Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import Lbar.ext_aux1 | |
noncomputable theory | |
universes v u u' | |
open opposite category_theory category_theory.limits category_theory.preadditive | |
open_locale nnreal zero_object | |
variables (r r' : ββ₯0) | |
variables [fact (0 < r)] [fact (r < r')] [fact (r < 1)] | |
section | |
open bounded_homotopy_category | |
variables (BD : breen_deligne.data) | |
variables (ΞΊ ΞΊβ : ββ₯0 β β β ββ₯0) | |
variables [β (c : ββ₯0), BD.suitable (ΞΊ c)] [β n, fact (monotone (function.swap ΞΊ n))] | |
variables [β (c : ββ₯0), BD.suitable (ΞΊβ c)] [β n, fact (monotone (function.swap ΞΊβ n))] | |
variables (M : ProFiltPseuNormGrpWithTinvβ.{u} r') | |
variables (V : SemiNormedGroup.{u}) | |
lemma QprimeFP_map (cβ cβ : ββ₯0) (h : cβ βΆ cβ) : | |
(QprimeFP r' BD ΞΊ M).map h = of'_hom ((QprimeFP_int r' BD ΞΊ _).map h) := rfl | |
instance aaahrg (X : Profinite) : seminormed_add_comm_group (locally_constant X V) := | |
locally_constant.seminormed_add_comm_group | |
def V_T_inv (r : ββ₯0) (V : SemiNormedGroup.{u}) [normed_with_aut r V] : V βΆ V := | |
normed_with_aut.T.{u}.inv | |
variables [fact (0 < r')] [fact (r' < 1)] | |
section | |
variables [complete_space V] [separated_space V] | |
set_option pp.universes true | |
lemma final_boss_auxβ (X : Profinite) (x) : | |
((LCC_iso_Cond_of_top_ab_add_equiv.{u} X V).symm) x = | |
(LCC_iso_Cond_of_top_ab_equiv X V).symm x := rfl | |
lemma final_boss_auxβ [normed_with_aut r V] (X : Profinite) (x : locally_constant X V) : | |
((locally_constant.map_hom.{u u u} (V_T_inv r V)).completion) | |
(uniform_space.completion.cpkg.{u}.coe x) = | |
uniform_space.completion.map (locally_constant.map_hom (V_T_inv r V)) x := rfl | |
-- should this be a global instance earlier in mathlib? | |
local attribute [instance] | |
abstract_completion.uniform_struct | |
lemma final_boss_auxβ [normed_with_aut r V] (X : Profinite) : | |
continuous.{u u} | |
(Ξ» (x : C(X,V)), | |
((locally_constant.map_hom.{u u u} normed_with_aut.T.{u}.inv).completion) | |
(((uniform_space.completion.cpkg.{u}.compare_equiv (locally_constant.pkg.{u} X β₯V)).symm) x)) := | |
begin | |
dsimp [abstract_completion.compare_equiv], | |
refine (normed_add_group_hom.continuous _).comp _, | |
refine ((locally_constant.pkg X V).uniform_continuous_compare _).continuous, | |
end | |
example {Ξ² : Type*} [uniform_space Ξ²] (a : abstract_completion Ξ²) : uniform_space a.space := | |
by apply_instance | |
lemma final_boss_auxβ [normed_with_aut r V] (X : Profinite) : | |
@continuous.{u u} _ _ _ (uniform_space.completion.cpkg.uniform_struct.to_topological_space) | |
(Ξ» (x : C(X,V)), | |
((locally_constant.pkg X V).compare | |
uniform_space.completion.cpkg.{u} | |
{to_fun := (V_T_inv r V) β x.to_fun, continuous_to_fun := | |
(normed_with_aut.T.inv.continuous.comp x.2)})) := | |
begin | |
let e : C(X,V) β C(X,V) := Ξ» e, β¨(V_T_inv r V) β e, | |
(V_T_inv r V).continuous.comp e.2β©, | |
have he : continuous e := continuous_map.continuous_comp | |
((β¨(V_T_inv r V), (V_T_inv r V).continuousβ© : C(V,V))), | |
refine continuous.comp _ he, | |
refine ((locally_constant.pkg X V).uniform_continuous_compare _).continuous, | |
end | |
lemma final_boss [normed_with_aut r V] (X : Profinite) | |
(x : ((Condensed.of_top_ab.presheaf V).obj (op X))) : | |
((locally_constant.map_hom (V_T_inv r V)).completion) | |
(((LCC_iso_Cond_of_top_ab_add_equiv X V).symm) x) = | |
((LCC_iso_Cond_of_top_ab_add_equiv X V).symm) | |
{to_fun := (normed_with_aut.T.inv) β x.1, continuous_to_fun := | |
(normed_with_aut.T.inv.continuous.comp x.2)} := | |
begin | |
rw final_boss_auxβ, | |
rw final_boss_auxβ, | |
dsimp only [V_T_inv], | |
dsimp only [LCC_iso_Cond_of_top_ab_equiv], | |
change C(X,V) at x, | |
apply abstract_completion.induction_on (locally_constant.pkg.{u} X β₯V) x, | |
{ apply is_closed_eq, | |
{ apply final_boss_auxβ }, | |
{ apply final_boss_auxβ } }, | |
clear x, | |
intros x, | |
change ((locally_constant.map_hom.{u u u} normed_with_aut.T.{u}.inv).completion) | |
((locally_constant.pkg.{u} X β₯V).compare uniform_space.completion.cpkg.{u} | |
((locally_constant.pkg.{u} X β₯V).coe x)) = _, | |
--dsimp [abstract_completion.compare_equiv], | |
rw abstract_completion.compare_coe, | |
erw final_boss_auxβ, | |
erw uniform_space.completion.map_coe, | |
let q : C(X,V) := | |
{to_fun := (normed_with_aut.T.{u}.inv) β ((locally_constant.pkg.{u} X β₯V).coe x).to_fun, | |
continuous_to_fun := _}, | |
swap, | |
{ apply continuous.comp, | |
apply normed_add_group_hom.continuous, | |
refine ((locally_constant.pkg.{u} X β₯V).coe x).2 }, | |
have hq : q = (locally_constant.pkg X V).coe | |
((locally_constant.map_hom.{u u u} (V_T_inv.{u} r V)) x), | |
{ ext, refl }, | |
change _ = | |
((locally_constant.pkg.{u} X β₯V).compare uniform_space.completion.cpkg) q, | |
rw hq, | |
rw abstract_completion.compare_coe, | |
refl, | |
apply normed_add_group_hom.uniform_continuous, | |
end | |
end | |
@[reassoc] | |
lemma massive_auxβ (X Y : Profinite.{u}) (f : X βΆ Y) : | |
(preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map (freeCond.{u}.map f).op β« | |
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond X).hom = | |
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond Y).hom β« | |
V.to_Cond.val.map f.op := | |
begin | |
erw preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_natural', | |
refl, | |
end | |
lemma add_equiv.mk_symm {A B : Type*} [add_comm_group A] [add_comm_group B] | |
(f : A β+ B) (g : B β+ A) (h1 h2 h3) : | |
(add_equiv.mk f g h1 h2 h3).symm = | |
add_equiv.mk g f h2 h1 (by { intros x y, apply h1.injective, rw [h3, h2, h2, h2] }) := rfl | |
lemma add_equiv.mk_symm_apply {A B : Type*} [add_comm_group A] [add_comm_group B] | |
(f : A β+ B) (g : B β+ A) (h1 h2 h3) (x : B) : | |
(add_equiv.mk f g h1 h2 h3).symm x = g x := rfl | |
lemma locally_constant.comap_hom_map_hom {X Y V W : Type*} | |
[topological_space X] [compact_space X] | |
[topological_space Y] [compact_space Y] | |
[seminormed_add_comm_group V] [seminormed_add_comm_group W] | |
(f : X β Y) (hf : continuous f) (g : normed_add_group_hom V W) (Ο : locally_constant Y V) : | |
locally_constant.comap_hom f hf (locally_constant.map_hom g Ο) = | |
((locally_constant.map_hom g) β (locally_constant.comap_hom f hf)) Ο := | |
begin | |
dsimp only [locally_constant.comap_hom_apply, locally_constant.map_hom_apply, function.comp], | |
rw locally_constant.comap_map, | |
exact hf | |
end | |
instance (X : Profinite) : | |
uniform_space.{u} (locally_constant.{u u} X V) := | |
@pseudo_metric_space.to_uniform_space.{u} | |
(@locally_constant.{u u} (@coe_sort.{u+2 u+2} Profinite.{u} (Type u) Profinite.has_coe_to_sort.{u} X) | |
(@coe_sort.{u+2 u+2} SemiNormedGroup.{u} (Type u) SemiNormedGroup.has_coe_to_sort.{u} V) | |
(Top.topological_space.{u} X.to_CompHaus.to_Top)) | |
(@seminormed_add_comm_group.to_pseudo_metric_space.{u} | |
(@locally_constant.{u u} (@coe_sort.{u+2 u+2} Profinite.{u} (Type u) Profinite.has_coe_to_sort.{u} X) | |
(@coe_sort.{u+2 u+2} SemiNormedGroup.{u} (Type u) SemiNormedGroup.has_coe_to_sort.{u} V) | |
(Top.topological_space.{u} X.to_CompHaus.to_Top)) | |
locally_constant.seminormed_add_comm_group) | |
instance (X : Profinite) : topological_space β₯(V.to_Cond.val.obj (op X)) := | |
@ulift.topological_space _ (continuous_map.compact_open.{u u}) | |
variables [complete_space V] [separated_space V] | |
lemma to_Cond_val_map_apply (X Y : Profinite.{u}) (f : X βΆ Y) (x) : | |
V.to_Cond.val.map f.op x = β¨continuous_map.comp_right_continuous_map V f x.downβ© := | |
rfl | |
lemma to_Cond_val_map (X Y : Profinite.{u}) (f : X βΆ Y) : | |
β(V.to_Cond.val.map f.op) = | |
