Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory More_Matrix | |
imports "Jordan_Normal_Form.Matrix" | |
"Jordan_Normal_Form.DL_Rank" | |
"Jordan_Normal_Form.VS_Connect" | |
"Jordan_Normal_Form.Gauss_Jordan_Elimination" | |
begin | |
section "Kronecker Product" | |
definition kronecker_product :: "'a :: ring mat \<Rightarrow> 'a mat \<Rightarrow> 'a mat" where | |
"kronecker_product A B = | |
(let ra = dim_row A; ca = dim_col A; | |
rb = dim_row B; cb = dim_col B | |
in | |
mat (ra*rb) (ca*cb) | |
(\<lambda>(i,j). | |
A $$ (i div rb, j div cb) * | |
B $$ (i mod rb, j mod cb) | |
))" | |
lemma arith: | |
assumes "d < a" | |
assumes "c < b" | |
shows "b*d+c < a*(b::nat)" | |
proof - | |
have "b*d+c < b*(d+1)" | |
by (simp add: assms(2)) | |
thus ?thesis | |
by (metis One_nat_def Suc_leI add.right_neutral add_Suc_right assms(1) less_le_trans mult.commute mult_le_cancel2) | |
qed | |
lemma dim_kronecker[simp]: | |
"dim_row (kronecker_product A B) = dim_row A * dim_row B" | |
"dim_col (kronecker_product A B) = dim_col A * dim_col B" | |
unfolding kronecker_product_def Let_def by auto | |
lemma kronecker_inverse_index: | |
assumes "r < dim_row A" "s < dim_col A" | |
assumes "v < dim_row B" "w < dim_col B" | |
shows "kronecker_product A B $$ (dim_row B*r+v, dim_col B*s+w) = A $$ (r,s) * B $$ (v,w)" | |
proof - | |
from arith[OF assms(1) assms(3)] | |
have "dim_row B*r+v < dim_row A * dim_row B" . | |
moreover from arith[OF assms(2) assms(4)] | |
have "dim_col B * s + w < dim_col A * dim_col B" . | |
ultimately show ?thesis | |
unfolding kronecker_product_def Let_def | |
using assms by auto | |
qed | |
lemma kronecker_distr_left: | |
assumes "dim_row B = dim_row C" "dim_col B = dim_col C" | |
shows "kronecker_product A (B+C) = kronecker_product A B + kronecker_product A C" | |
unfolding kronecker_product_def Let_def | |
using assms apply (auto simp add: mat_eq_iff) | |
by (metis (no_types, lifting) distrib_left index_add_mat(1) mod_less_divisor mult_eq_0_iff neq0_conv not_less_zero) | |
lemma kronecker_distr_right: | |
assumes "dim_row B = dim_row C" "dim_col B = dim_col C" | |
shows "kronecker_product (B+C) A = kronecker_product B A + kronecker_product C A" | |
unfolding kronecker_product_def Let_def | |
using assms by (auto simp add: mat_eq_iff less_mult_imp_div_less distrib_right) | |
lemma index_mat_mod[simp]: "nr > 0 & nc > 0 \<Longrightarrow> mat nr nc f $$ (i mod nr,j mod nc) = f (i mod nr,j mod nc)" | |
by auto | |
lemma kronecker_assoc: | |
shows "kronecker_product A (kronecker_product B C) = kronecker_product (kronecker_product A B) C" | |
unfolding kronecker_product_def Let_def | |
apply (case_tac "dim_row B * dim_row C > 0 & dim_col B * dim_col C > 0") | |
apply (auto simp add: mat_eq_iff less_mult_imp_div_less) | |
by (smt div_mult2_eq div_mult_mod_eq kronecker_inverse_index less_mult_imp_div_less linordered_semiring_strict_class.mult_pos_pos mod_less_divisor mod_mult2_eq mult.assoc mult.commute) | |
lemma sum_sum_mod_div: | |
"(\<Sum>ia = 0::nat..<x. \<Sum>ja = 0..<y. f ia ja) = | |
(\<Sum>ia = 0..<x*y. f (ia div y) (ia mod y))" | |
proof - | |
have 1: "inj_on (\<lambda>ia. (ia div y, ia mod y)) {0..<x * y}" | |
by (smt (verit, best) Pair_inject div_mod_decomp inj_onI) | |
have 21: "{0..<x} \<times> {0..<y} \<subseteq> (\<lambda>ia. (ia div y, ia mod y)) ` {0..<x * y}" | |
proof clarsimp | |
fix a b | |
assume *:"a < x" "b < y" | |
have "a * y + b \<in> {0..<x*y}" | |
by (metis arith * atLeastLessThan_iff le0 mult.commute) | |
thus "(a, b) \<in> (\<lambda>ia. (ia div y, ia mod y)) ` {0..<x * y}" | |
by (metis (no_types, lifting) "*"(2) Euclidean_Division.div_eq_0_iff add_cancel_right_right div_mult_self3 gr_implies_not0 image_iff mod_less mod_mult_self3) | |
qed | |
have 22:"(\<lambda>ia. (ia div y, ia mod y)) ` {0..<x * y} \<subseteq> {0..<x} \<times> {0..<y}" | |
using less_mult_imp_div_less apply auto | |
by (metis mod_less_divisor mult.commute neq0_conv not_less_zero) | |
have 2: "{0..<x} \<times> {0..<y} = (\<lambda>ia. (ia div y, ia mod y)) ` {0..<x * y}" | |
using 21 22 by auto | |
have *: "(\<Sum>ia = 0::nat..<x. \<Sum>ja = 0..<y. f ia ja) = | |
(\<Sum>(x, y)\<in>{0..<x} \<times> {0..<y}. f x y)" | |
by (auto simp add: sum.cartesian_product) | |
show ?thesis unfolding * | |
apply (intro sum.reindex_cong[of "\<lambda>ia. (ia div y, ia mod y)"]) | |
using 1 2 by auto | |
qed | |
(* Kronecker product distributes over matrix multiplication *) | |
lemma kronecker_of_mult: | |
assumes "dim_col (A :: 'a :: comm_ring mat) = dim_row C" | |
assumes "dim_col B = dim_row D" | |
shows "kronecker_product A B * kronecker_product C D = kronecker_product (A * C) (B * D)" | |
unfolding kronecker_product_def Let_def mat_eq_iff | |
proof clarsimp | |
fix i j | |
assume ij: "i < dim_row A * dim_row B" "j < dim_col C * dim_col D" | |
have 1: "(A * C) $$ (i div dim_row B, j div dim_col D) = | |
row A (i div dim_row B) \<bullet> col C (j div dim_col D)" | |
using ij less_mult_imp_div_less by (auto intro!: index_mult_mat) | |
have 2: "(B * D) $$ (i mod dim_row B, j mod dim_col D) = | |
row B (i mod dim_row B) \<bullet> col D (j mod dim_col D)" | |
using ij apply (auto intro!: index_mult_mat) | |
using gr_implies_not0 apply fastforce | |
using gr_implies_not0 by fastforce | |
have 3: "\<And>x. x < dim_row C * dim_row D \<Longrightarrow> | |
A $$ (i div dim_row B, x div dim_row D) * | |
B $$ (i mod dim_row B, x mod dim_row D) * | |
(C $$ (x div dim_row D, j div dim_col D) * | |
D $$ (x mod dim_row D, j mod dim_col D)) = | |
row A (i div dim_row B) $ (x div dim_row D) * | |
col C (j div dim_col D) $ (x div dim_row D) * | |
(row B (i mod dim_row B) $ (x mod dim_row D) * | |
col D (j mod dim_col D) $ (x mod dim_row D))" | |
proof - | |
fix x | |
assume *:"x < dim_row C * dim_row D" | |
have 1: "row A (i div dim_row B) $ (x div dim_row D) = A $$ (i div dim_row B, x div dim_row D)" | |
by (simp add: * assms(1) less_mult_imp_div_less row_def) | |
have 2: "row B (i mod dim_row B) $ (x mod dim_row D) = B $$ (i mod dim_row B, x mod dim_row D)" | |
by (metis "*" assms(2) ij(1) index_row(1) mod_less_divisor nat_0_less_mult_iff neq0_conv not_less_zero) | |
have 3: "col C (j div dim_col D) $ (x div dim_row D) = C $$ (x div dim_row D, j div dim_col D)" | |
by (simp add: "*" ij(2) less_mult_imp_div_less) | |
have 4: "col D (j mod dim_col D) $ (x mod dim_row D) = D $$ (x mod dim_row D, j mod dim_col D)" | |
by (metis "*" Euclidean_Division.div_eq_0_iff gr_implies_not0 ij(2) index_col mod_div_trivial mult_not_zero) | |
show "A $$ (i div dim_row B, x div dim_row D) * | |
B $$ (i mod dim_row B, x mod dim_row D) * | |
(C $$ (x div dim_row D, j div dim_col D) * | |
D $$ (x mod dim_row D, j mod dim_col D)) = | |
row A (i div dim_row B) $ (x div dim_row D) * | |
col C (j div dim_col D) $ (x div dim_row D) * | |
(row B (i mod dim_row B) $ (x mod dim_row D) * | |
col D (j mod dim_col D) $ (x mod dim_row D))" unfolding 1 2 3 4 | |
by (simp add: mult.assoc mult.left_commute) | |
qed | |
have *: "(A * C) $$ (i div dim_row B, j div dim_col D) * | |
(B * D) $$ (i mod dim_row B, j mod dim_col D) = | |
(\<Sum>ia = 0..<dim_row C * dim_row D. | |
A $$ (i div dim_row B, ia div dim_row D) * | |
B $$ (i mod dim_row B, ia mod dim_row D) * | |
(C $$ (ia div dim_row D, j div dim_col D) * | |
D $$ (ia mod dim_row D, j mod dim_col D)))" | |
unfolding 1 2 scalar_prod_def sum_product sum_sum_mod_div | |
apply (auto simp add: sum_product sum_sum_mod_div intro!: sum.cong) | |
using 3 by presburger | |
show "vec (dim_col A * dim_col B) | |
(\<lambda>j. A $$ (i div dim_row B, j div dim_col B) * | |
B $$ (i mod dim_row B, j mod dim_col B)) \<bullet> | |
vec (dim_row C * dim_row D) | |
(\<lambda>i. C $$ (i div dim_row D, j div dim_col D) * | |
D $$ (i mod dim_row D, j mod dim_col D)) = | |
(A * C) $$ (i div dim_row B, j div dim_col D) * | |
(B * D) $$ (i mod dim_row B, j mod dim_col D)" | |
unfolding * scalar_prod_def | |
by (auto simp add: assms sum_product sum_sum_mod_div intro!: sum.cong) | |
qed | |
lemma inverts_mat_length: | |
assumes "square_mat A" "inverts_mat A B" "inverts_mat B A" | |
shows "dim_row B = dim_row A" "dim_col B = dim_col A" | |
apply (metis assms(1) assms(3) index_mult_mat(3) index_one_mat(3) inverts_mat_def square_mat.simps) | |
by (metis assms(1) assms(2) index_mult_mat(3) index_one_mat(3) inverts_mat_def square_mat.simps) | |
lemma less_mult_imp_mod_less: | |
"m mod i < i" if "m < n * i" for m n i :: nat | |
using gr_implies_not_zero that by fastforce | |
lemma kronecker_one: | |
shows "kronecker_product ((1\<^sub>m x)::'a :: ring_1 mat) (1\<^sub>m y) = 1\<^sub>m (x*y)" | |
unfolding kronecker_product_def Let_def | |
apply (auto simp add:mat_eq_iff less_mult_imp_div_less less_mult_imp_mod_less) | |
by (metis div_mult_mod_eq) | |
lemma kronecker_invertible: | |
assumes "invertible_mat (A :: 'a :: comm_ring_1 mat)" "invertible_mat B" | |
shows "invertible_mat (kronecker_product A B)" | |
proof - | |
obtain Ai where Ai: "inverts_mat A Ai" "inverts_mat Ai A" using assms invertible_mat_def by blast | |
obtain Bi where Bi: "inverts_mat B Bi" "inverts_mat Bi B" using assms invertible_mat_def by blast | |
have "square_mat (kronecker_product A B)" | |
by (metis (no_types, lifting) assms(1) assms(2) dim_col_mat(1) dim_row_mat(1) invertible_mat_def kronecker_product_def square_mat.simps) | |
moreover have "inverts_mat (kronecker_product A B) (kronecker_product Ai Bi)" | |
using Ai Bi unfolding inverts_mat_def | |
by (metis (no_types, lifting) dim_kronecker(1) index_mult_mat(3) index_one_mat(3) kronecker_of_mult kronecker_one) | |
moreover have "inverts_mat (kronecker_product Ai Bi) (kronecker_product A B)" | |
using Ai Bi unfolding inverts_mat_def | |
by (metis (no_types, lifting) dim_kronecker(1) index_mult_mat(3) index_one_mat(3) kronecker_of_mult kronecker_one) | |
ultimately show ?thesis unfolding invertible_mat_def by blast | |
qed | |
section "More DL Rank" | |
(* conjugate matrices *) | |
instantiation mat :: (conjugate) conjugate | |
begin | |
definition conjugate_mat :: "'a :: conjugate mat \<Rightarrow> 'a mat" | |
where "conjugate m = mat (dim_row m) (dim_col m) (\<lambda>(i,j). conjugate (m $$ (i,j)))" | |
lemma dim_row_conjugate[simp]: "dim_row (conjugate m) = dim_row m" | |
unfolding conjugate_mat_def by auto | |
lemma dim_col_conjugate[simp]: "dim_col (conjugate m) = dim_col m" | |
unfolding conjugate_mat_def by auto | |
lemma carrier_vec_conjugate[simp]: "m \<in> carrier_mat nr nc \<Longrightarrow> conjugate m \<in> carrier_mat nr nc" | |
by (auto) | |
lemma mat_index_conjugate[simp]: | |
shows "i < dim_row m \<Longrightarrow> j < dim_col m \<Longrightarrow> conjugate m $$ (i,j) = conjugate (m $$ (i,j))" | |
unfolding conjugate_mat_def by auto | |
lemma row_conjugate[simp]: "i < dim_row m \<Longrightarrow> row (conjugate m) i = conjugate (row m i)" | |
by (auto) | |
lemma col_conjugate[simp]: "i < dim_col m \<Longrightarrow> col (conjugate m) i = conjugate (col m i)" | |
by (auto) | |
lemma rows_conjugate: "rows (conjugate m) = map conjugate (rows m)" | |
by (simp add: list_eq_iff_nth_eq) | |
lemma cols_conjugate: "cols (conjugate m) = map conjugate (cols m)" | |
by (simp add: list_eq_iff_nth_eq) | |
instance | |
proof | |
fix a b :: "'a mat" | |
show "conjugate (conjugate a) = a" | |
unfolding mat_eq_iff by auto | |
let ?a = "conjugate a" | |
let ?b = "conjugate b" | |
show "conjugate a = conjugate b \<longleftrightarrow> a = b" | |
by (metis dim_col_conjugate dim_row_conjugate mat_index_conjugate conjugate_cancel_iff mat_eq_iff) | |
qed | |
end | |
abbreviation conjugate_transpose :: "'a::conjugate mat \<Rightarrow> 'a mat" | |
where "conjugate_transpose A \<equiv> conjugate (A\<^sup>T)" | |
notation conjugate_transpose ("(_\<^sup>H)" [1000]) | |
lemma transpose_conjugate: | |
shows "(conjugate A)\<^sup>T = A\<^sup>H" | |
unfolding conjugate_mat_def | |
by auto | |
