [comp_apply],
congr' 1, dsimp only [s],
simp only [← comp_apply],
congr' 1,
simp only [category.assoc],
erw ← another_aux_lemma r V X,
congr' 2,
ext1 ⟨x⟩, dsimp only [Ab.ulift, Condensed_Ab_to_presheaf, whisker_right_app,
Sheaf_to_presheaf],
ext1,
dsimp,
congr' 2,
dsimp only [SemiNormedGroup.LCC, curry, curry_obj, functor.comp_map, uncurry],
simp only [category_theory.functor.map_id, category.comp_id],
refl,
end
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv (c : ℝβ‰₯0)
[normed_with_aut r V] :
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V c).hom ≫
((forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex
(complex_shape.up.{0} β„•)).map (nat_trans.app
((aux_system.T_inv.{u u+1} r r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) κ)) _) =
begin
let e := preadditive_yoneda.map (to_Cond_T_inv r V),
let e' := nat_trans.map_homological_complex e (complex_shape.down β„•).symm,
let Q := ((QprimeFP_nat r' BD ΞΊ M).obj c).op,
exact e'.app Q,
end ≫
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V (c)).hom :=
begin
ext n : 2, ext1 t,
dsimp [hom_complex_QprimeFP_nat_iso_aux_system],
simp only [comp_apply],
dsimp [nat_iso.map_homological_complex, forgetβ‚‚_unop],
erw id_apply, erw id_apply,
erw [functor.map_homological_complex_map_f],
apply hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux,
end
namespace ExtQprime_iso_aux_system_obj_naturality_setup
/-
lemma aux₁ (c₁ cβ‚‚ : ℝβ‰₯0) (h : c₁ ⟢ cβ‚‚) :
homological_complex.unop_functor.{u+2 u+1 0}.map
(((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β‹™
forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond))
AddCommGroup.{u+1}).right_op.map_homological_complex
(complex_shape.up.{0} β„€)).map
((homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_down_int_up).map
((QprimeFP_nat.{u} r' BD ΞΊ M).map h))).op ≫
homological_complex.unop_functor.{u+2 u+1 0}.map
((map_homological_complex_embed.{u+2 u+2 u+1 u+1}
(preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β‹™
forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond))
AddCommGroup.{u+1}).right_op).inv.app
((QprimeFP_nat.{u} r' BD ΞΊ M).obj c₁)).op ≫
embed_unop.{u+2 u+1}.hom.app
(op.{u+3}
(((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β‹™
forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond))
Ab.{u+1}).right_op.map_homological_complex
(complex_shape.down.{0} β„•)).obj
((QprimeFP_nat.{u} r' BD ΞΊ M).obj c₁))) =
begin
dsimp,
let e := (QprimeFP_nat r' BD ΞΊ M).map h,
let e₁ := ((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β‹™
forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond))
Ab.{u+1}).right_op.map_homological_complex
(complex_shape.down.{0} β„•)).map e,
let eβ‚‚ := homological_complex.unop_functor.map e₁.op,
refine _ ≫
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down).map
eβ‚‚,
refine homological_complex.unop_functor.{u+2 u+1 0}.map
((map_homological_complex_embed.{u+2 u+2 u+1 u+1}
(preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β‹™
forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond))
AddCommGroup.{u+1}).right_op).inv.app
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ‚‚)).op ≫
embed_unop.{u+2 u+1}.hom.app
(op.{u+3}
(((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β‹™
forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond))
Ab.{u+1}).right_op.map_homological_complex
(complex_shape.down.{0} β„•)).obj
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ‚‚)))
end := admit
def F : ℝβ‰₯0 β₯€
(homological_complex.{u+1 u+2 0} AddCommGroup.{u+1} (complex_shape.down.{0} β„•).symm)α΅’α΅– :=
QprimeFP_nat.{u} r' BD ΞΊ M β‹™
(preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β‹™
forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond))
AddCommGroup.{u+1}).right_op.map_homological_complex
(complex_shape.down.{0} β„•) β‹™ homological_complex.unop_functor.right_op
@[reassoc]
lemma naturality_helper {c₁ cβ‚‚ : ℝβ‰₯0} (h : c₁ ⟢ cβ‚‚) (n : β„•) (w1 w2) :
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1} complex_shape.embedding.nat_up_int_down
nat_up_int_down_c_iff n (-↑n) w1).hom.app
(((preadditive_yoneda.{u+1 u+2}.obj
V.to_Cond).right_op.map_homological_complex (complex_shape.down.{0} β„•)).obj
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ‚‚)).unop ≫
(homology_functor _ _ _).map
(homological_complex.map_unop _ _ $
category_theory.functor.map _ $ category_theory.functor.map _ h) =
category_theory.functor.map _
(homological_complex.map_unop _ _ $
category_theory.functor.map _ $ category_theory.functor.map _ h) ≫
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1} complex_shape.embedding.nat_up_int_down
nat_up_int_down_c_iff n (-↑n) w2).hom.app
(((preadditive_yoneda.{u+1 u+2}.obj
V.to_Cond).right_op.map_homological_complex (complex_shape.down.{0} β„•)).obj
((QprimeFP_nat.{u} r' BD ΞΊ M).obj c₁)).unop :=
admit
-/
lemma aux₁ (c₁ cβ‚‚ : ℝβ‰₯0) (h : c₁ ⟢ cβ‚‚) (n : β„•) :
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V cβ‚‚).hom ≫
