Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Authors: Jose Divasón | |
Sebastiaan Joosten | |
René Thiemann | |
Akihisa Yamada | |
*) | |
subsection \<open>Chinese Remainder Theorem for Polynomials\<close> | |
text \<open>We prove the Chinese Remainder Theorem, and strengthen it by showing uniqueness\<close> | |
theory Chinese_Remainder_Poly | |
imports | |
"HOL-Number_Theory.Residues" | |
Polynomial_Factorization.Polynomial_Divisibility | |
Polynomial_Interpolation.Missing_Polynomial | |
begin | |
lemma cong_add_poly: | |
"[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)" | |
by (fact cong_add) | |
lemma cong_mult_poly: | |
"[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)" | |
by (fact cong_mult) | |
lemma cong_mult_self_poly: "[(a::'b::{field_gcd} poly) * m = 0] (mod m)" | |
by (fact cong_mult_self_right) | |
lemma cong_scalar2_poly: "[(a::'b::{field_gcd} poly)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)" | |
by (fact cong_scalar_left) | |
lemma cong_sum_poly: | |
"(\<And>x. x \<in> A \<Longrightarrow> [((f x)::'b::{field_gcd} poly) = g x] (mod m)) \<Longrightarrow> | |
[(\<Sum>x\<in>A. f x) = (\<Sum>x\<in>A. g x)] (mod m)" | |
by (rule cong_sum) | |
lemma cong_iff_lin_poly: "([(a::'b::{field_gcd} poly) = b] (mod m)) = (\<exists>k. b = a + m * k)" | |
using cong_diff_iff_cong_0 [of b a m] by (auto simp add: cong_0_iff dvd_def algebra_simps dest: cong_sym) | |
lemma cong_solve_poly: "(a::'b::{field_gcd} poly) \<noteq> 0 \<Longrightarrow> \<exists>x. [a * x = gcd a n] (mod n)" | |
proof (cases "n = 0") | |
case True | |
note n0=True | |
show ?thesis | |
proof (cases "monic a") | |
case True | |
have n: "normalize a = a" by (rule normalize_monic[OF True]) | |
show ?thesis | |
by (rule exI[of _ 1], auto simp add: n0 n cong_def) | |
next | |
case False | |
show ?thesis | |
by (auto simp add: True cong_def normalize_poly_old_def map_div_is_smult_inverse) | |
(metis mult.right_neutral mult_smult_right) | |
qed | |
next | |
case False | |
note n_not_0 = False | |
show ?thesis | |
using bezout_coefficients_fst_snd [of a n, symmetric] | |
by (auto simp add: cong_iff_lin_poly mult.commute [of a] mult.commute [of n]) | |
qed | |
lemma cong_solve_coprime_poly: | |
assumes coprime_an:"coprime (a::'b::{field_gcd} poly) n" | |
shows "\<exists>x. [a * x = 1] (mod n)" | |
proof (cases "a = 0") | |
case True | |
show ?thesis unfolding cong_def | |
using True coprime_an by auto | |
next | |
case False | |
show ?thesis | |
using coprime_an cong_solve_poly[OF False, of n] | |
unfolding cong_def | |
by presburger | |
qed | |
lemma cong_dvd_modulus_poly: | |
"[x = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> [x = y] (mod n)" for x y :: "'b::{field_gcd} poly" | |
by (auto simp add: cong_iff_lin_poly elim!: dvdE) | |
lemma chinese_remainder_aux_poly: | |
fixes A :: "'a set" | |
and m :: "'a \<Rightarrow> 'b::{field_gcd} poly" | |
assumes fin: "finite A" | |
and cop: "\<forall>i \<in> A. (\<forall>j \<in> A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))" | |
shows "\<exists>b. (\<forall>i \<in> A. [b i = 1] (mod m i) \<and> [b i = 0] (mod (\<Prod>j \<in> A - {i}. m j)))" | |
proof (rule finite_set_choice, rule fin, rule ballI) | |