(Ξ» x, β¨continuous_map.comp_right_continuous_map V f x.downβ© : β₯(V.to_Cond.val.obj (op Y)) β β₯(V.to_Cond.val.obj (op X))) := | |
by { ext x, rw to_Cond_val_map_apply } | |
lemma massive_auxβ (X Y : Profinite.{u}) (f : X βΆ Y) (x : (V.to_Cond.val.obj (op.{u+2} Y))) : | |
uniform_space.completion.map.{u u} (locally_constant.comap_hom.{u u u} f f.continuous) | |
((locally_constant.pkg.{u} Y β₯V).compare uniform_space.completion.cpkg.{u} x.down) = | |
((locally_constant.pkg.{u} X β₯V).compare uniform_space.completion.cpkg.{u}) | |
((V.to_Cond.val.map f.op) x).down := | |
begin | |
cases x, | |
apply abstract_completion.induction_on (locally_constant.pkg.{u} Y V) x, | |
{ apply is_closed_eq, | |
{ apply uniform_space.completion.continuous_map.comp, | |
apply (abstract_completion.uniform_continuous_compare _ _).continuous }, | |
{ apply (abstract_completion.uniform_continuous_compare _ _).continuous.comp, | |
let Ο : C(Y, V) β C(X, V) := _, change continuous Ο, | |
let Ο := V.to_Cond.val.map f.op, have hΟ : Ο = ulift.down β Ο β ulift.up := rfl, | |
rw hΟ, clear hΟ, | |
refine continuous_induced_dom.comp _, | |
refine continuous.comp _ continuous_ulift_up, | |
rw [to_Cond_val_map], | |
refine continuous.comp _ _, { exact continuous_ulift_up }, | |
dsimp only [Condensed.of_top_ab, Condensed.of_top_ab.presheaf], | |
exact (map_continuous (continuous_map.comp_right_continuous_map β₯V f)).comp continuous_induced_dom, } }, | |
{ intro Ο, | |
dsimp only, | |
simp only [abstract_completion.compare_coe, to_Cond_val_map_apply, | |
uniform_space.completion.map], | |
rw [abstract_completion.map_coe], | |
swap, | |
{ letI : seminormed_add_comm_group (locally_constant β₯(X.to_CompHaus.to_Top) β₯V), | |
{ exact locally_constant.seminormed_add_comm_group }, | |
letI : seminormed_add_comm_group (locally_constant β₯(Y.to_CompHaus.to_Top) β₯V), | |
{ exact locally_constant.seminormed_add_comm_group }, | |
exact normed_add_group_hom.uniform_continuous _, }, | |
have : (continuous_map.comp_right_continuous_map β₯V f) ((locally_constant.pkg Y V).coe Ο) = | |
(locally_constant.pkg X V).coe _ := _, | |
rw [this, abstract_completion.compare_coe], | |
ext1, | |
erw [locally_constant.coe_comap], | |
refl, | |
exact f.continuous }, | |
end | |
lemma massive_aux (X Y : Profinite.{u}) (f : X βΆ Y) : | |
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond Y).hom β« | |
Ab.ulift.{u+1 u}.map ((LCC_iso_Cond_of_top_ab.{u} V).inv.app (op.{u+2} Y)) β« | |
(ExtQprime_iso_aux_system_obj_aux'.{u} V Y).hom β« | |
(forgetβ.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map | |
((FreeAb.eval.{u+1 u+2} SemiNormedGroup.{u+1}α΅α΅).map | |
((CLC.{u+1 u} (SemiNormedGroup.ulift.{u+1 u}.obj V)).right_op.map_FreeAb.map | |
((FreeAb.of_functor.{u+1 u} Profinite.{u}).map f))).unop = | |
(preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map | |
((FreeAb.eval.{u+1 u+2} (Condensed.{u u+1 u+2} Ab.{u+1})).map | |
(freeCond.{u}.map_FreeAb.map ((FreeAb.of_functor.{u+1 u} Profinite.{u}).map f))).op β« | |
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond X).hom β« | |
Ab.ulift.{u+1 u}.map ((LCC_iso_Cond_of_top_ab.{u} V).inv.app (op.{u+2} X)) β« | |
(ExtQprime_iso_aux_system_obj_aux'.{u} V X).hom := | |
begin | |
dsimp only [functor.map_FreeAb, FreeAb.of_functor, FreeAb.eval], | |
simp only [free_abelian_group.map_of_apply, free_abelian_group.lift.of, id], | |
dsimp only [functor.right_op_map, quiver.hom.op_unop, quiver.hom.unop_op], | |
rw massive_auxβ_assoc, congr' 1, | |
ext1 x, simp only [comp_apply], | |
dsimp only [ExtQprime_iso_aux_system_obj_aux', LCC_iso_Cond_of_top_ab, | |
LCC_iso_Cond_of_top_ab_add_equiv, LCC_iso_Cond_of_top_ab_equiv, CLC, LC, functor.comp_map, | |
Condensed.of_top_ab], | |
simp only [add_equiv.to_fun_eq_coe, normed_add_group_hom.completion_coe_to_fun, | |
add_equiv.to_AddCommGroup_iso_hom, add_equiv.coe_to_add_monoid_hom, add_equiv.trans_apply, | |
add_equiv.ulift_apply, equiv.to_fun_as_coe, equiv.ulift_apply_2, | |
Ab.ulift_map_apply_down, add_equiv.coe_mk, nat_iso.of_components.inv_app, | |
add_equiv.to_AddCommGroup_iso, add_equiv.mk_symm, | |
SemiNormedGroup.forgetβ_Ab_map, normed_add_group_hom.coe_to_add_monoid_hom], | |
let F := SemiNormedGroup.Completion.{u+1}.map ((SemiNormedGroup.LocallyConstant.{u+1 u}.obj | |
(SemiNormedGroup.ulift.{u+1 u}.obj V)).map f.op), | |
let g := _, | |
let Z := _, | |
change F ((uniform_space.completion.map g) Z) = _, | |
change (F β uniform_space.completion.map g) Z = _, | |
erw [uniform_space.completion.map_comp], | |
rotate, | |
{ apply normed_add_group_hom.uniform_continuous, }, | |
{ apply normed_add_group_hom.uniform_continuous, }, | |
conv_lhs | |
{ dsimp only [function.comp, normed_add_group_hom.coe_to_add_monoid_hom, g, | |
SemiNormedGroup.LocallyConstant_obj_map], }, | |
simp only [locally_constant.comap_hom_map_hom], | |
letI : uniform_space.{u} (locally_constant.{u u} β₯(unop.{u+2} (op.{u+2} X)) β₯V) := _, | |
erw [β uniform_space.completion.map_comp], | |
rotate, | |
{ apply normed_add_group_hom.uniform_continuous, }, | |
{ apply normed_add_group_hom.uniform_continuous, }, | |
dsimp only [function.comp, Z, quiver.hom.unop_op], | |
congr' 1, clear Z g F, | |
exact massive_auxβ V X Y f x, | |
end | |
lemma massive (X Y : FreeAb Profinite.{u}) (f : X βΆ Y) : | |
(((preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond Y.as).hom β« | |
(Condensed_Ab_to_presheaf.{u}.map (Condensed_LCC_iso_of_top_ab.{u} V).inv).app (op.{u+2} Y.as) β« | |
(ExtQprime_iso_aux_system_obj_aux'.{u} V Y.as).hom) β« | |
(π _)) β« | |
(forgetβ.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map | |
(((CLC.{u+1 u} (SemiNormedGroup.ulift.{u+1 u}.obj V)).right_op.map_FreeAb β | |
FreeAb.eval.{u+1 u+2} SemiNormedGroup.{u+1}α΅α΅).map f).unop = | |
(preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map | |
((freeCond.{u}.map_FreeAb β FreeAb.eval.{u+1 u+2} (Condensed.{u u+1 u+2} Ab.{u+1})).map f).op β« | |
((preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab.{u} V.to_Cond X.as).hom β« | |
(Condensed_Ab_to_presheaf.{u}.map (Condensed_LCC_iso_of_top_ab.{u} V).inv).app (op.{u+2} X.as) β« | |
(ExtQprime_iso_aux_system_obj_aux'.{u} V X.as).hom) β« π _ := | |
begin | |
simp only [Condensed_Ab_to_presheaf_map, category.assoc, category.comp_id, functor.comp_map], | |
dsimp only [Condensed_LCC_iso_of_top_ab, Sheaf.iso.mk_inv_val, | |
iso_whisker_right_inv, whisker_right_app], | |
apply free_abelian_group.induction_on f; clear f, | |
{ simp only [functor.map_zero, unop_zero, comp_zero, op_zero, zero_comp], }, | |
{ apply massive_aux }, | |
{ intros f hf, | |
simp only [functor.map_neg, unop_neg, op_neg, comp_neg, neg_comp, hf], }, | |
{ intros f g hf hg, | |
simp only [functor.map_add, unop_add, op_add, comp_add, add_comp, hf, hg], }, | |
end | |
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_c (cβ cβ) (h : cβ βΆ cβ) : | |
(hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V cβ).hom β« | |
(category_theory.functor.map _ h.op) = | |
(category_theory.functor.map _ | |
begin | |
refine homological_complex.op_functor.map (quiver.hom.op _), | |
refine category_theory.functor.map _ h, | |
end) β« (hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V cβ).hom := | |
begin | |
ext n : 2, | |
have aux : β (n : β), (monotone.{0 0} (function.swap.{1 1 1} ΞΊ n)), | |
{ intro n, exact fact.out _ }, | |
haveI : fact (ΞΊ cβ n β€ ΞΊ cβ n) := β¨aux n h.leβ©, | |
have := massive V | |
(breen_deligne.FPsystem.X.{u} r' BD β¨Mβ© ΞΊ cβ n) | |
(breen_deligne.FPsystem.X.{u} r' BD β¨Mβ© ΞΊ cβ n) | |
((breen_deligne.FP2.res.{u} r' _ _ _).app β¨Mβ©), | |
exact this | |
end | |
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_ΞΊ (c : (ββ₯0)) | |