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
((aux_system.{u u+1} r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) κ).to_Ab.map h.op) =
(homology_functor _ _ _).map
(category_theory.functor.map _
(homological_complex.op_functor.map ((QprimeFP_nat r' BD ΞΊ M).map h).op)) ≫
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V c₁).hom :=
begin
rw [← functor.map_comp, ← functor.map_comp],
congr' 1,
erw ← hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_c,
end
lemma auxβ‚‚ (c₁ cβ‚‚ : ℝβ‰₯0) (h : c₁ ⟢ cβ‚‚) (n : β„•) :
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1}
complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-↑n) (by { cases n; refl})).hom.app
(hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ‚‚) V.to_Cond) ≫
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map_homological_complex
(complex_shape.down.{0} β„•).symm).map (homological_complex.op_functor.{u+2 u+1 0}.map
((QprimeFP_nat.{u} r' BD ΞΊ M).map h).op)) =
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down β‹™
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.down.{0} β„€) (-↑n)).map
(category_theory.functor.map _
(homological_complex.op_functor.map ((QprimeFP_nat r' BD ΞΊ M).map h).op)) ≫
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1}
complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-↑n) (by { cases n; refl})).hom.app
(hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj c₁) V.to_Cond) :=
begin
erw nat_trans.naturality,
end
lemma aux₃ (c₁ cβ‚‚ : ℝβ‰₯0) (h : c₁ ⟢ cβ‚‚) (n : β„•) :
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„€).symm (-↑n)).map
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ‚‚) V.to_Cond).hom ≫
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down β‹™
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.down.{0} β„€) (-↑n)).map
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map_homological_complex
(complex_shape.down.{0} β„•).symm).map (homological_complex.op_functor.{u+2 u+1 0}.map
((QprimeFP_nat.{u} r' BD ΞΊ M).map h).op))
=
((homology_functor.{u+1 u+2 0} AddCommGroup.{u+1}
(complex_shape.up.{0} β„€).symm (-↑n)).op.map
(homological_complex.unop_functor.{u+2 u+1 0}.right_op.map
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).right_op.map_homological_complex
(complex_shape.up.{0} β„€)).map ((QprimeFP_int.{u} r' BD ΞΊ M).map h)))).unop ≫
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„€).symm (-↑n)).map
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj c₁) V.to_Cond).hom
:=
begin
dsimp only [functor.op_map, functor.comp_map],
erw [← functor.map_comp],
erw [← functor.map_comp],
congr' 1,
ext ((_ | k) | k ) : 2,
{ refine (category.id_comp _).trans (category.comp_id _).symm },
{ apply is_zero.eq_of_tgt,
exact is_zero_zero _ },
{ refine (category.id_comp _).trans (category.comp_id _).symm },
end
/-
lemma naturality_helper {cβ‚‚ : ℝβ‰₯0} (n : β„•) :
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„€).symm (-↑n)).map
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ‚‚) V.to_Cond).hom ≫
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1}
complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-↑n) (by { cases n; refl})).hom.app
(hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ‚‚) V.to_Cond) =
_
-/
end ExtQprime_iso_aux_system_obj_naturality_setup
lemma QprimeFP_acyclic (c) (k i : β„€) (hi : 0 < i) :
is_zero (((Ext' i).obj (op (((QprimeFP_int.{u} r' BD ΞΊ M).obj c).X k))).obj V.to_Cond) :=
begin
rcases k with ((_|k)|k),
{ apply free_acyclic, exact hi },
{ rw [← functor.flip_obj_obj], refine functor.map_is_zero _ _, refine (is_zero_zero _).op, },
{ apply free_acyclic, exact hi },
end
lemma ExtQprime_iso_aux_system_obj_natrality (c₁ cβ‚‚ : ℝβ‰₯0) (h : c₁ ⟢ cβ‚‚) (n : β„•) :
(ExtQprime_iso_aux_system_obj r' BD ΞΊ M V cβ‚‚ n).hom ≫
(homology_functor _ _ _).map
((system_of_complexes.to_Ab _).map h.op) =
((Ext n).map ((QprimeFP r' BD ΞΊ _).map h).op).app _ ≫
(ExtQprime_iso_aux_system_obj r' BD ΞΊ M V c₁ n).hom :=
begin
dsimp only [ExtQprime_iso_aux_system_obj,
iso.trans_hom, id, functor.map_iso_hom],
haveI : ((homotopy_category.quotient.{u+1 u+2 0}
(Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊ M).obj c₁)).is_bounded_above :=
chain_complex.is_bounded_above _,
haveI : ((homotopy_category.quotient.{u+1 u+2 0}
(Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊ M).obj cβ‚‚)).is_bounded_above :=
chain_complex.is_bounded_above _,
have := Ext_compute_with_acyclic_naturality
((QprimeFP_int.{u} r' BD ΞΊ M).obj c₁)
((QprimeFP_int.{u} r' BD ΞΊ M).obj cβ‚‚)
V.to_Cond _ _
((QprimeFP_int.{u} r' BD ΞΊ M).map h) n,
rotate,
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
dsimp only [functor.comp_map] at this,
erw reassoc_of this, clear this,
simp only [category.assoc, nat_iso.app_hom],
congr' 1,
rw ExtQprime_iso_aux_system_obj_naturality_setup.aux₁ r' BD ΞΊ M V c₁ cβ‚‚ h n,
simp only [← category.assoc], congr' 1,
