Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Renegar_Decision | |
imports "Renegar_Proofs" | |
"BKR_Decision" | |
begin | |
(* Note that there is significant overlap between Renegar and BKR in general, so there is some | |
similarity between this file and BKR_Decision.thy. However, there are also notable differences | |
as Renegar and BKR use different auxiliary polynomials in their decision procedures. | |
In general, the _R's on definition and lemma names in this file are to emphasize that we are | |
working with Renegar style. | |
*) | |
section "Algorithm" | |
(* The set of all rational sign vectors for qs wrt the set S | |
When S = UNIV, then this quantifies over all reals *) | |
definition consistent_sign_vectors_R::"real poly list \<Rightarrow> real set \<Rightarrow> rat list set" | |
where "consistent_sign_vectors_R qs S = (consistent_sign_vec qs) ` S" | |
primrec prod_list_var:: "real poly list \<Rightarrow> real poly" | |
where "prod_list_var [] = 1" | |
| "prod_list_var (h#T) = (if h = 0 then (prod_list_var T) else (h* prod_list_var T))" | |
primrec check_all_const_deg:: "real poly list \<Rightarrow> bool" | |
where "check_all_const_deg [] = True" | |
| "check_all_const_deg (h#T) = (if degree h = 0 then (check_all_const_deg T) else False)" | |
definition poly_f :: "real poly list \<Rightarrow> real poly" | |
where | |
"poly_f ps = | |
(if (check_all_const_deg ps = True) then [:0, 1:] else | |
(pderiv (prod_list_var ps)) * (prod_list_var ps)* ([:-(crb (prod_list_var ps)),1:]) * ([:(crb (prod_list_var ps)),1:]))" | |
definition find_consistent_signs_R :: "real poly list \<Rightarrow> rat list list" | |
where | |
"find_consistent_signs_R ps = find_consistent_signs_at_roots_R (poly_f ps) ps" | |
definition decide_universal_R :: "real poly fml \<Rightarrow> bool" | |
where [code]: | |
"decide_universal_R fml = ( | |
let (fml_struct,polys) = convert fml; | |
conds = find_consistent_signs_R polys | |
in | |
list_all (lookup_sem fml_struct) conds | |
)" | |
definition decide_existential_R :: "real poly fml \<Rightarrow> bool" | |
where [code]: | |
"decide_existential_R fml = ( | |
let (fml_struct,polys) = convert fml; | |
conds = find_consistent_signs_R polys | |
in | |
find (lookup_sem fml_struct) conds \<noteq> None | |
)" | |
subsection "Proofs" | |
definition roots_of_poly_f:: "real poly list \<Rightarrow> real set" | |
where "roots_of_poly_f qs = {x. poly (poly_f qs) x = 0}" | |
lemma prod_list_var_nonzero: | |
shows "prod_list_var qs \<noteq> 0" | |
proof (induct qs) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a qs) | |
then show ?case by auto | |
qed | |
lemma q_dvd_prod_list_var_prop: | |
assumes "q \<in> set qs" | |
assumes "q \<noteq> 0" | |
shows "q dvd prod_list_var qs" using assms | |
proof (induct qs) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a qs) | |
then have eo: "q = a \<or>q \<in> set qs" by auto | |
have c1: "q = a \<Longrightarrow> q dvd prod_list_var (a#qs)" | |
proof - | |
assume "q = a" | |
then have "prod_list_var (a#qs) = q*(prod_list_var qs)" using Cons.prems | |
unfolding prod_list_var_def by auto | |
then show ?thesis using prod_list_var_nonzero[of qs] by auto | |
qed | |
have c2: "q \<in> set qs \<longrightarrow> q dvd prod_list_var qs" | |
using Cons.prems Cons.hyps unfolding prod_list_var_def by auto | |
show ?case using eo c1 c2 by auto | |
qed | |
lemma check_all_const_deg_prop: | |
shows "check_all_const_deg l = True \<longleftrightarrow> (\<forall>p \<in> set(l). degree p = 0)" | |
proof (induct l) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a l) | |
then show ?case by auto | |
qed | |
(* lemma prod_zero shows that the product of the polynomial list is 0 at x iff there is a polynomial | |
in the list that is 0 at x *) | |
lemma poly_f_nonzero: | |
fixes qs :: "real poly list" | |
shows "(poly_f qs) \<noteq> 0" | |
proof - | |
have eo: "(\<forall>p \<in> set qs. degree p = 0) \<or> (\<exists>p \<in> set qs. degree p > 0)" | |
by auto | |
have c1: "(\<forall>p \<in> set qs. degree p = 0) \<longrightarrow> (poly_f qs) \<noteq> 0" | |
unfolding poly_f_def using check_all_const_deg_prop by auto | |
have c2: "(\<exists>p \<in> set qs. degree p > 0) \<longrightarrow> (poly_f qs) \<noteq> 0" | |
proof clarsimp | |
fix q | |
assume q_in: "q \<in> set qs" | |
assume deg_q: "0 < degree q" | |
assume contrad: "poly_f qs = 0" | |
have nonconst: "check_all_const_deg qs = False" using deg_q check_all_const_deg_prop | |
q_in by auto | |
have h1: "prod_list_var qs \<noteq> 0" using prod_list_var_nonzero by auto | |
then have "degree (prod_list_var qs) > 0" using q_in deg_q h1 | |
proof (induct qs) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a qs) | |
have q_nonz: "q \<noteq> 0" using Cons.prems by auto | |
have q_ins: "q \<in> set (a # qs) " using Cons.prems by auto | |
then have "q = a \<or> q \<in> set qs" by auto | |
then have eo: " q = a \<or> List.member qs q" using in_set_member[of q qs] | |