[β (c : ββ₯0) (n : β), fact (ΞΊβ c n β€ ΞΊ c n)] : | |
(hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V c).hom β« | |
(whisker_right (aux_system.res _ _ _ _ _ _) _).app _ = | |
begin | |
refine category_theory.functor.map _ _, | |
refine homological_complex.op_functor.map (quiver.hom.op _), | |
refine (QprimeFP_nat.ΞΉ BD ΞΊβ ΞΊ M).app _, | |
end β« (hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊβ M V c).hom := | |
begin | |
ext n : 2, | |
have := massive V | |
(breen_deligne.FPsystem.X.{u} r' BD β¨Mβ© ΞΊβ c n) | |
(breen_deligne.FPsystem.X.{u} r' BD β¨Mβ© ΞΊ c n) | |
((breen_deligne.FP2.res.{u} r' _ _ _).app β¨Mβ©), | |
exact this | |
end | |
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_Tinv (c : ββ₯0) | |
[β (c : ββ₯0) (n : β), fact (ΞΊβ c n β€ r' * ΞΊ c n)] : | |
(hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊ M V c).hom β« | |
(whisker_right | |
(aux_system.Tinv _ _ _ _ _ _) _).app _ = | |
begin | |
refine category_theory.functor.map _ _, | |
refine homological_complex.op_functor.map (quiver.hom.op _), | |
refine (QprimeFP_nat.Tinv BD ΞΊβ ΞΊ M).app _, | |
end | |
β« (hom_complex_QprimeFP_nat_iso_aux_system r' BD ΞΊβ M V c).hom := | |
begin | |
ext n : 2, | |
have := massive V | |
(breen_deligne.FPsystem.X.{u} r' BD β¨Mβ© ΞΊβ c n) | |
(breen_deligne.FPsystem.X.{u} r' BD β¨Mβ© ΞΊ c n) | |
(((breen_deligne.FPsystem.Tinv.{u} r' BD β¨Mβ© ΞΊβ ΞΊ).app c).f n), | |
exact this, | |
end | |
def to_Cond_T_inv (r : ββ₯0) (V : SemiNormedGroup.{u}) [normed_with_aut r V] : V.to_Cond βΆ V.to_Cond := | |
(Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u} normed_with_aut.T.{u}.inv) | |
(normed_add_group_hom.continuous _)) | |
lemma uniform_space.completion.map_comp' | |
{Ξ± Ξ² Ξ³ : Type*} [uniform_space Ξ±] [uniform_space Ξ²] [uniform_space Ξ³] | |
{g : Ξ² β Ξ³} {f : Ξ± β Ξ²} | |
(hg : uniform_continuous g) (hf : uniform_continuous f) (x) : | |
uniform_space.completion.map g (uniform_space.completion.map f x) = | |
uniform_space.completion.map (g β f) x := | |
begin | |
rw [β uniform_space.completion.map_comp hg hf], | |
end | |
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux_helper | |
(r : ββ₯0) (V : SemiNormedGroup.{u}) [normed_with_aut r V] [complete_space V] [separated_space V] | |
(X : Profinite.{u}) : | |
(ExtQprime_iso_aux_system_obj_aux' V X).hom β« | |
category_theory.functor.map _ | |
(SemiNormedGroup.Completion.map | |
(nat_trans.app | |
(SemiNormedGroup.LocallyConstant.map | |
(category_theory.functor.map _ $ V_T_inv _ _)) _)) = | |
Ab.ulift.map | |
(category_theory.functor.map _ $ | |
category_theory.functor.map _ $ | |
nat_trans.app | |
(SemiNormedGroup.LocallyConstant.map $ V_T_inv _ _) _) β« | |
(ExtQprime_iso_aux_system_obj_aux' V X).hom | |
:= | |
begin | |
ext1 β¨fβ©, | |
simp only [comp_apply], | |
dsimp only [ExtQprime_iso_aux_system_obj_aux', add_equiv.to_AddCommGroup_iso, | |
add_equiv.coe_to_add_monoid_hom, add_equiv.trans_apply], | |
simp only [add_equiv.to_fun_eq_coe, SemiNormedGroup.LocallyConstant_map_app, SemiNormedGroup.Completion_map, | |
normed_add_group_hom.completion_coe_to_fun, add_equiv.ulift_apply, equiv.to_fun_as_coe, equiv.ulift_apply_2, | |
add_equiv.coe_mk, Ab.ulift_map_apply_down, SemiNormedGroup.forgetβ_Ab_map, | |
normed_add_group_hom.coe_to_add_monoid_hom], | |
rw uniform_space.completion.map_comp', | |
rotate, | |
{ apply normed_add_group_hom.uniform_continuous }, | |
{ apply normed_add_group_hom.uniform_continuous }, | |
rw uniform_space.completion.map_comp', | |
rotate, | |
{ apply normed_add_group_hom.uniform_continuous }, | |
{ apply normed_add_group_hom.uniform_continuous }, | |
refl | |
end | |
lemma another_aux_lemma [normed_with_aut r V] (X : Profinite) : | |
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab V.to_Cond X).hom | |
β« (Condensed_Ab_to_presheaf.map_iso (Condensed_LCC_iso_of_top_ab V)).inv.app (op X) | |
β« | |
begin | |
refine nat_trans.app _ _, | |
refine Condensed_Ab_to_presheaf.map _, | |
refine Sheaf.hom.mk _, | |
dsimp [Condensed_LCC], | |
refine whisker_right _ _, | |
refine whisker_right _ _, | |
refine SemiNormedGroup.LCC.map _, | |
exact V_T_inv r V, | |
end = | |
(preadditive_yoneda.map | |
(to_Cond_T_inv r V)).app _ β« | |
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab V.to_Cond X).hom β« | |
(Condensed_Ab_to_presheaf.map_iso (Condensed_LCC_iso_of_top_ab V)).inv.app _ := | |
begin | |
have := preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_natural | |
(to_Cond_T_inv r V) X, | |
erw β reassoc_of this, | |
congr' 1, | |
dsimp only [Condensed_Ab_to_presheaf, functor.map_iso_inv, nat_iso.app_inv, | |
Sheaf_to_presheaf_map, id, whisker_right_app, SemiNormedGroup.LCC, | |
curry, uncurry, curry_obj, functor.comp_map], | |
simp only [category_theory.functor.map_id, category.comp_id], | |
rw β nat_trans.comp_app, | |
rw β Sheaf.hom.comp_val, -- how to make those commute? | |
ext β¨xβ©, | |
dsimp only [Condensed_LCC_iso_of_top_ab, Sheaf.iso.mk, iso_whisker_right, to_Cond_T_inv, | |
Ab.ulift], | |
simp only [comp_apply], | |
dsimp [Condensed.of_top_ab_map], | |
simp only [comp_apply], | |
dsimp [LCC_iso_Cond_of_top_ab, forgetβ, has_forgetβ.forgetβ], | |
rw nat_iso.of_components.inv_app, | |
apply final_boss, | |
end | |
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux (c : ββ₯0) | |
[normed_with_aut r V] (n : β) (t) : | |
((forgetβ.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map | |
(((aux_system.T_inv.{u u+1} r r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊ).app | |
(op.{1} c)).f n)) | |
((((ExtQprime_iso_aux_system_obj_aux.{u} V).hom.app | |
(((breen_deligne.FPsystem.{u} r' BD β¨Mβ© ΞΊ).obj c).X n)).unop) t) = | |
(((ExtQprime_iso_aux_system_obj_aux.{u} V).hom.app | |
(((breen_deligne.FPsystem.{u} r' BD β¨Mβ© ΞΊ).obj c).X n)).unop) | |
(t β« to_Cond_T_inv.{u} r V) := | |
begin | |
/- | |
Note: This should reduce to some calcuation with the sheafification adjunction, | |
as well as something about completion/ulift compatibiity. | |
If we can reduce this to such statements, we will be in pretty good shape. | |
-/ | |
/- This code block is pretty slow. | |
dsimp [ExtQprime_iso_aux_system_obj_aux, ExtQprime_iso_aux_system_obj_aux'], | |
simp only [comp_apply], | |
dsimp [forgetβ, has_forgetβ.forgetβ, aux_system.T_inv, | |
Condensed_LCC_iso_of_top_ab, LCC_iso_Cond_of_top_ab], | |
rw nat_iso.of_components.inv_app, | |
dsimp only [unop_op], | |
-/ | |
dsimp only [forgetβ, has_forgetβ.forgetβ, ExtQprime_iso_aux_system_obj_aux, | |
nat_iso.of_components.hom_app, id, iso.op, iso.trans_hom, iso.symm, | |
nat_iso.app_inv, aux_system.T_inv, quiver.hom.op_unop, quiver.hom.unop_op, | |
homological_complex.unop], | |
simp only [comp_apply], | |
let X : Profinite := (((breen_deligne.FPsystem r' BD β¨Mβ© ΞΊ).obj c).X n).as, | |
have := preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_natural | |
(to_Cond_T_inv r V) X, | |
apply_fun (Ξ» e, e t) at this, | |
erw this, clear this, | |
simp only [comp_apply], | |
dsimp only [SemiNormedGroup.LocallyConstant], | |
have := hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux_helper r V X, | |
let s := ((Condensed_Ab_to_presheaf.map_iso (Condensed_LCC_iso_of_top_ab V)).inv.app (op X)) | |
(((preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab V.to_Cond X).hom) | |
(t)), | |
apply_fun (Ξ» e, e s) at this, | |
erw this, clear this, | |
simp only [comp_apply], | |
congr' 1, dsimp only [s], | |
simp only [β comp_apply], | |
congr' 1, | |
simp only [category.assoc], | |
erw β another_aux_lemma r V X, | |
congr' 2, | |
ext1 β¨xβ©, dsimp only [Ab.ulift, Condensed_Ab_to_presheaf, whisker_right_app, | |
Sheaf_to_presheaf], | |