simp only [category.assoc],
rw ExtQprime_iso_aux_system_obj_naturality_setup.auxβ‚‚ r' BD ΞΊ M V c₁ cβ‚‚ h n,
simp only [← category.assoc], congr' 1,
exact ExtQprime_iso_aux_system_obj_naturality_setup.aux₃ r' BD ΞΊ M V c₁ cβ‚‚ h n,
--- OLD PROOF FROM HERE
--have := ExtQprime_iso_aux_system_obj_naturality_setup.naturality_helper r' BD ΞΊ
-- M V h n _ _,
--simp only [category.assoc, functor.map_comp],
--slice_rhs 3 4
--{ erw ← this },
/-
dsimp only [QprimeFP_int],
congr' 1,
dsimp only [nat_iso.app_hom],
simp only [functor.map_comp, functor.comp_map, nat_trans.naturality,
nat_trans.naturality_assoc],
dsimp only [functor.op_map, quiver.hom.unop_op, functor.right_op_map],
simp only [← functor.map_comp, ← functor.map_comp_assoc, category.assoc],
dsimp [-homology_functor_map],
rw ExtQprime_iso_aux_system_obj_naturality_setup.aux₁,
dsimp [-homology_functor_map],
simp only [functor.map_comp, functor.map_comp_assoc,
category.assoc, nat_trans.naturality_assoc],
congr' 2,
dsimp [-homology_functor_map],
dsimp only [← functor.comp_map, ← functor.comp_obj],
--erw nat_trans.naturality_assoc,
--refine congr_arg2 _ _ (congr_arg2 _ rfl _),
--congr' 1,
--refl,
admit
-/
end
def ExtQprime_iso_aux_system (n : β„•) :
(QprimeFP r' BD ΞΊ M).op β‹™ (Ext n).flip.obj ((single _ 0).obj V.to_Cond) β‰…
aux_system r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊ β‹™
(forgetβ‚‚ _ Ab).map_homological_complex _ β‹™ homology_functor _ _ n :=
nat_iso.of_components (Ξ» c, ExtQprime_iso_aux_system_obj r' BD ΞΊ M V (unop c) n)
begin
intros c₁ cβ‚‚ h,
dsimp [-homology_functor_map],
rw ← ExtQprime_iso_aux_system_obj_natrality,
refl,
end
/-- The `Tinv` map induced by `M` -/
def ExtQprime.Tinv
[βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)] [βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)]
(n : β„€) :
(QprimeFP r' BD ΞΊ M).op β‹™ (Ext n).flip.obj ((single _ 0).obj V.to_Cond) ⟢
(QprimeFP r' BD ΞΊβ‚‚ M).op β‹™ (Ext n).flip.obj ((single _ 0).obj V.to_Cond) :=
whisker_right (nat_trans.op $ QprimeFP.Tinv BD _ _ M) _
/-- The `T_inv` map induced by `V` -/
def ExtQprime.T_inv [normed_with_aut r V]
[βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)] [βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)]
(n : β„€) :
(QprimeFP r' BD ΞΊ M).op β‹™ (Ext n).flip.obj ((single _ 0).obj V.to_Cond) ⟢
(QprimeFP r' BD ΞΊβ‚‚ M).op β‹™ (Ext n).flip.obj ((single _ 0).obj V.to_Cond) :=
whisker_right (nat_trans.op $ QprimeFP.ΞΉ BD _ _ M) _ ≫ whisker_left _ ((Ext n).flip.map $ (single _ _).map $
(Condensed.of_top_ab_map (normed_with_aut.T.inv).to_add_monoid_hom
(normed_add_group_hom.continuous _)))
def ExtQprime.Tinv2 [normed_with_aut r V]
[βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)] [βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)]
(n : β„€) :
(QprimeFP r' BD ΞΊ M).op β‹™ (Ext n).flip.obj ((single _ 0).obj V.to_Cond) ⟢
(QprimeFP r' BD ΞΊβ‚‚ M).op β‹™ (Ext n).flip.obj ((single _ 0).obj V.to_Cond) :=
ExtQprime.Tinv r' BD ΞΊ ΞΊβ‚‚ M V n - ExtQprime.T_inv r r' BD ΞΊ ΞΊβ‚‚ M V n
namespace ExtQprime_iso_aux_system_comm_Tinv_setup
variables (c : (ℝβ‰₯0)α΅’α΅–) (n : β„•)
[βˆ€ (c : ℝβ‰₯0) (n : β„•), fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)]
lemma aux₁ :
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V (unop.{1} c)).hom ≫
((forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex
(complex_shape.up.{0} β„•) β‹™
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
((aux_system.Tinv.{u u+1} r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊβ‚‚ ΞΊ).app c) =
(homology_functor _ _ _).map
(category_theory.functor.map _
(homological_complex.op_functor.map (quiver.hom.op $
(QprimeFP_nat.Tinv BD ΞΊβ‚‚ ΞΊ M).app _))) ≫
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊβ‚‚ M V (unop.{1} c)).hom :=
begin
simp only [← functor.map_comp, functor.comp_map], congr' 1,
apply hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_Tinv,
end
lemma auxβ‚‚ :
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„€).symm (-↑n)).map
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj (unop.{1} c)) V.to_Cond).hom ≫
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down β‹™
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.down.{0} β„€) (-↑n)).map
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map_homological_complex (complex_shape.down.{0} β„•).symm).map
(homological_complex.op_functor.{u+2 u+1 0}.map ((QprimeFP_nat.Tinv.{u} BD ΞΊβ‚‚ ΞΊ M).app (unop.{1} c)).op)) =
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).right_op.map_homological_complex (complex_shape.up.{0} β„€) β‹™
homological_complex.unop_functor.{u+2 u+1 0}.right_op β‹™
(homology_functor.{u+1 u+2 0} AddCommGroup.{u+1} (complex_shape.up.{0} β„€).symm (-↑n)).op).map
((QprimeFP_int.Tinv.{u} BD ΞΊβ‚‚ ΞΊ M).app (unop.{1} c))).unop ≫
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„€).symm (-↑n)).map
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ‚‚ M).obj (unop.{1} c)) V.to_Cond).hom :=