by auto | |
have degq: "degree q > 0" using Cons.prems by auto | |
have h2: "(prod_list (a # qs)) = a* (prod_list qs)" | |
by auto | |
have isa: "q = a \<longrightarrow> 0 < degree (prod_list_var (a # qs))" | |
using h2 degree_mult_eq_0[where p = "q", where q = "prod_list_var qs"] | |
Cons.prems by auto | |
have inl: "List.member qs q \<longrightarrow> 0 < degree (prod_list_var (a # qs))" | |
proof - | |
have nonzprod: "prod_list_var (a # qs) \<noteq> 0" using prod_list_var_nonzero by auto | |
have "q dvd prod_list_var (a # qs)" | |
using q_dvd_prod_list_var_prop[where q = "q", where qs = "(a#qs)"] q_nonz q_ins | |
by auto | |
then show ?thesis using divides_degree[where p = "q", where q = "prod_list_var (a # qs)"] nonzprod degq | |
by auto | |
qed | |
then show ?case using eo isa by auto | |
qed | |
then have h2: "pderiv (prod_list_var qs) \<noteq> 0" using pderiv_eq_0_iff[where p = "prod_list_var qs"] | |
by auto | |
then have "pderiv (prod_list_var qs) * prod_list_var qs \<noteq> 0" | |
using prod_list_var_nonzero h2 by auto | |
then show "False" using contrad nonconst unfolding poly_f_def deg_q | |
by (smt (z3) mult_eq_0_iff pCons_eq_0_iff) | |
qed | |
show ?thesis using eo c1 c2 by auto | |
qed | |
lemma poly_f_roots_prop_1: | |
fixes qs:: "real poly list" | |
assumes non_const: "check_all_const_deg qs = False" | |
shows "\<forall>x1. \<forall>x2. ((x1 < x2 \<and> (\<exists>q1 \<in> set (qs). q1 \<noteq> 0 \<and> (poly q1 x1) = 0) \<and> (\<exists>q2\<in> set(qs). q2 \<noteq> 0 \<and> (poly q2 x2) = 0)) \<longrightarrow> (\<exists>q. x1 < q \<and> q < x2 \<and> poly (poly_f qs) q = 0))" | |
proof clarsimp | |
fix x1:: "real" | |
fix x2:: "real" | |
fix q1:: "real poly" | |
fix q2:: "real poly" | |
assume "x1 < x2" | |
assume q1_in: "q1 \<in> set qs" | |
assume q1_0: "poly q1 x1 = 0" | |
assume q1_nonz: "q1 \<noteq> 0" | |
assume q2_in: "q2 \<in> set qs" | |
assume q2_0: "poly q2 x2 = 0" | |
assume q2_nonz: "q2 \<noteq> 0" | |
have prod_z_x1: "poly (prod_list_var qs) x1 = 0" using q1_in q1_0 | |
using q1_nonz q_dvd_prod_list_var_prop[of q1 qs] by auto | |
have prod_z_x2: "poly (prod_list_var qs) x2 = 0" using q2_in q2_0 | |
using q2_nonz q_dvd_prod_list_var_prop[of q2 qs] by auto | |
have "\<exists>w>x1. w < x2 \<and> poly (pderiv (prod_list_var qs)) w = 0" | |
using Rolle_pderiv[where q = "prod_list_var qs"] prod_z_x1 prod_z_x2 | |
using \<open>x1 < x2\<close> by blast | |
then obtain w where w_def: "w > x1 \<and>w < x2 \<and> poly (pderiv (prod_list_var qs)) w = 0" | |
by auto | |
then have "poly (poly_f qs) w = 0" | |
unfolding poly_f_def using non_const | |
by simp | |
then show "\<exists>q>x1. q < x2 \<and> poly (poly_f qs) q = 0" | |
using w_def by blast | |
qed | |
lemma main_step_aux1_R: | |
fixes qs:: "real poly list" | |
assumes non_const: "check_all_const_deg qs = True" | |
shows "set (find_consistent_signs_R qs) = consistent_sign_vectors_R qs UNIV" | |
proof - | |
have poly_f_is: "poly_f qs = [:0, 1:]" unfolding poly_f_def using assms | |
by auto | |
have same: "set (find_consistent_signs_at_roots_R [:0, 1:] qs) = | |
set (characterize_consistent_signs_at_roots [:0, 1:] qs)" using find_consistent_signs_at_roots_R[of "[:0, 1:]" qs] | |
by auto | |
have rech: "(sorted_list_of_set {x. poly ([:0, 1:]::real poly) x = 0}) = [0]" by auto | |
have alldeg0: "(\<forall>p \<in> set qs. degree p = 0)" using non_const check_all_const_deg_prop | |
by auto | |
then have allconst: "\<forall>p \<in> set qs. (\<exists>(k::real). p = [:k:])" | |
apply (auto) | |
by (meson degree_eq_zeroE) | |
then have allconstvar: "\<forall>p \<in> set qs. \<forall>(x::real). \<forall>(y::real). poly p x = poly p y" | |
by fastforce | |
have e1: "set (remdups (map (signs_at qs) [0])) \<subseteq> | |
consistent_sign_vectors_R qs UNIV" | |
unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def apply (simp) | |
by (smt (verit, best) class_ring.ring_simprules(2) comp_def image_iff length_map map_nth_eq_conv) | |
have e2: "consistent_sign_vectors_R qs UNIV \<subseteq> set (remdups (map (signs_at qs) [0])) " | |
unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def apply (simp) | |
using allconstvar | |
by (smt (verit, best) comp_apply image_iff insert_iff map_eq_conv subsetI) | |
have "set (remdups (map (signs_at qs) [0])) = | |
consistent_sign_vectors_R qs UNIV" | |
using e1 e2 by auto | |
then have "set (characterize_consistent_signs_at_roots [:0, 1:] qs) = consistent_sign_vectors_R qs UNIV" | |
unfolding characterize_consistent_signs_at_roots_def characterize_root_list_p_def | |
using rech by auto | |
then show ?thesis using same poly_f_is unfolding find_consistent_signs_R_def | |
by auto | |
qed | |
lemma sorted_list_lemma_var: | |
fixes l:: "real list" | |
fixes x:: "real" | |
assumes "length l > 1" | |
assumes strict_sort: "sorted_wrt (<) l" | |
assumes x_not_in: "\<not> (List.member l x)" | |
assumes lt_a: "x > (l ! 0)" | |
