Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.02 kB
(* ========================================================================= *)
(* A library whose purpose is to remove type annotations from tactics when *)
(* types can be found from the context. *)
(* Similar to the Q module of HOL4 (<http://hol.sourceforge.net/ *)
(* kananaskis-8-helpdocs/help/src-sml/htmlsigs/Q.html>). *)
(* *)
(* (c) Copyright, Vincent Aravantinos 2012-2013, *)
(* Hardware Verification Group, *)
(* Concordia University *)
(* *)
(* Contact: <vincent@encs.concordia.ca> *)
(* *)
(* Distributed under the same license as HOL Light. *)
(* ========================================================================= *)
(* As can be seen in the below signature, all the functions have the same
* signature as their standard HOL-Light counterpart, except the type "term"
* is replaced by "string". We do not provide any documentation since their
* functionality is exactly the same.
*
* Note: string arguments should be filled in using the usual term syntax
* except that backslahses shall be doubled, e.g. `A /\ B` must be
* written "A /\\ B". Most of the times, this should not be needed anyway.
*
* Functions like REAL_ARITH, ARITH_RULE, etc. are also overloaded here, again
* with the goal of not having to write inferrable annotations: often, when one
* wants to prove a theorem about reals using REAL_ARITH, (s)he has to annotate
* his/her goal with `:real` whereas it should be obvious that REAL_ARITH is
* only called for facts dealing with reals.
*
* Ex:
* The goal:
*
* # g `!x:real. P x ==> ?y. P y`
*
* can be reduced equivalently by the two following tactics:
*
* # e (REPEAT STRIP_TAC THEN EXISTS_TAC `x:real`)
*
* # e (REPEAT STRIP_TAC THEN Pa.EXISTS_TAC "x")
*
* Note:
* The module cannot be called "Q" because HOL Light does not allow
* modules with a single letter. I choose "Pa", short for "Parse".
*
*)
module Pa :
sig
val CONTEXT_TAC : ((string * pretype) list -> tactic) -> tactic
val PARSE_IN_CONTEXT : (term -> tactic) -> (string -> tactic)
val PARSES_IN_CONTEXT : (term list -> tactic) -> (string list -> tactic)
val EXISTS_TAC : string -> tactic
val SUBGOAL_THEN : string -> thm_tactic -> tactic
val SUBGOAL_TAC : string -> string -> tactic list -> tactic
val ASM_CASES_TAC : string -> tactic
val BOOL_CASES_TAC : string -> tactic
val SPEC_TAC : string * string -> tactic
val SPEC : string -> thm -> thm
val SPECL : string list -> thm -> thm
val GEN : string -> thm -> thm
val GENL : string list -> thm -> thm
val X_GEN_TAC : string -> tactic
val REAL_ARITH : string -> thm
val REAL_FIELD : string -> thm
val REAL_RING : string -> thm
val ARITH_RULE : string -> thm
val NUM_RING : string -> thm
val INT_ARITH : string -> thm
val ABBREV_TAC : string -> tactic
val call_with_interface : (unit -> 'a) -> (term -> 'b) -> string -> 'b
end
=
struct
let parse_preterm = fst o parse_preterm o lex o explode
let CONTEXT_common f hs c x =
let vs = freesl (c::hs) in
f (map (fun x -> name_of x, pretype_of_type(type_of x)) vs) x
let CONTEXT_TAC ttac (asms,c as g) =
CONTEXT_common ttac (map (concl o snd) asms) c g
let CONTEXT_RULE r th = CONTEXT_common r (hyp th) (concl th) th
let PARSES_IN_CONTEXT ttac ss =
CONTEXT_TAC (fun env ->
ttac (map (term_of_preterm o retypecheck env o parse_preterm) ss))
let PARSE_IN_CONTEXT tac s = PARSES_IN_CONTEXT (function [t] -> tac t) [s]
let type_of_forall = type_of o fst o dest_forall
let force_type ?(env=[]) s ty =
let pty = pretype_of_type ty in
term_of_preterm (retypecheck env (Typing(parse_preterm s,pty)))
let BOOL_CONTEXT_TAC ttac s =
CONTEXT_TAC (fun env -> ttac (force_type ~env s bool_ty))
let SUBGOAL_THEN s ttac = BOOL_CONTEXT_TAC (C SUBGOAL_THEN ttac) s
let SUBGOAL_TAC l s tacs = BOOL_CONTEXT_TAC (C (SUBGOAL_TAC l) tacs) s
let ABBREV_TAC = BOOL_CONTEXT_TAC ABBREV_TAC
let ASM_CASES_TAC = BOOL_CONTEXT_TAC ASM_CASES_TAC
let BOOL_CASES_TAC = BOOL_CONTEXT_TAC BOOL_CASES_TAC
let EXISTS_TAC s (_,c as g) =
CONTEXT_TAC (fun env ->
EXISTS_TAC (force_type ~env s (type_of (fst (dest_exists c))))) g
let SPEC_TAC (u,x) =
PARSE_IN_CONTEXT (fun u' -> SPEC_TAC (u',force_type x (type_of u'))) u
let SPEC s th =
CONTEXT_RULE (fun env ->
SPEC (force_type ~env s (type_of_forall (concl th)))) th
let SPECL tms th =
try rev_itlist SPEC tms th with Failure _ -> failwith "SPECL"
let GEN s th =
GEN (try find ((=) s o name_of) (frees (concl th)) with _ -> parse_term s)
th
let GENL = itlist GEN
let X_GEN_TAC s (_,c as g) = X_GEN_TAC (force_type s (type_of_forall c)) g
let call_with_interface p f s =
let i = !the_interface in
p ();
let res = f (parse_term s) in
the_interface := i;
res
let [REAL_ARITH;REAL_FIELD;REAL_RING] =
map (call_with_interface prioritize_real)
[REAL_ARITH;REAL_FIELD;REAL_RING]
let [ARITH_RULE;NUM_RING] =
map (call_with_interface prioritize_num) [ARITH_RULE;NUM_RING]
let INT_ARITH = call_with_interface prioritize_int INT_ARITH
end;;
(* You can add the following if complex theories are loaded:
module Pa =
struct
include Pa
let COMPLEX_FIELD = call_with_interface prioritize_complex COMPLEX_FIELD;;
let SIMPLE_COMPLEX_ARITH =
call_with_interface prioritize_complex SIMPLE_COMPLEX_ARITH;
end;; *)