Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /BTree /BTree_Imp.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.13 kB
theory BTree_Imp
imports
BTree
Partially_Filled_Array
Basic_Assn
begin
section "Imperative B-tree Definition"
text "The heap data type definition. Anything stored on the heap always contains data,
leafs are represented as None."
datatype 'a btnode =
Btnode "('a btnode ref option*'a) pfarray" "'a btnode ref option"
text \<open>Selector Functions\<close>
primrec kvs :: "'a::heap btnode \<Rightarrow> ('a btnode ref option*'a) pfarray" where
[sep_dflt_simps]: "kvs (Btnode ts _) = ts"
primrec last :: "'a::heap btnode \<Rightarrow> 'a btnode ref option" where
[sep_dflt_simps]: "last (Btnode _ t) = t"
term arrays_update
text \<open>Encoding to natural numbers, as required by Imperative/HOL\<close>
(* Note: should also work using the package "Deriving" *)
fun
btnode_encode :: "'a::heap btnode \<Rightarrow> nat"
where
"btnode_encode (Btnode ts t) = to_nat (ts, t)"
instance btnode :: (heap) heap
apply (rule heap_class.intro)
apply (rule countable_classI [of "btnode_encode"])
apply (metis btnode_encode.elims from_nat_to_nat fst_conv snd_conv)
..
text "The refinement relationship to abstract B-trees."
fun btree_assn :: "nat \<Rightarrow> 'a::heap btree \<Rightarrow> 'a btnode ref option \<Rightarrow> assn" where
"btree_assn k Leaf None = emp" |
"btree_assn k (Node ts t) (Some a) =
(\<exists>\<^sub>A tsi ti tsi'.
a \<mapsto>\<^sub>r Btnode tsi ti
* btree_assn k t ti
* is_pfa (2*k) tsi' tsi
* list_assn ((btree_assn k) \<times>\<^sub>a id_assn) ts tsi'
)" |
"btree_assn _ _ _ = false"
text "With the current definition of deletion, we would
also need to directly reason on nodes and not only on references
to them."
fun btnode_assn :: "nat \<Rightarrow> 'a::heap btree \<Rightarrow> 'a btnode \<Rightarrow> assn" where
"btnode_assn k (Node ts t) (Btnode tsi ti) =
(\<exists>\<^sub>A tsi'.
btree_assn k t ti
* is_pfa (2*k) tsi' tsi
* list_assn ((btree_assn k) \<times>\<^sub>a id_assn) ts tsi'
)" |
"btnode_assn _ _ _ = false"
abbreviation "blist_assn k \<equiv> list_assn ((btree_assn k) \<times>\<^sub>a id_assn)"
end