assumes b_lt: "x < (l ! (length l - 1))" | |
shows "(\<exists>n. n < length l - 1 \<and> x > l ! n \<and> x < l !(n+1))" using assms | |
proof (induct l) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a l) | |
have len_gteq: "length l \<ge> 1" using Cons.prems(1) | |
by (metis One_nat_def Suc_eq_plus1 list.size(4) not_le not_less_eq) | |
have len_one: "length l = 1 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))" | |
proof - | |
assume len_is: "length l = 1" | |
then have "x > (a#l) ! 0 \<and> x < (a#l) !1 " using Cons.prems(4) Cons.prems(5) | |
by auto | |
then show "(\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))" | |
using len_is by auto | |
qed | |
have len_gt: "length l > 1 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))" | |
proof - | |
assume len_gt_one: "length l > 1" | |
have eo: "x \<noteq> l ! 0" using Cons.prems(3) apply (auto) | |
by (metis One_nat_def Suc_lessD in_set_member len_gt_one member_rec(1) nth_mem) | |
have c1: "x < l ! 0 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1)) " | |
proof - | |
assume xlt: "x < l !0" | |
then have "x < (a#l) ! 1 " | |
by simp | |
then show ?thesis using Cons.prems(4) len_gt_one apply (auto) | |
using Cons.prems(4) Suc_lessD by blast | |
qed | |
have c2: "x > l ! 0 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1)) " | |
proof - | |
assume asm: "x > l ! 0" | |
have xlt_1: " x < l ! (length l - 1)" | |
using Cons.prems(5) | |
by (metis Cons.prems(1) One_nat_def add_diff_cancel_right' list.size(4) nth_Cons_pos zero_less_diff) | |
have ssl: "sorted_wrt (<) l " using Cons.prems(2) | |
using sorted_wrt.simps(2) by auto | |
have " \<not> List.member l x" using Cons.prems(3) | |
by (meson member_rec(1)) | |
then have " \<exists>n<length l - 1. l ! n < x \<and> x < l ! (n + 1)" | |
using asm xlt_1 len_gt_one ssl Cons.hyps | |
by auto | |
then show ?thesis | |
by (metis One_nat_def Suc_eq_plus1 diff_Suc_1 less_diff_conv list.size(4) nth_Cons_Suc) | |
qed | |
show "(\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))" | |
using eo c1 c2 | |
by (meson linorder_neqE_linordered_idom) | |
qed | |
then show ?case | |
using len_gteq len_one len_gt | |
apply (auto) | |
by (metis One_nat_def less_numeral_extra(1) linorder_neqE_nat not_less nth_Cons_0) | |
qed | |
(* We want to show that our auxiliary polynomial has roots in all relevant intervals: | |
so it captures all of the zeros, and also it captures all of the points in between! *) | |
lemma all_sample_points_prop: | |
assumes is_not_const: "check_all_const_deg qs = False" | |
assumes s_is: "S = (characterize_root_list_p (pderiv (prod_list_var qs) * (prod_list_var qs) * ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])))"(* properties about S*) | |
shows "consistent_sign_vectors_R qs UNIV = consistent_sign_vectors_R qs (set S)" | |
proof - | |
let ?zer_list = "sorted_list_of_set {(x::real). (\<exists>q \<in> set(qs). (q \<noteq> 0 \<and> poly q x = 0))} :: real list" | |
have strict_sorted_h: "sorted_wrt (<) ?zer_list" using sorted_sorted_list_of_set | |
strict_sorted_iff by auto | |
have poly_f_is: "poly_f qs = (pderiv (prod_list_var qs) * prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])" | |
unfolding poly_f_def using is_not_const by auto | |
then have set_S_char: "set S = ({x. poly (poly_f qs) x = 0}::real set)" | |
using poly_roots_finite[of "poly_f qs"] set_sorted_list_of_set poly_f_nonzero[of qs] | |
using s_is unfolding characterize_root_list_p_def by auto | |
have difficult_direction: "consistent_sign_vectors_R qs UNIV \<subseteq> consistent_sign_vectors_R qs (set S)" | |
proof clarsimp | |
fix x | |
assume "x \<in> consistent_sign_vectors_R qs UNIV " | |
then have "\<exists>y. x = (consistent_sign_vec qs y)" unfolding consistent_sign_vectors_R_def by auto | |
then obtain y where y_prop: "x = consistent_sign_vec qs y" by auto | |
then have "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
proof - | |
have c1: "(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0) \<Longrightarrow> (\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y)" | |
proof - | |
assume "(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0)" | |
then obtain q where "q \<in> (set qs) \<and> q \<noteq> 0 \<and> poly q y = 0" by auto | |
then have "poly (prod_list_var qs) y = 0" | |
using q_dvd_prod_list_var_prop[of q qs] by auto | |
then have "poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) y = 0" | |
by auto | |
then have "y \<in> (set S)" | |
using s_is unfolding characterize_root_list_p_def | |
proof - | |
have "y \<in> {r. poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) r = 0}" | |
using \<open>poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) y = 0\<close> by force | |
then show ?thesis | |
by (metis characterize_root_list_p_def is_not_const poly_f_def poly_f_nonzero poly_roots_finite s_is set_sorted_list_of_set) | |
qed | |
then show "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