lemma vec_module_col_helper: | |
fixes A:: "('a :: field) mat" | |
shows "(0\<^sub>v (dim_row A) \<in> LinearCombinations.module.span class_ring \<lparr>carrier = carrier_vec (dim_row A), mult = undefined, one = undefined, zero = 0\<^sub>v (dim_row A), add = (+), smult = (\<cdot>\<^sub>v)\<rparr> (set (cols A)))" | |
proof - | |
have "\<forall>v. (0::'a) \<cdot>\<^sub>v v + v = v" | |
by auto | |
then show "0\<^sub>v (dim_row A) \<in> LinearCombinations.module.span class_ring \<lparr>carrier = carrier_vec (dim_row A), mult = undefined, one = undefined, zero = 0\<^sub>v (dim_row A), add = (+), smult = (\<cdot>\<^sub>v)\<rparr> (set (cols A))" | |
by (metis cols_dim module_vec_def right_zero_vec smult_carrier_vec vec_space.prod_in_span zero_carrier_vec) | |
qed | |
lemma vec_module_col_helper2: | |
fixes A:: "('a :: field) mat" | |
shows "\<And>a x. x \<in> LinearCombinations.module.span class_ring | |
\<lparr>carrier = carrier_vec (dim_row A), mult = undefined, one = undefined, | |
zero = 0\<^sub>v (dim_row A), add = (+), smult = (\<cdot>\<^sub>v)\<rparr> | |
(set (cols A)) \<Longrightarrow> | |
(\<And>a b v. (a + b) \<cdot>\<^sub>v v = a \<cdot>\<^sub>v v + b \<cdot>\<^sub>v v) \<Longrightarrow> | |
a \<cdot>\<^sub>v x | |
\<in> LinearCombinations.module.span class_ring | |
\<lparr>carrier = carrier_vec (dim_row A), mult = undefined, one = undefined, | |
zero = 0\<^sub>v (dim_row A), add = (+), smult = (\<cdot>\<^sub>v)\<rparr> | |
(set (cols A))" | |
proof - | |
fix a :: 'a and x :: "'a vec" | |
assume "x \<in> LinearCombinations.module.span class_ring \<lparr>carrier = carrier_vec (dim_row A), mult = undefined, one = undefined, zero = 0\<^sub>v (dim_row A), add = (+), smult = (\<cdot>\<^sub>v)\<rparr> (set (cols A))" | |
then show "a \<cdot>\<^sub>v x \<in> LinearCombinations.module.span class_ring \<lparr>carrier = carrier_vec (dim_row A), mult = undefined, one = undefined, zero = 0\<^sub>v (dim_row A), add = (+), smult = (\<cdot>\<^sub>v)\<rparr> (set (cols A))" | |
by (metis (full_types) cols_dim idom_vec.smult_in_span module_vec_def) | |
qed | |
lemma vec_module_col: "module (class_ring :: 'a :: field ring) | |
(module_vec TYPE('a) | |
(dim_row A) | |
\<lparr>carrier := | |
LinearCombinations.module.span | |
class_ring (module_vec TYPE('a) (dim_row A)) (set (cols A))\<rparr>)" | |
proof - | |
interpret abelian_group "module_vec TYPE('a) (dim_row A) | |
\<lparr>carrier := | |
LinearCombinations.module.span | |
class_ring (module_vec TYPE('a) (dim_row A)) (set (cols A))\<rparr>" | |
apply (unfold_locales) | |
apply (auto simp add:module_vec_def) | |
apply (metis cols_dim module_vec_def partial_object.select_convs(1) ring.simps(2) vec_vs vectorspace.span_add1) | |
apply (metis assoc_add_vec cols_dim module_vec_def vec_space.cV vec_vs vectorspace.span_closed) | |
using vec_module_col_helper[of A] apply (auto) | |
apply (metis cols_dim left_zero_vec module_vec_def partial_object.select_convs(1) vec_vs vectorspace.span_closed) | |
apply (metis cols_dim module_vec_def partial_object.select_convs(1) right_zero_vec vec_vs vectorspace.span_closed) | |
apply (metis cols_dim comm_add_vec module_vec_def vec_space.cV vec_vs vectorspace.span_closed) | |
unfolding Units_def apply auto | |
by (smt cols_dim module_vec_def partial_object.select_convs(1) uminus_l_inv_vec uminus_r_inv_vec vec_space.vec_neg vec_vs vectorspace.span_closed vectorspace.span_neg) | |
show ?thesis | |
apply (unfold_locales) | |
unfolding class_ring_simps apply auto | |
unfolding module_vec_simps using add_smult_distrib_vec apply auto | |
apply (auto simp add:module_vec_def) | |
using vec_module_col_helper2 | |
apply blast | |
using cols_dim module_vec_def partial_object.select_convs(1) smult_add_distrib_vec vec_vs vectorspace.span_closed | |
by (smt (z3)) | |
qed | |
(* The columns of a matrix form a vectorspace *) | |
lemma vec_vs_col: "vectorspace (class_ring :: 'a :: field ring) | |
(module_vec TYPE('a) (dim_row A) | |
\<lparr>carrier := | |
LinearCombinations.module.span | |
class_ring | |
(module_vec TYPE('a) | |
(dim_row A)) | |
(set (cols A))\<rparr>)" | |
unfolding vectorspace_def | |
using vec_module_col class_field | |
by (auto simp: class_field_def) | |
lemma cols_mat_mul_map: | |
shows "cols (A * B) = map ((*\<^sub>v) A) (cols B)" | |
unfolding list_eq_iff_nth_eq | |
by auto | |
lemma cols_mat_mul: | |
shows "set (cols (A * B)) = (*\<^sub>v) A ` set (cols B)" | |
by (simp add: cols_mat_mul_map) | |
lemma set_obtain_sublist: | |
assumes "S \<subseteq> set ls" | |
obtains ss where "distinct ss" "S = set ss" | |
using assms finite_distinct_list infinite_super by blast | |
lemma mul_mat_of_cols: | |
assumes "A \<in> carrier_mat nr n" | |
assumes "\<And>j. j < length cs \<Longrightarrow> cs ! j \<in> carrier_vec n" | |
shows "A * (mat_of_cols n cs) = mat_of_cols nr (map ((*\<^sub>v) A) cs)" | |
unfolding mat_eq_iff | |
using assms apply auto | |
apply (subst mat_of_cols_index) | |
by auto | |
lemma helper: | |
fixes x y z ::"'a :: {conjugatable_ring, comm_ring}" | |
shows "x * (y * z) = y * x * z" | |
by (simp add: mult.assoc mult.left_commute) | |
lemma cscalar_prod_conjugate_transpose: | |
fixes x y ::"'a :: {conjugatable_ring, comm_ring} vec" | |
assumes "A \<in> carrier_mat nr nc" | |
assumes "x \<in> carrier_vec nr" | |
assumes "y \<in> carrier_vec nc" | |
shows "x \<bullet>c (A *\<^sub>v y) = (A\<^sup>H *\<^sub>v x) \<bullet>c y" | |
unfolding mult_mat_vec_def scalar_prod_def | |
using assms apply (auto simp add: sum_distrib_left sum_distrib_right sum_conjugate conjugate_dist_mul) | |
apply (subst sum.swap) | |
by (meson helper mult.assoc mult.left_commute sum.cong) | |
lemma mat_mul_conjugate_transpose_vec_eq_0: | |
fixes v ::"'a :: {conjugatable_ordered_ring,semiring_no_zero_divisors,comm_ring} vec" | |
assumes "A \<in> carrier_mat nr nc" | |
assumes "v \<in> carrier_vec nr" | |
assumes "A *\<^sub>v (A\<^sup>H *\<^sub>v v) = 0\<^sub>v nr" | |
shows "A\<^sup>H *\<^sub>v v = 0\<^sub>v nc" | |
proof - | |
have "(A\<^sup>H *\<^sub>v v) \<bullet>c (A\<^sup>H *\<^sub>v v) = (A *\<^sub>v (A\<^sup>H *\<^sub>v v)) \<bullet>c v" | |
by (metis (mono_tags, lifting) Matrix.carrier_vec_conjugate assms(1) assms(2) assms(3) carrier_matD(2) conjugate_zero_vec cscalar_prod_conjugate_transpose dim_row_conjugate index_transpose_mat(2) mult_mat_vec_def scalar_prod_left_zero scalar_prod_right_zero vec_carrier) | |
also have "... = 0" | |
by (simp add: assms(2) assms(3)) | |
(* this step requires real entries *) | |
ultimately have "(A\<^sup>H *\<^sub>v v) \<bullet>c (A\<^sup>H *\<^sub>v v) = 0" by auto | |
thus ?thesis | |
apply (subst conjugate_square_eq_0_vec[symmetric]) | |
using assms(1) carrier_dim_vec apply fastforce | |
by auto | |
qed | |
lemma row_mat_of_cols: | |
assumes "i < nr" | |
shows "row (mat_of_cols nr ls) i = vec (length ls) (\<lambda>j. (ls ! j) $i)" | |
by (smt assms dim_vec eq_vecI index_row(1) index_row(2) index_vec mat_of_cols_carrier(2) mat_of_cols_carrier(3) mat_of_cols_index) | |
lemma mat_of_cols_cons_mat_vec: | |
fixes v ::"'a::comm_ring vec" | |
assumes "v \<in> carrier_vec (length ls)" | |
assumes "dim_vec a = nr" | |
shows | |
"mat_of_cols nr (a # ls) *\<^sub>v (vCons m v) = | |
m \<cdot>\<^sub>v a + mat_of_cols nr ls *\<^sub>v v" | |
unfolding mult_mat_vec_def vec_eq_iff | |
using assms by | |
(auto simp add: row_mat_of_cols vec_Suc o_def mult.commute) | |
lemma smult_vec_zero: | |
fixes v ::"'a::ring vec" | |
shows "0 \<cdot>\<^sub>v v = 0\<^sub>v (dim_vec v)" | |
unfolding smult_vec_def vec_eq_iff | |
by (auto) | |
lemma helper2: | |
fixes A ::"'a::comm_ring mat" | |
fixes v ::"'a vec" | |
assumes "v \<in> carrier_vec (length ss)" | |
assumes "\<And>x. x \<in> set ls \<Longrightarrow> dim_vec x = nr" | |
shows | |
"mat_of_cols nr ss *\<^sub>v v = | |
mat_of_cols nr (ls @ ss) *\<^sub>v (0\<^sub>v (length ls) @\<^sub>v v)" | |
using assms(2) | |
proof (induction ls) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a ls) | |
then show ?case apply (auto simp add:zero_vec_Suc) | |
apply (subst mat_of_cols_cons_mat_vec) | |
by (auto simp add:assms smult_vec_zero) | |
qed | |
lemma mat_of_cols_mult_mat_vec_permute_list: | |
fixes v ::"'a::comm_ring list" | |
assumes "f permutes {..<length ss}" | |
assumes "length ss = length v" | |
shows | |
"mat_of_cols nr (permute_list f ss) *\<^sub>v vec_of_list (permute_list f v) = | |
mat_of_cols nr ss *\<^sub>v vec_of_list v" | |
unfolding mat_of_cols_def mult_mat_vec_def vec_eq_iff scalar_prod_def | |
proof clarsimp | |
fix i | |
assume "i < nr" | |
from sum.permute[OF assms(1)] | |
have "(\<Sum>ia<length ss. ss ! f ia $ i * v ! f ia) = | |
sum ((\<lambda>ia. ss ! f ia $ i * v ! f ia) \<circ> f) {..<length ss}" . | |
also have "... = (\<Sum>ia = 0..<length v. ss ! f ia $ i * v ! f ia)" | |
using assms(2) calculation lessThan_atLeast0 by auto | |
ultimately have *: "(\<Sum>ia = 0..<length v. | |
ss ! f ia $ i * v ! f ia) = | |
(\<Sum>ia = 0..<length v. | |
ss ! ia $ i * v ! ia)" | |
by (metis (mono_tags, lifting) \<open>\<And>g. sum g {..<length ss} = sum (g \<circ> f) {..<length ss}\<close> assms(2) comp_apply lessThan_atLeast0 sum.cong) | |
show "(\<Sum>ia = 0..<length v. | |
vec (length ss) (\<lambda>j. permute_list f ss ! j $ i) $ ia * | |
vec_of_list (permute_list f v) $ ia) = | |
(\<Sum>ia = 0..<length v. vec (length ss) (\<lambda>j. ss ! j $ i) $ ia * vec_of_list v $ ia)" | |
using assms * by (auto simp add: permute_list_nth vec_of_list_index) | |
qed | |
(* permute everything in a subset of the indices to the back *) | |
lemma subindex_permutation: | |
assumes "distinct ss" "set ss \<subseteq> {..<length ls}" | |
obtains f where "f permutes {..<length ls}" | |
"permute_list f ls = map ((!) ls) (filter (\<lambda>i. i \<notin> set ss) [0..<length ls]) @ map ((!) ls) ss" | |
proof - | |
have "set [0..<length ls] = set (filter (\<lambda>i. i \<notin> set ss) [0..<length ls] @ ss)" | |
using assms unfolding multiset_eq_iff by auto | |
then have "mset [0..<length ls] = mset (filter (\<lambda>i. i \<notin> set ss) [0..<length ls] @ ss)" | |
apply (subst set_eq_iff_mset_eq_distinct[symmetric]) | |
using assms by auto | |
then have "mset ls = mset (map ((!) ls) | |
(filter (\<lambda>i. i \<notin> set ss) | |
[0..<length ls]) @ map ((!) ls) ss)" | |
by (smt length_map map_append map_nth mset_eq_permutation mset_permute_list permute_list_map) | |
thus ?thesis | |
by (metis mset_eq_permutation that) | |
qed | |
lemma subindex_permutation2: | |
assumes "distinct ss" "set ss \<subseteq> {..<length ls}" | |
obtains f where "f permutes {..<length ls}" | |
"ls = permute_list f (map ((!) ls) (filter (\<lambda>i. i \<notin> set ss) [0..<length ls]) @ map ((!) ls) ss)" | |
using subindex_permutation | |
by (metis assms(1) assms(2) length_permute_list mset_eq_permutation mset_permute_list) | |
lemma distinct_list_subset_nths: | |
assumes "distinct ss" "set ss \<subseteq> set ls" | |
obtains ids where "distinct ids" "set ids \<subseteq> {..<length ls}" "ss = map ((!) ls) ids" | |
proof - | |
let ?ids = "map (\<lambda>i. @j. j < length ls \<and> ls!j = i ) ss" | |
have 1: "distinct ?ids" unfolding distinct_map | |
using assms apply (auto simp add: inj_on_def) | |
by (smt in_mono in_set_conv_nth tfl_some) | |
have 2: "set ?ids \<subseteq> {..<length ls}" | |
using assms apply (auto) | |
by (metis (mono_tags, lifting) in_mono in_set_conv_nth tfl_some) | |
have 3: "ss = map ((!) ls) ?ids" | |
using assms apply (auto simp add: list_eq_iff_nth_eq) | |
by (smt imageI in_set_conv_nth subset_iff tfl_some) | |
show "(\<And>ids. distinct ids \<Longrightarrow> | |
set ids \<subseteq> {..<length ls} \<Longrightarrow> | |
ss = map ((!) ls) ids \<Longrightarrow> thesis) \<Longrightarrow> | |
thesis" using 1 2 3 by blast | |
qed | |
lemma helper3: | |
fixes A ::"'a::comm_ring mat" | |
assumes A: "A \<in> carrier_mat nr nc" | |
assumes ss:"distinct ss" "set ss \<subseteq> set (cols A)" | |
