Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(*<*) | |
theory Infinite_Proof_Soundness | |
imports Finite_Proof_Soundness "HOL-Library.BNF_Corec" | |
begin | |
(* Reference: A Generic Cyclic Theorem Prover | |
by James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen | |
*) | |
(*>*) | |
section \<open>Soundness of Infinite Proof Trees\<close> | |
context | |
begin | |
private definition "num P xs \<equiv> LEAST n. list_all (Not o P) (stake n xs) \<and> P (xs!!n)" | |
private lemma num: | |
assumes ev: "ev (\<lambda>xs. P (shd xs)) xs" | |
defines "n \<equiv> num P xs" | |
shows | |
"(list_all (Not o P) (stake n xs) \<and> P (xs!!n)) \<and> | |
(\<forall>m. list_all (Not o P) (stake m xs) \<and> P (xs!!m) \<longrightarrow> n \<le> m)" | |
unfolding n_def num_def | |
proof (intro conjI[OF LeastI_ex] allI impI Least_le) | |
from ev show "\<exists>n. list_all (Not o P) (stake n xs) \<and> P (xs !! n)" | |
by (induct rule: ev_induct_strong) (auto intro: exI[of _ 0] exI[of _ "Suc _"]) | |
qed (simp_all add: o_def) | |
private lemma num_stl[simp]: | |
assumes "ev (\<lambda>xs. P (shd xs)) xs" and "\<not> P (shd xs)" | |
shows "num P xs = Suc (num P (stl xs))" | |
unfolding num_def by (rule trans[OF Least_Suc[of _ "num P xs"]]) | |
(auto simp: num[OF assms(1)] assms(2)) | |
corecursive decr0 where | |
"decr0 Ord minSoFar js = | |
(if \<not> (ev (\<lambda>js. (shd js, minSoFar) \<in> Ord \<and> shd js \<noteq> minSoFar)) js | |
then undefined | |
else if ((shd js, minSoFar) \<in> Ord \<and> shd js \<noteq> minSoFar) | |
then shd js ## decr0 Ord (shd js) js | |
else decr0 Ord minSoFar (stl js))" | |
by (relation "measure (\<lambda>(Ord,m,js). num (\<lambda>j. (j, m) \<in> Ord \<and> j \<noteq> m) js)") auto | |
end | |
lemmas well_order_on_defs = | |
well_order_on_def linear_order_on_def partial_order_on_def | |
preorder_on_def trans_def antisym_def refl_on_def | |
lemma sdrop_length_shift[simp]: | |
"sdrop (length xs) (xs @- s) = s" | |
by (simp add: sdrop_shift) | |
lemma ev_iff_shift: | |
"ev \<phi> xs \<longleftrightarrow> (\<exists>xl xs2. xs = xl @- xs2 \<and> \<phi> xs2)" | |
by (meson ev.base ev_imp_shift ev_shift) | |
locale Infinite_Soundness = RuleSystem_Defs eff rules for | |
eff :: "'rule \<Rightarrow> 'sequent \<Rightarrow> 'sequent fset \<Rightarrow> bool" | |
and rules :: "'rule stream" | |
+ | |
fixes "structure" :: "'structure set" | |
and sat :: "'structure \<Rightarrow> 'sequent \<Rightarrow> bool" | |
and \<delta> :: "'sequent \<Rightarrow> 'rule \<Rightarrow> 'sequent \<Rightarrow> ('marker \<times> bool \<times> 'marker) set" | |
and Ord :: "'ord rel" | |
and \<sigma> :: "'marker \<times> 'structure \<Rightarrow> 'ord" | |
assumes | |
Ord: "well_order Ord" | |
and | |
descent: (* The original paper has an error in stating this: quantifies existentially | |
instead of universally over r *) | |
"\<And>r s sl S. | |
\<lbrakk>r \<in> R; eff r s sl; S \<in> structure; \<not> sat S s\<rbrakk> | |
\<Longrightarrow> | |