by auto | |
qed | |
have len_gtz_prop: "length ?zer_list > 0 \<longrightarrow> | |
((\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<or> | |
(y < ?zer_list ! 0) \<or> | |
(y > ?zer_list ! (length ?zer_list - 1)) \<or> | |
(\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k \<and> y < ?zer_list ! (k+1)))" | |
proof - | |
let ?c = "(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<or> | |
(y < ?zer_list ! 0) \<or> | |
(y > ?zer_list ! (length ?zer_list - 1)) \<or> | |
(\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k \<and> y < ?zer_list ! (k+1))" | |
have lis1: "length ?zer_list = 1 \<Longrightarrow> ?c" | |
by auto | |
have h1: "\<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<Longrightarrow> \<not> (List.member ?zer_list y)" | |
by (metis (no_types, lifting) in_set_conv_nth in_set_member) | |
have h2: "(length ?zer_list > 0 \<and> \<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<and> \<not> (y < ?zer_list ! 0)) \<Longrightarrow> y > ?zer_list ! 0" | |
by auto | |
have h3: "(length ?zer_list > 1 \<and> \<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<and> \<not> (y > ?zer_list ! (length ?zer_list - 1))) \<Longrightarrow> | |
y < ?zer_list ! (length ?zer_list - 1)" | |
apply (auto) | |
by (smt (z3) diff_Suc_less gr_implies_not0 not_gr_zero) | |
have "length ?zer_list > 1 \<and> \<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<and> \<not> (y < ?zer_list ! 0) \<and> \<not> (y > ?zer_list ! (length ?zer_list - 1)) | |
\<Longrightarrow> (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k \<and> y < ?zer_list ! (k+1))" | |
using h1 h2 h3 strict_sorted_h sorted_list_lemma_var[of ?zer_list y] | |
using One_nat_def Suc_lessD by presburger | |
then have lgt1: "length ?zer_list > 1 \<Longrightarrow> ?c" | |
by auto | |
then show ?thesis using lis1 lgt1 | |
by (smt (z3) diff_is_0_eq' not_less) | |
qed | |
have neg_crb_in: "(- crb (prod_list_var qs)) \<in> set S" | |
using set_S_char poly_f_is by auto | |
have pos_crb_in: "(crb (prod_list_var qs)) \<in> set S" | |
using set_S_char poly_f_is by auto | |
have set_S_nonempty: "set S \<noteq> {}" using neg_crb_in by auto | |
have finset: "finite {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
proof - | |
have "\<forall>q \<in> set qs. q\<noteq> 0 \<longrightarrow> finite {x. poly q x = 0} " | |
using poly_roots_finite by auto | |
then show ?thesis by auto | |
qed | |
have c2: "\<not>(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0) \<Longrightarrow> \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
proof - | |
assume "\<not>(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0)" | |
have c_c1: "length ?zer_list = 0 \<Longrightarrow> \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
proof - | |
assume "length ?zer_list = 0" | |
then have "\<forall>q \<in> set (qs). \<forall> (x:: real). \<forall>(y::real). squash (poly q x) = squash (poly q y)" | |
proof clarsimp | |
fix q x y | |
assume czer: "card {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} = 0" | |
assume qin: "q \<in> set qs" | |
have fin_means_empty: "{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} = {}" | |
using finset czer | |
by auto | |
have qzer: "q = 0 \<Longrightarrow> squash (poly q x) = squash (poly q y)" by auto | |
have qnonz: "q \<noteq> 0 \<Longrightarrow> squash (poly q x) = squash (poly q y)" | |
proof - | |
assume qnonz: "q \<noteq> 0" | |
then have noroots: "{x. poly q x = 0} = {}" using qin finset | |
using Collect_empty_eq fin_means_empty by auto | |
have nonzsq1: "squash (poly q x) \<noteq> 0" using fin_means_empty qnonz czer qin | |
unfolding squash_def by auto | |
then have eo: "(poly q x) > 0 \<or> (poly q x) < 0" unfolding squash_def | |
apply (auto) | |
by presburger | |
have eo1: "poly q x > 0 \<Longrightarrow> poly q y > 0" | |
using noroots poly_IVT_pos[of y x q] poly_IVT_neg[of x y q] | |
apply (auto) | |
by (metis linorder_neqE_linordered_idom) | |
have eo2: "poly q x < 0 \<Longrightarrow> poly q y < 0" | |
using noroots poly_IVT_pos[of x y q] poly_IVT_neg[of y x q] | |
apply (auto) by (metis linorder_neqE_linordered_idom) | |
then show "squash (poly q x) = squash (poly q y)" | |
using eo eo1 eo2 unfolding squash_def by auto | |
qed | |
show "squash (poly q x) = squash (poly q y)" | |
using qzer qnonz | |
by blast | |
qed | |
then have "\<forall>q \<in> set (qs). squash (poly q y) = squash (poly q (- crb (prod_list_var qs)))" | |
by auto | |
then show "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
using neg_crb_in unfolding consistent_sign_vec_def squash_def | |
apply (auto) | |
by (metis (no_types, opaque_lifting) antisym_conv3 class_field.neg_1_not_0 equal_neg_zero less_irrefl of_int_minus) | |
qed | |
have c_c2: "length ?zer_list > 0 \<Longrightarrow> \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
proof - | |
assume lengt: "length ?zer_list > 0" | |