assumes "v \<in> carrier_vec (length ss)" | |
obtains c where "mat_of_cols nr ss *\<^sub>v v = A *\<^sub>v c" "dim_vec c = nc" | |
proof - | |
from distinct_list_subset_nths[OF ss] | |
obtain ids where ids: "distinct ids" "set ids \<subseteq> {..<length (cols A)}" | |
and ss: "ss = map ((!) (cols A)) ids" by blast | |
let ?ls = " map ((!) (cols A)) (filter (\<lambda>i. i \<notin> set ids) [0..<length (cols A)])" | |
from subindex_permutation2[OF ids] obtain f where | |
f: "f permutes {..<length (cols A)}" | |
"cols A = permute_list f (?ls @ ss)" using ss by blast | |
have *: "\<And>x. x \<in> set ?ls \<Longrightarrow> dim_vec x = nr" | |
using A by auto | |
let ?cs1 = "(list_of_vec (0\<^sub>v (length ?ls) @\<^sub>v v))" | |
from helper2[OF assms(4) ] | |
have "mat_of_cols nr ss *\<^sub>v v = mat_of_cols nr (?ls @ ss) *\<^sub>v vec_of_list (?cs1)" | |
using * | |
by (metis vec_list) | |
also have "... = mat_of_cols nr (permute_list f (?ls @ ss)) *\<^sub>v vec_of_list (permute_list f ?cs1)" | |
apply (auto intro!: mat_of_cols_mult_mat_vec_permute_list[symmetric]) | |
apply (metis cols_length f(1) f(2) length_append length_map length_permute_list) | |
using assms(4) by auto | |
also have "... = A *\<^sub>v vec_of_list (permute_list f ?cs1)" using f(2) assms by auto | |
ultimately show | |
"(\<And>c. mat_of_cols nr ss *\<^sub>v v = A *\<^sub>v c \<Longrightarrow> dim_vec c = nc \<Longrightarrow> thesis) \<Longrightarrow> thesis" | |
by (metis A assms(4) carrier_matD(2) carrier_vecD cols_length dim_vec_of_list f(2) index_append_vec(2) index_zero_vec(2) length_append length_list_of_vec length_permute_list) | |
qed | |
lemma mat_mul_conjugate_transpose_sub_vec_eq_0: | |
fixes A ::"'a :: {conjugatable_ordered_ring,semiring_no_zero_divisors,comm_ring} mat" | |
assumes "A \<in> carrier_mat nr nc" | |
assumes "distinct ss" "set ss \<subseteq> set (cols (A\<^sup>H))" | |
assumes "v \<in> carrier_vec (length ss)" | |
assumes "A *\<^sub>v (mat_of_cols nc ss *\<^sub>v v) = 0\<^sub>v nr" | |
shows "(mat_of_cols nc ss *\<^sub>v v) = 0\<^sub>v nc" | |
proof - | |
have "A\<^sup>H \<in> carrier_mat nc nr" using assms(1) by auto | |
from helper3[OF this assms(2-4)] | |
obtain c where c: "mat_of_cols nc ss *\<^sub>v v = A\<^sup>H *\<^sub>v c" "dim_vec c = nr" by blast | |
have 1: "c \<in> carrier_vec nr" | |
using c carrier_vec_dim_vec by blast | |
have 2: "A *\<^sub>v (A\<^sup>H *\<^sub>v c) = 0\<^sub>v nr" using c assms(5) by auto | |
from mat_mul_conjugate_transpose_vec_eq_0[OF assms(1) 1 2] | |
have "A\<^sup>H *\<^sub>v c = 0\<^sub>v nc" . | |
thus ?thesis unfolding c(1)[symmetric] . | |
qed | |
lemma Units_invertible: | |
fixes A:: "'a::semiring_1 mat" | |
assumes "A \<in> Units (ring_mat TYPE('a) n b)" | |
shows "invertible_mat A" | |
using assms unfolding Units_def invertible_mat_def | |
apply (auto simp add: ring_mat_def) | |
using inverts_mat_def by blast | |
lemma invertible_Units: | |
fixes A:: "'a::semiring_1 mat" | |
assumes "invertible_mat A" | |
shows "A \<in> Units (ring_mat TYPE('a) (dim_row A) b)" | |
using assms unfolding Units_def invertible_mat_def | |
apply (auto simp add: ring_mat_def) | |
by (metis assms carrier_mat_triv invertible_mat_def inverts_mat_def inverts_mat_length(1) inverts_mat_length(2)) | |
lemma invertible_det: | |
fixes A:: "'a::field mat" | |
assumes "A \<in> carrier_mat n n" | |
shows "invertible_mat A \<longleftrightarrow> det A \<noteq> 0" | |
apply auto | |
using invertible_Units unit_imp_det_non_zero apply fastforce | |
using assms by (auto intro!: Units_invertible det_non_zero_imp_unit) | |
context vec_space begin | |
lemma find_indices_distinct: | |
assumes "distinct ss" | |
assumes "i < length ss" | |
shows "find_indices (ss ! i) ss = [i]" | |
proof - | |
have "set (find_indices (ss ! i) ss) = {i}" | |
using assms apply auto by (simp add: assms(1) assms(2) nth_eq_iff_index_eq) | |
thus ?thesis | |
by (metis distinct.simps(2) distinct_find_indices empty_iff empty_set insert_iff list.exhaust list.simps(15)) | |
qed | |
lemma lin_indpt_lin_comb_list: | |
assumes "distinct ss" | |
assumes "lin_indpt (set ss)" | |
assumes "set ss \<subseteq> carrier_vec n" | |
assumes "lincomb_list f ss = 0\<^sub>v n" | |
assumes "i < length ss" | |
shows "f i = 0" | |
proof - | |
from lincomb_list_as_lincomb[OF assms(3)] | |
have "lincomb_list f ss = lincomb (mk_coeff ss f) (set ss)" . | |
also have "... = lincomb (\<lambda>v. sum f (set (find_indices v ss))) (set ss)" | |
unfolding mk_coeff_def | |
apply (subst R.sumlist_map_as_finsum) | |
by (auto simp add: distinct_find_indices) | |
ultimately have "lincomb_list f ss = lincomb (\<lambda>v. sum f (set (find_indices v ss))) (set ss)" by auto | |
then have *:"lincomb (\<lambda>v. sum f (set (find_indices v ss))) (set ss) = 0\<^sub>v n" | |
using assms(4) by auto | |
have "finite (set ss)" by simp | |
from not_lindepD[OF assms(2) this _ _ *] | |
have "(\<lambda>v. sum f (set (find_indices v ss))) \<in> set ss \<rightarrow> {0}" | |
by auto | |
from funcset_mem[OF this] | |
have "sum f (set (find_indices (nth ss i) ss)) \<in> {0}" | |
using assms(5) by auto | |
thus ?thesis unfolding find_indices_distinct[OF assms(1) assms(5)] | |
by auto | |
qed | |
(* Note: in this locale dim_row A = n, e.g.: | |
lemma foo: | |
assumes "dim_row A = n" | |
shows "rank A = vec_space.rank (dim_row A) A" | |
by (simp add: assms) *) | |
lemma span_mat_mul_subset: | |
assumes "A \<in> carrier_mat n d" | |
assumes "B \<in> carrier_mat d nc" | |
shows "span (set (cols (A * B))) \<subseteq> span (set (cols A))" | |
proof - | |
have *: "\<And>v. \<exists>ca. lincomb_list v (cols (A * B)) = | |
lincomb_list ca (cols A)" | |
proof - | |
fix v | |
have "lincomb_list v (cols (A * B)) = (A * B) *\<^sub>v vec nc v" | |
apply (subst lincomb_list_as_mat_mult) | |
apply (metis assms(1) carrier_dim_vec carrier_matD(1) cols_dim index_mult_mat(2) subset_code(1)) | |
by (metis assms(1) assms(2) carrier_matD(1) carrier_matD(2) cols_length index_mult_mat(2) index_mult_mat(3) mat_of_cols_cols) | |
also have "... = A *\<^sub>v (B *\<^sub>v vec nc v)" | |
using assms(1) assms(2) by auto | |
also have "... = lincomb_list (\<lambda>i. (B *\<^sub>v vec nc v) $ i) (cols A)" | |
apply (subst lincomb_list_as_mat_mult) | |
using assms(1) carrier_dim_vec cols_dim apply blast | |
by (metis assms(1) assms(2) carrier_matD(1) carrier_matD(2) cols_length dim_mult_mat_vec dim_vec eq_vecI index_vec mat_of_cols_cols) | |
ultimately have "lincomb_list v (cols (A * B)) = | |
lincomb_list (\<lambda>i. (B *\<^sub>v vec nc v) $ i) (cols A)" by auto | |
thus "\<exists>ca. lincomb_list v (cols (A * B)) = lincomb_list ca (cols A)" by auto | |
qed | |
show ?thesis | |
apply (subst span_list_as_span[symmetric]) | |
apply (metis assms(1) carrier_matD(1) cols_dim index_mult_mat(2)) | |
apply (subst span_list_as_span[symmetric]) | |
using assms(1) cols_dim apply blast | |
by (auto simp add:span_list_def *) | |
qed | |
lemma rank_mat_mul_right: | |
assumes "A \<in> carrier_mat n d" | |
assumes "B \<in> carrier_mat d nc" | |
shows "rank (A * B) \<le> rank A" | |
proof - | |
have "subspace class_ring (local.span (set (cols (A*B)))) | |
(vs (local.span (set (cols A))))" | |
unfolding subspace_def | |
by (metis assms(1) assms(2) carrier_matD(1) cols_dim index_mult_mat(2) nested_submodules span_is_submodule vec_space.span_mat_mul_subset vec_vs_col) | |
from vectorspace.subspace_dim[OF _ this] | |
have "vectorspace.dim class_ring | |
(vs (local.span (set (cols A))) | |
\<lparr>carrier := local.span (set (cols (A * B)))\<rparr>) \<le> | |
vectorspace.dim class_ring | |
(vs (local.span (set (cols A))))" | |
apply auto | |
by (metis (no_types) assms(1) carrier_matD(1) fin_dim_span_cols index_mult_mat(2) mat_of_cols_carrier(1) mat_of_cols_cols vec_vs_col) | |
thus ?thesis unfolding rank_def | |
by auto | |
qed | |
lemma sumlist_drop: | |
assumes "\<And>v. v \<in> set ls \<Longrightarrow> dim_vec v = n" | |
shows "sumlist ls = sumlist (filter (\<lambda>v. v \<noteq> 0\<^sub>v n) ls)" | |
using assms | |
proof (induction ls) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a ls) | |
then show ?case using dim_sumlist by auto | |
qed | |
lemma lincomb_list_alt: | |
shows "lincomb_list c s = | |
sumlist (map2 (\<lambda>i j. i \<cdot>\<^sub>v s ! j) (map (\<lambda>i. c i) [0..<length s]) [0..<length s])" | |
unfolding lincomb_list_def | |
by (smt length_map map2_map_map map_nth nth_equalityI nth_map) | |
lemma lincomb_list_alt2: | |
assumes "\<And>v. v \<in> set s \<Longrightarrow> dim_vec v = n" | |
assumes "\<And>i. i \<in> set ls \<Longrightarrow> i < length s" | |
shows " | |
sumlist (map2 (\<lambda>i j. i \<cdot>\<^sub>v s ! j) (map (\<lambda>i. c i) ls) ls) = | |
sumlist (map2 (\<lambda>i j. i \<cdot>\<^sub>v s ! j) (map (\<lambda>i. c i) (filter (\<lambda>i. c i \<noteq> 0) ls)) (filter (\<lambda>i. c i \<noteq> 0) ls))" | |
using assms(2) | |
proof (induction ls) | |
case Nil | |
then show ?case by auto | |
next | |
case (Cons a s) | |
then show ?case | |
apply auto | |
apply (subst smult_l_null) | |
apply (simp add: assms(1) carrier_vecI) | |
apply (subst left_zero_vec) | |
apply (subst sumlist_carrier) | |
apply auto | |
by (metis (no_types, lifting) assms(1) carrier_dim_vec mem_Collect_eq nth_mem set_filter set_zip_rightD) | |
qed | |
lemma two_set: | |
assumes "distinct ls" | |
assumes "set ls = set [a,b]" | |
assumes "a \<noteq> b" | |
shows "ls = [a,b] \<or> ls = [b,a]" | |
apply (cases ls) | |
using assms(2) apply auto[1] | |
proof - | |
fix x xs | |
assume ls:"ls = x # xs" | |
obtain y ys where xs:"xs = y # ys" | |
by (metis (no_types) \<open>ls = x # xs\<close> assms(2) assms(3) list.set_cases list.set_intros(1) list.set_intros(2) set_ConsD) | |
have 1:"x = a \<or> x = b" | |
using \<open>ls = x # xs\<close> assms(2) by auto | |
have 2:"y = a \<or> y = b" | |
using \<open>ls = x # xs\<close> \<open>xs = y # ys\<close> assms(2) by auto | |
have 3:"ys = []" | |
by (metis (no_types) \<open>ls = x # xs\<close> \<open>xs = y # ys\<close> assms(1) assms(2) distinct.simps(2) distinct_length_2_or_more in_set_member member_rec(2) neq_Nil_conv set_ConsD) | |
show "ls = [a, b] \<or> ls = [b, a]" using ls xs 1 2 3 assms | |
by auto | |
qed | |
lemma filter_disj_inds: | |
assumes "i < length ls" "j < length ls" "i \<noteq> j" | |
shows "filter (\<lambda>ia. ia \<noteq> j \<longrightarrow> ia = i) [0..<length ls] = [i, j] \<or> | |
filter (\<lambda>ia. ia \<noteq> j \<longrightarrow> ia = i) [0..<length ls] = [j,i]" | |
proof - | |
have 1: "distinct (filter (\<lambda>ia. ia = i \<or> ia = j) [0..<length ls])" | |
using distinct_filter distinct_upt by blast | |
have 2:"set (filter (\<lambda>ia. ia = i \<or> ia = j) [0..<length ls]) = {i, j}" | |
using assms by auto | |
show ?thesis using two_set[OF 1] | |
using assms(3) empty_set filter_cong list.simps(15) | |
by (smt "2" assms(3) empty_set filter_cong list.simps(15)) | |
qed | |
lemma lincomb_list_indpt_distinct: | |
assumes "\<And>v. v \<in> set ls \<Longrightarrow> dim_vec v = n" | |
assumes | |
"\<And>c. lincomb_list c ls = 0\<^sub>v n \<Longrightarrow> (\<forall>i. i < (length ls) \<longrightarrow> c i = 0)" | |
shows "distinct ls" | |
unfolding distinct_conv_nth | |
proof clarsimp | |
fix i j | |
assume ij: "i < length ls" "j < length ls" "i \<noteq> j" | |
assume lsij: "ls ! i = ls ! j" | |
have "lincomb_list (\<lambda>k. if k = i then 1 else if k = j then -1 else 0) ls = | |
(ls ! i) - (ls ! j)" | |
unfolding lincomb_list_alt | |
apply (subst lincomb_list_alt2[OF assms(1)]) | |
apply auto | |
using filter_disj_inds[OF ij] | |
apply auto | |
using ij(3) apply force | |
using assms(1) ij(2) apply auto[1] | |
using ij(3) apply blast | |
using assms(1) ij(2) by auto | |
also have "... = 0\<^sub>v n" unfolding lsij | |
apply (rule minus_cancel_vec) | |
using \<open>j < length ls\<close> assms(1) | |