begin
dsimp only [functor.op_map, functor.comp_map],
erw [← functor.map_comp],
erw [← functor.map_comp],
congr' 1,
ext ((_ | k) | k ) : 2,
{ refine (category.id_comp _).trans (category.comp_id _).symm },
{ apply is_zero.eq_of_tgt,
exact is_zero_zero _ },
{ refine (category.id_comp _).trans (category.comp_id _).symm },
end
end ExtQprime_iso_aux_system_comm_Tinv_setup
lemma ExtQprime_iso_aux_system_comm_Tinv
[βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)] [βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)] (n : β„•) :
(ExtQprime_iso_aux_system r' BD ΞΊ M V n).hom ≫
whisker_right (aux_system.Tinv.{u} r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊβ‚‚ ΞΊ)
((forgetβ‚‚ _ _).map_homological_complex _ β‹™ homology_functor Ab.{u+1} (complex_shape.up β„•) n) =
ExtQprime.Tinv r' BD ΞΊ ΞΊβ‚‚ M V n ≫
(ExtQprime_iso_aux_system r' BD ΞΊβ‚‚ M V n).hom :=
begin
ext c : 2,
dsimp only [ExtQprime_iso_aux_system_obj,
ExtQprime_iso_aux_system,
iso.trans_hom, id, functor.map_iso_hom, nat_iso.of_components.hom_app,
nat_trans.comp_app],
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))).is_bounded_above :=
chain_complex.is_bounded_above _,
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊβ‚‚ M).obj (unop.{1} c))).is_bounded_above :=
chain_complex.is_bounded_above _,
have := Ext_compute_with_acyclic_naturality
((QprimeFP_int.{u} r' BD ΞΊβ‚‚ M).obj c.unop)
((QprimeFP_int.{u} r' BD ΞΊ M).obj c.unop)
V.to_Cond _ _
((QprimeFP_int.Tinv BD ΞΊβ‚‚ ΞΊ M).app _) n,
rotate,
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
erw reassoc_of this, clear this, simp only [category.assoc], congr' 1,
dsimp only [whisker_right_app],
rw ExtQprime_iso_aux_system_comm_Tinv_setup.aux₁ r' BD ΞΊ ΞΊβ‚‚ M V c n,
simp only [← category.assoc], congr' 1, simp only [category.assoc],
erw ← nat_trans.naturality,
simp only [← category.assoc], congr' 1,
exact ExtQprime_iso_aux_system_comm_Tinv_setup.auxβ‚‚ r' BD ΞΊ ΞΊβ‚‚ M V c n,
end
-- lemma ExtQprime_iso_aux_system_comm_T_inv [normed_with_aut r V] (n : β„•) (c : ℝβ‰₯0α΅’α΅–) :
-- (ExtQprime_iso_aux_system_obj.{u} r' BD ΞΊβ‚‚ M V (unop.{1} c) n).hom ≫
-- ((forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex (complex_shape.up.{0} β„•) β‹™
-- homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β„•) n).map
-- ((aux_system.res.{u u+1} r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊβ‚‚ ΞΊ).app c) =
-- ((Ext.{u+1 u+2} ↑n).flip.map
-- ((single.{u+1 u+2} (Condensed.{u u+1 u+2} Ab.{u+1}) 0).map
-- (Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u} normed_with_aut.T.{u}.inv) _))).app
-- ((QprimeFP.{u} r' BD ΞΊβ‚‚ M).op.obj c) ≫
-- (ExtQprime_iso_aux_system_obj.{u} r' BD ΞΊβ‚‚ M V (unop.{1} c) n).hom :=
-- by admit
def homological_complex.map_unop {A M : Type*} [category A] [abelian A]
{c : complex_shape M} (C₁ Cβ‚‚ : homological_complex Aα΅’α΅– c) (f : C₁ ⟢ Cβ‚‚) :
Cβ‚‚.unop ⟢ C₁.unop :=
homological_complex.unop_functor.map f.op
namespace ExtQprime_iso_aux_system_comm_setup
include r
variables [normed_with_aut r V] [βˆ€ (c : ℝβ‰₯0) (n : β„•), fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)]
def hom_complex_map_T_inv (c : (ℝβ‰₯0)α΅’α΅–) :
hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD κ M).obj (unop.{1} c)) V.to_Cond ⟢
hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ‚‚ M).obj (unop.{1} c)) V.to_Cond :=
begin
refine nat_trans.app _ _,
refine nat_trans.map_homological_complex _ _,
refine preadditive_yoneda.map _,
refine Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u}
normed_with_aut.T.{u}.inv) (normed_add_group_hom.continuous _)
end ≫
(category_theory.functor.map _
(homological_complex.op_functor.map (quiver.hom.op $
(QprimeFP_nat.ΞΉ BD ΞΊβ‚‚ ΞΊ M).app _)))
omit r
lemma embed_hom_complex_nat_isoβ‚€ (c : (ℝβ‰₯0)α΅’α΅–) : (embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ‚‚ M).obj (unop.{1} c)) V.to_Cond).hom.f (int.of_nat 0) = πŸ™ _ := rfl
lemma embed_hom_complex_nat_iso_neg (n : β„•) (c : (ℝβ‰₯0)α΅’α΅–) : (embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ‚‚ M).obj (unop.{1} c)) V.to_Cond).hom.f (-[1+ n]) = πŸ™ _ := rfl
lemma add_equiv.to_AddCommGroup_iso_apply (A B : AddCommGroup.{u})
(e : A ≃+ B) (a : A) : e.to_AddCommGroup_iso.hom a = e a := rfl
lemma preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_apply (M) (X) (t) :
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab M X).hom t =
yoneda'_equiv _ _ (Condensed_Ab_CondensedSet_adjunction.hom_equiv X.to_Condensed M t).val := rfl
include r
lemma aux₁ (c : (ℝβ‰₯0)α΅’α΅–):
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V (unop.{1} c)).hom ≫
((forgetβ‚‚.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex
(complex_shape.up.{0} β„•)).map ((aux_system.T_inv.{u u+1} r r' BD
⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊ).app c ≫
(aux_system.res.{u u+1} r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊβ‚‚ ΞΊ).app c) =