let ?t = " \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
have sg1: "(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<Longrightarrow> ?t" | |
proof - | |
assume "(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w)" | |
then obtain w where w_prop: "w < length ?zer_list \<and> y = ?zer_list ! w" by auto | |
then have " y \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
using finset set_sorted_list_of_set[of "{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}"] | |
by (smt (verit, best) nth_mem) | |
then have "y \<in> {x. poly (poly_f qs) x = 0}" using poly_f_is | |
using \<open>\<not> (\<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q y = 0)\<close> by blast | |
then show ?thesis using set_S_char | |
by blast | |
qed | |
have sg2: "(y < ?zer_list ! 0) \<Longrightarrow> ?t" | |
proof - | |
assume ylt: "y < ?zer_list ! 0" | |
have ynonzat_some_qs: "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> poly q y \<noteq> 0" | |
proof clarsimp | |
fix q | |
assume q_in: "q \<in> set qs" | |
assume qnonz: "q \<noteq> 0" | |
assume "poly q y = 0" | |
then have "y \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
using q_in qnonz by auto | |
then have "List.member ?zer_list y" | |
by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have "y \<ge> ?zer_list ! 0" using strict_sorted_h | |
using \<open>\<not> (\<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q y = 0)\<close> \<open>poly q y = 0\<close> q_in qnonz by blast | |
then show "False" using ylt | |
by auto | |
qed | |
let ?ncrb = "(- crb (prod_list_var qs))" | |
have "\<forall>x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0" | |
using q_dvd_prod_list_var_prop | |
by fastforce | |
then have "poly (prod_list_var qs) (sorted_list_of_set {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} ! 0) = 0" | |
using finset set_sorted_list_of_set | |
by (metis (no_types, lifting) lengt nth_mem) | |
then have ncrblt: "?ncrb < ?zer_list ! 0" using prod_list_var_nonzero crb_lem_neg[of "prod_list_var qs" "?zer_list ! 0"] | |
by auto | |
have qzerh: "\<forall>q \<in> (set qs). q = 0 \<longrightarrow> squash (poly q ?ncrb) = squash (poly q y)" | |
by auto | |
have "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> squash (poly q ?ncrb) = squash (poly q y)" | |
proof clarsimp | |
fix q | |
assume q_in: "q \<in> set qs" | |
assume qnonz: "q \<noteq> 0" | |
have nonzylt:"\<not>(\<exists>x \<le> y. poly q x = 0)" | |
proof clarsimp | |
fix x | |
assume xlt: "x \<le> y" | |
assume "poly q x = 0" | |
then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
using q_in qnonz by auto | |
then have "List.member ?zer_list x" | |
by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have "x \<ge> ?zer_list ! 0" using strict_sorted_h | |
by (metis (no_types, lifting) gr_implies_not0 in_set_conv_nth in_set_member not_less sorted_iff_nth_mono sorted_list_of_set(2)) | |
then show "False" using xlt ylt | |
by auto | |
qed | |
have nonzncrb:"\<not>(\<exists>x \<le> (real_of_int ?ncrb). poly q x = 0)" | |
proof clarsimp | |
fix x | |
assume xlt: "x \<le> - real_of_int (crb (prod_list_var qs))" | |
assume "poly q x = 0" | |
then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
using q_in qnonz by auto | |
then have "List.member ?zer_list x" | |
by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have "x \<ge> ?zer_list ! 0" using strict_sorted_h | |
by (metis (no_types, lifting) gr_implies_not0 in_set_conv_nth in_set_member not_less sorted_iff_nth_mono sorted_list_of_set(2)) | |
then show "False" using xlt ncrblt | |
by auto | |
qed | |
have c1: " (poly q ?ncrb) > 0 \<Longrightarrow> (poly q y) > 0" | |
proof - | |
assume qncrbgt: "(poly q ?ncrb) > 0" | |
then have eq: "?ncrb = y \<Longrightarrow> poly q y > 0 " by auto | |
have gt: " ?ncrb > y \<Longrightarrow> poly q y > 0" using qncrbgt qnonz poly_IVT_pos[of y ?ncrb q] poly_IVT_neg[of ?ncrb y q] nonzncrb nonzylt | |
apply (auto) | |
by (meson less_eq_real_def linorder_neqE_linordered_idom) | |
have lt: "?ncrb < y \<Longrightarrow> poly q y > 0" using qncrbgt | |
using qnonz poly_IVT_pos[of y ?ncrb q] poly_IVT_neg[of ?ncrb y q] nonzncrb nonzylt | |
apply (auto) | |
by (meson less_eq_real_def linorder_neqE_linordered_idom) | |
then show ?thesis using eq gt lt apply (auto) | |
by (meson linorder_neqE_linordered_idom) | |
qed | |
have c2: "(poly q ?ncrb) < 0 \<Longrightarrow> (poly q y) < 0" | |
using poly_IVT_pos[of ?ncrb y q] poly_IVT_neg[of y ?ncrb q] nonzncrb nonzylt | |
apply (auto) | |
by (metis less_eq_real_def linorder_neqE_linordered_idom) | |
have eo: "(poly q ?ncrb) > 0 \<or> (poly q ?ncrb) < 0" | |
using nonzncrb | |
by auto | |
then show "squash (poly q (- real_of_int (crb (prod_list_var qs)))) = squash (poly q y)" | |
using c1 c2 | |
by (smt (verit, ccfv_SIG) of_int_minus squash_def) | |
qed | |
then have "\<forall>q \<in> (set qs). squash (poly q ?ncrb) = squash (poly q y)" | |
using qzerh by auto | |