using carrier_vec_dim_vec nth_mem by blast | |
ultimately have "lincomb_list (\<lambda>k. if k = i then 1 else if k = j then -1 else 0) ls = 0\<^sub>v n" by auto | |
from assms(2)[OF this] | |
show False | |
using \<open>i < length ls\<close> by auto | |
qed | |
end | |
locale conjugatable_vec_space = vec_space f_ty n for | |
f_ty::"'a::conjugatable_ordered_field itself" | |
and n | |
begin | |
lemma transpose_rank_mul_conjugate_transpose: | |
fixes A :: "'a mat" | |
assumes "A \<in> carrier_mat n nc" | |
shows "vec_space.rank nc A\<^sup>H \<le> rank (A * A\<^sup>H)" | |
proof - | |
have 1: "A\<^sup>H \<in> carrier_mat nc n" using assms by auto | |
have 2: "A * A\<^sup>H \<in> carrier_mat n n" using assms by auto | |
(* S is a maximal linearly independent set of rows A (or cols A\<^sup>T) *) | |
let ?P = "(\<lambda>T. T \<subseteq> set (cols A\<^sup>H) \<and> module.lin_indpt class_ring (module_vec TYPE('a) nc) T)" | |
have *:"\<And>A. ?P A \<Longrightarrow> finite A \<and> card A \<le> n" | |
proof clarsimp | |
fix S | |
assume S: "S \<subseteq> set (cols A\<^sup>H)" | |
have "card S \<le> card (set (cols A\<^sup>H))" using S | |
using card_mono by blast | |
also have "... \<le> length (cols A\<^sup>H)" using card_length by blast | |
also have "... \<le> n" using assms by auto | |
ultimately show "finite S \<and> card S \<le> n" | |
by (meson List.finite_set S dual_order.trans finite_subset) | |
qed | |
have **:"?P {}" | |
apply (subst module.lin_dep_def) | |
by (auto simp add: vec_module) | |
from maximal_exists[OF *] | |
obtain S where S: "maximal S ?P" using ** | |
by (metis (no_types, lifting)) | |
(* Some properties of S *) | |
from vec_space.rank_card_indpt[OF 1 S] | |
have rankeq: "vec_space.rank nc A\<^sup>H = card S" . | |
have s_hyp: "S \<subseteq> set (cols A\<^sup>H)" | |
using S unfolding maximal_def by simp | |
have modhyp: "module.lin_indpt class_ring (module_vec TYPE('a) nc) S" | |
using S unfolding maximal_def by simp | |
(* switch to a list representation *) | |
obtain ss where ss: "set ss = S" "distinct ss" | |
by (metis (mono_tags) S maximal_def set_obtain_sublist) | |
have ss2: "set (map ((*\<^sub>v) A) ss) = (*\<^sub>v) A ` S" | |
by (simp add: ss(1)) | |
have rw_hyp: "cols (mat_of_cols n (map ((*\<^sub>v) A) ss)) = cols (A * mat_of_cols nc ss)" | |
unfolding cols_def apply (auto) | |
using mat_vec_as_mat_mat_mult[of A n nc] | |
by (metis (no_types, lifting) "1" assms carrier_matD(1) cols_dim mul_mat_of_cols nth_mem s_hyp ss(1) subset_code(1)) | |
then have rw: "mat_of_cols n (map ((*\<^sub>v) A) ss) = A * mat_of_cols nc ss" | |
by (metis assms carrier_matD(1) index_mult_mat(2) mat_of_cols_carrier(2) mat_of_cols_cols) | |
have indpt: "\<And>c. lincomb_list c (map ((*\<^sub>v) A) ss) = 0\<^sub>v n \<Longrightarrow> | |
\<forall>i. (i < (length ss) \<longrightarrow> c i = 0)" | |
proof clarsimp | |
fix c i | |
assume *: "lincomb_list c (map ((*\<^sub>v) A) ss) = 0\<^sub>v n" | |
assume i: "i < length ss" | |
have "\<forall>w\<in>set (map ((*\<^sub>v) A) ss). dim_vec w = n" | |
using assms by auto | |
from lincomb_list_as_mat_mult[OF this] | |
have "A * mat_of_cols nc ss *\<^sub>v vec (length ss) c = 0\<^sub>v n" | |
using * rw by auto | |
then have hq: "A *\<^sub>v (mat_of_cols nc ss *\<^sub>v vec (length ss) c) = 0\<^sub>v n" | |
by (metis assms assoc_mult_mat_vec mat_of_cols_carrier(1) vec_carrier) | |
then have eq1: "(mat_of_cols nc ss *\<^sub>v vec (length ss) c) = 0\<^sub>v nc" | |
apply (intro mat_mul_conjugate_transpose_sub_vec_eq_0) | |
using assms ss s_hyp by auto | |
(* Rewrite the inner vector back to a lincomb_list *) | |
have dim_hyp2: "\<forall>w\<in>set ss. dim_vec w = nc" | |
using ss(1) s_hyp | |
by (metis "1" carrier_matD(1) carrier_vecD cols_dim subsetD) | |
from vec_module.lincomb_list_as_mat_mult[OF this, symmetric] | |
have "mat_of_cols nc ss *\<^sub>v vec (length ss) c = module.lincomb_list (module_vec TYPE('a) nc) c ss" . | |
then have "module.lincomb_list (module_vec TYPE('a) nc) c ss = 0\<^sub>v nc" using eq1 by auto | |
from vec_space.lin_indpt_lin_comb_list[OF ss(2) _ _ this i] | |
show "c i = 0" using modhyp ss s_hyp | |
using "1" cols_dim by blast | |
qed | |
have distinct: "distinct (map ((*\<^sub>v) A) ss)" | |
by (metis (no_types, lifting) assms carrier_matD(1) dim_mult_mat_vec imageE indpt length_map lincomb_list_indpt_distinct ss2) | |
then have 3: "card S = card ((*\<^sub>v) A ` S)" | |
by (metis ss distinct_card image_set length_map) | |
then have 4: "(*\<^sub>v) A ` S \<subseteq> set (cols (A * A\<^sup>H))" | |
using cols_mat_mul \<open>S \<subseteq> set (cols A\<^sup>H)\<close> by blast | |
have 5: "lin_indpt ((*\<^sub>v) A ` S)" | |
proof clarsimp | |
assume ld:"lin_dep ((*\<^sub>v) A ` S)" | |
have *: "finite ((*\<^sub>v) A ` S)" | |
by (metis List.finite_set ss2) | |
have **: "(*\<^sub>v) A ` S \<subseteq> carrier_vec n" | |
using "2" "4" cols_dim by blast | |
from finite_lin_dep[OF * ld **] | |
obtain a v where | |
a: "lincomb a ((*\<^sub>v) A ` S) = 0\<^sub>v n" and | |
v: "v \<in> (*\<^sub>v) A ` S" "a v \<noteq> 0" by blast | |
obtain i where i:"v = map ((*\<^sub>v) A) ss ! i" "i < length ss" | |
using v unfolding ss2[symmetric] | |
using find_first_le nth_find_first by force | |
from ss2[symmetric] | |
have "set (map ((*\<^sub>v) A) ss)\<subseteq> carrier_vec n" using ** ss2 by auto | |
from lincomb_as_lincomb_list_distinct[OF this distinct] have | |
"lincomb_list | |
(\<lambda>i. a (map ((*\<^sub>v) A) ss ! i)) (map ((*\<^sub>v) A) ss) = 0\<^sub>v n" | |
using a ss2 by auto | |
from indpt[OF this] | |
show False using v i by simp | |
qed | |
from rank_ge_card_indpt[OF 2 4 5] | |
have "card ((*\<^sub>v) A ` S) \<le> rank (A * A\<^sup>H)" . | |
thus ?thesis using rankeq 3 by linarith | |
qed | |
lemma conjugate_transpose_rank_le: | |
assumes "A \<in> carrier_mat n nc" | |
shows "vec_space.rank nc (A\<^sup>H) \<le> rank A" | |
by (metis assms carrier_matD(2) carrier_mat_triv dim_row_conjugate dual_order.trans index_transpose_mat(2) rank_mat_mul_right transpose_rank_mul_conjugate_transpose) | |
lemma conjugate_finsum: | |
assumes f: "f : U \<rightarrow> carrier_vec n" | |
shows "conjugate (finsum V f U) = finsum V (conjugate \<circ> f) U" | |
using f | |
proof (induct U rule: infinite_finite_induct) | |
case (infinite A) | |
then show ?case by auto | |
next | |
case empty | |
then show ?case by auto | |
next | |
case (insert u U) | |
hence f: "f : U \<rightarrow> carrier_vec n" "f u : carrier_vec n" by auto | |
then have cf: "conjugate \<circ> f : U \<rightarrow> carrier_vec n" | |
"(conjugate \<circ> f) u : carrier_vec n" | |
apply (simp add: Pi_iff) | |
by (simp add: f(2)) | |
then show ?case | |
unfolding finsum_insert[OF insert(1) insert(2) f] | |
unfolding finsum_insert[OF insert(1) insert(2) cf ] | |
apply (subst conjugate_add_vec[of _ n]) | |
using f(2) apply blast | |
using M.finsum_closed f(1) apply blast | |
by (simp add: comp_def f(1) insert.hyps(3)) | |
qed | |
lemma rank_conjugate_le: | |
assumes A:"A \<in> carrier_mat n d" | |
shows "rank (conjugate (A)) \<le> rank A" | |
proof - | |
(* S is a maximal linearly independent set of (conjugate A) *) | |
let ?P = "(\<lambda>T. T \<subseteq> set (cols (conjugate A)) \<and> lin_indpt T)" | |
have *:"\<And>A. ?P A \<Longrightarrow> finite A \<and> card A \<le> d" | |
by (metis List.finite_set assms card_length card_mono carrier_matD(2) cols_length dim_col_conjugate dual_order.trans rev_finite_subset) | |
have **:"?P {}" | |
by (simp add: finite_lin_indpt2) | |
from maximal_exists[OF *] | |
obtain S where S: "maximal S ?P" using ** | |
by (metis (no_types, lifting)) | |
have s_hyp: "S \<subseteq> set (cols (conjugate A))" "lin_indpt S" | |
using S unfolding maximal_def | |
apply blast | |
by (metis (no_types, lifting) S maximal_def) | |
from rank_card_indpt[OF _ S, of d] | |
have rankeq: "rank (conjugate A) = card S" using assms by auto | |
have 1:"conjugate ` S \<subseteq> set (cols A)" | |
using S apply auto | |
by (metis (no_types, lifting) cols_conjugate conjugate_id image_eqI in_mono list.set_map s_hyp(1)) | |
have 2: "lin_indpt (conjugate ` S)" | |
apply (rule ccontr) | |
apply (auto simp add: lin_dep_def) | |
proof - | |
fix T c v | |
assume T: "T \<subseteq> conjugate ` S" "finite T" and | |
lc:"lincomb c T = 0\<^sub>v n" and "v \<in> T" "c v \<noteq> 0" | |
let ?T = "conjugate ` T" | |
let ?c = "conjugate \<circ> c \<circ> conjugate" | |
have 1: "finite ?T" using T by auto | |
have 2: "?T \<subseteq> S" using T by auto | |
have 3: "?c \<in> ?T \<rightarrow> UNIV" by auto | |
have "lincomb ?c ?T = (\<Oplus>\<^bsub>V\<^esub>x\<in>T. conjugate (c x) \<cdot>\<^sub>v conjugate x)" | |
unfolding lincomb_def | |
apply (subst finsum_reindex) | |
apply auto | |
apply (metis "2" carrier_vec_conjugate assms carrier_matD(1) cols_dim image_eqI s_hyp(1) subsetD) | |
by (meson conjugate_cancel_iff inj_onI) | |
also have "... = (\<Oplus>\<^bsub>V\<^esub>x\<in>T. conjugate (c x \<cdot>\<^sub>v x)) " | |
by (simp add: conjugate_smult_vec) | |
also have "... = conjugate (\<Oplus>\<^bsub>V\<^esub>x\<in>T. (c x \<cdot>\<^sub>v x))" | |
apply(subst conjugate_finsum[of "\<lambda>x.(c x \<cdot>\<^sub>v x)" T]) | |
apply (auto simp add:o_def) | |
by (smt Matrix.carrier_vec_conjugate Pi_I' T(1) assms carrier_matD(1) cols_dim dim_row_conjugate imageE s_hyp(1) smult_carrier_vec subset_eq) | |
also have "... = conjugate (lincomb c T)" | |
using lincomb_def by presburger | |
ultimately have "lincomb ?c ?T = conjugate (lincomb c T)" by auto | |
then have 4:"lincomb ?c ?T = 0\<^sub>v n" using lc by auto | |
from not_lindepD[OF s_hyp(2) 1 2 3 4] | |
have "conjugate \<circ> c \<circ> conjugate \<in> conjugate ` T \<rightarrow> {0}" . | |
then have "c v = 0" | |
by (simp add: Pi_iff \<open>v \<in> T\<close>) | |
thus False using \<open>c v \<noteq> 0\<close> by auto | |
qed | |
from rank_ge_card_indpt[OF A 1 2] | |
have 3:"card (conjugate ` S) \<le> rank A" . | |
have 4: "card (conjugate ` S) = card S" | |
apply (auto intro!: card_image) | |
by (meson conjugate_cancel_iff inj_onI) | |
show ?thesis using rankeq 3 4 by auto | |
qed | |
lemma rank_conjugate: | |
assumes "A \<in> carrier_mat n d" | |
shows "rank (conjugate A) = rank A" | |
using rank_conjugate_le | |
by (metis carrier_vec_conjugate assms conjugate_id dual_order.antisym) | |
end (* exit the context *) | |
lemma conjugate_transpose_rank: | |
fixes A::"'a::{conjugatable_ordered_field} mat" | |
shows "vec_space.rank (dim_row A) A = vec_space.rank (dim_col A) (A\<^sup>H)" | |
using conjugatable_vec_space.conjugate_transpose_rank_le | |
by (metis (no_types, lifting) Matrix.transpose_transpose carrier_matI conjugate_id dim_col_conjugate dual_order.antisym index_transpose_mat(2) transpose_conjugate) | |
lemma transpose_rank: | |
fixes A::"'a::{conjugatable_ordered_field} mat" | |
shows "vec_space.rank (dim_row A) A = vec_space.rank (dim_col A) (A\<^sup>T)" | |
by (metis carrier_mat_triv conjugatable_vec_space.rank_conjugate conjugate_transpose_rank index_transpose_mat(2)) | |
lemma rank_mat_mul_left: | |
fixes A::"'a::{conjugatable_ordered_field} mat" | |
assumes "A \<in> carrier_mat n d" | |
assumes "B \<in> carrier_mat d nc" | |
shows "vec_space.rank n (A * B) \<le> vec_space.rank d B" | |
by (metis (no_types, lifting) Matrix.transpose_transpose assms(1) assms(2) carrier_matD(1) carrier_matD(2) carrier_mat_triv conjugatable_vec_space.rank_conjugate conjugate_transpose_rank index_mult_mat(3) index_transpose_mat(3) transpose_mult vec_space.rank_mat_mul_right) | |
section "Results on Invertibility" | |
(* Extract specific columns of a matrix *) | |
definition take_cols :: "'a mat \<Rightarrow> nat list \<Rightarrow> 'a mat" | |
where "take_cols A inds = mat_of_cols (dim_row A) (map ((!) (cols A)) (filter ((>) (dim_col A)) inds))" | |
definition take_cols_var :: "'a mat \<Rightarrow> nat list \<Rightarrow> 'a mat" | |