\<exists>s' S'. | |
s' |\<in>| sl \<and> S' \<in> structure \<and> \<not> sat S' s' \<and> | |
(\<forall>v v' b. | |
(v,b,v') \<in> \<delta> s r s' \<longrightarrow> | |
(\<sigma>(v',S'), \<sigma>(v,S)) \<in> Ord \<and> (b \<longrightarrow> \<sigma>(v',S') \<noteq> \<sigma>(v,S)))" | |
(* The descent property subsumes local_soundness: *) | |
sublocale Infinite_Soundness < Soundness where eff = eff and rules = rules | |
and "structure" = "structure" and sat = sat | |
by standard (blast dest: descent) | |
context Infinite_Soundness | |
begin | |
(* The notion of a trace of markers following a path: to make the original paper definition | |
into a rigorous one, we include the trace of "progressing bits" as well: *) | |
coinductive follow :: "bool stream \<Rightarrow> 'marker stream \<Rightarrow> ('sequent,'rule)step stream \<Rightarrow> bool" where | |
"\<lbrakk>M' = shd Ms; s' = fst (shd steps); (M,b,M') \<in> \<delta> s r s'; follow bs Ms steps\<rbrakk> | |
\<Longrightarrow> | |
follow (SCons b bs) (SCons M Ms) (SCons (s,r) steps)" | |
(* Now infinite progress simply means "always eventually the bit is True": *) | |
definition infDecr :: "bool stream \<Rightarrow> bool" where | |
"infDecr \<equiv> alw (ev (\<lambda>bs. shd bs))" | |
(* Good trees: *) | |
definition good :: "('sequent,'rule)dtree \<Rightarrow> bool" where | |
"good t \<equiv> \<forall>steps. | |
ipath t steps | |
\<longrightarrow> | |
ev (\<lambda>steps'. \<exists>bs Ms. follow bs Ms steps' \<and> infDecr bs) steps" | |
(* Note the mixture of temporal connectives and standard HOL quantifiers: | |
an advantage of the shallow embedding of LTL *) | |
(* Trivially, finite trees are particular cases of good trees, since they | |
have no infinite paths: *) | |
lemma tfinite_good: "tfinite t \<Longrightarrow> good t" | |
using ftree_no_ipath unfolding good_def by auto | |
context | |
fixes inv :: "'sequent \<times> 'a \<Rightarrow> bool" | |
and pred :: "'sequent \<times> 'a \<Rightarrow> 'rule \<Rightarrow> 'sequent \<times> 'a \<Rightarrow> bool" | |
begin | |
primcorec konigDtree :: | |
"('sequent,'rule) dtree \<Rightarrow> 'a \<Rightarrow> (('sequent,'rule) step \<times> 'a) stream" where | |
"shd (konigDtree t a) = (root t, a)" | |
|"stl (konigDtree t a) = | |
(let s = fst (root t); r = snd (root t); | |
(s',a') = (SOME (s',a'). s' |\<in>| fimage (fst o root) (cont t) \<and> pred (s,a) r (s',a') \<and> inv (s',a')); | |
t' = (SOME t'. t' |\<in>| cont t \<and> s' = fst (root t')) | |
in konigDtree t' a' | |
)" | |
lemma stl_konigDtree: | |
fixes t defines "s \<equiv> fst (root t)" and "r \<equiv> snd (root t)" | |
assumes s': "s' |\<in>| fimage (fst o root) (cont t)" and "pred (s,a) r (s',a'')" and "inv (s',a'')" | |
shows "\<exists>t' a'. t' |\<in>| cont t \<and> pred (s,a) r (fst (root t'),a') \<and> inv (fst (root t'),a') | |
\<and> stl (konigDtree t a) = konigDtree t' a'" | |
proof- | |
define P where "P \<equiv> \<lambda>(s',a'). s' |\<in>| fimage (fst o root) (cont t) \<and> pred (s,a) r (s',a') \<and> inv (s',a')" | |