then have "consistent_sign_vec qs ?ncrb = consistent_sign_vec qs y" | |
unfolding consistent_sign_vec_def squash_def | |
by (smt (z3) map_eq_conv) | |
then show ?thesis using neg_crb_in by auto | |
qed | |
have sg3: " (y > ?zer_list ! (length ?zer_list - 1)) \<Longrightarrow> ?t" | |
proof - | |
assume ygt: "y > ?zer_list ! (length ?zer_list - 1)" | |
have ynonzat_some_qs: "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> poly q y \<noteq> 0" | |
proof clarsimp | |
fix q | |
assume q_in: "q \<in> set qs" | |
assume qnonz: "q \<noteq> 0" | |
assume "poly q y = 0" | |
then have "y \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
using q_in qnonz by auto | |
then have "List.member ?zer_list y" | |
by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have "y \<le> ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h | |
using \<open>\<not> (\<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q y = 0)\<close> \<open>poly q y = 0\<close> q_in qnonz by blast | |
then show "False" using ygt | |
by auto | |
qed | |
let ?crb = "crb (prod_list_var qs)" | |
have "\<forall>x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0" | |
using q_dvd_prod_list_var_prop | |
by fastforce | |
then have "poly (prod_list_var qs) (sorted_list_of_set {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} ! 0) = 0" | |
using finset set_sorted_list_of_set | |
by (metis (no_types, lifting) lengt nth_mem) | |
then have crbgt: "?crb > ?zer_list ! (length ?zer_list - 1)" using prod_list_var_nonzero crb_lem_pos[of "prod_list_var qs" "?zer_list ! (length ?zer_list - 1)"] | |
by (metis (no_types, lifting) \<open>\<forall>x\<in>{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0\<close> diff_less finset lengt less_numeral_extra(1) nth_mem set_sorted_list_of_set) | |
have qzerh: "\<forall>q \<in> (set qs). q = 0 \<longrightarrow> squash (poly q ?crb) = squash (poly q y)" | |
by auto | |
have "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> squash (poly q ?crb) = squash (poly q y)" | |
proof clarsimp | |
fix q | |
assume q_in: "q \<in> set qs" | |
assume qnonz: "q \<noteq> 0" | |
have nonzylt:"\<not>(\<exists>x \<ge> y. poly q x = 0)" | |
proof clarsimp | |
fix x | |
assume xgt: "x \<ge> y" | |
assume "poly q x = 0" | |
then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
using q_in qnonz by auto | |
then have "List.member ?zer_list x" | |
by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have "x \<le> ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h | |
by (metis (no_types, lifting) One_nat_def Suc_leI Suc_pred diff_Suc_less in_set_conv_nth in_set_member lengt not_less sorted_iff_nth_mono sorted_list_of_set(2)) | |
then show "False" using xgt ygt | |
by auto | |
qed | |
have nonzcrb:"\<not>(\<exists>x \<ge> (real_of_int ?crb). poly q x = 0)" | |
proof clarsimp | |
fix x | |
assume xgt: "x \<ge> real_of_int (crb (prod_list_var qs))" | |
assume "poly q x = 0" | |
then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" | |
using q_in qnonz by auto | |
then have "List.member ?zer_list x" | |
by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have "x \<le> ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h | |
by (meson \<open>\<forall>x\<in>{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0\<close> \<open>x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}\<close> crb_lem_pos not_less prod_list_var_nonzero xgt) | |
then show "False" using xgt crbgt | |
by auto | |
qed | |
have c1: " (poly q ?crb) > 0 \<Longrightarrow> (poly q y) > 0" | |
proof - | |
assume qcrbgt: "(poly q ?crb) > 0" | |
then have eq: "?crb = y \<Longrightarrow> poly q y > 0 " by auto | |
have gt: " ?crb > y \<Longrightarrow> poly q y > 0" using qcrbgt qnonz poly_IVT_pos[of y ?crb q] poly_IVT_neg[of ?crb y q] nonzcrb nonzylt | |
apply (auto) | |
by (meson less_eq_real_def linorder_neqE_linordered_idom) | |
have lt: "?crb < y \<Longrightarrow> poly q y > 0" using qcrbgt | |
using qnonz poly_IVT_pos[of y ?crb q] poly_IVT_neg[of ?crb y q] nonzcrb nonzylt | |
apply (auto) | |
by (meson less_eq_real_def linorder_neqE_linordered_idom) | |
then show ?thesis using eq gt lt apply (auto) | |
by (meson linorder_neqE_linordered_idom) | |
qed | |
have c2: "(poly q ?crb) < 0 \<Longrightarrow> (poly q y) < 0" | |
using poly_IVT_pos[of ?crb y q] poly_IVT_neg[of y ?crb q] nonzcrb nonzylt | |
apply (auto) | |
by (metis less_eq_real_def linorder_neqE_linordered_idom) | |
have eo: "(poly q ?crb) > 0 \<or> (poly q ?crb) < 0" | |
using nonzcrb | |
by auto | |
then show "squash (poly q (real_of_int (crb (prod_list_var qs)))) = squash (poly q y)" | |
using c1 c2 | |
by (smt (verit, ccfv_SIG) of_int_minus squash_def) | |
qed | |
then have "\<forall>q \<in> (set qs). squash (poly q ?crb) = squash (poly q y)" | |
using qzerh by auto | |
then have "consistent_sign_vec qs ?crb = consistent_sign_vec qs y" | |
unfolding consistent_sign_vec_def squash_def | |
by (smt (z3) map_eq_conv) | |