where "take_cols_var A inds = mat_of_cols (dim_row A) (map ((!) (cols A)) (inds))" | |
definition take_rows :: "'a mat \<Rightarrow> nat list \<Rightarrow> 'a mat" | |
where "take_rows A inds = mat_of_rows (dim_col A) (map ((!) (rows A)) (filter ((>) (dim_row A)) inds))" | |
lemma cong1: | |
"x = y \<Longrightarrow> mat_of_cols n x = mat_of_cols n y" | |
by auto | |
lemma nth_filter: | |
assumes "j < length (filter P ls)" | |
shows "P ((filter P ls) ! j)" | |
by (simp add: assms list_ball_nth) | |
lemma take_cols_mat_mul: | |
assumes "A \<in> carrier_mat nr n" | |
assumes "B \<in> carrier_mat n nc" | |
shows "A * take_cols B inds = take_cols (A * B) inds" | |
proof - | |
have "\<And>j. j < length (map ((!) (cols B)) (filter ((>) nc) inds)) \<Longrightarrow> | |
(map ((!) (cols B)) (filter ((>) nc) inds)) ! j \<in> carrier_vec n" | |
using assms apply auto | |
apply (subst cols_nth) | |
using nth_filter by auto | |
from mul_mat_of_cols[OF assms(1) this] | |
have "A * take_cols B inds = mat_of_cols nr (map (\<lambda>x. A *\<^sub>v cols B ! x) (filter ((>) (dim_col B)) inds))" | |
unfolding take_cols_def using assms by (auto simp add: o_def) | |
also have "... = take_cols (A * B) inds" | |
unfolding take_cols_def using assms by (auto intro!: cong1) | |
ultimately show ?thesis by auto | |
qed | |
lemma take_cols_carrier_mat: | |
assumes "A \<in> carrier_mat nr nc" | |
obtains n where "take_cols A inds \<in> carrier_mat nr n" | |
unfolding take_cols_def | |
using assms | |
by fastforce | |
lemma take_cols_carrier_mat_strict: | |
assumes "A \<in> carrier_mat nr nc" | |
assumes "\<And>i. i \<in> set inds \<Longrightarrow> i < nc" | |
shows "take_cols A inds \<in> carrier_mat nr (length inds)" | |
unfolding take_cols_def | |
using assms by auto | |
lemma gauss_jordan_take_cols: | |
assumes "gauss_jordan A (take_cols A inds) = (C,D)" | |
shows "D = take_cols C inds" | |
proof - | |
obtain nr nc where A: "A \<in> carrier_mat nr nc" by auto | |
from take_cols_carrier_mat[OF this] | |
obtain n where B: "take_cols A inds \<in> carrier_mat nr n" by auto | |
from gauss_jordan_transform[OF A B assms, of undefined] | |
obtain P where PP:"P\<in>Units (ring_mat TYPE('a) nr undefined)" and | |
CD: "C = P * A" "D = P * take_cols A inds" by blast | |
have P: "P \<in> carrier_mat nr nr" | |
by (metis (no_types, lifting) Units_def PP mem_Collect_eq partial_object.select_convs(1) ring_mat_def) | |
from take_cols_mat_mul[OF P A] | |
have "P * take_cols A inds = take_cols (P * A) inds" . | |
thus ?thesis using CD by blast | |
qed | |
lemma dim_col_take_cols: | |
assumes "\<And>j. j \<in> set inds \<Longrightarrow> j < dim_col A" | |
shows "dim_col (take_cols A inds) = length inds" | |
unfolding take_cols_def | |
using assms by auto | |
lemma dim_col_take_rows[simp]: | |
shows "dim_col (take_rows A inds) = dim_col A" | |
unfolding take_rows_def by auto | |
lemma cols_take_cols_subset: | |
shows "set (cols (take_cols A inds)) \<subseteq> set (cols A)" | |
unfolding take_cols_def | |
apply (subst cols_mat_of_cols) | |
apply auto | |
using in_set_conv_nth by fastforce | |
lemma dim_row_take_cols[simp]: | |
shows "dim_row (take_cols A ls) = dim_row A" | |
by (simp add: take_cols_def) | |
lemma dim_row_append_rows[simp]: | |
shows "dim_row (A @\<^sub>r B) = dim_row A + dim_row B" | |
by (simp add: append_rows_def) | |
lemma rows_inj: | |
assumes "dim_col A = dim_col B" | |
assumes "rows A = rows B" | |
shows "A = B" | |
unfolding mat_eq_iff | |
apply auto | |
apply (metis assms(2) length_rows) | |
using assms(1) apply blast | |
by (metis assms(1) assms(2) mat_of_rows_rows) | |
lemma append_rows_index: | |
assumes "dim_col A = dim_col B" | |
assumes "i < dim_row A + dim_row B" | |
assumes "j < dim_col A" | |
shows "(A @\<^sub>r B) $$ (i,j) = (if i < dim_row A then A $$ (i,j) else B $$ (i-dim_row A,j))" | |
unfolding append_rows_def | |
apply (subst index_mat_four_block) | |
using assms by auto | |
lemma row_append_rows: | |
assumes "dim_col A = dim_col B" | |
assumes "i < dim_row A + dim_row B" | |
shows "row (A @\<^sub>r B) i = (if i < dim_row A then row A i else row B (i-dim_row A))" | |
unfolding vec_eq_iff | |
using assms by (auto simp add: append_rows_def) | |
lemma append_rows_mat_mul: | |
assumes "dim_col A = dim_col B" | |
shows "(A @\<^sub>r B) * C = A * C @\<^sub>r B * C" | |
unfolding mat_eq_iff | |
apply auto | |
apply (simp add: append_rows_def) | |
apply (subst index_mult_mat) | |
apply auto | |
apply (simp add: append_rows_def) | |
apply (subst append_rows_index) | |
apply auto | |
apply (simp add: append_rows_def) | |
apply (metis add.right_neutral append_rows_def assms index_mat_four_block(3) index_mult_mat(1) index_mult_mat(3) index_zero_mat(3) row_append_rows trans_less_add1) | |
by (metis add_cancel_right_right add_diff_inverse_nat append_rows_def assms index_mat_four_block(3) index_mult_mat(1) index_mult_mat(3) index_zero_mat(3) nat_add_left_cancel_less row_append_rows) | |
lemma cardlt: | |
shows "card {i. i < (n::nat)} \<le> n" | |
by simp | |
lemma row_echelon_form_zero_rows: | |
assumes row_ech: "row_echelon_form A" | |
assumes dim_asm: "dim_col A \<ge> dim_row A" | |
shows "take_rows A [0..<length (pivot_positions A)] @\<^sub>r 0\<^sub>m (dim_row A - length (pivot_positions A)) (dim_col A) = A" | |
proof - | |
have ex_pivot_fun: "\<exists> f. pivot_fun A f (dim_col A)" using row_ech unfolding row_echelon_form_def by auto | |
have len_help: "length (pivot_positions A) = card {i. i < dim_row A \<and> row A i \<noteq> 0\<^sub>v (dim_col A)}" | |
using ex_pivot_fun pivot_positions[where A = "A",where nr = "dim_row A", where nc = "dim_col A"] | |
by auto | |
then have len_help2: "length (pivot_positions A) \<le> dim_row A" | |
by (metis (no_types, lifting) card_mono cardlt finite_Collect_less_nat le_trans mem_Collect_eq subsetI) | |
have fileq: "filter (\<lambda>y. y < dim_row A) [0..< length (pivot_positions A)] = [0..<length (pivot_positions A)]" | |
apply (rule filter_True) | |
using len_help2 by auto | |
have "\<forall>n. card {i. i < n \<and> row A i \<noteq> 0\<^sub>v (dim_col A)} \<le> n" | |
proof clarsimp | |
fix n | |
have h: "\<forall>x. x \<in> {i. i < n \<and> row A i \<noteq> 0\<^sub>v (dim_col A)} \<longrightarrow> x\<in>{..<n}" | |
by simp | |
then have h1: "{i. i < n \<and> row A i \<noteq> 0\<^sub>v (dim_col A)} \<subseteq> {..<n}" | |
by blast | |
then have h2: "(card {i. i < n \<and> row A i \<noteq> 0\<^sub>v (dim_col A)}::nat) \<le> (card {..<n}::nat)" | |
using card_mono by blast | |
then show "(card {i. i < n \<and> row A i \<noteq> 0\<^sub>v (dim_col A)}::nat) \<le> (n::nat)" using h2 card_lessThan[of n] | |
by auto | |
qed | |
then have pivot_len: "length (pivot_positions A) \<le> dim_row A " using len_help | |
by simp | |
have alt_char: "mat_of_rows (dim_col A) | |
(map ((!) (rows A)) (filter (\<lambda>y. y < dim_col A) [0..<length (pivot_positions A)])) = | |
mat_of_rows (dim_col A) (map ((!) (rows A)) [0..<length (pivot_positions A)])" | |
using pivot_len dim_asm | |
by auto | |
have h1: "\<And>i j. i < dim_row A \<Longrightarrow> | |
j < dim_col A \<Longrightarrow> | |
i < dim_row (take_rows A [0..<length (pivot_positions A)]) \<Longrightarrow> | |
take_rows A [0..<length (pivot_positions A)] $$ (i, j) = A $$ (i, j)" | |
proof - | |
fix i | |
fix j | |
assume "i < dim_row A" | |
assume j_lt: "j < dim_col A" | |
assume i_lt: "i < dim_row (take_rows A [0..<length (pivot_positions A)])" | |
have lt: "length (pivot_positions A) \<le> dim_row A" using pivot_len by auto | |
have h1: "take_rows A [0..<length (pivot_positions A)] $$ (i, j) = (row (take_rows A [0..<length (pivot_positions A)]) i)$j" | |
by (simp add: i_lt j_lt) | |
then have h2: "(row (take_rows A [0..<length (pivot_positions A)]) i)$j = (row A i)$j" | |
using lt alt_char i_lt unfolding take_rows_def by auto | |
show "take_rows A [0..<length (pivot_positions A)] $$ (i, j) = A $$ (i, j)" | |
using h1 h2 | |
by (simp add: \<open>i < dim_row A\<close> j_lt) | |
qed | |
let ?nc = "dim_col A" | |
let ?nr = "dim_row A" | |
have h2: "\<And>i j. i < dim_row A \<Longrightarrow> | |
j < dim_col A \<Longrightarrow> | |
\<not> i < dim_row (take_rows A [0..<length (pivot_positions A)]) \<Longrightarrow> | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (dim_col A) $$ | |
(i - dim_row (take_rows A [0..<length (pivot_positions A)]), j) = | |
A $$ (i, j)" | |
proof - | |
fix i | |
fix j | |
assume lt_i: "i < dim_row A" | |
assume lt_j: "j < dim_col A" | |
assume not_lt: "\<not> i < dim_row (take_rows A [0..<length (pivot_positions A)])" | |
let ?ip = "i+1" | |
have h0: "\<exists>f. pivot_fun A f (dim_col A) \<and> f i = ?nc" | |
proof - | |
have half1: "\<exists>f. pivot_fun A f (dim_col A)" using assms unfolding row_echelon_form_def | |
by blast | |
have half2: "\<forall>f. pivot_fun A f (dim_col A) \<longrightarrow> f i = ?nc " | |
proof clarsimp | |
fix f | |
assume is_piv: "pivot_fun A f (dim_col A)" | |
have len_pp: "length (pivot_positions A) = card {i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc}" using is_piv pivot_positions[of A ?nr ?nc f] | |
by auto | |
have "\<forall>i. (i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc) \<longleftrightarrow> (i < ?nr \<and> f i \<noteq> ?nc)" | |
using is_piv pivot_fun_zero_row_iff[of A f ?nc ?nr] | |
by blast | |
then have len_pp_var: "length (pivot_positions A) = card {i. i < ?nr \<and> f i \<noteq> ?nc}" | |
using len_pp by auto | |
have allj_hyp: "\<forall>j < ?nr. f j = ?nc \<longrightarrow> ((Suc j) < ?nr \<longrightarrow> f (Suc j) = ?nc)" | |
using is_piv unfolding pivot_fun_def | |
using lt_i | |
by (metis le_antisym le_less) | |
have if_then_bad: "f i \<noteq> ?nc \<longrightarrow> (\<forall>j. j \<le> i \<longrightarrow> f j \<noteq> ?nc)" | |
proof clarsimp | |
fix j | |
assume not_i: "f i \<noteq> ?nc" | |
assume j_leq: "j \<le> i" | |
assume bad_asm: "f j = ?nc" | |
have "\<And>k. k \<ge> j \<Longrightarrow> k < ?nr \<Longrightarrow> f k = ?nc" | |
proof - | |
fix k :: nat | |
assume a1: "j \<le> k" | |
assume a2: "k < dim_row A" | |
have f3: "\<And>n. \<not> n < dim_row A \<or> f n \<noteq> f j \<or> \<not> Suc n < dim_row A \<or> f (Suc n) = f j" | |
using allj_hyp bad_asm by presburger | |
obtain nn :: "nat \<Rightarrow> nat \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> nat" where | |
f4: "\<And>n na p nb nc. (\<not> n \<le> na \<or> Suc n \<le> Suc na) \<and> (\<not> p nb \<or> \<not> nc \<le> nb \<or> \<not> p (nn nc nb p) \<or> p nc) \<and> (\<not> p nb \<or> \<not> nc \<le> nb \<or> p nc \<or> p (Suc (nn nc nb p)))" | |
using inc_induct order_refl by moura | |
then have f5: "\<And>p. \<not> p k \<or> p j \<or> p (Suc (nn j k p))" | |
using a1 by presburger | |
have f6: "\<And>p. \<not> p k \<or> \<not> p (nn j k p) \<or> p j" | |
using f4 a1 by meson | |
{ assume "nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A) < dim_row A \<and> f (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A)) \<noteq> dim_col A" | |
moreover | |
{ assume "(nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A) < dim_row A \<and> f (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A)) \<noteq> dim_col A) \<and> (\<not> j < dim_row A \<or> f j = dim_col A)" | |
then have "\<not> k < dim_row A \<or> f k = dim_col A" | |
using f6 | |
by (metis (mono_tags, lifting)) } | |
ultimately have "(\<not> j < dim_row A \<or> f j = dim_col A) \<and> (\<not> Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A)) < dim_row A \<or> f (Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A))) = dim_col A) \<or> \<not> k < dim_row A \<or> f k = dim_col A" | |
using bad_asm | |
by blast } | |
moreover | |
{ assume "(\<not> j < dim_row A \<or> f j = dim_col A) \<and> (\<not> Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A)) < dim_row A \<or> f (Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A))) = dim_col A)" | |