ext1, | |
dsimp, | |
congr' 2, | |
dsimp only [SemiNormedGroup.LCC, curry, curry_obj, functor.comp_map, uncurry], | |
simp only [category_theory.functor.map_id, category.comp_id], | |
refl, | |
end | |
lemma hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv (c : ββ₯0) | |
[normed_with_aut r V] : | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V c).hom β« | |
((forgetβ.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex | |
(complex_shape.up.{0} β)).map (nat_trans.app | |
((aux_system.T_inv.{u u+1} r r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊ)) _) = | |
begin | |
let e := preadditive_yoneda.map (to_Cond_T_inv r V), | |
let e' := nat_trans.map_homological_complex e (complex_shape.down β).symm, | |
let Q := ((QprimeFP_nat r' BD ΞΊ M).obj c).op, | |
exact e'.app Q, | |
end β« | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V (c)).hom := | |
begin | |
ext n : 2, ext1 t, | |
dsimp [hom_complex_QprimeFP_nat_iso_aux_system], | |
simp only [comp_apply], | |
dsimp [nat_iso.map_homological_complex, forgetβ_unop], | |
erw id_apply, erw id_apply, | |
erw [functor.map_homological_complex_map_f], | |
apply hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv_aux, | |
end | |
namespace ExtQprime_iso_aux_system_obj_naturality_setup | |
/- | |
lemma auxβ (cβ cβ : ββ₯0) (h : cβ βΆ cβ) : | |
homological_complex.unop_functor.{u+2 u+1 0}.map | |
(((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β | |
forgetβ.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond)) | |
AddCommGroup.{u+1}).right_op.map_homological_complex | |
(complex_shape.up.{0} β€)).map | |
((homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_down_int_up).map | |
((QprimeFP_nat.{u} r' BD ΞΊ M).map h))).op β« | |
homological_complex.unop_functor.{u+2 u+1 0}.map | |
((map_homological_complex_embed.{u+2 u+2 u+1 u+1} | |
(preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β | |
forgetβ.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond)) | |
AddCommGroup.{u+1}).right_op).inv.app | |
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ)).op β« | |
embed_unop.{u+2 u+1}.hom.app | |
(op.{u+3} | |
(((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β | |
forgetβ.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond)) | |
Ab.{u+1}).right_op.map_homological_complex | |
(complex_shape.down.{0} β)).obj | |
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ))) = | |
begin | |
dsimp, | |
let e := (QprimeFP_nat r' BD ΞΊ M).map h, | |
let eβ := ((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β | |
forgetβ.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond)) | |
Ab.{u+1}).right_op.map_homological_complex | |
(complex_shape.down.{0} β)).map e, | |
let eβ := homological_complex.unop_functor.map eβ.op, | |
refine _ β« | |
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down).map | |
eβ, | |
refine homological_complex.unop_functor.{u+2 u+1 0}.map | |
((map_homological_complex_embed.{u+2 u+2 u+1 u+1} | |
(preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β | |
forgetβ.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond)) | |
AddCommGroup.{u+1}).right_op).inv.app | |
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ)).op β« | |
embed_unop.{u+2 u+1}.hom.app | |
(op.{u+3} | |
(((preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β | |
forgetβ.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond)) | |
Ab.{u+1}).right_op.map_homological_complex | |
(complex_shape.down.{0} β)).obj | |
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ))) | |
end := admit | |
def F : ββ₯0 β₯€ | |
(homological_complex.{u+1 u+2 0} AddCommGroup.{u+1} (complex_shape.down.{0} β).symm)α΅α΅ := | |
QprimeFP_nat.{u} r' BD ΞΊ M β | |
(preadditive_yoneda_obj.{u+1 u+2} V.to_Cond β | |
forgetβ.{u+2 u+2 u+1 u+1 u+1} (Module.{u+1 u+1} (End.{u+1 u+2} V.to_Cond)) | |
AddCommGroup.{u+1}).right_op.map_homological_complex | |
(complex_shape.down.{0} β) β homological_complex.unop_functor.right_op | |
@[reassoc] | |
lemma naturality_helper {cβ cβ : ββ₯0} (h : cβ βΆ cβ) (n : β) (w1 w2) : | |
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1} complex_shape.embedding.nat_up_int_down | |
nat_up_int_down_c_iff n (-βn) w1).hom.app | |
(((preadditive_yoneda.{u+1 u+2}.obj | |
V.to_Cond).right_op.map_homological_complex (complex_shape.down.{0} β)).obj | |
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ)).unop β« | |
(homology_functor _ _ _).map | |
(homological_complex.map_unop _ _ $ | |
category_theory.functor.map _ $ category_theory.functor.map _ h) = | |
category_theory.functor.map _ | |
(homological_complex.map_unop _ _ $ | |
category_theory.functor.map _ $ category_theory.functor.map _ h) β« | |
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1} complex_shape.embedding.nat_up_int_down | |
nat_up_int_down_c_iff n (-βn) w2).hom.app | |
(((preadditive_yoneda.{u+1 u+2}.obj | |
V.to_Cond).right_op.map_homological_complex (complex_shape.down.{0} β)).obj | |
((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ)).unop := | |
admit | |
-/ | |
lemma auxβ (cβ cβ : ββ₯0) (h : cβ βΆ cβ) (n : β) : | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V cβ).hom β« | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
((aux_system.{u u+1} r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊ).to_Ab.map h.op) = | |
(homology_functor _ _ _).map | |
(category_theory.functor.map _ | |
(homological_complex.op_functor.map ((QprimeFP_nat r' BD ΞΊ M).map h).op)) β« | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V cβ).hom := | |
begin | |
rw [β functor.map_comp, β functor.map_comp], | |
congr' 1, | |
erw β hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_c, | |
end | |
lemma auxβ (cβ cβ : ββ₯0) (h : cβ βΆ cβ) (n : β) : | |
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1} | |
complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-βn) (by { cases n; refl})).hom.app | |
(hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ) V.to_Cond) β« | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map_homological_complex | |
(complex_shape.down.{0} β).symm).map (homological_complex.op_functor.{u+2 u+1 0}.map | |
((QprimeFP_nat.{u} r' BD ΞΊ M).map h).op)) = | |
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down β | |
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.down.{0} β€) (-βn)).map | |
(category_theory.functor.map _ | |
(homological_complex.op_functor.map ((QprimeFP_nat r' BD ΞΊ M).map h).op)) β« | |
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1} | |
complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-βn) (by { cases n; refl})).hom.app | |
(hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ) V.to_Cond) := | |
begin | |
erw nat_trans.naturality, | |
end | |
lemma auxβ (cβ cβ : ββ₯0) (h : cβ βΆ cβ) (n : β) : | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β€).symm (-βn)).map | |
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ) V.to_Cond).hom β« | |
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down β | |
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.down.{0} β€) (-βn)).map | |
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map_homological_complex | |
(complex_shape.down.{0} β).symm).map (homological_complex.op_functor.{u+2 u+1 0}.map | |
((QprimeFP_nat.{u} r' BD ΞΊ M).map h).op)) | |
= | |
((homology_functor.{u+1 u+2 0} AddCommGroup.{u+1} | |
(complex_shape.up.{0} β€).symm (-βn)).op.map | |
(homological_complex.unop_functor.{u+2 u+1 0}.right_op.map | |
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).right_op.map_homological_complex | |
(complex_shape.up.{0} β€)).map ((QprimeFP_int.{u} r' BD ΞΊ M).map h)))).unop β« | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β€).symm (-βn)).map | |