then show ?thesis using pos_crb_in by auto | |
qed | |
have sg4: " (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k \<and> y < ?zer_list ! (k+1)) \<Longrightarrow> ?t" | |
proof - | |
assume " (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k \<and> y < ?zer_list ! (k+1))" | |
then obtain k where k_prop: "k < (length ?zer_list - 1) \<and> y > ?zer_list ! k \<and> y < ?zer_list ! (k+1)" | |
by auto | |
have ltk: "(?zer_list ! k) < (?zer_list ! (k+1)) " | |
using strict_sorted_h | |
using k_prop by linarith | |
have q1e: "(\<exists>q1\<in>set qs. q1 \<noteq> 0 \<and> poly q1 (?zer_list ! k) = 0)" | |
by (smt (z3) One_nat_def Suc_lessD add.right_neutral add_Suc_right finset k_prop less_diff_conv mem_Collect_eq nth_mem set_sorted_list_of_set) | |
have q2e: "(\<exists>q2\<in>set qs. q2 \<noteq> 0 \<and> poly q2 (?zer_list ! (k + 1)) = 0)" | |
by (smt (verit, del_insts) finset k_prop less_diff_conv mem_Collect_eq nth_mem set_sorted_list_of_set) | |
then have "(\<exists>q>(?zer_list ! k). q < (?zer_list ! (k + 1)) \<and> poly (poly_f qs) q = 0)" | |
using poly_f_roots_prop_1[of qs] q1e q2e ltk is_not_const | |
by auto | |
then have "\<exists>s \<in> set S. s > ?zer_list ! k \<and> s < ?zer_list ! (k+1)" | |
using poly_f_is | |
by (smt (z3) k_prop mem_Collect_eq set_S_char) | |
then obtain s where s_prop: "s \<in> set S \<and> s > ?zer_list ! k \<and> s < ?zer_list ! (k+1)" by auto | |
have qnon: "\<forall>q \<in> set qs. q\<noteq> 0 \<longrightarrow> squash (poly q s) = squash (poly q y)" | |
proof clarsimp | |
fix q | |
assume q_in: "q \<in> set qs" | |
assume qnonz: "q \<noteq> 0" | |
have sgt: "s > y \<Longrightarrow> squash (poly q s) = squash (poly q y)" | |
proof - | |
assume "s > y" | |
then have "\<nexists>x. List.member ?zer_list x \<and> y \<le> x \<and> x \<le> s" | |
using sorted_list_lemma[of y s k ?zer_list] k_prop strict_sorted_h s_prop y_prop | |
using less_diff_conv by blast | |
then have nox: "\<nexists>x. poly q x = 0 \<and> y \<le> x \<and> x \<le> s" using q_in qnonz | |
by (metis (mono_tags, lifting) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have c1: "poly q s \<noteq> 0" using s_prop q_in qnonz | |
by (metis (mono_tags, lifting) \<open>y < s\<close> less_eq_real_def ) | |
have c2: "poly q s > 0 \<Longrightarrow> poly q y > 0" | |
using poly_IVT_pos poly_IVT_neg nox | |
by (meson \<open>y < s\<close> less_eq_real_def linorder_neqE_linordered_idom) | |
have c3: "poly q s < 0 \<Longrightarrow> poly q y < 0" using poly_IVT_pos poly_IVT_neg nox | |
by (meson \<open>y < s\<close> less_eq_real_def linorder_neqE_linordered_idom) | |
show ?thesis using c1 c2 c3 unfolding squash_def | |
by auto | |
qed | |
have slt: "s < y \<Longrightarrow> squash (poly q s) = squash (poly q y)" | |
proof - | |
assume slt: "s < y" | |
then have "\<nexists>x. List.member ?zer_list x \<and> s \<le> x \<and> x \<le> y" | |
using sorted_list_lemma[of s y k ?zer_list] k_prop strict_sorted_h s_prop y_prop | |
using less_diff_conv by blast | |
then have nox: "\<nexists>x. poly q x = 0 \<and> s \<le> x \<and> x \<le> y" using q_in qnonz | |
by (metis (mono_tags, lifting) finset in_set_member mem_Collect_eq set_sorted_list_of_set) | |
then have c1: "poly q s \<noteq> 0" using s_prop q_in qnonz | |
by (metis (mono_tags, lifting) \<open>s < y\<close> less_eq_real_def ) | |
have c2: "poly q s > 0 \<Longrightarrow> poly q y > 0" | |
using poly_IVT_pos poly_IVT_neg nox | |
by (meson \<open>s < y\<close> less_eq_real_def linorder_neqE_linordered_idom) | |
have c3: "poly q s < 0 \<Longrightarrow> poly q y < 0" using poly_IVT_pos poly_IVT_neg nox | |
by (meson \<open>s < y\<close> less_eq_real_def linorder_neqE_linordered_idom) | |
show ?thesis using c1 c2 c3 unfolding squash_def | |
by auto | |
qed | |
have "s = y \<Longrightarrow> squash (poly q s) = squash (poly q y)" | |
by auto | |
then show "squash (poly q s) = squash (poly q y)" | |
using sgt slt | |
by (meson linorder_neqE_linordered_idom) | |
qed | |
have "\<forall>q \<in> set qs. q= 0 \<longrightarrow> squash (poly q s) = squash (poly q y)" by auto | |
then have "\<forall>q \<in> set qs. squash (poly q s) = squash (poly q y)" | |
using qnon | |
by fastforce | |
then show ?thesis | |
using s_prop unfolding squash_def consistent_sign_vec_def apply (auto) | |
by (metis (no_types, opaque_lifting) class_field.neg_1_not_0 equal_neg_zero less_irrefl linorder_neqE_linordered_idom) | |
qed | |
show ?thesis | |
using lengt sg1 sg2 sg3 sg4 len_gtz_prop is_not_const | |
by fastforce | |
qed | |
show "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" | |
using c_c1 c_c2 by auto | |
qed | |
show ?thesis | |
using c1 c2 by auto | |
qed | |
then show "x \<in> consistent_sign_vectors_R qs (set S)" | |
using y_prop unfolding consistent_sign_vectors_R_def | |
by (metis imageI) | |
qed | |
have easy_direction: "consistent_sign_vectors_R qs (set S) \<subseteq> consistent_sign_vectors_R qs UNIV " | |