then have "\<not> k < dim_row A \<or> f k = dim_col A" | |
using f5 | |
proof - | |
have "\<not> (Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A)) < dim_row A \<and> f (Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A))) \<noteq> dim_col A) \<and> \<not> (j < dim_row A \<and> f j \<noteq> dim_col A)" | |
using \<open>(\<not> j < dim_row A \<or> f j = dim_col A) \<and> (\<not> Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A)) < dim_row A \<or> f (Suc (nn j k (\<lambda>n. n < dim_row A \<and> f n \<noteq> dim_col A))) = dim_col A)\<close> by linarith | |
then have "\<not> (k < dim_row A \<and> f k \<noteq> dim_col A)" | |
by (metis (mono_tags, lifting) a2 bad_asm f5 le_less) | |
then show ?thesis | |
by meson | |
qed } | |
ultimately show "f k = dim_col A" | |
using f3 a2 by (metis (lifting) Suc_lessD bad_asm) | |
qed | |
then show "False" using lt_i not_i | |
using j_leq by blast | |
qed | |
have "f i \<noteq> ?nc \<longrightarrow> ({0..<?ip} \<subseteq> {y. y < ?nr \<and> f y \<noteq> dim_col A})" | |
proof - | |
have h1: "f i \<noteq> dim_col A \<longrightarrow> (\<forall>j\<le>i. j < ?nr \<and> f j \<noteq> dim_col A)" | |
using if_then_bad lt_i by auto | |
then show ?thesis by auto | |
qed | |
then have gteq: "f i \<noteq> ?nc \<longrightarrow> (card {i. i < ?nr \<and> f i \<noteq> dim_col A} \<ge> (i+1))" | |
using card_lessThan[of ?ip] card_mono[where B = "{i. i < ?nr \<and> f i \<noteq> dim_col A} ", where A = "{0..<?ip}"] | |
by auto | |
then have clear: "dim_row (take_rows A [0..<length (pivot_positions A)]) = length (pivot_positions A)" | |
unfolding take_rows_def using dim_asm fileq by (auto) | |
have "i + 1 > length (pivot_positions A)" using not_lt clear by auto | |
then show "f i = ?nc" using gteq len_pp_var by auto | |
qed | |
show ?thesis using half1 half2 | |
by blast | |
qed | |
then have h1a: "row A i = 0\<^sub>v (dim_col A)" | |
using pivot_fun_zero_row_iff[of A _ ?nc ?nr] | |
using lt_i by blast | |
then have h1: "A $$ (i, j) = 0" | |
using index_row(1) lt_i lt_j by fastforce | |
have h2a: "i - dim_row (take_rows A [0..<length (pivot_positions A)]) < dim_row A - length (pivot_positions A)" | |
using pivot_len lt_i not_lt | |
by (simp add: take_rows_def) | |
then have h2: "0\<^sub>m (dim_row A - length (pivot_positions A)) (dim_col A) $$ | |
(i - dim_row (take_rows A [0..<length (pivot_positions A)]), j) = 0 " | |
unfolding zero_mat_def using pivot_len lt_i lt_j | |
using index_mat(1) by blast | |
then show "0\<^sub>m (dim_row A - length (pivot_positions A)) (dim_col A) $$ | |
(i - dim_row (take_rows A [0..<length (pivot_positions A)]), j) = | |
A $$ (i, j)" using h1 h2 | |
by simp | |
qed | |
have h3: "(dim_row (take_rows A [0..<length (pivot_positions A)])::nat) + ((dim_row A::nat) - (length (pivot_positions A)::nat)) = | |
dim_row A" | |
proof - | |
have h0: "dim_row (take_rows A [0..<length (pivot_positions A)]) = (length (pivot_positions A)::nat)" | |
by (simp add: take_rows_def fileq) | |
then show ?thesis using add_diff_inverse_nat pivot_len | |
by linarith | |
qed | |
have h4: " \<And>i j. i < dim_row A \<Longrightarrow> | |
j < dim_col A \<Longrightarrow> | |
i < dim_row (take_rows A [0..<length (pivot_positions A)]) + | |
(dim_row A - length (pivot_positions A))" | |
using pivot_len | |
by (simp add: h3) | |
then show ?thesis apply (subst mat_eq_iff) | |
using h1 h2 h3 h4 by (auto simp add: append_rows_def) | |
qed | |
lemma length_pivot_positions_dim_row: | |
assumes "row_echelon_form A" | |
shows "length (pivot_positions A) \<le> dim_row A" | |
proof - | |
have 1: "A \<in> carrier_mat (dim_row A) (dim_col A)" by auto | |
obtain f where 2: "pivot_fun A f (dim_col A)" | |
using assms row_echelon_form_def by blast | |
from pivot_positions(4)[OF 1 2] have | |
"length (pivot_positions A) = card {i. i < dim_row A \<and> row A i \<noteq> 0\<^sub>v (dim_col A)}" . | |
also have "... \<le> card {i. i < dim_row A}" | |
apply (rule card_mono) | |
by auto | |
ultimately show ?thesis by auto | |
qed | |
lemma rref_pivot_positions: | |
assumes "row_echelon_form R" | |
assumes R: "R \<in> carrier_mat nr nc" | |
shows "\<And>i j. (i,j) \<in> set (pivot_positions R) \<Longrightarrow> i < nr \<and> j < nc" | |
proof - | |
obtain f where f: "pivot_fun R f nc" | |
using assms(1) assms(2) row_echelon_form_def by blast | |
have *: "\<And>i. i < nr \<Longrightarrow> f i \<le> nc" using f | |
using R pivot_funD(1) by blast | |
from pivot_positions[OF R f] | |
have "set (pivot_positions R) = {(i, f i) |i. i < nr \<and> f i \<noteq> nc}" by auto | |
then have **: "set (pivot_positions R) = {(i, f i) |i. i < nr \<and> f i < nc}" | |
using * | |
by fastforce | |
fix i j | |
assume "(i, j) \<in> set (pivot_positions R)" | |
thus "i < nr \<and> j < nc" using ** | |
by simp | |
qed | |
lemma pivot_fun_monoton: | |
assumes pf: "pivot_fun A f (dim_col A)" | |
assumes dr: "dim_row A = nr" | |
shows "\<And> i. i < nr \<Longrightarrow> (\<And> k. ((k < nr \<and> i < k) \<longrightarrow> f i \<le> f k))" | |
proof - | |
fix i | |
assume "i < nr" | |
show "(\<And> k. ((k < nr \<and> i < k) \<longrightarrow> f i \<le> f k))" | |
proof - | |
fix k | |
show "((k < nr \<and> i < k) \<longrightarrow> f i \<le> f k)" | |
proof (induct k) | |
case 0 | |
then show ?case | |
by blast | |
next | |
case (Suc k) | |
then show ?case | |
by (smt dr le_less_trans less_Suc_eq less_imp_le_nat pf pivot_funD(1) pivot_funD(3)) | |
qed | |
qed | |
qed | |
lemma pivot_positions_contains: | |
assumes row_ech: "row_echelon_form A" | |
assumes dim_h: "dim_col A \<ge> dim_row A" | |
assumes "pivot_fun A f (dim_col A)" | |
shows "\<forall>i < (length (pivot_positions A)). (i, f i) \<in> set (pivot_positions A)" | |
proof - | |
let ?nr = "dim_row A" | |
let ?nc = "dim_col A" | |
let ?pp = "pivot_positions A" | |
have i_nr: "\<forall>i < (length ?pp). i < ?nr" using rref_pivot_positions assms | |
using length_pivot_positions_dim_row less_le_trans by blast | |
have i_nc: "\<forall>i < (length ?pp). f i < ?nc" | |
proof clarsimp | |
fix i | |
assume i_lt: "i < length ?pp" | |
have fis_nc: "f i = ?nc \<Longrightarrow> (\<forall> k > i. k < ?nr \<longrightarrow> f k = ?nc)" | |
proof - | |
assume is_nc: "f i = ?nc" | |
show "(\<forall> k > i. k < ?nr \<longrightarrow> f k = ?nc)" | |
proof clarsimp | |
fix k | |
assume k_gt: "k > i" | |
assume k_lt: "k < ?nr" | |
have fk_lt: "f k \<le> ?nc" using pivot_funD(1)[of A ?nr f ?nc k] k_lt apply (auto) | |
using \<open>pivot_fun A f (dim_col A)\<close> by blast | |
show "f k = ?nc" | |
using fk_lt is_nc k_gt k_lt assms pivot_fun_monoton[of A f ?nr i k] | |
using \<open>pivot_fun A f (dim_col A)\<close> by auto | |
qed | |
qed | |
have ncimp: "f i = ?nc \<Longrightarrow> (\<forall> k \<ge>i. k \<notin> { i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc})" | |
proof - | |
assume nchyp: "f i = ?nc" | |
show "(\<forall> k \<ge>i. k \<notin> { i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc})" | |
proof clarsimp | |
fix k | |
assume i_lt: "i \<le> k" | |
assume k_lt: "k < dim_row A" | |
show "row A k = 0\<^sub>v (dim_col A) " | |
using i_lt k_lt fis_nc | |
using pivot_fun_zero_row_iff[of A f ?nc ?nr] | |
using \<open>pivot_fun A f (dim_col A)\<close> le_neq_implies_less nchyp by blast | |
qed | |
qed | |
then have "f i = ?nc \<Longrightarrow> card { i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc} \<le> i" | |
proof - | |
assume nchyp: "f i = ?nc" | |
have h: "{ i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc} \<subseteq> {0..<i}" | |
using atLeast0LessThan le_less_linear nchyp ncimp by blast | |
then show " card { i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc} \<le> i" | |
using card_lessThan | |
using subset_eq_atLeast0_lessThan_card by blast | |
qed | |
then show "f i < ?nc" using i_lt pivot_positions(4)[of A ?nr ?nc f] | |
apply (auto) | |
by (metis \<open>pivot_fun A f (dim_col A)\<close> i_nr le_neq_implies_less not_less pivot_funD(1)) | |
qed | |
then show ?thesis | |
using pivot_positions(1) | |
by (smt \<open>pivot_fun A f (dim_col A)\<close> carrier_matI i_nr less_not_refl mem_Collect_eq) | |
qed | |
lemma pivot_positions_form_helper_1: | |
shows "(a, b) \<in> set (pivot_positions_main_gen z A nr nc i j) \<Longrightarrow> i \<le> a" | |
proof (induct i j rule: pivot_positions_main_gen.induct[of nr nc A z]) | |
case (1 i j) | |
then show ?case using pivot_positions_main_gen.simps[of z A nr nc i j] | |
apply (auto) | |
by (smt Suc_leD le_refl old.prod.inject set_ConsD) | |
qed | |
lemma pivot_positions_form_helper_2: | |
shows "sorted_wrt (<) (map fst (pivot_positions_main_gen z A nr nc i j))" | |
proof (induct i j rule: pivot_positions_main_gen.induct[of nr nc A z]) | |
case (1 i j) | |
then show ?case using pivot_positions_main_gen.simps[of z A nr nc i j] | |
by (auto simp: pivot_positions_form_helper_1 Suc_le_lessD) | |
qed | |
lemma sorted_pivot_positions: | |
shows "sorted_wrt (<) (map fst (pivot_positions A))" | |
using pivot_positions_form_helper_2 | |
by (simp add: pivot_positions_form_helper_2 pivot_positions_gen_def) | |
lemma pivot_positions_form: | |
assumes row_ech: "row_echelon_form A" | |
assumes dim_h: "dim_col A \<ge> dim_row A" | |
shows "\<forall> i < (length (pivot_positions A)). fst ((pivot_positions A) ! i) = i" | |
proof clarsimp | |
let ?nr = "dim_row A" | |
let ?nc = "dim_col A" | |
let ?pp = "pivot_positions A :: (nat \<times> nat) list" | |
fix i | |
assume i_lt: "i < length (pivot_positions A)" | |
have "\<exists>f. pivot_fun A f ?nc" using row_ech unfolding row_echelon_form_def | |
by blast | |
then obtain f where pf:"pivot_fun A f ?nc" | |
by blast | |
have all_f_in: "\<forall>i < (length ?pp). (i, f i) \<in> set ?pp" | |
using pivot_positions_contains pf | |
assms | |
by blast | |
have sorted_hyp: "\<And> (p::nat) (q::nat). p < (length ?pp) \<Longrightarrow> q < (length ?pp) \<Longrightarrow> p < q \<Longrightarrow> (fst (?pp ! p) < fst (?pp ! q))" | |
proof - | |
fix p::nat | |
fix q::nat | |
assume p_lt: "p < q" | |
assume p_welldef: "p < (length ?pp)" | |
assume q_welldef: "q < (length ?pp)" | |
show "fst (?pp ! p) < fst (?pp ! q)" | |
using sorted_pivot_positions p_lt p_welldef q_welldef apply (auto) | |
by (smt find_first_unique length_map nat_less_le nth_map p_welldef sorted_nth_mono sorted_pivot_positions strict_sorted_iff) | |
qed | |
have h: "i < (length ?pp) \<longrightarrow> fst (pivot_positions A ! i) = i" | |
proof (induct i) | |
case 0 | |
have "\<exists>j. fst (pivot_positions A ! j) = 0" | |
by (metis all_f_in fst_conv i_lt in_set_conv_nth length_greater_0_conv list.size(3) not_less0) | |
then obtain j where jth:" fst (pivot_positions A ! j) = 0" | |
by blast | |
have "j \<noteq> 0 \<longrightarrow> (fst (pivot_positions A ! 0) > 0 \<longrightarrow> j \<le> 0)" | |
using sorted_hyp apply (auto) | |
by (metis all_f_in fst_conv i_lt in_set_conv_nth length_greater_0_conv list.size(3) neq0_conv not_less0) | |
then show ?case | |
using jth neq0_conv by blast | |
next | |
case (Suc i) | |
have ind_h: "i < length (pivot_positions A) \<longrightarrow> fst (pivot_positions A ! i) = i" | |
using Suc.hyps by blast | |
have thesis_h: "(Suc i) < length (pivot_positions A) \<Longrightarrow> fst (pivot_positions A ! (Suc i)) = (Suc i)" | |
proof - | |
assume suc_i_lt: "(Suc i) < length (pivot_positions A)" | |
have fst_i_is: "fst (pivot_positions A ! i) = i" using suc_i_lt ind_h | |
using Suc_lessD by blast | |
have "(\<exists>j < (length ?pp). fst (pivot_positions A ! j) = (Suc i))" | |
by (metis suc_i_lt all_f_in fst_conv in_set_conv_nth) | |
then obtain j where jth: "j < (length ?pp) \<and> fst (pivot_positions A ! j) = (Suc i)" | |
by blast | |
have "j > i" | |
using sorted_hyp apply (auto) | |
by (metis Suc_lessD \<open>fst (pivot_positions A ! i) = i\<close> jth less_not_refl linorder_neqE_nat n_not_Suc_n suc_i_lt) | |
have "j > (Suc i) \<Longrightarrow> False" | |