define s'a' where "s'a' \<equiv> SOME (s',a'). P (s',a')" let ?s' = "fst s'a'" let ?a' = "snd s'a'" | |
define t' where "t' \<equiv> SOME (t'::('sequent,'rule)dtree). t' |\<in>| cont t \<and> ?s' = fst (root t')" | |
have "P (s',a'')" using assms unfolding P_def by auto | |
hence P: "P (?s',?a')" using someI[of P] unfolding s'a'_def by auto | |
hence "\<exists>t'. t' |\<in>| cont t \<and> ?s' = fst (root t')" unfolding P_def by auto | |
hence t': "t' |\<in>| cont t" and s': "?s' = fst (root t')" | |
using someI_ex[of "\<lambda>t'. t' |\<in>| cont t \<and> ?s' = fst (root t')"] unfolding t'_def by auto | |
show ?thesis using t' P s' assms P_def s'a'_def t'_def by (intro exI[of _ t'] exI[of _ ?a']) auto | |
qed | |
declare konigDtree.simps(2)[simp del] | |
lemma konigDtree: | |
assumes 1: "\<And>r s sl a. | |
\<lbrakk>r \<in> R; eff r s sl; inv (s,a)\<rbrakk> \<Longrightarrow> | |
\<exists>s' a'. s' |\<in>| sl \<and> inv (s',a') \<and> pred (s,a) r (s',a')" | |
and 2: "wf t" "inv (fst (root t), a)" | |
shows | |
"alw (\<lambda>stepas. | |
let ((s,r),a) = shd stepas; ((s',_),a') = shd (stl stepas) in | |
inv (s,a) \<and> pred (s,a) r (s',a')) | |
(konigDtree t a)" | |
using assms proof (coinduction arbitrary: t a) | |
case (alw t a) | |
then obtain s' a' where "s' |\<in>| (fst \<circ> root) |`| cont t" "inv (s', a')" | |
"pred (fst (root t), a) (snd (root t)) (s', a')" | |
by (auto elim!: wf.cases dest!: spec[of _ "snd (root t)"] spec[of _ "fst (root t)"] | |
spec[of _ "(fst \<circ> root) |`| cont t"] spec[of _ a], fastforce) | |
with alw stl_konigDtree[of s' t a a'] show ?case | |
by (auto split: prod.splits elim!: wf.cases) fastforce | |
qed | |
lemma konigDtree_ipath: | |
assumes "\<And>r s sl a. | |
\<lbrakk>r \<in> R; eff r s sl; inv (s,a)\<rbrakk> \<Longrightarrow> | |
\<exists>s' a'. s' |\<in>| sl \<and> inv (s',a') \<and> pred (s,a) r (s',a')" | |
and "wf t" and "inv (fst (root t), a)" | |
shows "ipath t (smap fst (konigDtree t a))" | |
using assms proof (coinduction arbitrary: t a) | |
case (ipath t a) | |
then obtain s' a' where "s' |\<in>| (fst \<circ> root) |`| cont t" "inv (s', a')" | |
"pred (fst (root t), a) (snd (root t)) (s', a')" | |
by (auto elim!: wf.cases dest!: spec[of _ "snd (root t)"] spec[of _ "fst (root t)"] | |
spec[of _ "(fst \<circ> root) |`| cont t"] spec[of _ a], fastforce) | |
with ipath stl_konigDtree[of s' t a a'] show ?case | |
by (auto split: prod.splits elim!: wf.cases) force | |
qed | |
end (* context *) | |
lemma follow_stl_smap_fst[simp]: | |
"follow bs Ms (smap fst stepSs) \<Longrightarrow> | |
follow (stl bs) (stl Ms) (smap fst (stl stepSs))" | |
by (erule follow.cases) (auto simp del: stream.map_sel simp add: stream.map_sel[symmetric]) | |
lemma epath_stl_smap_fst[simp]: | |
"epath (smap fst stepSs) \<Longrightarrow> | |
epath (smap fst (stl stepSs))" | |
by (erule epath.cases) (auto simp del: stream.map_sel simp add: stream.map_sel[symmetric]) | |