using consistent_sign_vectors_R_def by auto | |
then show ?thesis using difficult_direction easy_direction by auto | |
qed | |
lemma main_step_aux2_R: | |
fixes qs:: "real poly list" | |
assumes is_not_const: "check_all_const_deg qs = False" | |
shows "set (find_consistent_signs_R qs) = consistent_sign_vectors_R qs UNIV" | |
proof - | |
have poly_f_is: "poly_f qs = (pderiv (prod_list_var qs)) * (prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])" | |
using is_not_const unfolding poly_f_def by auto | |
let ?p = "(pderiv (prod_list_var qs)) * (prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])" | |
let ?S = "characterize_root_list_p (pderiv (prod_list_var qs) * (prod_list_var qs) * ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:]))" | |
have "set (remdups | |
(map (signs_at qs) ?S)) | |
= consistent_sign_vectors_R qs (set ?S)" | |
unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def | |
by (smt (verit, best) comp_apply map_eq_conv set_map set_remdups) | |
then have "set (characterize_consistent_signs_at_roots ?p qs) = consistent_sign_vectors_R qs UNIV" | |
unfolding characterize_consistent_signs_at_roots_def using assms all_sample_points_prop[of qs] | |
by auto | |
then show ?thesis | |
unfolding find_consistent_signs_R_def using find_consistent_signs_at_roots_R poly_f_is poly_f_nonzero[of qs] | |
by auto | |
qed | |
lemma main_step_R: | |
fixes qs:: "real poly list" | |
shows "set (find_consistent_signs_R qs) = consistent_sign_vectors_R qs UNIV" | |
using main_step_aux1_R main_step_aux2_R by auto | |
(* The universal and existential decision procedure for real polys are easy | |
if we know the consistent sign vectors *) | |
lemma consistent_sign_vec_semantics_R: | |
assumes "\<And>i. i \<in> set_fml fml \<Longrightarrow> i < length ls" | |
shows "lookup_sem fml (map (\<lambda>p. poly p x) ls) = lookup_sem fml (consistent_sign_vec ls x)" | |
using assms apply (induction) | |
by (auto simp add: consistent_sign_vec_def) | |
lemma universal_lookup_sem_R: | |
assumes "\<And>i. i \<in> set_fml fml \<Longrightarrow> i < length qs" | |
assumes "set signs = consistent_sign_vectors_R qs UNIV" | |
shows "(\<forall>x::real. lookup_sem fml (map (\<lambda>p. poly p x) qs)) \<longleftrightarrow> | |
list_all (lookup_sem fml) signs" | |
using assms(2) unfolding consistent_sign_vectors_R_def list_all_iff | |
by (simp add: assms(1) consistent_sign_vec_semantics_R) | |
lemma existential_lookup_sem_R: | |
assumes "\<And>i. i \<in> set_fml fml \<Longrightarrow> i < length qs" | |
assumes "set signs = consistent_sign_vectors_R qs UNIV" | |
shows "(\<exists>x::real. lookup_sem fml (map (\<lambda>p. poly p x) qs)) \<longleftrightarrow> | |
find (lookup_sem fml) signs \<noteq> None" | |
using assms(2) unfolding consistent_sign_vectors_R_def find_None_iff | |
by (simp add: assms(1) consistent_sign_vec_semantics_R) | |
lemma decide_univ_lem_helper_R: | |
fixes fml:: "real poly fml" | |
assumes "(fml_struct,polys) = convert fml" | |
shows "(\<forall>x::real. lookup_sem fml_struct (map (\<lambda>p. poly p x) polys)) \<longleftrightarrow> (decide_universal_R fml)" | |
using assms universal_lookup_sem_R main_step_R unfolding decide_universal_R_def apply (auto) | |
apply (metis assms convert_closed fst_conv snd_conv) | |
by (metis (full_types) assms convert_closed fst_conv snd_conv) | |
lemma decide_exis_lem_helper_R: | |
fixes fml:: "real poly fml" | |
assumes "(fml_struct,polys) = convert fml" | |
shows "(\<exists>x::real. lookup_sem fml_struct (map (\<lambda>p. poly p x) polys)) \<longleftrightarrow> (decide_existential_R fml)" | |
using assms existential_lookup_sem_R main_step_R unfolding decide_existential_R_def apply (auto) | |
apply (metis assms convert_closed fst_conv snd_conv) | |
by (metis (full_types) assms convert_closed fst_conv snd_conv) | |
lemma convert_semantics_lem_R: | |
assumes "\<And>p. p \<in> set (poly_list fml) \<Longrightarrow> | |
ls ! (index_of ps p) = poly p x" | |
shows "real_sem fml x = lookup_sem (map_fml (index_of ps) fml) ls" | |
using assms apply (induct fml) | |
by auto | |
lemma convert_semantics_R: | |
shows "real_sem fml x = lookup_sem (fst (convert fml)) (map (\<lambda>p. poly p x) (snd (convert fml)))" | |
unfolding convert_def Let_def apply simp | |
apply (intro convert_semantics_lem_R) | |
by (simp add: index_of_lookup(1) index_of_lookup(2)) | |
(* Main result *) | |
theorem decision_procedure_R: | |
shows "(\<forall>x::real. real_sem fml x) \<longleftrightarrow> (decide_universal_R fml)" | |
"\<exists>x::real. real_sem fml x \<longleftrightarrow> (decide_existential_R fml)" | |
using convert_semantics_lem_R decide_univ_lem_helper_R apply (auto) | |
apply (simp add: convert_semantics_R) | |
apply (metis convert_def convert_semantics_R fst_conv snd_conv) | |
using convert_semantics_lem_R | |
by (metis convert_def convert_semantics_R decide_exis_lem_helper_R fst_conv snd_conv) | |
end | |