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ) V.to_Cond).hom | |
:= | |
begin | |
dsimp only [functor.op_map, functor.comp_map], | |
erw [β functor.map_comp], | |
erw [β functor.map_comp], | |
congr' 1, | |
ext ((_ | k) | k ) : 2, | |
{ refine (category.id_comp _).trans (category.comp_id _).symm }, | |
{ apply is_zero.eq_of_tgt, | |
exact is_zero_zero _ }, | |
{ refine (category.id_comp _).trans (category.comp_id _).symm }, | |
end | |
/- | |
lemma naturality_helper {cβ : ββ₯0} (n : β) : | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β€).symm (-βn)).map | |
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ) V.to_Cond).hom β« | |
(homological_complex.homology_embed_nat_iso.{0 0 u+2 u+1} Ab.{u+1} | |
complex_shape.embedding.nat_up_int_down nat_up_int_down_c_iff n (-βn) (by { cases n; refl})).hom.app | |
(hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj cβ) V.to_Cond) = | |
_ | |
-/ | |
end ExtQprime_iso_aux_system_obj_naturality_setup | |
lemma QprimeFP_acyclic (c) (k i : β€) (hi : 0 < i) : | |
is_zero (((Ext' i).obj (op (((QprimeFP_int.{u} r' BD ΞΊ M).obj c).X k))).obj V.to_Cond) := | |
begin | |
rcases k with ((_|k)|k), | |
{ apply free_acyclic, exact hi }, | |
{ rw [β functor.flip_obj_obj], refine functor.map_is_zero _ _, refine (is_zero_zero _).op, }, | |
{ apply free_acyclic, exact hi }, | |
end | |
lemma ExtQprime_iso_aux_system_obj_natrality (cβ cβ : ββ₯0) (h : cβ βΆ cβ) (n : β) : | |
(ExtQprime_iso_aux_system_obj r' BD ΞΊ M V cβ n).hom β« | |
(homology_functor _ _ _).map | |
((system_of_complexes.to_Ab _).map h.op) = | |
((Ext n).map ((QprimeFP r' BD ΞΊ _).map h).op).app _ β« | |
(ExtQprime_iso_aux_system_obj r' BD ΞΊ M V cβ n).hom := | |
begin | |
dsimp only [ExtQprime_iso_aux_system_obj, | |
iso.trans_hom, id, functor.map_iso_hom], | |
haveI : ((homotopy_category.quotient.{u+1 u+2 0} | |
(Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj cβ)).is_bounded_above := | |
chain_complex.is_bounded_above _, | |
haveI : ((homotopy_category.quotient.{u+1 u+2 0} | |
(Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj cβ)).is_bounded_above := | |
chain_complex.is_bounded_above _, | |
have := Ext_compute_with_acyclic_naturality | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj cβ) | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj cβ) | |
V.to_Cond _ _ | |
((QprimeFP_int.{u} r' BD ΞΊ M).map h) n, | |
rotate, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
dsimp only [functor.comp_map] at this, | |
erw reassoc_of this, clear this, | |
simp only [category.assoc, nat_iso.app_hom], | |
congr' 1, | |
rw ExtQprime_iso_aux_system_obj_naturality_setup.auxβ r' BD ΞΊ M V cβ cβ h n, | |
simp only [β category.assoc], congr' 1, | |
simp only [category.assoc], | |
rw ExtQprime_iso_aux_system_obj_naturality_setup.auxβ r' BD ΞΊ M V cβ cβ h n, | |
simp only [β category.assoc], congr' 1, | |
exact ExtQprime_iso_aux_system_obj_naturality_setup.auxβ r' BD ΞΊ M V cβ cβ h n, | |
--- OLD PROOF FROM HERE | |
--have := ExtQprime_iso_aux_system_obj_naturality_setup.naturality_helper r' BD ΞΊ | |
-- M V h n _ _, | |
--simp only [category.assoc, functor.map_comp], | |
--slice_rhs 3 4 | |
--{ erw β this }, | |
/- | |
dsimp only [QprimeFP_int], | |
congr' 1, | |
dsimp only [nat_iso.app_hom], | |
simp only [functor.map_comp, functor.comp_map, nat_trans.naturality, | |
nat_trans.naturality_assoc], | |
dsimp only [functor.op_map, quiver.hom.unop_op, functor.right_op_map], | |
simp only [β functor.map_comp, β functor.map_comp_assoc, category.assoc], | |
dsimp [-homology_functor_map], | |
rw ExtQprime_iso_aux_system_obj_naturality_setup.auxβ, | |
dsimp [-homology_functor_map], | |
simp only [functor.map_comp, functor.map_comp_assoc, | |
category.assoc, nat_trans.naturality_assoc], | |
congr' 2, | |
dsimp [-homology_functor_map], | |
dsimp only [β functor.comp_map, β functor.comp_obj], | |
--erw nat_trans.naturality_assoc, | |
--refine congr_arg2 _ _ (congr_arg2 _ rfl _), | |
--congr' 1, | |
--refl, | |
admit | |
-/ | |
end | |
def ExtQprime_iso_aux_system (n : β) : | |
(QprimeFP r' BD ΞΊ M).op β (Ext n).flip.obj ((single _ 0).obj V.to_Cond) β | |
aux_system r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊ β | |
(forgetβ _ Ab).map_homological_complex _ β homology_functor _ _ n := | |
nat_iso.of_components (Ξ» c, ExtQprime_iso_aux_system_obj r' BD ΞΊ M V (unop c) n) | |
begin | |
intros cβ cβ h, | |
dsimp [-homology_functor_map], | |
rw β ExtQprime_iso_aux_system_obj_natrality, | |
refl, | |
end | |
/-- The `Tinv` map induced by `M` -/ | |
def ExtQprime.Tinv | |
[β c n, fact (ΞΊβ c n β€ ΞΊ c n)] [β c n, fact (ΞΊβ c n β€ r' * ΞΊ c n)] | |
(n : β€) : | |
(QprimeFP r' BD ΞΊ M).op β (Ext n).flip.obj ((single _ 0).obj V.to_Cond) βΆ | |
(QprimeFP r' BD ΞΊβ M).op β (Ext n).flip.obj ((single _ 0).obj V.to_Cond) := | |
whisker_right (nat_trans.op $ QprimeFP.Tinv BD _ _ M) _ | |
/-- The `T_inv` map induced by `V` -/ | |
def ExtQprime.T_inv [normed_with_aut r V] | |
[β c n, fact (ΞΊβ c n β€ ΞΊ c n)] [β c n, fact (ΞΊβ c n β€ r' * ΞΊ c n)] | |
(n : β€) : | |
(QprimeFP r' BD ΞΊ M).op β (Ext n).flip.obj ((single _ 0).obj V.to_Cond) βΆ | |
(QprimeFP r' BD ΞΊβ M).op β (Ext n).flip.obj ((single _ 0).obj V.to_Cond) := | |
whisker_right (nat_trans.op $ QprimeFP.ΞΉ BD _ _ M) _ β« whisker_left _ ((Ext n).flip.map $ (single _ _).map $ | |
(Condensed.of_top_ab_map (normed_with_aut.T.inv).to_add_monoid_hom | |
(normed_add_group_hom.continuous _))) | |
def ExtQprime.Tinv2 [normed_with_aut r V] | |
[β c n, fact (ΞΊβ c n β€ ΞΊ c n)] [β c n, fact (ΞΊβ c n β€ r' * ΞΊ c n)] | |
(n : β€) : | |
(QprimeFP r' BD ΞΊ M).op β (Ext n).flip.obj ((single _ 0).obj V.to_Cond) βΆ | |
(QprimeFP r' BD ΞΊβ M).op β (Ext n).flip.obj ((single _ 0).obj V.to_Cond) := | |
ExtQprime.Tinv r' BD ΞΊ ΞΊβ M V n - ExtQprime.T_inv r r' BD ΞΊ ΞΊβ M V n | |
namespace ExtQprime_iso_aux_system_comm_Tinv_setup | |
variables (c : (ββ₯0)α΅α΅) (n : β) | |
[β (c : ββ₯0) (n : β), fact (ΞΊβ c n β€ r' * ΞΊ c n)] | |
lemma auxβ : | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V (unop.{1} c)).hom β« | |
((forgetβ.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex | |
(complex_shape.up.{0} β) β | |
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
((aux_system.Tinv.{u u+1} r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊβ ΞΊ).app c) = | |
(homology_functor _ _ _).map | |
(category_theory.functor.map _ | |
(homological_complex.op_functor.map (quiver.hom.op $ | |
(QprimeFP_nat.Tinv BD ΞΊβ ΞΊ M).app _))) β« | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊβ M V (unop.{1} c)).hom := | |
begin | |
simp only [β functor.map_comp, functor.comp_map], congr' 1, | |
apply hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_Tinv, | |
end | |
lemma auxβ : | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β€).symm (-βn)).map | |
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj (unop.{1} c)) V.to_Cond).hom β« | |
(homological_complex.embed.{0 0 u+2 u+1} complex_shape.embedding.nat_up_int_down β | |
homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.down.{0} β€) (-βn)).map | |
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).map_homological_complex (complex_shape.down.{0} β).symm).map | |
(homological_complex.op_functor.{u+2 u+1 0}.map ((QprimeFP_nat.Tinv.{u} BD ΞΊβ ΞΊ M).app (unop.{1} c)).op)) = | |
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).right_op.map_homological_complex (complex_shape.up.{0} β€) β | |
homological_complex.unop_functor.{u+2 u+1 0}.right_op β | |
(homology_functor.{u+1 u+2 0} AddCommGroup.{u+1} (complex_shape.up.{0} β€).symm (-βn)).op).map | |
((QprimeFP_int.Tinv.{u} BD ΞΊβ ΞΊ M).app (unop.{1} c))).unop β« | |
(homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β€).symm (-βn)).map | |
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ M).obj (unop.{1} c)) V.to_Cond).hom := | |
begin | |
dsimp only [functor.op_map, functor.comp_map], | |
erw [β functor.map_comp], | |
erw [β functor.map_comp], | |
congr' 1, | |
ext ((_ | k) | k ) : 2, | |
{ refine (category.id_comp _).trans (category.comp_id _).symm }, | |
{ apply is_zero.eq_of_tgt, | |
exact is_zero_zero _ }, | |
{ refine (category.id_comp _).trans (category.comp_id _).symm }, | |
end | |
end ExtQprime_iso_aux_system_comm_Tinv_setup | |
lemma ExtQprime_iso_aux_system_comm_Tinv | |
[β c n, fact (ΞΊβ c n β€ ΞΊ c n)] [β c n, fact (ΞΊβ c n β€ r' * ΞΊ c n)] (n : β) : | |
(ExtQprime_iso_aux_system r' BD ΞΊ M V n).hom β« | |
whisker_right (aux_system.Tinv.{u} r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊβ ΞΊ) | |
((forgetβ _ _).map_homological_complex _ β homology_functor Ab.{u+1} (complex_shape.up β) n) = | |
ExtQprime.Tinv r' BD ΞΊ ΞΊβ M V n β« | |
(ExtQprime_iso_aux_system r' BD ΞΊβ M V n).hom := | |
begin | |
ext c : 2, | |
dsimp only [ExtQprime_iso_aux_system_obj, | |
ExtQprime_iso_aux_system, | |
iso.trans_hom, id, functor.map_iso_hom, nat_iso.of_components.hom_app, | |
nat_trans.comp_app], | |
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))).is_bounded_above := | |
chain_complex.is_bounded_above _, | |
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1}) (complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊβ M).obj (unop.{1} c))).is_bounded_above := | |
chain_complex.is_bounded_above _, | |
have := Ext_compute_with_acyclic_naturality | |
((QprimeFP_int.{u} r' BD ΞΊβ M).obj c.unop) | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj c.unop) | |
V.to_Cond _ _ | |
((QprimeFP_int.Tinv BD ΞΊβ ΞΊ M).app _) n, | |
rotate, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
erw reassoc_of this, clear this, simp only [category.assoc], congr' 1, | |
dsimp only [whisker_right_app], | |
rw ExtQprime_iso_aux_system_comm_Tinv_setup.auxβ r' BD ΞΊ ΞΊβ M V c n, | |
simp only [β category.assoc], congr' 1, simp only [category.assoc], | |
erw β nat_trans.naturality, | |
simp only [β category.assoc], congr' 1, | |
exact ExtQprime_iso_aux_system_comm_Tinv_setup.auxβ r' BD ΞΊ ΞΊβ M V c n, | |
end | |
-- lemma ExtQprime_iso_aux_system_comm_T_inv [normed_with_aut r V] (n : β) (c : ββ₯0α΅α΅) : | |
-- (ExtQprime_iso_aux_system_obj.{u} r' BD ΞΊβ M V (unop.{1} c) n).hom β« | |
-- ((forgetβ.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex (complex_shape.up.{0} β) β | |
-- homology_functor.{u+1 u+2 0} Ab.{u+1} (complex_shape.up.{0} β) n).map | |
-- ((aux_system.res.{u u+1} r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊβ ΞΊ).app c) = | |
-- ((Ext.{u+1 u+2} βn).flip.map | |
-- ((single.{u+1 u+2} (Condensed.{u u+1 u+2} Ab.{u+1}) 0).map | |
-- (Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u} normed_with_aut.T.{u}.inv) _))).app | |
-- ((QprimeFP.{u} r' BD ΞΊβ M).op.obj c) β« | |
-- (ExtQprime_iso_aux_system_obj.{u} r' BD ΞΊβ M V (unop.{1} c) n).hom := | |
-- by admit | |
def homological_complex.map_unop {A M : Type*} [category A] [abelian A] | |
{c : complex_shape M} (Cβ Cβ : homological_complex Aα΅α΅ c) (f : Cβ βΆ Cβ) : | |
Cβ.unop βΆ Cβ.unop := | |
homological_complex.unop_functor.map f.op | |
namespace ExtQprime_iso_aux_system_comm_setup | |
include r | |
variables [normed_with_aut r V] [β (c : ββ₯0) (n : β), fact (ΞΊβ c n β€ ΞΊ c n)] | |
def hom_complex_map_T_inv (c : (ββ₯0)α΅α΅) : | |
hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj (unop.{1} c)) V.to_Cond βΆ | |
hom_complex_nat.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ M).obj (unop.{1} c)) V.to_Cond := | |
begin | |
refine nat_trans.app _ _, | |
refine nat_trans.map_homological_complex _ _, | |
refine preadditive_yoneda.map _, | |
refine Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u} | |
normed_with_aut.T.{u}.inv) (normed_add_group_hom.continuous _) | |
end β« | |
(category_theory.functor.map _ | |
(homological_complex.op_functor.map (quiver.hom.op $ | |
(QprimeFP_nat.ΞΉ BD ΞΊβ ΞΊ M).app _))) | |
omit r | |
lemma embed_hom_complex_nat_isoβ (c : (ββ₯0)α΅α΅) : (embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ M).obj (unop.{1} c)) V.to_Cond).hom.f (int.of_nat 0) = π _ := rfl | |
lemma embed_hom_complex_nat_iso_neg (n : β) (c : (ββ₯0)α΅α΅) : (embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ M).obj (unop.{1} c)) V.to_Cond).hom.f (-[1+ n]) = π _ := rfl | |
lemma add_equiv.to_AddCommGroup_iso_apply (A B : AddCommGroup.{u}) | |
(e : A β+ B) (a : A) : e.to_AddCommGroup_iso.hom a = e a := rfl | |
lemma preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab_apply (M) (X) (t) : | |
(preadditive_yoneda_obj_obj_CondensedSet_to_Condensed_Ab M X).hom t = | |
yoneda'_equiv _ _ (Condensed_Ab_CondensedSet_adjunction.hom_equiv X.to_Condensed M t).val := rfl | |
include r | |
lemma auxβ (c : (ββ₯0)α΅α΅): | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊ M V (unop.{1} c)).hom β« | |
((forgetβ.{u+2 u+2 u+1 u+1 u+1} SemiNormedGroup.{u+1} Ab.{u+1}).map_homological_complex | |
(complex_shape.up.{0} β)).map ((aux_system.T_inv.{u u+1} r r' BD | |
β¨Mβ© (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊ).app c β« | |
(aux_system.res.{u u+1} r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1 u}.obj V) ΞΊβ ΞΊ).app c) = | |
hom_complex_map_T_inv _ _ _ _ _ _ _ _ β« | |
(hom_complex_QprimeFP_nat_iso_aux_system.{u} r' BD ΞΊβ M V (unop.{1} c)).hom := | |
begin | |
--simp only [β category_theory.functor.map_comp, functor.comp_map], congr' 1, | |
dsimp only [hom_complex_map_T_inv], simp only [category.assoc], | |
rw β hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_ΞΊ r' BD ΞΊ ΞΊβ M V c.unop, | |
simp only [functor.map_comp, β category.assoc], congr' 1, | |
apply hom_complex_QprimeFP_nat_iso_aux_system_naturality_in_T_inv | |
/- -- IGNORE THIS | |
ext k t : 3, | |
dsimp [hom_complex_nat] at t, | |
dsimp only [hom_complex_QprimeFP_nat_iso_aux_system, aux_system.T_inv, | |
aux_system.res, hom_complex_nat, functor.map_iso, iso.trans_hom, | |
homological_complex.unop_functor, homological_complex.comp_f, | |
nat_iso.map_homological_complex, nat_iso.app_hom, iso.op_hom, quiver.hom.unop_op, | |
nat_trans.map_homological_complex_app_f, ExtQprime_iso_aux_system_obj_aux, | |
nat_iso.of_components.hom_app, id, iso.symm_hom, nat_iso.app_inv, | |
whisker_right_app, nat_trans.op, functor.comp_map], | |
simp only [category_theory.functor.map_comp], | |
dsimp only [homological_complex.comp_f, functor.map_homological_complex, functor.op_obj, | |
functor.unop, forgetβ_unop, nat_iso.of_components.hom_app, | |
homological_complex.hom.iso_of_components, iso.refl], | |
simp only [category.assoc, category.id_comp], | |
erw category.id_comp, | |
dsimp only [functor.op, quiver.hom.unop_op], | |
erw category.comp_id, | |
repeat { rw [comp_apply] }, | |
-/ -- UUUUGGGHHH | |
end | |
lemma auxβ (c : (ββ₯0)α΅α΅) : | |
((((preadditive_yoneda.{u+1 u+2}.obj (Condensed.of_top_ab.{u} β₯V)).right_op.map_homological_complex | |
(complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))).map_unop | |
(((preadditive_yoneda.{u+1 u+2}.obj (Condensed.of_top_ab.{u} β₯V)).right_op.map_homological_complex | |
(complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))) | |
((nat_trans.map_homological_complex.{u+1 u+2 0 u+2 u+1} | |
(nat_trans.right_op.{u+1 u+1 u+2 u+2} (preadditive_yoneda.{u+1 u+2}.map | |
(Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u} | |
normed_with_aut.T.{u}.inv) (normed_add_group_hom.continuous _)))) | |
(complex_shape.up.{0} β€)).app | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))) β« | |