lemma infDecr_tl[simp]: "infDecr bs \<Longrightarrow> infDecr (stl bs)" | |
unfolding infDecr_def by auto | |
(* Proof of the main theorem: *) | |
fun descent where "descent (s,S) r (s',S') = | |
(\<forall>v v' b. | |
(v,b,v') \<in> \<delta> s r s' \<longrightarrow> | |
(\<sigma>(v',S'), \<sigma>(v,S)) \<in> Ord \<and> (b \<longrightarrow> \<sigma>(v',S') \<noteq> \<sigma>(v,S)))" | |
lemma descentE[elim]: | |
assumes "descent (s,S) r (s',S')" and "(v,b,v') \<in> \<delta> s r s'" | |
shows "(\<sigma>(v',S'), \<sigma>(v,S)) \<in> Ord \<and> (b \<longrightarrow> \<sigma>(v',S') \<noteq> \<sigma>(v,S))" | |
using assms by auto | |
definition "konigDown \<equiv> konigDtree (\<lambda>(s,S). S \<in> structure \<and> \<not> sat S s) descent" | |
lemma konigDown: | |
assumes "wf t" and "S \<in> structure" and "\<not> sat S (fst (root t))" | |
shows | |
"alw (\<lambda>stepSs. let ((s,r),S) = shd stepSs; ((s',_),S') = shd (stl stepSs) in | |
S \<in> structure \<and> \<not> sat S s \<and> descent (s,S) r (s',S')) | |
(konigDown t S)" | |
using konigDtree[of "\<lambda>(s,S). S \<in> structure \<and> \<not> sat S s" descent, unfolded konigDown_def[symmetric]] | |
using assms descent by auto | |
lemma konigDown_ipath: | |
assumes "wf t" and "S \<in> structure" and "\<not> sat S (fst (root t))" | |
shows | |
"ipath t (smap fst (konigDown t S))" | |
using konigDtree_ipath[of "\<lambda>(s,S). S \<in> structure \<and> \<not> sat S s" descent, unfolded konigDown_def[symmetric]] | |
using assms descent by auto | |
context | |
fixes t S | |
assumes w: "wf t" and t: "good t" and S: "S \<in> structure" "\<not> sat S (fst (root t))" | |
begin | |
lemma alw_ev_Ord: | |
obtains ks where "alw (\<lambda>ks. (shd (stl ks), shd ks) \<in> Ord) ks" | |
and "alw (ev (\<lambda>ks. shd (stl ks) \<noteq> shd ks)) ks" | |
proof- | |
define P where "P \<equiv> \<lambda>stepSs. let ((s,r),S) = shd stepSs; ((s',_),S') = shd (stl stepSs) in | |
S \<in> structure \<and> \<not> sat S s \<and> descent (s,S) r (s',S')" | |
have "alw P (konigDown t S)" using konigDown[OF w S] unfolding P_def by auto | |
obtain srs steps bs Ms where 0: "smap fst (konigDown t S) = srs @- steps" and | |
f: "follow bs Ms steps" and i: "infDecr bs" | |
using konigDown_ipath[OF w S] t unfolding good_def ev_iff_shift by auto | |
define stepSs where "stepSs = sdrop (length srs) (konigDown t S)" | |
have steps: "steps = smap fst stepSs" unfolding stepSs_def sdrop_smap[symmetric] 0 by simp | |
have e: "epath steps" | |
using wf_ipath_epath[OF w konigDown_ipath[OF w S]] 0 epath_shift by simp | |
have "alw P (konigDown t S)" using konigDown[OF w S] unfolding P_def by auto | |
hence P: "alw P stepSs" using alw_sdrop unfolding stepSs_def by auto | |
let ?ks = "smap \<sigma> (szip Ms (smap snd stepSs))" | |
show ?thesis proof(rule that[of ?ks]) | |
show "alw (\<lambda>ks. (shd (stl ks), shd ks) \<in> Ord) ?ks" | |
using e f P unfolding steps proof(coinduction arbitrary: bs Ms stepSs rule: alw_coinduct) | |