hom_complex_map_T_inv _ _ _ _ _ _ _ _ ≫
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊβ‚‚ M V (unop.{1} c)).hom :=
begin
--simp only [← category_theory.functor.map_comp, functor.comp_map], congr' 1,
dsimp only [hom_complex_map_T_inv], simp only [category.assoc],
rw ← hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_ΞΊ r' BD ΞΊ ΞΊβ‚‚ M V c.unop,
simp only [functor.map_comp, ← category.assoc], congr' 1,
apply hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv
/- -- IGNORE THIS
ext k t : 3,
dsimp [hom_complex_nat] at t,
dsimp only [hom_complex_QprimeFP_nat_iso_aux_system, aux_system.T_inv,
aux_system.res, hom_complex_nat, functor.map_iso, iso.trans_hom,
homological_complex.unop_functor, homological_complex.comp_f,
nat_iso.map_homological_complex, nat_iso.app_hom, iso.op_hom, quiver.hom.unop_op,
nat_trans.map_homological_complex_app_f, ExtQprime_iso_aux_system_obj_aux,
nat_iso.of_components.hom_app, id, iso.symm_hom, nat_iso.app_inv,
whisker_right_app, nat_trans.op, functor.comp_map],
simp only [category_theory.functor.map_comp],
dsimp only [homological_complex.comp_f, functor.map_homological_complex, functor.op_obj,
functor.unop, forgetβ‚‚_unop, nat_iso.of_components.hom_app,
homological_complex.hom.iso_of_components, iso.refl],
simp only [category.assoc, category.id_comp],
erw category.id_comp,
dsimp only [functor.op, quiver.hom.unop_op],
erw category.comp_id,
repeat { rw [comp_apply] },
-/ -- UUUUGGGHHH
end
lemma auxβ‚‚ (c : (ℝβ‰₯0)α΅’α΅–) :
((((preadditive_yoneda.{u+1 u+2}.obj (Condensed.of_top_ab.{u} β†₯V)).right_op.map_homological_complex
(complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))).map_unop
(((preadditive_yoneda.{u+1 u+2}.obj (Condensed.of_top_ab.{u} β†₯V)).right_op.map_homological_complex
(complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c)))
((nat_trans.map_homological_complex.{u+1 u+2 0 u+2 u+1}
(nat_trans.right_op.{u+1 u+1 u+2 u+2} (preadditive_yoneda.{u+1 u+2}.map
(Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u}
normed_with_aut.T.{u}.inv) (normed_add_group_hom.continuous _))))
(complex_shape.up.{0} β„€)).app
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))) ≫
(homological_complex.unop_functor.{u+2 u+1 0}.right_op.map
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).right_op.map_homological_complex (complex_shape.up.{0} β„€)).map
((QprimeFP_int.ΞΉ.{u} BD ΞΊβ‚‚ ΞΊ M).app (unop.{1} c)))).unop) ≫
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ‚‚ M).obj (unop.{1} c)) V.to_Cond).hom =
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj (unop.{1} c)) V.to_Cond).hom ≫
category_theory.functor.map _
(hom_complex_map_T_inv _ _ _ _ _ _ _ _) :=
begin
ext ((_ | k) | k ) : 2,
{ dsimp only [functor.comp],
simp only [functor.right_op_map, quiver.hom.unop_op, category.assoc, homological_complex.comp_f,
homological_complex.unop_functor_map_f, functor.map_homological_complex_map_f],
rw embed_hom_complex_nat_isoβ‚€,
rw embed_hom_complex_nat_isoβ‚€,
ext, refl },
{ apply is_zero.eq_of_tgt,
exact is_zero_zero _ },
{ dsimp only [functor.comp],
simp only [functor.right_op_map, quiver.hom.unop_op, category.assoc, homological_complex.comp_f,
homological_complex.unop_functor_map_f, functor.map_homological_complex_map_f],
rw embed_hom_complex_nat_iso_neg,
rw embed_hom_complex_nat_iso_neg,
ext, refl },
end
end ExtQprime_iso_aux_system_comm_setup
section naturality_snd_var
variables {A : Type*} [category A] [abelian A] [enough_projectives A]
(X : cochain_complex A β„€)
[((homotopy_category.quotient A (complex_shape.up.{0} β„€)).obj X).is_bounded_above]
{B₁ Bβ‚‚ : A} (f : B₁ ⟢ Bβ‚‚) -- (h₁) (hβ‚‚) (i)
@[reassoc]
lemma Ext_compute_with_acyclic_aux₁_naturality_snd_var (i)
(e : (0 : β„€) - i = -i) :
(Ext_compute_with_acyclic_aux₁ X B₁ i).hom ≫
begin
refine nat_trans.app _ _,
refine preadditive_yoneda.map _,
refine category_theory.functor.map _ f,
end =
category_theory.functor.map _
(category_theory.functor.map _ f) ≫
(Ext_compute_with_acyclic_aux₁ X Bβ‚‚ i).hom :=
begin
ext t,
simp only [comp_apply],
dsimp [Ext_compute_with_acyclic_aux₁, Ext],
simp only [category.assoc],
generalize_proofs h1 h2,
let φ₁ := Ξ» j, (single _ j).obj B₁,
let Ο†β‚‚ := Ξ» j, (single _ j).obj Bβ‚‚,
change t ≫ _ ≫ eq_to_hom (congr_arg φ₁ e) ≫ _ =
_ ≫ _ ≫ _ ≫ eq_to_hom (congr_arg Ο†β‚‚ e),
induction e,
dsimp, simp only [category.id_comp, category.comp_id],
erw ← nat_trans.naturality,
refl,
end
@[reassoc]
lemma Ext_compute_with_acyclic_auxβ‚‚_naturality_snd_var (i) :
(Ext_compute_with_acyclic_auxβ‚‚ X B₁ i).hom ≫
(homology_functor _ _ _).map
begin
refine nat_trans.app _ _,
refine nat_trans.map_homological_complex _ _,
exact preadditive_yoneda.map f,
end =
nat_trans.app
(preadditive_yoneda.map $ category_theory.functor.map _ f) _ ≫
(Ext_compute_with_acyclic_auxβ‚‚ X Bβ‚‚ i).hom :=
begin
dsimp only [Ext_compute_with_acyclic_auxβ‚‚, unop_op],
have := hom_single_iso_naturality_snd_var_good (of' X).replace (-i) f,
erw ← this,