fix i | |
assume "i : A" | |
with cop have "coprime (\<Prod>j \<in> A - {i}. m j) (m i)" | |
by (auto intro: prod_coprime_left) | |
then have "\<exists>x. [(\<Prod>j \<in> A - {i}. m j) * x = 1] (mod m i)" | |
by (elim cong_solve_coprime_poly) | |
then obtain x where "[(\<Prod>j \<in> A - {i}. m j) * x = 1] (mod m i)" | |
by auto | |
moreover have "[(\<Prod>j \<in> A - {i}. m j) * x = 0] | |
(mod (\<Prod>j \<in> A - {i}. m j))" | |
by (subst mult.commute, rule cong_mult_self_poly) | |
ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0] | |
(mod prod m (A - {i}))" | |
by blast | |
qed | |
(*The Chinese Remainder Theorem for polynomials: *) | |
lemma chinese_remainder_poly: | |
fixes A :: "'a set" | |
and m :: "'a \<Rightarrow> 'b::{field_gcd} poly" | |
and u :: "'a \<Rightarrow> 'b poly" | |
assumes fin: "finite A" | |
and cop: "\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))" | |
shows "\<exists>x. (\<forall>i\<in>A. [x = u i] (mod m i))" | |
proof - | |
from chinese_remainder_aux_poly [OF fin cop] obtain b where | |
bprop: "\<forall>i\<in>A. [b i = 1] (mod m i) \<and> | |
[b i = 0] (mod (\<Prod>j \<in> A - {i}. m j))" | |
by blast | |
let ?x = "\<Sum>i\<in>A. (u i) * (b i)" | |
show "?thesis" | |
proof (rule exI, clarify) | |
fix i | |
assume a: "i : A" | |
show "[?x = u i] (mod m i)" | |
proof - | |
from fin a have "?x = (\<Sum>j \<in> {i}. u j * b j) + | |
(\<Sum>j \<in> A - {i}. u j * b j)" | |
by (subst sum.union_disjoint [symmetric], auto intro: sum.cong) | |
then have "[?x = u i * b i + (\<Sum>j \<in> A - {i}. u j * b j)] (mod m i)" | |
unfolding cong_def | |
by auto | |
also have "[u i * b i + (\<Sum>j \<in> A - {i}. u j * b j) = | |
u i * 1 + (\<Sum>j \<in> A - {i}. u j * 0)] (mod m i)" | |
apply (rule cong_add_poly) | |
apply (rule cong_scalar2_poly) | |
using bprop a apply blast | |
apply (rule cong_sum) | |
apply (rule cong_scalar2_poly) | |
using bprop apply auto | |
apply (rule cong_dvd_modulus_poly) | |
apply (drule (1) bspec) | |
apply (erule conjE) | |
apply assumption | |
apply rule | |
using fin a apply auto | |
done | |
thus ?thesis | |
by (metis (no_types, lifting) a add.right_neutral fin mult_cancel_left1 mult_cancel_right1 | |
sum.not_neutral_contains_not_neutral sum.remove) | |
qed | |
qed | |
qed | |
(*********************** Now we try to prove the uniqueness **********************) | |
lemma cong_trans_poly: | |
"[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)" | |
by (fact cong_trans) | |
lemma cong_mod_poly: "(n::'b::{field_gcd} poly) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" | |
by auto | |
lemma cong_sym_poly: "[(a::'b::{field_gcd} poly) = b] (mod m) \<Longrightarrow> [b = a] (mod m)" | |
by (fact cong_sym) | |
lemma cong_1_poly: "[(a::'b::{field_gcd} poly) = b] (mod 1)" | |
by (fact cong_1) | |
lemma coprime_cong_mult_poly: | |
assumes "[(a::'b::{field_gcd} poly) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n" | |
shows "[a = b] (mod m * n)" | |
using divides_mult assms | |
by (metis (no_types, opaque_lifting) cong_dvd_modulus_poly cong_iff_lin_poly dvd_mult2 dvd_refl minus_add_cancel mult.right_neutral) | |
lemma coprime_cong_prod_poly: | |