case (alw bs Ms stepSs) | |
let ?steps = "smap fst stepSs" let ?Ss = "smap snd stepSs" | |
let ?MSs = "szip Ms (smap snd stepSs)" | |
let ?s = "fst (shd ?steps)" let ?s' = "fst (shd (stl ?steps))" | |
let ?r = "snd (shd ?steps)" | |
let ?S = "snd (shd stepSs)" let ?S' = "snd (shd (stl stepSs))" | |
let ?M = "shd Ms" let ?M' = "shd (stl Ms)" let ?b = "shd bs" | |
have 1: "(?M, ?b, ?M') \<in> \<delta> ?s ?r ?s'" | |
using \<open>follow bs Ms (smap fst stepSs)\<close> by (cases rule: follow.cases) auto | |
have 2: "descent (?s,?S) ?r (?s',?S')" | |
using \<open>alw P stepSs\<close> unfolding P_def by (cases rule: alw.cases) auto | |
have "(\<sigma>(?M',?S'), \<sigma>(?M,?S)) \<in> Ord" using descentE[OF 2 1] by simp | |
thus ?case by simp | |
next | |
case (stl bs Ms stepSs) | |
thus ?case | |
by (intro exI[of _ "stl bs"] exI[of _ "stl Ms"] exI[of _ "stl stepSs"]) | |
(auto elim: epath.cases) | |
qed | |
next | |
show "alw (ev (\<lambda>ks. shd (stl ks) \<noteq> shd ks)) ?ks" | |
using e f P i unfolding steps proof(coinduction arbitrary: bs Ms stepSs rule: alw_coinduct) | |
case (alw bs Ms stepSs) | |
let ?steps = "smap fst stepSs" let ?Ss = "smap snd stepSs" | |
let ?MSs = "szip Ms (smap snd stepSs)" | |
let ?s = "fst (shd ?steps)" let ?s' = "fst (shd (stl ?steps))" | |
let ?r = "snd (shd ?steps)" | |
let ?S = "snd (shd stepSs)" let ?S' = "snd (shd (stl stepSs))" | |
let ?M = "shd Ms" let ?M' = "shd (stl Ms)" let ?b = "shd bs" | |
have 1: "(?M, ?b, ?M') \<in> \<delta> ?s ?r ?s'" | |
using \<open>follow bs Ms (smap fst stepSs)\<close> by (cases rule: follow.cases) auto | |
have 2: "descent (?s,?S) ?r (?s',?S')" | |
using \<open>alw P stepSs\<close> unfolding P_def by (cases rule: alw.cases) auto | |
have "(\<sigma>(?M',?S'), \<sigma>(?M,?S)) \<in> Ord" using descentE[OF 2 1] by simp | |
have "ev shd bs" using \<open>infDecr bs\<close> unfolding infDecr_def by auto | |
thus ?case using \<open>epath ?steps\<close> \<open>follow bs Ms ?steps\<close> \<open>alw P stepSs\<close> | |
proof (induction arbitrary: Ms stepSs) | |
case (base bs Ms stepSs) | |
let ?steps = "smap fst stepSs" let ?Ss = "smap snd stepSs" | |
let ?MSs = "szip Ms (smap snd stepSs)" | |
let ?s = "fst (shd ?steps)" let ?s' = "fst (shd (stl ?steps))" | |
let ?r = "snd (shd ?steps)" | |
let ?S = "snd (shd stepSs)" let ?S' = "snd (shd (stl stepSs))" | |
let ?M = "shd Ms" let ?M' = "shd (stl Ms)" let ?b = "shd bs" | |
have 1: "(?M, ?b, ?M') \<in> \<delta> ?s ?r ?s'" | |
using \<open>follow bs Ms (smap fst stepSs)\<close> by (cases rule: follow.cases) auto | |
have 2: "descent (?s,?S) ?r (?s',?S')" | |
using \<open>alw P stepSs\<close> unfolding P_def by (cases rule: alw.cases) auto | |
have "\<sigma>(?M',?S') \<noteq> \<sigma>(?M,?S)" using descentE[OF 2 1] \<open>shd bs\<close> by simp | |
thus ?case by auto | |
next | |
case (step bs Ms stepSs) | |
have "ev (\<lambda>ks. shd (stl ks) \<noteq> shd ks) | |
(smap \<sigma> | |
(szip (stl Ms) (smap snd (stl stepSs))))" | |