proof - | |
assume j_gt: "j > (Suc i)" | |
then have h1: "fst (pivot_positions A ! (Suc i)) > i" | |
using fst_i_is sorted_pivot_positions | |
using sorted_hyp suc_i_lt by force | |
have "fst (pivot_positions A ! j) > fst (pivot_positions A ! (Suc i))" | |
using jth j_gt sorted_hyp apply (auto) | |
by fastforce | |
then have h2: "fst (pivot_positions A ! (Suc i)) < (Suc i)" | |
using jth | |
by simp | |
show "False" using h1 h2 | |
using not_less_eq by blast | |
qed | |
show "fst (pivot_positions A ! (Suc i)) = (Suc i)" | |
using Suc_lessI \<open>Suc i < j \<Longrightarrow> False\<close> \<open>i < j\<close> jth by blast | |
qed | |
then show ?case | |
by blast | |
qed | |
then show "fst (pivot_positions A ! i) = i" | |
using i_lt by auto | |
qed | |
lemma take_cols_pivot_eq: | |
assumes row_ech: "row_echelon_form A" | |
assumes dim_h: "dim_col A \<ge> dim_row A" | |
shows "take_cols A (map snd (pivot_positions A)) = | |
1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A))" | |
proof - | |
let ?nr = "dim_row A" | |
let ?nc = "dim_col A" | |
have h1: " dim_col | |
(1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A))) = (length (pivot_positions A))" | |
by (simp add: append_rows_def) | |
have len_pivot: "length (pivot_positions A) = card {i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc}" | |
using row_ech pivot_positions(4) row_echelon_form_def by blast | |
have pp_leq_nc: "\<forall>f. pivot_fun A f ?nc \<longrightarrow> (\<forall>i < ?nr. f i \<le> ?nc)" unfolding pivot_fun_def | |
by meson | |
have pivot_set: "\<exists>f. pivot_fun A f ?nc \<and> set (pivot_positions A) = {(i, f i) | i. i < ?nr \<and> f i \<noteq> ?nc}" | |
using row_ech row_echelon_form_def pivot_positions(1) | |
by (smt (verit) Collect_cong carrier_matI) | |
then have pivot_set_alt: "\<exists>f. pivot_fun A f ?nc \<and> set (pivot_positions A) = {(i, f i) | i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc}" | |
using pivot_positions pivot_fun_zero_row_iff Collect_cong carrier_mat_triv | |
by (smt (verit, best)) | |
have "\<exists>f. pivot_fun A f ?nc \<and> set (pivot_positions A) = {(i, f i) | i. f i \<le> ?nc \<and> i < ?nr \<and> f i \<noteq> ?nc}" | |
using pivot_set pp_leq_nc by auto | |
then have pivot_set_var: "\<exists>f. pivot_fun A f ?nc \<and> set (pivot_positions A) = {(i, f i) | i. i < ?nr \<and> f i < ?nc}" | |
by auto | |
have "length (map snd (pivot_positions A)) = card (set (map snd (pivot_positions A)))" | |
using row_ech row_echelon_form_def pivot_positions(3) distinct_card[where xs = "map snd (pivot_positions A)"] | |
by (metis carrier_mat_triv) | |
then have "length (map snd (pivot_positions A)) = card (set (pivot_positions A))" | |
by (metis card_distinct distinct_card distinct_map length_map) | |
then have "length (map snd (pivot_positions A)) = card {i. i < ?nr \<and> row A i \<noteq> 0\<^sub>v ?nc}" | |
using pivot_set_alt | |
by (simp add: len_pivot) | |
then have length_asm: "length (map snd (pivot_positions A)) = length (pivot_positions A)" | |
using len_pivot by linarith | |
then have "\<forall>a. List.member (map snd (pivot_positions A)) a \<longrightarrow> a < dim_col A" | |
proof clarsimp | |
fix a | |
assume a_in: "List.member (map snd (pivot_positions A)) a" | |
have "\<exists>v \<in> set (pivot_positions A). a = snd v" | |
using a_in in_set_member[where xs = "(pivot_positions A)"] apply (auto) | |
by (metis in_set_impl_in_set_zip2 in_set_member length_map snd_conv zip_map_fst_snd) | |
then show "a < dim_col A" | |
using pivot_set_var in_set_member by auto | |
qed | |
then have h2b: "(filter (\<lambda>y. y < dim_col A) (map snd (pivot_positions A))) = (map snd (pivot_positions A))" | |
by (meson filter_True in_set_member) | |
then have h2a: "length (map ((!) (cols A)) (filter (\<lambda>y. y < dim_col A) (map snd (pivot_positions A)))) = length (pivot_positions A)" | |
using length_asm | |
by (simp add: h2b) | |
then have h2: "length (pivot_positions A) \<le> dim_row A \<Longrightarrow> | |
dim_col (take_cols A (map snd (pivot_positions A))) = (length (pivot_positions A))" | |
unfolding take_cols_def using mat_of_cols_carrier by auto | |
have h_len: "length (pivot_positions A) \<le> dim_row A \<Longrightarrow> | |
dim_col (take_cols A (map snd (pivot_positions A))) = | |
dim_col | |
(1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A)))" | |
using h1 h2 | |
by (simp add: h1 assms length_pivot_positions_dim_row) | |
have h2: "\<And>i j. length (pivot_positions A) \<le> dim_row A \<Longrightarrow> | |
i < dim_row A \<Longrightarrow> | |
j < dim_col | |
(1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A))) \<Longrightarrow> | |
take_cols A (map snd (pivot_positions A)) $$ (i, j) = | |
(1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A))) $$ | |
(i, j)" | |
proof - | |
fix i | |
fix j | |
let ?pp = "(pivot_positions A)" | |
assume len_lt: "length (pivot_positions A) \<le> dim_row A" | |
assume i_lt: " i < dim_row A" | |
assume j_lt: "j < dim_col | |
(1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A)))" | |
let ?w = "((map snd (pivot_positions A)) ! j)" | |
have breaking_it_down: "mat_of_cols (dim_row A) | |
(map ((!) (cols A)) (map snd (pivot_positions A))) $$ (i, j) | |
= ((cols A) ! ?w) $ i" | |
apply (auto) | |
by (metis comp_apply h1 i_lt j_lt length_map mat_of_cols_index nth_map) | |
have h1a: "i < (length ?pp) \<Longrightarrow> (mat_of_cols (dim_row A) (map ((!) (cols A)) (map snd (pivot_positions A))) $$ (i, j) | |
= (1\<^sub>m (length (pivot_positions A))) $$ (i, j))" | |
proof - | |
(* need to, using row_ech, rely heavily on pivot_fun_def, that num_cols \<ge> num_rows, and row_echelon form*) | |
assume "i < (length ?pp)" | |
have "\<exists>f. pivot_fun A f ?nc" using row_ech unfolding row_echelon_form_def | |
by blast | |
then obtain f where "pivot_fun A f ?nc" | |
by blast | |
have j_nc: "j < (length ?pp)" using j_lt | |
by (simp add: h1) | |
then have j_lt_nr: "j < ?nr" using dim_h | |
using len_lt by linarith | |
then have is_this_true: "(pivot_positions A) ! j = (j, f j)" | |
using pivot_positions_form pivot_positions(1)[of A ?nr ?nc f] | |
proof - | |
have "pivot_positions A ! j \<in> set (pivot_positions A)" | |
using j_nc nth_mem by blast | |
then have "\<exists>n. pivot_positions A ! j = (n, f n) \<and> n < dim_row A \<and> f n \<noteq> dim_col A" | |
using \<open>\<lbrakk>A \<in> carrier_mat (dim_row A) (dim_col A); pivot_fun A f (dim_col A)\<rbrakk> \<Longrightarrow> set (pivot_positions A) = {(i, f i) |i. i < dim_row A \<and> f i \<noteq> dim_col A}\<close> \<open>pivot_fun A f (dim_col A)\<close> by blast | |
then show ?thesis | |
by (metis (no_types) \<open>\<And>A. \<lbrakk>row_echelon_form A; dim_row A \<le> dim_col A\<rbrakk> \<Longrightarrow> \<forall>i<length (pivot_positions A). fst (pivot_positions A ! i) = i\<close> dim_h fst_conv j_nc row_ech) | |
qed | |
then have w_is: "?w = f j" | |
by (metis h1 j_lt nth_map snd_conv) | |
have h0: "i = j \<longrightarrow> ((cols A) ! ?w) $ i = 1" using w_is pivot_funD(4)[of A ?nr f ?nc i] | |
by (metis \<open>\<forall>a. List.member (map snd (pivot_positions A)) a \<longrightarrow> a < dim_col A\<close> \<open>i < length (pivot_positions A)\<close> \<open>pivot_fun A f (dim_col A)\<close> cols_length i_lt in_set_member length_asm mat_of_cols_cols mat_of_cols_index nth_mem) | |
have h1: "i \<noteq> j \<longrightarrow> ((cols A) ! ?w) $ i = 0" using w_is pivot_funD(5) | |
by (metis \<open>\<forall>a. List.member (map snd (pivot_positions A)) a \<longrightarrow> a < dim_col A\<close> \<open>pivot_fun A f (dim_col A)\<close> cols_length h1 i_lt in_set_member j_lt len_lt length_asm less_le_trans mat_of_cols_cols mat_of_cols_index nth_mem) | |
show "(mat_of_cols (dim_row A) (map ((!) (cols A)) (map snd (pivot_positions A))) $$ (i, j) | |
= (1\<^sub>m (length (pivot_positions A))) $$ (i, j))" using h0 h1 breaking_it_down | |
by (metis \<open>i < length (pivot_positions A)\<close> h2 h_len index_one_mat(1) j_lt len_lt) | |
qed | |
have h1b: "i \<ge> (length ?pp) \<Longrightarrow> (mat_of_cols (dim_row A) (map ((!) (cols A)) (map snd (pivot_positions A))) $$ (i, j) = 0)" | |
proof - | |
assume i_gt: "i \<ge> (length ?pp)" | |
have h0a: "((cols A) ! ((map snd (pivot_positions A)) ! j)) $ i = (row A i) $ ?w" | |
by (metis \<open>\<forall>a. List.member (map snd (pivot_positions A)) a \<longrightarrow> a < dim_col A\<close> cols_length h1 i_lt in_set_member index_row(1) j_lt length_asm mat_of_cols_cols mat_of_cols_index nth_mem) | |
have h0b: | |
"take_rows A [0..<length (pivot_positions A)] @\<^sub>r 0\<^sub>m (dim_row A - length (pivot_positions A)) (dim_col A) = A" | |
using assms row_echelon_form_zero_rows[of A] | |
by blast | |
then have h0c: "(row A i) = 0\<^sub>v (dim_col A)" using i_gt | |
using add_diff_cancel_right' add_less_cancel_left diff_is_0_eq' dim_col_take_rows dim_row_append_rows i_lt index_zero_mat(2) index_zero_mat(3) le_add_diff_inverse len_lt less_not_refl3 row_append_rows row_zero zero_less_diff | |
by (smt add_diff_cancel_right' add_less_cancel_left diff_is_0_eq' dim_col_take_rows dim_row_append_rows i_lt index_zero_mat(2) index_zero_mat(3) le_add_diff_inverse len_lt less_not_refl3 row_append_rows row_zero zero_less_diff) | |
then show ?thesis using h0a breaking_it_down apply (auto) | |
by (metis \<open>\<forall>a. List.member (map snd (pivot_positions A)) a \<longrightarrow> a < dim_col A\<close> h1 in_set_member index_zero_vec(1) j_lt length_asm nth_mem) | |
qed | |
have h1: " mat_of_cols (dim_row A) | |
(map ((!) (cols A)) (map snd (pivot_positions A))) $$ (i, j) = | |
(1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A))) $$ | |
(i, j) " using h1a h1b | |
apply (auto) | |
by (smt add_diff_inverse_nat add_less_cancel_left append_rows_index h1 i_lt index_one_mat(2) index_one_mat(3) index_zero_mat(1) index_zero_mat(2) index_zero_mat(3) j_lt len_lt not_less) | |
then show "take_cols A (map snd (pivot_positions A)) $$ (i, j) = | |
(1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A))) $$ | |
(i, j)" | |
unfolding take_cols_def | |
by (simp add: h2b) | |
qed | |
show ?thesis | |
unfolding mat_eq_iff | |
using length_pivot_positions_dim_row[OF assms(1)] h_len h2 by auto | |
qed | |
lemma rref_right_mul: | |
assumes "row_echelon_form A" | |
assumes "dim_col A \<ge> dim_row A" | |
shows | |
"take_cols A (map snd (pivot_positions A)) * take_rows A [0..<length (pivot_positions A)] = A" | |
proof - | |
from take_cols_pivot_eq[OF assms] have | |
1: "take_cols A (map snd (pivot_positions A)) = | |
1\<^sub>m (length (pivot_positions A)) @\<^sub>r | |
0\<^sub>m (dim_row A - length (pivot_positions A)) (length (pivot_positions A))" . | |
have 2: "take_cols A (map snd (pivot_positions A)) * take_rows A [0..<length (pivot_positions A)] = | |
take_rows A [0..<length (pivot_positions A)] @\<^sub>r 0\<^sub>m (dim_row A - length (pivot_positions A)) (dim_col A)" | |
unfolding 1 | |
apply (auto simp add: append_rows_mat_mul) | |
by (smt add_diff_cancel_right' assms diff_diff_cancel dim_col_take_rows dim_row_append_rows index_zero_mat(2) left_mult_one_mat' left_mult_zero_mat' length_pivot_positions_dim_row row_echelon_form_zero_rows) | |
from row_echelon_form_zero_rows[OF assms] have | |
"... = A" . | |
thus ?thesis | |
by (simp add: "2") | |
qed | |
context conjugatable_vec_space begin | |
lemma lin_indpt_id: | |
shows "lin_indpt (set (cols (1\<^sub>m n)::'a vec list))" | |
proof - | |
have *: "set (cols (1\<^sub>m n)) = set (rows (1\<^sub>m n))" | |
by (metis cols_transpose transpose_one) | |
have "det (1\<^sub>m n) \<noteq> 0" using det_one by auto | |
from det_not_0_imp_lin_indpt_rows[OF _ this] | |
have "lin_indpt (set (rows (1\<^sub>m n)))" | |
using one_carrier_mat by blast | |
thus ?thesis | |
by (simp add: *) | |
qed | |
lemma lin_indpt_take_cols_id: | |
shows "lin_indpt (set (cols (take_cols (1\<^sub>m n) inds)))" | |