(homological_complex.unop_functor.{u+2 u+1 0}.right_op.map | |
(((preadditive_yoneda.{u+1 u+2}.obj V.to_Cond).right_op.map_homological_complex (complex_shape.up.{0} β€)).map | |
((QprimeFP_int.ΞΉ.{u} BD ΞΊβ ΞΊ M).app (unop.{1} c)))).unop) β« | |
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊβ M).obj (unop.{1} c)) V.to_Cond).hom = | |
(embed_hom_complex_nat_iso.{u} ((QprimeFP_nat.{u} r' BD ΞΊ M).obj (unop.{1} c)) V.to_Cond).hom β« | |
category_theory.functor.map _ | |
(hom_complex_map_T_inv _ _ _ _ _ _ _ _) := | |
begin | |
ext ((_ | k) | k ) : 2, | |
{ dsimp only [functor.comp], | |
simp only [functor.right_op_map, quiver.hom.unop_op, category.assoc, homological_complex.comp_f, | |
homological_complex.unop_functor_map_f, functor.map_homological_complex_map_f], | |
rw embed_hom_complex_nat_isoβ, | |
rw embed_hom_complex_nat_isoβ, | |
ext, refl }, | |
{ apply is_zero.eq_of_tgt, | |
exact is_zero_zero _ }, | |
{ dsimp only [functor.comp], | |
simp only [functor.right_op_map, quiver.hom.unop_op, category.assoc, homological_complex.comp_f, | |
homological_complex.unop_functor_map_f, functor.map_homological_complex_map_f], | |
rw embed_hom_complex_nat_iso_neg, | |
rw embed_hom_complex_nat_iso_neg, | |
ext, refl }, | |
end | |
end ExtQprime_iso_aux_system_comm_setup | |
section naturality_snd_var | |
variables {A : Type*} [category A] [abelian A] [enough_projectives A] | |
(X : cochain_complex A β€) | |
[((homotopy_category.quotient A (complex_shape.up.{0} β€)).obj X).is_bounded_above] | |
{Bβ Bβ : A} (f : Bβ βΆ Bβ) -- (hβ) (hβ) (i) | |
@[reassoc] | |
lemma Ext_compute_with_acyclic_auxβ_naturality_snd_var (i) | |
(e : (0 : β€) - i = -i) : | |
(Ext_compute_with_acyclic_auxβ X Bβ i).hom β« | |
begin | |
refine nat_trans.app _ _, | |
refine preadditive_yoneda.map _, | |
refine category_theory.functor.map _ f, | |
end = | |
category_theory.functor.map _ | |
(category_theory.functor.map _ f) β« | |
(Ext_compute_with_acyclic_auxβ X Bβ i).hom := | |
begin | |
ext t, | |
simp only [comp_apply], | |
dsimp [Ext_compute_with_acyclic_auxβ, Ext], | |
simp only [category.assoc], | |
generalize_proofs h1 h2, | |
let Οβ := Ξ» j, (single _ j).obj Bβ, | |
let Οβ := Ξ» j, (single _ j).obj Bβ, | |
change t β« _ β« eq_to_hom (congr_arg Οβ e) β« _ = | |
_ β« _ β« _ β« eq_to_hom (congr_arg Οβ e), | |
induction e, | |
dsimp, simp only [category.id_comp, category.comp_id], | |
erw β nat_trans.naturality, | |
refl, | |
end | |
@[reassoc] | |
lemma Ext_compute_with_acyclic_auxβ_naturality_snd_var (i) : | |
(Ext_compute_with_acyclic_auxβ X Bβ i).hom β« | |
(homology_functor _ _ _).map | |
begin | |
refine nat_trans.app _ _, | |
refine nat_trans.map_homological_complex _ _, | |
exact preadditive_yoneda.map f, | |
end = | |
nat_trans.app | |
(preadditive_yoneda.map $ category_theory.functor.map _ f) _ β« | |
(Ext_compute_with_acyclic_auxβ X Bβ i).hom := | |
begin | |
dsimp only [Ext_compute_with_acyclic_auxβ, unop_op], | |
have := hom_single_iso_naturality_snd_var_good (of' X).replace (-i) f, | |
erw β this, | |
end | |
include f | |
lemma Ext_compute_with_acyclic_auxβ_naturality_snd_var (i) : | |
(homology_functor _ _ _).map | |
begin | |
refine homological_complex.map_unop _ _ _, | |
refine nat_trans.app _ _, | |
refine nat_trans.map_homological_complex _ _, | |
refine nat_trans.right_op _, | |
exact preadditive_yoneda.map f, | |
end β« Ext_compute_with_acyclic_auxβ X Bβ i = | |
Ext_compute_with_acyclic_auxβ X Bβ i β« | |
(homology_functor _ _ _).map | |
begin | |
refine nat_trans.app _ _, | |
refine nat_trans.map_homological_complex _ _, | |
exact preadditive_yoneda.map f, | |
end := | |
begin | |
dsimp only [Ext_compute_with_acyclic_auxβ], | |
erw β (homology_functor.{u_2 u_2+1 0} AddCommGroup.{u_2} | |
(complex_shape.up.{0} β€).symm (-i)).map_comp, | |
erw β (homology_functor.{u_2 u_2+1 0} AddCommGroup.{u_2} | |
(complex_shape.up.{0} β€).symm (-i)).map_comp, | |
congr' 1, | |
ext t x, | |
dsimp [Ext_compute_with_acyclic_HomB], | |
simp only [comp_apply], | |
dsimp [nat_trans.map_homological_complex, functor.right_op, | |
homological_complex.map_unop], | |
simp only [category.assoc], | |
end | |
lemma Ext_compute_with_acyclic_naturality_snd_var | |
(hβ) (hβ) (i) : | |
(Ext_compute_with_acyclic X Bβ hβ i).hom β« | |
(homology_functor _ _ _).map | |
(begin | |
refine homological_complex.map_unop _ _ _, | |
refine nat_trans.app _ _, | |
refine nat_trans.map_homological_complex _ _, | |
exact (preadditive_yoneda.map f).right_op, | |
end) = | |
category_theory.functor.map _ | |
(category_theory.functor.map _ f) β« (Ext_compute_with_acyclic X Bβ hβ i).hom := | |
begin | |
dsimp [Ext_compute_with_acyclic, - homology_functor_map], | |
simp only [category.assoc], | |
rw β Ext_compute_with_acyclic_auxβ_naturality_snd_var_assoc, | |
rw β Ext_compute_with_acyclic_auxβ_naturality_snd_var_assoc, | |
simp only [category.assoc], congr' 2, | |
rw [is_iso.eq_comp_inv, category.assoc, is_iso.inv_comp_eq], | |
apply Ext_compute_with_acyclic_auxβ_naturality_snd_var, | |
simp, | |
end | |
end naturality_snd_var | |
lemma ExtQprime_iso_aux_system_comm [normed_with_aut r V] | |
[β c n, fact (ΞΊβ c n β€ ΞΊ c n)] [β c n, fact (ΞΊβ c n β€ r' * ΞΊ c n)] (n : β) : | |
(ExtQprime_iso_aux_system r' BD ΞΊ M V n).hom β« | |
whisker_right (aux_system.Tinv2.{u} r r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊβ ΞΊ) | |
((forgetβ _ _).map_homological_complex _ β homology_functor Ab.{u+1} (complex_shape.up β) n) = | |
ExtQprime.Tinv2 r r' BD ΞΊ ΞΊβ M V n β« | |
(ExtQprime_iso_aux_system r' BD ΞΊβ M V n).hom := | |
begin | |
ext c : 2, dsimp only [aux_system.Tinv2, ExtQprime.Tinv2, nat_trans.comp_app, whisker_right_app], | |
simp only [sub_comp, nat_trans.app_sub, functor.map_sub, comp_sub], | |
refine congr_arg2 _ _ _, | |
{ rw [β nat_trans.comp_app, β ExtQprime_iso_aux_system_comm_Tinv], refl }, | |
dsimp only [ExtQprime_iso_aux_system_obj, | |
ExtQprime_iso_aux_system, | |
iso.trans_hom, id, functor.map_iso_hom, nat_iso.of_components.hom_app, | |
nat_trans.comp_app], | |
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1}) | |
(complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj (unop.{1} c))).is_bounded_above := | |
chain_complex.is_bounded_above _, | |
haveI : ((homotopy_category.quotient.{u+1 u+2 0} (Condensed.{u u+1 u+2} Ab.{u+1}) | |
(complex_shape.up.{0} β€)).obj | |
((QprimeFP_int.{u} r' BD ΞΊβ M).obj (unop.{1} c))).is_bounded_above := | |
chain_complex.is_bounded_above _, | |
have := Ext_compute_with_acyclic_naturality | |
((QprimeFP_int.{u} r' BD ΞΊβ M).obj c.unop) | |
((QprimeFP_int.{u} r' BD ΞΊ M).obj c.unop) | |
V.to_Cond _ _ | |
((QprimeFP_int.ΞΉ BD ΞΊβ ΞΊ M).app _) n, | |
rotate, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
simp only [category.assoc], dsimp only [ExtQprime.T_inv, nat_trans.comp_app, | |
whisker_right_app, whisker_left_app, functor.flip], | |
let Ξ· := (Ext.{u+1 u+2} βn).map ((nat_trans.op.{0 u+1 0 u+2} (QprimeFP.ΞΉ.{u} BD ΞΊβ ΞΊ M)).app c), | |
slice_rhs 1 2 { erw β Ξ·.naturality }, | |
slice_rhs 2 3 { erw this }, | |
simp only [category.assoc], clear this Ξ·, | |
let t : Condensed.of_top_ab V βΆ _ := | |
Condensed.of_top_ab_map.{u} (normed_add_group_hom.to_add_monoid_hom.{u u} | |
normed_with_aut.T.{u}.inv) (normed_add_group_hom.continuous _), | |
have := Ext_compute_with_acyclic_naturality_snd_var | |
((QprimeFP_int r' BD ΞΊ M).obj c.unop) t _ _ n, | |
rotate, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
{ intros k i hi, apply QprimeFP_acyclic, exact hi }, | |
erw β reassoc_of this, clear this, congr' 1, | |
simp only [functor.comp_map, category_theory.functor.map_comp, | |