using step(3-5) step(2)[of "stl stepSs" "stl Ms"] by auto | |
thus ?case by auto | |
qed | |
next | |
case (stl bs Ms stepSs) | |
thus ?case | |
by (intro exI[of _ "stl bs"] exI[of _ "stl Ms"] exI[of _ "stl stepSs"]) | |
(auto elim: epath.cases) | |
qed | |
qed | |
qed | |
definition | |
"ks \<equiv> SOME ks. | |
alw (\<lambda>ks. (shd (stl ks), shd ks) \<in> Ord) ks \<and> | |
alw (ev (\<lambda>ks. shd (stl ks) \<noteq> shd ks)) ks" | |
lemma alw_ks: "alw (\<lambda>ks. (shd (stl ks), shd ks) \<in> Ord) ks" | |
and alw_ev_ks: "alw (ev (\<lambda>ks. shd (stl ks) \<noteq> shd ks)) ks" | |
unfolding ks_def using alw_ev_Ord someI_ex[of "\<lambda>ks. | |
alw (\<lambda>ks. (shd (stl ks), shd ks) \<in> Ord) ks \<and> | |
alw (ev (\<lambda>ks. shd (stl ks) \<noteq> shd ks)) ks"] | |
by auto | |
abbreviation decr where "decr \<equiv> decr0 Ord" | |
lemmas decr_simps = decr0.code[of Ord] | |
context | |
fixes js | |
assumes a: "alw (\<lambda>js. (shd (stl js), shd js) \<in> Ord) js" | |
and ae: "alw (ev (\<lambda>js. shd (stl js) \<noteq> shd js)) js" | |
begin | |
lemma decr_ev: | |
assumes m: "(shd js, m) \<in> Ord" | |
shows "ev (\<lambda>js. (shd js, m) \<in> Ord \<and> shd js \<noteq> m) js" | |
(is "ev (\<lambda>js. ?\<phi> m js) js") | |
proof- | |
have "ev (\<lambda>js. shd (stl js) \<noteq> shd js) js" using ae by auto | |
thus ?thesis | |
using a m proof induction | |
case (base ls) | |
hence "ev (?\<phi> (shd ls)) ls" by auto | |
moreover have "\<And>js. ?\<phi> (shd ls) js \<Longrightarrow> ?\<phi> m js" | |
using \<open>(shd ls, m) \<in> Ord\<close> Ord unfolding well_order_on_defs by blast | |
ultimately show ?case using ev_mono[of "?\<phi> (shd ls)" _ "?\<phi> m"] by auto | |
qed auto | |
qed | |
lemma decr_simps_diff[simp]: | |
assumes m: "(shd js, m) \<in> Ord" | |
and "shd js \<noteq> m" | |
shows "decr m js = shd js ## decr (shd js) js" | |
using decr_ev[OF m] assms by (subst decr_simps) simp | |
lemma decr_simps_eq[simp]: | |
"decr (shd js) js = decr (shd js) (stl js)" | |
proof- | |
have m: "(shd js, shd js) \<in> Ord" using Ord | |
unfolding well_order_on_def linear_order_on_def partial_order_on_def | |
preorder_on_def refl_on_def by auto | |
show ?thesis using decr_ev[OF m] by (subst decr_simps) simp | |
qed | |
end (* context *) | |
lemma stl_decr: | |
assumes a: "alw (\<lambda>js. (shd (stl js), shd js) \<in> Ord) js" | |
and ae: "alw (ev (\<lambda>js. shd (stl js) \<noteq> shd js)) js" | |
and m: "(shd js, m) \<in> Ord" | |
shows | |
"\<exists>js1 js2. js = js1 @- js2 \<and> set js1 \<subseteq> {m} \<and> | |
(shd js2, m) \<in> Ord \<and> shd js2 \<noteq> m \<and> | |
shd (decr m js) = shd js2 \<and> stl (decr m js) = decr (shd js2) js2" | |
(is "\<exists>js1 js2. ?\<phi> js js1 js2") | |
using decr_ev[OF assms] m a ae proof (induction rule: ev_induct_strong) | |
case (base js) | |
thus ?case by (intro exI[of _ "[]"] exI[of _ js]) auto | |
next | |
case (step js) | |
then obtain js1 js2 where 1: "?\<phi> (stl js) js1 js2" and [simp]: "shd js = m" by auto | |