end
include f
lemma Ext_compute_with_acyclic_aux₃_naturality_snd_var (i) :
(homology_functor _ _ _).map
begin
refine homological_complex.map_unop _ _ _,
refine nat_trans.app _ _,
refine nat_trans.map_homological_complex _ _,
refine nat_trans.right_op _,
exact preadditive_yoneda.map f,
end ≫ Ext_compute_with_acyclic_aux₃ X Bβ‚‚ i =
Ext_compute_with_acyclic_aux₃ X B₁ i ≫
(homology_functor _ _ _).map
begin
refine nat_trans.app _ _,
refine nat_trans.map_homological_complex _ _,
exact preadditive_yoneda.map f,
end :=
begin
dsimp only [Ext_compute_with_acyclic_aux₃],
erw ← (homology_functor.{u_2 u_2+1 0} AddCommGroup.{u_2}
(complex_shape.up.{0} β„€).symm (-i)).map_comp,
erw ← (homology_functor.{u_2 u_2+1 0} AddCommGroup.{u_2}
(complex_shape.up.{0} β„€).symm (-i)).map_comp,
congr' 1,
ext t x,
dsimp [Ext_compute_with_acyclic_HomB],
simp only [comp_apply],
dsimp [nat_trans.map_homological_complex, functor.right_op,
homological_complex.map_unop],
simp only [category.assoc],
end
lemma Ext_compute_with_acyclic_naturality_snd_var
(h₁) (hβ‚‚) (i) :
(Ext_compute_with_acyclic X B₁ h₁ i).hom ≫
(homology_functor _ _ _).map
(begin
refine homological_complex.map_unop _ _ _,
refine nat_trans.app _ _,
refine nat_trans.map_homological_complex _ _,
exact (preadditive_yoneda.map f).right_op,
end) =
category_theory.functor.map _
(category_theory.functor.map _ f) ≫ (Ext_compute_with_acyclic X Bβ‚‚ hβ‚‚ i).hom :=
begin
dsimp [Ext_compute_with_acyclic, - homology_functor_map],
simp only [category.assoc],
rw ← Ext_compute_with_acyclic_aux₁_naturality_snd_var_assoc,
rw ← Ext_compute_with_acyclic_auxβ‚‚_naturality_snd_var_assoc,
simp only [category.assoc], congr' 2,
rw [is_iso.eq_comp_inv, category.assoc, is_iso.inv_comp_eq],
apply Ext_compute_with_acyclic_aux₃_naturality_snd_var,
simp,
end
end naturality_snd_var
lemma ExtQprime_iso_aux_system_comm [normed_with_aut r V]
[βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)] [βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)] (n : β„•) :
(ExtQprime_iso_aux_system r' BD ΞΊ M V n).hom ≫
whisker_right (aux_system.Tinv2.{u} r r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊβ‚‚ ΞΊ)
((forgetβ‚‚ _ _).map_homological_complex _ β‹™ homology_functor Ab.{u+1} (complex_shape.up β„•) n) =
ExtQprime.Tinv2 r r' BD ΞΊ ΞΊβ‚‚ M V n ≫
(ExtQprime_iso_aux_system r' BD ΞΊβ‚‚ M V n).hom :=
begin
ext c : 2, dsimp only [aux_system.Tinv2, ExtQprime.Tinv2, nat_trans.comp_app, whisker_right_app],
simp only [sub_comp, nat_trans.app_sub, functor.map_sub, comp_sub],
refine congr_arg2 _ _ _,
{ rw [← nat_trans.comp_app, ← ExtQprime_iso_aux_system_comm_Tinv], refl },
dsimp only [ExtQprime_iso_aux_system_obj,
ExtQprime_iso_aux_system,
iso.trans_hom, id, functor.map_iso_hom, nat_iso.of_components.hom_app,
nat_trans.comp_app],
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1})
(complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))).is_bounded_above :=
chain_complex.is_bounded_above _,
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1})
(complex_shape.up.{0} β„€)).obj
((QprimeFP_int.{u} r' BD ΞΊβ‚‚ M).obj (unop.{1} c))).is_bounded_above :=
chain_complex.is_bounded_above _,
have := Ext_compute_with_acyclic_naturality
((QprimeFP_int.{u} r' BD ΞΊβ‚‚ M).obj c.unop)
((QprimeFP_int.{u} r' BD ΞΊ M).obj c.unop)
V.to_Cond _ _
((QprimeFP_int.ΞΉ BD ΞΊβ‚‚ ΞΊ M).app _) n,
rotate,
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
simp only [category.assoc], dsimp only [ExtQprime.T_inv, nat_trans.comp_app,
whisker_right_app, whisker_left_app, functor.flip],
let Ξ· := (Ext.{u+1 u+2} ↑n).map ((nat_trans.op.{0 u+1 0 u+2} (QprimeFP.ΞΉ.{u} BD ΞΊβ‚‚ ΞΊ M)).app c),
slice_rhs 1 2 { erw ← Ξ·.naturality },
slice_rhs 2 3 { erw this },
simp only [category.assoc], clear this Ξ·,
let t : Condensed.of_top_ab V ⟢ _ :=
Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u}
normed_with_aut.T.{u}.inv) (normed_add_group_hom.continuous _),
have := Ext_compute_with_acyclic_naturality_snd_var
((QprimeFP_int r' BD ΞΊ M).obj c.unop) t _ _ n,
rotate,
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
{ intros k i hi, apply QprimeFP_acyclic, exact hi },
erw ← reassoc_of this, clear this, congr' 1,
simp only [functor.comp_map, category_theory.functor.map_comp,
functor.op_map, quiver.hom.unop_op],
slice_rhs 1 2 { rw ← category_theory.functor.map_comp },
slice_lhs 4 5 { rw ← category_theory.functor.map_comp },
simp only [category.assoc,
← category_theory.functor.map_comp, ← functor.map_comp_assoc],
rw ExtQprime_iso_aux_system_comm_setup.aux₁ r r' BD ΞΊ ΞΊβ‚‚ M V c,
slice_lhs 2 4
{ simp only [category_theory.functor.map_comp] },
simp only [← category.assoc], congr' 1,
rw ExtQprime_iso_aux_system_comm_setup.auxβ‚‚ r r' BD ΞΊ ΞΊβ‚‚ M V c,
simp only [category_theory.functor.map_comp, category.assoc],
congr' 1,
rw [nat_iso.app_hom, ← nat_trans.naturality],
congr' 1,
-- have := Ext_compute_with_acyclic_naturality, <-- we need naturality in the other variable?!