"(\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<Longrightarrow> | |
(\<forall>i\<in>A. [(x::'b::{field_gcd} poly) = y] (mod m i)) \<Longrightarrow> | |
[x = y] (mod (\<Prod>i\<in>A. m i))" | |
apply (induct A rule: infinite_finite_induct) | |
apply auto | |
apply (metis coprime_cong_mult_poly prod_coprime_right) | |
done | |
lemma cong_less_modulus_unique_poly: | |
"[(x::'b::{field_gcd} poly) = y] (mod m) \<Longrightarrow> degree x < degree m \<Longrightarrow> degree y < degree m \<Longrightarrow> x = y" | |
by (simp add: cong_def mod_poly_less) | |
lemma chinese_remainder_unique_poly: | |
fixes A :: "'a set" | |
and m :: "'a \<Rightarrow> 'b::{field_gcd} poly" | |
and u :: "'a \<Rightarrow> 'b poly" | |
assumes nz: "\<forall>i\<in>A. (m i) \<noteq> 0" | |
and cop: "\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))" | |
(*The following assumption should not be necessary, but I need it since in Isabelle | |
degree 0 is 0 instead of -\<infinity>*) | |
and not_constant: "0 < degree (prod m A)" | |
shows "\<exists>!x. degree x < (\<Sum>i\<in>A. degree (m i)) \<and> (\<forall>i\<in>A. [x = u i] (mod m i))" | |
proof - | |
from not_constant have fin: "finite A" | |
by (metis degree_1 gr_implies_not0 prod.infinite) | |
from chinese_remainder_poly [OF fin cop] | |
obtain y where one: "(\<forall>i\<in>A. [y = u i] (mod m i))" | |
by blast | |
let ?x = "y mod (\<Prod>i\<in>A. m i)" | |
have degree_prod_sum: "degree (prod m A) = (\<Sum>i\<in>A. degree (m i))" | |
by (rule degree_prod_eq_sum_degree[OF nz]) | |
from fin nz have prodnz: "(\<Prod>i\<in>A. (m i)) \<noteq> 0" | |
by auto | |
(*This would hold without the premise not_constant if degree 0 = -\<infinity>*) | |
have less: "degree ?x < (\<Sum>i\<in>A. degree (m i))" | |
unfolding degree_prod_sum[symmetric] | |
using degree_mod_less[OF prodnz, of y] | |
using not_constant | |
by auto | |
have cong: "\<forall>i\<in>A. [?x = u i] (mod m i)" | |
apply auto | |
apply (rule cong_trans_poly) | |
prefer 2 | |
using one apply auto | |
apply (rule cong_dvd_modulus_poly) | |
apply (rule cong_mod_poly) | |
using prodnz apply auto | |
apply rule | |
apply (rule fin) | |
apply assumption | |
done | |
have unique: "\<forall>z. degree z < (\<Sum>i\<in>A. degree (m i)) \<and> | |
(\<forall>i\<in>A. [z = u i] (mod m i)) \<longrightarrow> z = ?x" | |
proof (clarify) | |
fix z::"'b poly" | |
assume zless: "degree z < (\<Sum>i\<in>A. degree (m i))" | |
assume zcong: "(\<forall>i\<in>A. [z = u i] (mod m i))" | |
have deg1: "degree z < degree (prod m A)" | |
using degree_prod_sum zless by simp | |
have deg2: "degree ?x < degree (prod m A)" | |
by (metis deg1 degree_0 degree_mod_less gr0I gr_implies_not0) | |
have "\<forall>i\<in>A. [?x = z] (mod m i)" | |
apply clarify | |
apply (rule cong_trans_poly) | |
using cong apply (erule bspec) | |
apply (rule cong_sym_poly) | |
using zcong by auto | |
with fin cop have "[?x = z] (mod (\<Prod>i\<in>A. m i))" | |
by (intro coprime_cong_prod_poly) auto | |
with zless show "z = ?x" | |
apply (intro cong_less_modulus_unique_poly) | |
apply (erule cong_sym_poly) | |
apply (auto simp add: deg1 deg2) | |
done | |
qed | |
from less cong unique show ?thesis by blast | |
qed | |
end | |