thus ?case | |
by (intro exI[of _ "shd js # js1"] exI[of _ js2], | |
simp, metis (lifting) decr_simps_eq step(2,4,5,6) stream.collapse) | |
qed | |
corollary stl_decr_shd: | |
assumes a: "alw (\<lambda>js. (shd (stl js), shd js) \<in> Ord) js" and | |
ae: "alw (ev (\<lambda>js. shd (stl js) \<noteq> shd js)) js" | |
shows | |
"\<exists>js1 js2. js = js1 @- js2 \<and> set js1 \<subseteq> {shd js} \<and> | |
(shd js2, shd js) \<in> Ord \<and> shd js2 \<noteq> shd js \<and> | |
shd (decr (shd js) js) = shd js2 \<and> stl (decr (shd js) js) = decr (shd js2) js2" | |
using Ord unfolding well_order_on_defs by (intro stl_decr[OF assms]) blast | |
lemma decr: | |
assumes a: "alw (\<lambda>js. (shd (stl js), shd js) \<in> Ord) js" (is "?a js") | |
and ae: "alw (ev (\<lambda>js. shd (stl js) \<noteq> shd js)) js" (is "?ae js") | |
shows | |
"alw (\<lambda>js. (shd (stl js), shd js) \<in> Ord \<and> shd (stl js) \<noteq> shd js) (decr (shd js) js)" | |
(is "alw ?\<phi> _") | |
proof- | |
let ?\<xi> = "\<lambda>ls js. ls = decr (shd js) js \<and> ?a js \<and> ?ae js" | |
{fix ls assume "\<exists>js. ?\<xi> ls js" | |
hence "alw ?\<phi> ls" proof(elim alw_coinduct) | |
fix ls assume "\<exists>js. ?\<xi> ls js" | |
then obtain js where 1: "?\<xi> ls js" by auto | |
then obtain js1 js2 where js: "js = js1 @- js2 \<and> set js1 \<subseteq> {shd js} \<and> | |
(shd js2, shd js) \<in> Ord \<and> shd js2 \<noteq> shd js \<and> | |
shd ls = shd js2 \<and> stl ls = decr (shd js2) js2" | |
using stl_decr_shd by blast | |
then obtain js3 js4 where js2: "js2 = js3 @- js4 \<and> set js3 \<subseteq> {shd js2} \<and> | |
(shd js4, shd js2) \<in> Ord \<and> shd js4 \<noteq> shd js2 \<and> | |
shd (decr (shd js2) js2) = shd js4 \<and> stl ((decr (shd js2) js2)) = decr (shd js4) js4" | |
using stl_decr_shd[of js2] a ae using 1 alw_shift by blast | |
show "?\<phi> ls" using 1 js js2 by metis | |
qed (metis (no_types, lifting) alw_shift stl_decr_shd) | |
} | |
thus ?thesis using assms by blast | |
qed | |
lemma alw_snth: | |
assumes "alw (\<lambda>xs. P (shd (stl xs)) (shd xs)) xs" | |
shows "P (xs!!(Suc n)) (xs!! n)" | |
using assms | |
by (induction n, auto, metis (mono_tags) alw.cases alw_iff_sdrop sdrop_simps(1) sdrop_stl) | |
lemma F: False | |
proof- | |
define ls where "ls = decr (shd ks) ks" | |
have 0: "alw (\<lambda>js. (shd (stl js), shd js) \<in> Ord \<and> shd (stl js) \<noteq> shd js) ls" | |
using decr[OF alw_ks alw_ev_ks] unfolding ls_def . | |
define Q where "Q = range (snth ls)" let ?wf = "Wellfounded.wf" | |
have Q: "Q \<noteq> {}" unfolding Q_def by auto | |
have 1: "?wf (Ord - Id)" using Ord unfolding well_order_on_def by auto | |
obtain q where q: "q \<in> Q" and 2: "\<forall>q'. (q',q) \<in> Ord - Id \<longrightarrow> q' \<notin> Q" | |
using wfE_min[OF 1] Q by auto | |
obtain n where "ls!!n = q" using q unfolding Q_def by auto | |
hence "(ls!!(Suc n),q) \<in> Ord - Id" using alw_snth[OF 0] by auto | |
thus False using 2 Q_def by blast | |