proof - | |
have subset_h: "set (cols (take_cols (1\<^sub>m n) inds)) \<subseteq> set (cols (1\<^sub>m n)::'a vec list)" | |
using cols_take_cols_subset by blast | |
then show ?thesis using lin_indpt_id subset_li_is_li by auto | |
qed | |
lemma cols_id_unit_vecs: | |
shows "cols (1\<^sub>m d) = unit_vecs d" | |
unfolding unit_vecs_def list_eq_iff_nth_eq | |
by auto | |
lemma distinct_cols_id: | |
shows "distinct (cols (1\<^sub>m d)::'a vec list)" | |
by (simp add: conjugatable_vec_space.cols_id_unit_vecs vec_space.unit_vecs_distinct) | |
lemma distinct_map_nth: | |
assumes "distinct ls" | |
assumes "distinct inds" | |
assumes "\<And>j. j \<in> set inds \<Longrightarrow> j < length ls" | |
shows "distinct (map ((!) ls) inds)" | |
by (simp add: assms(1) assms(2) assms(3) distinct_map inj_on_nth) | |
lemma distinct_take_cols_id: | |
assumes "distinct inds" | |
shows "distinct (cols (take_cols (1\<^sub>m n) inds) :: 'a vec list)" | |
unfolding take_cols_def | |
apply (subst cols_mat_of_cols) | |
apply (auto intro!: distinct_map_nth simp add: distinct_cols_id) | |
using assms distinct_filter by blast | |
lemma rank_take_cols: | |
assumes "distinct inds" | |
shows "rank (take_cols (1\<^sub>m n) inds) = length (filter ((>) n) inds)" | |
apply (subst lin_indpt_full_rank[of _ "length (filter ((>) n) inds)"]) | |
apply (auto simp add: lin_indpt_take_cols_id) | |
apply (metis (full_types) index_one_mat(2) index_one_mat(3) length_map mat_of_cols_carrier(1) take_cols_def) | |
by (simp add: assms distinct_take_cols_id) | |
lemma rank_mul_left_invertible_mat: | |
fixes A::"'a mat" | |
assumes "invertible_mat A" | |
assumes "A \<in> carrier_mat n n" | |
assumes "B \<in> carrier_mat n nc" | |
shows "rank (A * B) = rank B" | |
proof - | |
obtain C where C: "inverts_mat A C" "inverts_mat C A" | |
using assms invertible_mat_def by blast | |
from C have ceq: "C * A = 1\<^sub>m n" | |
by (metis assms(2) carrier_matD(2) index_mult_mat(3) index_one_mat(3) inverts_mat_def) | |
then have *:"B = C*A*B" | |
using assms(3) by auto | |
from rank_mat_mul_left[OF assms(2-3)] | |
have **: "rank (A*B) \<le> rank B" . | |
have 1: "C \<in> carrier_mat n n" using C ceq | |
by (metis assms(2) carrier_matD(1) carrier_matI index_mult_mat(3) index_one_mat(3) inverts_mat_def) | |
have 2: "A * B \<in> carrier_mat n nc" using assms by auto | |
have "rank B = rank (C* A * B)" using * by auto | |
also have "... \<le> rank (A*B)" using rank_mat_mul_left[OF 1 2] | |
using "1" assms(2) assms(3) by auto | |
ultimately show ?thesis using ** by auto | |
qed | |
lemma invertible_take_cols_rank: | |
fixes A::"'a mat" | |
assumes "invertible_mat A" | |
assumes "A \<in> carrier_mat n n" | |
assumes "distinct inds" | |
shows "rank (take_cols A inds) = length (filter ((>) n) inds)" | |
proof - | |
have " A = A * 1\<^sub>m n" using assms(2) by auto | |
then have "take_cols A inds = A * take_cols (1\<^sub>m n) inds" | |
by (metis assms(2) one_carrier_mat take_cols_mat_mul) | |
then have "rank (take_cols A inds) = rank (take_cols (1\<^sub>m n) inds)" | |
by (metis assms(1) assms(2) conjugatable_vec_space.rank_mul_left_invertible_mat one_carrier_mat take_cols_carrier_mat) | |
thus ?thesis | |
by (simp add: assms(3) conjugatable_vec_space.rank_take_cols) | |
qed | |
lemma rank_take_cols_leq: | |
assumes R:"R \<in> carrier_mat n nc" | |
shows "rank (take_cols R ls) \<le> rank R" | |
proof - | |
from take_cols_mat_mul[OF R] | |
have "take_cols R ls = R * take_cols (1\<^sub>m nc) ls" | |
by (metis assms one_carrier_mat right_mult_one_mat) | |
thus ?thesis | |
by (metis assms one_carrier_mat take_cols_carrier_mat vec_space.rank_mat_mul_right) | |
qed | |
lemma rank_take_cols_geq: | |
assumes R:"R \<in> carrier_mat n nc" | |
assumes t:"take_cols R ls \<in> carrier_mat n r" | |
assumes B:"B \<in> carrier_mat r nc" | |
assumes "R = (take_cols R ls) * B" | |
shows "rank (take_cols R ls) \<ge> rank R" | |
by (metis B assms(4) t vec_space.rank_mat_mul_right) | |
lemma rref_drop_pivots: | |
assumes row_ech: "row_echelon_form R" | |
assumes dims: "R \<in> carrier_mat n nc" | |
assumes order: "nc \<ge> n" | |
shows "rank (take_cols R (map snd (pivot_positions R))) = rank R" | |
proof - | |
let ?B = "take_rows R [0..<length (pivot_positions R)]" | |
have equa: "R = take_cols R (map snd (pivot_positions R)) * ?B" using assms rref_right_mul | |
by (metis carrier_matD(1) carrier_matD(2)) | |
have ex_r: "\<exists>r. take_cols R (map snd (pivot_positions R)) \<in> carrier_mat n r \<and> ?B \<in> carrier_mat r nc" | |
proof - | |
have h1: | |
"take_cols R (map snd (pivot_positions R)) \<in> carrier_mat n (length (pivot_positions R))" | |
using assms | |
by (metis in_set_impl_in_set_zip2 length_map rref_pivot_positions take_cols_carrier_mat_strict zip_map_fst_snd) | |
have "\<exists> f. pivot_fun R f nc" using row_ech unfolding row_echelon_form_def using dims | |
by blast | |
then have "length (pivot_positions R) = card {i. i < n \<and> row R i \<noteq> 0\<^sub>v nc}" | |
using pivot_positions[of R n nc] | |
using dims by auto | |
then have "nc \<ge> length (pivot_positions R)" using order | |
using carrier_matD(1) dims dual_order.trans length_pivot_positions_dim_row row_ech by blast | |
then have "dim_col R \<ge> length (pivot_positions R)" using dims by auto | |
then have h2: "?B \<in> carrier_mat (length (pivot_positions R)) nc" unfolding take_rows_def | |
using dims | |
by (smt atLeastLessThan_iff carrier_matD(2) filter_True le_eq_less_or_eq length_map length_pivot_positions_dim_row less_trans map_nth mat_of_cols_carrier(1) row_ech set_upt transpose_carrier_mat transpose_mat_of_rows) | |
show ?thesis using h1 h2 | |
by blast | |
qed | |
(* prove the other two dimensionality assumptions *) | |
have "rank R \<le> rank (take_cols R (map snd (pivot_positions R)))" | |
using dims ex_r rank_take_cols_geq[where R = "R", where B = "?B", where ls = "(map snd (pivot_positions R))", where nc = "nc"] | |
using equa by blast | |
thus ?thesis | |
using assms(2) conjugatable_vec_space.rank_take_cols_leq le_antisym by blast | |
qed | |
lemma gjs_and_take_cols_var: | |
fixes A::"'a mat" | |
assumes A:"A \<in> carrier_mat n nc" | |
assumes order: "nc \<ge> n" | |
shows "(take_cols A (map snd (pivot_positions (gauss_jordan_single A)))) = | |
(take_cols_var A (map snd (pivot_positions (gauss_jordan_single A))))" | |
proof - | |
let ?gjs = "(gauss_jordan_single A)" | |
have "\<forall>x. List.member (map snd (pivot_positions (gauss_jordan_single A))) x \<longrightarrow> x \<le> dim_col A" | |
using rref_pivot_positions gauss_jordan_single(3) carrier_matD(2) gauss_jordan_single(2) in_set_impl_in_set_zip2 in_set_member length_map less_irrefl less_trans not_le_imp_less zip_map_fst_snd | |
by (smt A carrier_matD(2) gauss_jordan_single(2) in_set_impl_in_set_zip2 in_set_member length_map less_irrefl less_trans not_le_imp_less zip_map_fst_snd) | |
then have "(filter (\<lambda>y. y < dim_col A) (map snd (pivot_positions (gauss_jordan_single A)))) = | |
(map snd (pivot_positions (gauss_jordan_single A)))" | |
by (metis (no_types, lifting) A carrier_matD(2) filter_True gauss_jordan_single(2) gauss_jordan_single(3) in_set_impl_in_set_zip2 length_map rref_pivot_positions zip_map_fst_snd) | |
then show ?thesis unfolding take_cols_def take_cols_var_def | |
by simp | |
qed | |
lemma gauss_jordan_single_rank: | |
fixes A::"'a mat" | |
assumes A:"A \<in> carrier_mat n nc" | |
assumes order: "nc \<ge> n" | |
shows "rank (take_cols A (map snd (pivot_positions (gauss_jordan_single A)))) = rank A" | |
proof - | |
let ?R = "gauss_jordan_single A" | |
obtain P where P:"P\<in>Units (ring_mat TYPE('a) n undefined)" and | |
i: "?R = P * A" using gauss_jordan_transform[OF A] | |
using A assms det_mult det_non_zero_imp_unit det_one gauss_jordan_single(4) mult_not_zero one_neq_zero | |
by (smt A assms det_mult det_non_zero_imp_unit det_one gauss_jordan_single(4) mult_not_zero one_neq_zero) | |
have pcarrier: "P \<in> carrier_mat n n" using P unfolding Units_def | |
by (auto simp add: ring_mat_def) | |
have "invertible_mat P" using P unfolding invertible_mat_def Units_def inverts_mat_def | |
apply auto | |
apply (simp add: ring_mat_simps(5)) | |
by (metis index_mult_mat(2) index_one_mat(2) ring_mat_simps(1) ring_mat_simps(3)) | |
then | |
obtain Pi where Pi: "invertible_mat Pi" "Pi * P = 1\<^sub>m n" | |
proof - | |
assume a1: "\<And>Pi. \<lbrakk>invertible_mat Pi; Pi * P = 1\<^sub>m n\<rbrakk> \<Longrightarrow> thesis" | |
have "dim_row P = n" | |
by (metis (no_types) A assms(1) carrier_matD(1) gauss_jordan_single(2) i index_mult_mat(2)) | |
then show ?thesis | |
using a1 by (metis (no_types) \<open>invertible_mat P\<close> index_mult_mat(3) index_one_mat(3) invertible_mat_def inverts_mat_def square_mat.simps) | |
qed | |
then have pi_carrier:"Pi \<in> carrier_mat n n" | |
by (metis carrier_mat_triv index_mult_mat(2) index_one_mat(2) invertible_mat_def square_mat.simps) | |
have R1:"row_echelon_form ?R" | |
using assms(2) gauss_jordan_single(3) by blast | |
have R2: "?R \<in> carrier_mat n nc" | |
using A assms(2) gauss_jordan_single(2) by auto | |
have Rcm: "take_cols ?R (map snd (pivot_positions ?R)) | |
\<in> carrier_mat n (length (map snd (pivot_positions ?R)))" | |
apply (rule take_cols_carrier_mat_strict[OF R2]) | |
using rref_pivot_positions[OF R1 R2] by auto | |
have "Pi * ?R = A" using i Pi | |
by (smt A \<open>invertible_mat P\<close> assoc_mult_mat carrier_mat_triv index_mult_mat(2) index_mult_mat(3) index_one_mat(3) invertible_mat_def left_mult_one_mat square_mat.simps) | |
then have "rank (take_cols A (map snd (pivot_positions ?R))) = rank (take_cols (Pi * ?R) (map snd (pivot_positions ?R)))" | |
by auto | |
also have "... = rank ( Pi * take_cols ?R (map snd (pivot_positions ?R)))" | |
by (metis A gauss_jordan_single(2) pi_carrier take_cols_mat_mul) | |
also have "... = rank (take_cols ?R (map snd (pivot_positions ?R)))" | |
by (intro rank_mul_left_invertible_mat[OF Pi(1) pi_carrier Rcm]) | |
also have "... = rank ?R" | |
using assms(2) conjugatable_vec_space.rref_drop_pivots gauss_jordan_single(3) | |
using R1 R2 by blast | |
ultimately show ?thesis | |
using A \<open>P \<in> carrier_mat n n\<close> \<open>invertible_mat P\<close> conjugatable_vec_space.rank_mul_left_invertible_mat i | |
by auto | |
qed | |
lemma lin_indpt_subset_cols: | |
fixes A:: "'a mat" | |
fixes B:: "'a vec set" | |
assumes "A \<in> carrier_mat n n" | |
assumes inv: "invertible_mat A" | |
assumes "B \<subseteq> set (cols A)" | |
shows "lin_indpt B" | |
proof - | |
have "det A \<noteq> 0" | |
using assms(1) inv invertible_det by blast | |
then have "lin_indpt (set (rows A\<^sup>T))" | |
using assms(1) idom_vec.lin_dep_cols_imp_det_0 by auto | |
thus ?thesis using subset_li_is_li assms(3) | |
by auto | |
qed | |
lemma rank_invertible_subset_cols: | |
fixes A:: "'a mat" | |
fixes B:: "'a vec list" | |
assumes inv: "invertible_mat A" | |
assumes A_square: "A \<in> carrier_mat n n" | |
assumes set_sub: "set (B) \<subseteq> set (cols A)" | |
assumes dist_B: "distinct B" | |
shows "rank (mat_of_cols n B) = length B" | |
proof - | |
let ?B_mat = "(mat_of_cols n B)" | |
have h1: "lin_indpt (set(B))" | |
using assms lin_indpt_subset_cols[of A] by auto | |
have "set B \<subseteq> carrier_vec n" | |
using set_sub A_square cols_dim[of A] by auto | |
then have cols_B: "cols (mat_of_cols n B) = B" using cols_mat_of_cols by auto | |
then have "maximal (set B) (\<lambda>T. T \<subseteq> set (B) \<and> lin_indpt T)" using h1 | |
by (simp add: maximal_def subset_antisym) | |
then have h2: "maximal (set B) (\<lambda>T. T \<subseteq> set (cols (mat_of_cols n B)) \<and> lin_indpt T)" | |
using cols_B by auto | |
have h3: "rank (mat_of_cols n B) = card (set B)" | |
using h1 h2 rank_card_indpt[of ?B_mat] | |
using mat_of_cols_carrier(1) by blast | |
then show ?thesis using assms distinct_card by auto | |
qed | |
end | |
end |