--simp only [category.assoc],
--erw reassoc_of this,
--clear this, simp only [category.assoc], congr' 1,
/-
rw [nat_trans.comp_app, functor.map_comp, ExtQprime.T_inv,
nat_trans.comp_app, whisker_right_app, whisker_left_app, category.assoc],
dsimp only [ExtQprime_iso_aux_system, nat_iso.of_components.hom_app, aux_system,
aux_system.res, functor.comp_map],
-/
end
lemma ExtQprime_iso_aux_system_comm' [normed_with_aut r V]
[βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ ΞΊ c n)] [βˆ€ c n, fact (ΞΊβ‚‚ c n ≀ r' * ΞΊ c n)] (n : β„•) :
whisker_right (aux_system.Tinv2.{u} r r' BD ⟨M⟩ (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊβ‚‚ ΞΊ)
((forgetβ‚‚ _ _).map_homological_complex _ β‹™ homology_functor Ab.{u+1} (complex_shape.up β„•) n) ≫
(ExtQprime_iso_aux_system r' BD ΞΊβ‚‚ M V n).inv =
(ExtQprime_iso_aux_system r' BD ΞΊ M V n).inv ≫
ExtQprime.Tinv2 r r' BD ΞΊ ΞΊβ‚‚ M V n :=
begin
rw [iso.comp_inv_eq, category.assoc, iso.eq_inv_comp],
apply ExtQprime_iso_aux_system_comm
end
end
section
def _root_.category_theory.functor.map_commsq
{C D : Type*} [category C] [abelian C] [category D] [abelian D] (F : C β₯€ D) {X Y Z W : C}
{f₁ : X ⟢ Y} {g₁ : X ⟢ Z} {gβ‚‚ : Y ⟢ W} {fβ‚‚ : Z ⟢ W} (sq : commsq f₁ g₁ gβ‚‚ fβ‚‚) :
commsq (F.map f₁) (F.map g₁) (F.map gβ‚‚) (F.map fβ‚‚) :=
commsq.of_eq $ by rw [← F.map_comp, sq.w, F.map_comp]
end
section
variables {r'}
variables (BD : breen_deligne.package)
variables (ΞΊ ΞΊβ‚‚ : ℝβ‰₯0 β†’ β„• β†’ ℝβ‰₯0)
variables [βˆ€ (c : ℝβ‰₯0), BD.data.suitable (ΞΊ c)] [βˆ€ n, fact (monotone (function.swap ΞΊ n))]
variables [βˆ€ (c : ℝβ‰₯0), BD.data.suitable (ΞΊβ‚‚ c)] [βˆ€ n, fact (monotone (function.swap ΞΊβ‚‚ n))]
variables (M : ProFiltPseuNormGrpWithTinv₁.{u} r')
variables (V : SemiNormedGroup.{u}) [complete_space V] [separated_space V]
open bounded_homotopy_category
-- move me
instance eval'_is_bounded_above :
((homotopy_category.quotient (Condensed Ab) (complex_shape.up β„€)).obj
((BD.eval' freeCond').obj M.to_Condensed)).is_bounded_above :=
by { delta breen_deligne.package.eval', refine ⟨⟨1, _⟩⟩, apply chain_complex.bounded_by_one }
variables (ΞΉ : ulift.{u+1} β„• β†’ ℝβ‰₯0) (hΞΉ : monotone ΞΉ)
def Ext_Tinv2
{𝓐 : Type*} [category 𝓐] [abelian 𝓐] [enough_projectives 𝓐]
{A B V : bounded_homotopy_category 𝓐}
(Tinv : A ⟢ B) (ΞΉ : A ⟢ B) (T_inv : V ⟢ V) (i : β„€) :
((Ext i).obj (op B)).obj V ⟢ ((Ext i).obj (op A)).obj V :=
(((Ext i).map Tinv.op).app V - (((Ext i).map ΞΉ.op).app V ≫ ((Ext i).obj _).map T_inv))
open category_theory.preadditive
def Ext_Tinv2_commsq
{𝓐 : Type*} [category 𝓐] [abelian 𝓐] [enough_projectives 𝓐]
{A₁ B₁ Aβ‚‚ Bβ‚‚ V : bounded_homotopy_category 𝓐}
(Tinv₁ : A₁ ⟢ B₁) (ι₁ : A₁ ⟢ B₁)
(Tinvβ‚‚ : Aβ‚‚ ⟢ Bβ‚‚) (ΞΉβ‚‚ : Aβ‚‚ ⟢ Bβ‚‚)
(f : A₁ ⟢ Aβ‚‚) (g : B₁ ⟢ Bβ‚‚) (sqT : f ≫ Tinvβ‚‚ = Tinv₁ ≫ g) (sqΞΉ : f ≫ ΞΉβ‚‚ = ι₁ ≫ g)
(T_inv : V ⟢ V) (i : β„€) :
commsq
(((Ext i).map g.op).app V)
(Ext_Tinv2 Tinvβ‚‚ ΞΉβ‚‚ T_inv i)
(Ext_Tinv2 Tinv₁ ι₁ T_inv i)
(((Ext i).map f.op).app V) :=
commsq.of_eq
begin
delta Ext_Tinv2,
simp only [comp_sub, sub_comp, ← nat_trans.comp_app, ← functor.map_comp, ← op_comp, sqT,
← nat_trans.naturality, ← nat_trans.naturality_assoc, category.assoc, sqΞΉ],
end
open category_theory.preadditive
lemma auux
{𝓐 : Type*} [category 𝓐] [abelian 𝓐] [enough_projectives 𝓐]
{A₁ B₁ Aβ‚‚ Bβ‚‚ : cochain_complex 𝓐 β„€}