functor.op_map, quiver.hom.unop_op], | |
slice_rhs 1 2 { rw β category_theory.functor.map_comp }, | |
slice_lhs 4 5 { rw β category_theory.functor.map_comp }, | |
simp only [category.assoc, | |
β category_theory.functor.map_comp, β functor.map_comp_assoc], | |
rw ExtQprime_iso_aux_system_comm_setup.auxβ r r' BD ΞΊ ΞΊβ M V c, | |
slice_lhs 2 4 | |
{ simp only [category_theory.functor.map_comp] }, | |
simp only [β category.assoc], congr' 1, | |
rw ExtQprime_iso_aux_system_comm_setup.auxβ r r' BD ΞΊ ΞΊβ M V c, | |
simp only [category_theory.functor.map_comp, category.assoc], | |
congr' 1, | |
rw [nat_iso.app_hom, β nat_trans.naturality], | |
congr' 1, | |
-- have := Ext_compute_with_acyclic_naturality, <-- we need naturality in the other variable?! | |
--simp only [category.assoc], | |
--erw reassoc_of this, | |
--clear this, simp only [category.assoc], congr' 1, | |
/- | |
rw [nat_trans.comp_app, functor.map_comp, ExtQprime.T_inv, | |
nat_trans.comp_app, whisker_right_app, whisker_left_app, category.assoc], | |
dsimp only [ExtQprime_iso_aux_system, nat_iso.of_components.hom_app, aux_system, | |
aux_system.res, functor.comp_map], | |
-/ | |
end | |
lemma ExtQprime_iso_aux_system_comm' [normed_with_aut r V] | |
[β c n, fact (ΞΊβ c n β€ ΞΊ c n)] [β c n, fact (ΞΊβ c n β€ r' * ΞΊ c n)] (n : β) : | |
whisker_right (aux_system.Tinv2.{u} r r' BD β¨Mβ© (SemiNormedGroup.ulift.{u+1}.obj V) ΞΊβ ΞΊ) | |
((forgetβ _ _).map_homological_complex _ β homology_functor Ab.{u+1} (complex_shape.up β) n) β« | |
(ExtQprime_iso_aux_system r' BD ΞΊβ M V n).inv = | |
(ExtQprime_iso_aux_system r' BD ΞΊ M V n).inv β« | |
ExtQprime.Tinv2 r r' BD ΞΊ ΞΊβ M V n := | |
begin | |
rw [iso.comp_inv_eq, category.assoc, iso.eq_inv_comp], | |
apply ExtQprime_iso_aux_system_comm | |
end | |
end | |
section | |
def _root_.category_theory.functor.map_commsq | |
{C D : Type*} [category C] [abelian C] [category D] [abelian D] (F : C β₯€ D) {X Y Z W : C} | |
{fβ : X βΆ Y} {gβ : X βΆ Z} {gβ : Y βΆ W} {fβ : Z βΆ W} (sq : commsq fβ gβ gβ fβ) : | |
commsq (F.map fβ) (F.map gβ) (F.map gβ) (F.map fβ) := | |
commsq.of_eq $ by rw [β F.map_comp, sq.w, F.map_comp] | |
end | |
section | |
variables {r'} | |
variables (BD : breen_deligne.package) | |
variables (ΞΊ ΞΊβ : ββ₯0 β β β ββ₯0) | |
variables [β (c : ββ₯0), BD.data.suitable (ΞΊ c)] [β n, fact (monotone (function.swap ΞΊ n))] | |
variables [β (c : ββ₯0), BD.data.suitable (ΞΊβ c)] [β n, fact (monotone (function.swap ΞΊβ n))] | |
variables (M : ProFiltPseuNormGrpWithTinvβ.{u} r') | |
variables (V : SemiNormedGroup.{u}) [complete_space V] [separated_space V] | |
open bounded_homotopy_category | |
-- move me | |
instance eval'_is_bounded_above : | |
((homotopy_category.quotient (Condensed Ab) (complex_shape.up β€)).obj | |
((BD.eval' freeCond').obj M.to_Condensed)).is_bounded_above := | |
by { delta breen_deligne.package.eval', refine β¨β¨1, _β©β©, apply chain_complex.bounded_by_one } | |
variables (ΞΉ : ulift.{u+1} β β ββ₯0) (hΞΉ : monotone ΞΉ) | |
def Ext_Tinv2 | |
{π : Type*} [category π] [abelian π] [enough_projectives π] | |
{A B V : bounded_homotopy_category π} | |
(Tinv : A βΆ B) (ΞΉ : A βΆ B) (T_inv : V βΆ V) (i : β€) : | |
((Ext i).obj (op B)).obj V βΆ ((Ext i).obj (op A)).obj V := | |
(((Ext i).map Tinv.op).app V - (((Ext i).map ΞΉ.op).app V β« ((Ext i).obj _).map T_inv)) | |
open category_theory.preadditive | |
def Ext_Tinv2_commsq | |
{π : Type*} [category π] [abelian π] [enough_projectives π] | |
{Aβ Bβ Aβ Bβ V : bounded_homotopy_category π} | |
(Tinvβ : Aβ βΆ Bβ) (ΞΉβ : Aβ βΆ Bβ) | |
(Tinvβ : Aβ βΆ Bβ) (ΞΉβ : Aβ βΆ Bβ) | |
(f : Aβ βΆ Aβ) (g : Bβ βΆ Bβ) (sqT : f β« Tinvβ = Tinvβ β« g) (sqΞΉ : f β« ΞΉβ = ΞΉβ β« g) | |
(T_inv : V βΆ V) (i : β€) : | |
commsq | |
(((Ext i).map g.op).app V) | |
(Ext_Tinv2 Tinvβ ΞΉβ T_inv i) | |
(Ext_Tinv2 Tinvβ ΞΉβ T_inv i) | |
(((Ext i).map f.op).app V) := | |
commsq.of_eq | |
begin | |
delta Ext_Tinv2, | |
simp only [comp_sub, sub_comp, β nat_trans.comp_app, β functor.map_comp, β op_comp, sqT, | |
β nat_trans.naturality, β nat_trans.naturality_assoc, category.assoc, sqΞΉ], | |
end | |
open category_theory.preadditive | |
lemma auux | |
{π : Type*} [category π] [abelian π] [enough_projectives π] | |
{Aβ Bβ Aβ Bβ : cochain_complex π β€} | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Aβ).is_bounded_above] | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Bβ).is_bounded_above] | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Aβ).is_bounded_above] | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Bβ).is_bounded_above] | |
{fβ : Aβ βΆ Bβ} {fβ : Aβ βΆ Bβ} {Ξ± : Aβ βΆ Aβ} {Ξ² : Bβ βΆ Bβ} | |
(sq1 : commsq fβ Ξ± Ξ² fβ) : | |
of_hom fβ β« of_hom Ξ² = of_hom Ξ± β« of_hom fβ := | |
begin | |
have := sq1.w, | |
apply_fun (Ξ» f, (homotopy_category.quotient _ _).map f) at this, | |
simp only [functor.map_comp] at this, | |
exact this, | |
end | |
@[simp] lemma of_hom_id | |
{π : Type*} [category π] [abelian π] [enough_projectives π] | |
{A : cochain_complex π β€} | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj A).is_bounded_above] : | |
of_hom (π A) = π _ := | |
by { delta of_hom, rw [category_theory.functor.map_id], refl } | |
lemma Ext_iso_of_bicartesian_of_bicartesian | |
{π : Type*} [category π] [abelian π] [enough_projectives π] | |
{Aβ Bβ C Aβ Bβ : cochain_complex π β€} | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Aβ).is_bounded_above] | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Bβ).is_bounded_above] | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj C).is_bounded_above] | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Aβ).is_bounded_above] | |
[((homotopy_category.quotient π (complex_shape.up β€)).obj Bβ).is_bounded_above] | |
{fβ : Aβ βΆ Bβ} {gβ : Bβ βΆ C} (wβ : β n, short_exact (fβ.f n) (gβ.f n)) | |
{fβ : Aβ βΆ Bβ} {gβ : Bβ βΆ C} (wβ : β n, short_exact (fβ.f n) (gβ.f n)) | |
(Ξ± : Aβ βΆ Aβ) (Ξ² : Bβ βΆ Bβ) (Ξ³ : C βΆ C) | |
(ΞΉA : Aβ βΆ Aβ) (ΞΉB : Bβ βΆ Bβ) | |
(sq1 : commsq fβ Ξ± Ξ² fβ) (sq2 : commsq gβ Ξ² Ξ³ gβ) | |
(sq1' : commsq fβ ΞΉA ΞΉB fβ) (sq2' : commsq gβ ΞΉB (π _) gβ) | |
(V : bounded_homotopy_category π) (T_inv : V βΆ V) | |
(i : β€) | |
(H1 : (Ext_Tinv2_commsq (of_hom Ξ±) (of_hom ΞΉA) (of_hom Ξ²) (of_hom ΞΉB) (of_hom fβ) (of_hom fβ) | |
(auux sq1) (auux sq1') T_inv i).bicartesian) | |
(H2 : (Ext_Tinv2_commsq (of_hom Ξ±) (of_hom ΞΉA) (of_hom Ξ²) (of_hom ΞΉB) (of_hom fβ) (of_hom fβ) | |
(auux sq1) (auux sq1') T_inv (i+1)).bicartesian) : | |
is_iso (Ext_Tinv2 (of_hom Ξ³) (π _) T_inv (i+1)) := | |
begin | |
have LESβ := (((Ext_five_term_exact_seq' _ _ i V wβ).drop 2).pair.cons (Ext_five_term_exact_seq' _ _ (i+1) V wβ)), | |
replace LESβ := (((Ext_five_term_exact_seq' _ _ i V wβ).drop 1).pair.cons LESβ).extract 0 4, | |
have LESβ := (((Ext_five_term_exact_seq' _ _ i V wβ).drop 2).pair.cons (Ext_five_term_exact_seq' _ _ (i+1) V wβ)).extract 0 4, | |
replace LESβ := (((Ext_five_term_exact_seq' _ _ i V wβ).drop 1).pair.cons LESβ).extract 0 4, | |
refine iso_of_bicartesian_of_bicartesian LESβ LESβ _ _ _ _ H1 H2, | |
{ apply commsq.of_eq, delta Ext_Tinv2, clear LESβ LESβ, | |
rw [sub_comp, comp_sub, β functor.flip_obj_map, β functor.flip_obj_map], | |
rw β Ext_Ξ΄_natural i V _ _ _ _ Ξ± Ξ² Ξ³ sq1.w sq2.w wβ wβ, | |
congr' 1, | |
rw [β nat_trans.naturality, β functor.flip_obj_map, category.assoc, | |
Ext_Ξ΄_natural i V _ _ _ _ ΞΉA ΞΉB (π _) sq1'.w sq2'.w wβ wβ], | |
simp only [op_id, category_theory.functor.map_id, nat_trans.id_app, | |
category.id_comp, of_hom_id, category.comp_id], | |
erw [category.id_comp], | |
symmetry, | |
apply Ext_Ξ΄_natural', }, | |
{ apply Ext_Tinv2_commsq, | |
{ exact auux sq2 }, | |
{ exact auux sq2' }, }, | |
end | |
end | |