Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /100 /birthday.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
11.2 kB
(* ========================================================================= *)
(* Birthday problem. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Restricted function space. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("-->",(13,"right"));;
let funspace = new_definition
`(s --> t) = {f:A->B | (!x. x IN s ==> f(x) IN t) /\
(!x. ~(x IN s) ==> f(x) = @y. T)}`;;
(* ------------------------------------------------------------------------- *)
(* Sizes. *)
(* ------------------------------------------------------------------------- *)
let FUNSPACE_EMPTY = prove
(`({} --> t) = {(\x. @y. T)}`,
REWRITE_TAC[EXTENSION; IN_SING; funspace; IN_ELIM_THM; NOT_IN_EMPTY] THEN
REWRITE_TAC[FUN_EQ_THM]);;
let HAS_SIZE_FUNSPACE = prove
(`!s:A->bool t:B->bool m n.
s HAS_SIZE m /\ t HAS_SIZE n ==> (s --> t) HAS_SIZE (n EXP m)`,
REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[SIMP_TAC[CARD_CLAUSES; FINITE_RULES; FUNSPACE_EMPTY; NOT_IN_EMPTY] THEN
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
ASM_REWRITE_TAC[EXP; ARITH];
ALL_TAC] THEN
REWRITE_TAC[GSYM HAS_SIZE] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(x INSERT s) --> t =
IMAGE (\(y:B,g) u:A. if u = x then y else g(u))
{y,g | y IN t /\ g IN s --> t}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; funspace; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> d /\ a /\ b /\ c`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
X_GEN_TAC `f:A->B` THEN EQ_TAC THENL
[STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`(f:A->B) x`; `\u. if u = x then @y. T else (f:A->B) u`] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[IN_INSERT];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`y:B`; `g:A->B`] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_MESON_TAC[IN_INSERT]];
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ d <=> d /\ a /\ b`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REWRITE_TAC[FUN_EQ_THM; funspace; IN_ELIM_THM] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN
X_GEN_TAC `u:A` THEN ASM_CASES_TAC `u:A = x` THEN ASM_MESON_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN
MATCH_MP_TAC HAS_SIZE_PRODUCT THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The restriction to injective functions. *)
(* ------------------------------------------------------------------------- *)
let FACT_DIVIDES = prove
(`!m n. m <= n ==> ?d. FACT(n) = d * FACT(m)`,
REWRITE_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `m:num` THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT] THEN
ASM_MESON_TAC[MULT_AC; MULT_CLAUSES]);;
let FACT_DIV_MULT = prove
(`!m n. m <= n ==> FACT n = (FACT(n) DIV FACT(m)) * FACT(m)`,
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP FACT_DIVIDES) THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
ASM_SIMP_TAC[DIV_MULT; GSYM LT_NZ; FACT_LT]);;
let HAS_SIZE_FUNSPACE_INJECTIVE = prove
(`!s:A->bool t:B->bool m n.
s HAS_SIZE m /\ t HAS_SIZE n
==> {f | f IN (s --> t) /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)}
HAS_SIZE (if n < m then 0 else (FACT n) DIV (FACT(n - m)))`,
REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[SIMP_TAC[CARD_CLAUSES; FINITE_RULES; FUNSPACE_EMPTY; NOT_IN_EMPTY] THEN
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
REWRITE_TAC[SET_RULE `{x | x IN s} = s`] THEN
ASM_SIMP_TAC[FINITE_RULES; CARD_CLAUSES; FACT] THEN
SIMP_TAC[NOT_IN_EMPTY; LT; SUB_0; DIV_REFL; GSYM LT_NZ; FACT_LT] THEN
REWRITE_TAC[ARITH];
ALL_TAC] THEN
REWRITE_TAC[GSYM HAS_SIZE] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`{f | f IN (x INSERT s) --> t /\
(!u v. u IN (x INSERT s) /\ v IN (x INSERT s) /\ f u = f v ==> u = v)} =
IMAGE (\(y:B,g) u:A. if u = x then y else g(u))
{y,g | y IN t /\
g IN {f | f IN (s --> (t DELETE y)) /\
!u v. u IN s /\ v IN s /\ f u = f v ==> u = v}}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; funspace; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> d /\ a /\ b /\ c`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
X_GEN_TAC `f:A->B` THEN EQ_TAC THENL
[REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`(f:A->B) x`; `\u. if u = x then @y. T else (f:A->B) u`] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[];
REWRITE_TAC[IN_INSERT; IN_DELETE; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`y:B`; `g:A->B`] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_MESON_TAC[]];
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ d <=> d /\ a /\ b`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REWRITE_TAC[FUN_EQ_THM; funspace; IN_ELIM_THM; IN_INSERT; IN_DELETE] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN
X_GEN_TAC `u:A` THEN ASM_CASES_TAC `u:A = x` THEN ASM_MESON_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN
SUBGOAL_THEN
`(if n < SUC (CARD s) then 0 else FACT n DIV FACT (n - SUC (CARD s))) =
n * (if (n - 1) < CARD(s:A->bool) then 0
else FACT(n - 1) DIV FACT (n - 1 - CARD s))`
SUBST1_TAC THENL
[ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; LT_0] THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n - 1 < m <=> n < SUC m)`] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
REWRITE_TAC[ARITH_RULE `n - SUC(m) = n - 1 - m`] THEN
UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[FACT; SUC_SUB1] THEN DISCH_TAC THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[ADD_CLAUSES; FACT_LT; GSYM MULT_ASSOC] THEN
AP_TERM_TAC THEN MATCH_MP_TAC FACT_DIV_MULT THEN ARITH_TAC;
MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `y:B` THEN DISCH_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN
ASM_SIMP_TAC[HAS_SIZE; FINITE_DELETE; CARD_DELETE]]);;
(* ------------------------------------------------------------------------- *)
(* So the actual birthday result. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_DIFF = prove
(`!s t:A->bool m n.
s SUBSET t /\ s HAS_SIZE m /\ t HAS_SIZE n
==> (t DIFF s) HAS_SIZE (n - m)`,
SIMP_TAC[HAS_SIZE; FINITE_DIFF] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`s SUBSET t ==> t = s UNION (t DIFF s)`)) THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
ASM_SIMP_TAC[CARD_UNION; FINITE_DIFF; ADD_SUB2;
SET_RULE `s INTER (t DIFF s) = {}`]);;
let BIRTHDAY_THM = prove
(`!s:A->bool t:B->bool m n.
s HAS_SIZE m /\ t HAS_SIZE n
==> {f | f IN (s --> t) /\
?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)}
HAS_SIZE (if m <= n then (n EXP m) - (FACT n) DIV (FACT(n - m))
else n EXP m)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[SET_RULE
`{f:A->B | f IN (s --> t) /\
?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)} =
(s --> t) DIFF
{f | f IN (s --> t) /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)}`] THEN
REWRITE_TAC[ARITH_RULE
`(if a <= b then x - y else x) = x - (if b < a then 0 else y)`] THEN
MATCH_MP_TAC HAS_SIZE_DIFF THEN
ASM_SIMP_TAC[HAS_SIZE_FUNSPACE_INJECTIVE; HAS_SIZE_FUNSPACE] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
(* ------------------------------------------------------------------------- *)
(* The usual explicit instantiation. *)
(* ------------------------------------------------------------------------- *)
let FACT_DIV_SIMP = prove
(`!m n. m < n
==> (FACT n) DIV (FACT m) = n * FACT(n - 1) DIV FACT(m)`,
GEN_TAC THEN REWRITE_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
REWRITE_TAC[ARITH_RULE `(m + SUC d) - 1 - m = d`] THEN
REWRITE_TAC[ARITH_RULE `(m + SUC d) - 1 = m + d`; ADD_SUB2] THEN
GEN_TAC THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[FACT_LT; ARITH_RULE `x + 0 = x`] THEN REWRITE_TAC[FACT] THEN
SIMP_TAC[GSYM MULT_ASSOC; GSYM FACT_DIV_MULT; LE_ADD] THEN
REWRITE_TAC[ADD_CLAUSES; FACT]);;
let BIRTHDAY_THM_EXPLICIT = prove
(`!s t. s HAS_SIZE 23 /\ t HAS_SIZE 365
==> 2 * CARD {f | f IN (s --> t) /\
?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)}
>= CARD (s --> t)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP BIRTHDAY_THM) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_SIZE_FUNSPACE) THEN
CONV_TAC(ONCE_DEPTH_CONV NUM_SUB_CONV) THEN
REPEAT(CHANGED_TAC
(SIMP_TAC[FACT_DIV_SIMP; ARITH_LE; ARITH_LT] THEN
CONV_TAC(ONCE_DEPTH_CONV NUM_SUB_CONV))) THEN
SIMP_TAC[DIV_REFL; GSYM LT_NZ; FACT_LT] THEN
REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC NUM_REDUCE_CONV);;