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj A₁).is_bounded_above]
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj B₁).is_bounded_above]
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj Aβ‚‚).is_bounded_above]
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj Bβ‚‚).is_bounded_above]
{f₁ : A₁ ⟢ B₁} {fβ‚‚ : Aβ‚‚ ⟢ Bβ‚‚} {Ξ± : A₁ ⟢ Aβ‚‚} {Ξ² : B₁ ⟢ Bβ‚‚}
(sq1 : commsq f₁ Ξ± Ξ² fβ‚‚) :
of_hom f₁ ≫ of_hom Ξ² = of_hom Ξ± ≫ of_hom fβ‚‚ :=
begin
have := sq1.w,
apply_fun (Ξ» f, (homotopy_category.quotient _ _).map f) at this,
simp only [functor.map_comp] at this,
exact this,
end
@[simp] lemma of_hom_id
{𝓐 : Type*} [category 𝓐] [abelian 𝓐] [enough_projectives 𝓐]
{A : cochain_complex 𝓐 β„€}
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj A).is_bounded_above] :
of_hom (πŸ™ A) = πŸ™ _ :=
by { delta of_hom, rw [category_theory.functor.map_id], refl }
lemma Ext_iso_of_bicartesian_of_bicartesian
{𝓐 : Type*} [category 𝓐] [abelian 𝓐] [enough_projectives 𝓐]
{A₁ B₁ C Aβ‚‚ Bβ‚‚ : cochain_complex 𝓐 β„€}
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj A₁).is_bounded_above]
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj B₁).is_bounded_above]
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj C).is_bounded_above]
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj Aβ‚‚).is_bounded_above]
[((homotopy_category.quotient 𝓐 (complex_shape.up β„€)).obj Bβ‚‚).is_bounded_above]
{f₁ : A₁ ⟢ B₁} {g₁ : B₁ ⟢ C} (w₁ : βˆ€ n, short_exact (f₁.f n) (g₁.f n))
{fβ‚‚ : Aβ‚‚ ⟢ Bβ‚‚} {gβ‚‚ : Bβ‚‚ ⟢ C} (wβ‚‚ : βˆ€ n, short_exact (fβ‚‚.f n) (gβ‚‚.f n))
(Ξ± : A₁ ⟢ Aβ‚‚) (Ξ² : B₁ ⟢ Bβ‚‚) (Ξ³ : C ⟢ C)
(ΞΉA : A₁ ⟢ Aβ‚‚) (ΞΉB : B₁ ⟢ Bβ‚‚)
(sq1 : commsq f₁ Ξ± Ξ² fβ‚‚) (sq2 : commsq g₁ Ξ² Ξ³ gβ‚‚)
(sq1' : commsq f₁ ΞΉA ΞΉB fβ‚‚) (sq2' : commsq g₁ ΞΉB (πŸ™ _) gβ‚‚)
(V : bounded_homotopy_category 𝓐) (T_inv : V ⟢ V)
(i : β„€)
(H1 : (Ext_Tinv2_commsq (of_hom Ξ±) (of_hom ΞΉA) (of_hom Ξ²) (of_hom ΞΉB) (of_hom f₁) (of_hom fβ‚‚)
(auux sq1) (auux sq1') T_inv i).bicartesian)
(H2 : (Ext_Tinv2_commsq (of_hom Ξ±) (of_hom ΞΉA) (of_hom Ξ²) (of_hom ΞΉB) (of_hom f₁) (of_hom fβ‚‚)
(auux sq1) (auux sq1') T_inv (i+1)).bicartesian) :
is_iso (Ext_Tinv2 (of_hom Ξ³) (πŸ™ _) T_inv (i+1)) :=
begin
have LES₁ := (((Ext_five_term_exact_seq' _ _ i V w₁).drop 2).pair.cons (Ext_five_term_exact_seq' _ _ (i+1) V w₁)),
replace LES₁ := (((Ext_five_term_exact_seq' _ _ i V w₁).drop 1).pair.cons LES₁).extract 0 4,
have LESβ‚‚ := (((Ext_five_term_exact_seq' _ _ i V wβ‚‚).drop 2).pair.cons (Ext_five_term_exact_seq' _ _ (i+1) V wβ‚‚)).extract 0 4,
replace LESβ‚‚ := (((Ext_five_term_exact_seq' _ _ i V wβ‚‚).drop 1).pair.cons LESβ‚‚).extract 0 4,
refine iso_of_bicartesian_of_bicartesian LESβ‚‚ LES₁ _ _ _ _ H1 H2,
{ apply commsq.of_eq, delta Ext_Tinv2, clear LES₁ LESβ‚‚,
rw [sub_comp, comp_sub, ← functor.flip_obj_map, ← functor.flip_obj_map],
rw ← Ext_Ξ΄_natural i V _ _ _ _ Ξ± Ξ² Ξ³ sq1.w sq2.w w₁ wβ‚‚,
congr' 1,
rw [← nat_trans.naturality, ← functor.flip_obj_map, category.assoc,
Ext_Ξ΄_natural i V _ _ _ _ ΞΉA ΞΉB (πŸ™ _) sq1'.w sq2'.w w₁ wβ‚‚],
simp only [op_id, category_theory.functor.map_id, nat_trans.id_app,
category.id_comp, of_hom_id, category.comp_id],
erw [category.id_comp],
symmetry,
apply Ext_Ξ΄_natural', },
{ apply Ext_Tinv2_commsq,
{ exact auux sq2 },
{ exact auux sq2' }, },
end
end