qed | |
end (* context *) | |
(* Main theorem: *) | |
theorem infinite_soundness: | |
assumes "wf t" and "good t" and "S \<in> structure" | |
shows "sat S (fst (root t))" | |
using F[OF assms] by auto | |
end (* context Infinite_Soundness *) | |
section \<open>Soundness of Cyclic Proof Trees\<close> | |
(* Cyclic trees *) | |
datatype (discs_sels) ('sequent, 'rule, 'link) ctree = | |
Link 'link | | |
cNode "('sequent,'rule) step" "('sequent, 'rule, 'link) ctree fset" | |
corecursive treeOf where | |
"treeOf pointsTo ct = | |
(if \<exists>l l'. pointsTo l = Link l' | |
\<comment> \<open>makes sense only if backward links point to normal nodes, not to backwards links:\<close> | |
then undefined | |
else (case ct of | |
Link l \<Rightarrow> treeOf pointsTo (pointsTo l) | |
|cNode step cts \<Rightarrow> Node step (fimage (treeOf pointsTo) cts) | |
) | |
)" | |
by (relation "measure (\<lambda>(p,t). case t of Link l' => Suc 0 | _ => 0)") (auto split: ctree.splits) | |
declare treeOf.code[simp] | |
context Infinite_Soundness | |
begin | |
context | |
fixes pointsTo :: "'link \<Rightarrow> ('sequent, 'rule, 'link)ctree" | |
assumes pointsTo: "\<forall>l l'. pointsTo l \<noteq> Link l'" | |
begin | |
function seqOf where | |
"seqOf (Link l) = seqOf (pointsTo l)" | |
| | |
"seqOf (cNode (s,r) _) = s" | |
by pat_completeness auto | |
termination | |
by (relation "measure (\<lambda>t. case t of Link l' => Suc 0 | _ => 0)") | |
(auto split: ctree.splits simp: pointsTo) | |
(* Note: Here, "inductive" instead of "coinductive" would not do! *) | |
coinductive cwf where | |
Node[intro!]: "cwf (pointsTo l) \<Longrightarrow> cwf (Link l)" | |
| | |
cNode[intro]: | |
"\<lbrakk>r \<in> R; eff r s (fimage seqOf cts); \<And>ct'. ct' |\<in>| cts \<Longrightarrow> cwf ct'\<rbrakk> | |
\<Longrightarrow> | |
cwf (cNode (s,r) cts)" | |
definition "cgood ct \<equiv> good (treeOf pointsTo ct)" | |
lemma cwf_Link: "cwf (Link l) \<longleftrightarrow> cwf (pointsTo l)" | |
by (auto elim: cwf.cases) | |
lemma cwf_cNode_seqOf: | |
"cwf (cNode (s, r) cts) \<Longrightarrow> eff r s (fimage seqOf cts)" | |
by (auto elim: cwf.cases) | |
lemma treeOf_seqOf[simp]: | |
"fst \<circ> root \<circ> treeOf pointsTo = seqOf" | |
proof(rule ext, unfold o_def) | |
fix ct show "fst (root (treeOf pointsTo ct)) = seqOf ct" | |
by induct (auto split: ctree.splits simp: pointsTo) | |
qed | |
lemma wf_treeOf: | |
assumes "cwf ct" | |
shows "wf (treeOf pointsTo ct)" | |
proof- | |
{fix t let ?\<phi> = "\<lambda>ct t. cwf ct \<and> t = treeOf pointsTo ct" | |
assume "\<exists>ct. ?\<phi> ct t" hence "wf t" | |
proof(elim wf.coinduct, safe) | |
fix ct let ?t = "treeOf pointsTo ct" | |
assume ct: "cwf ct" | |
show " | |
\<exists>t. treeOf pointsTo ct = t \<and> | |
snd (root t) \<in> R \<and> | |
effStep (root t) (fimage (fst \<circ> root) (cont t)) \<and> | |
(\<forall>t'. t' |\<in>| cont t \<longrightarrow> (\<exists>ct'. ?\<phi> ct' t') \<or> wf t')" | |
proof(rule exI[of _ ?t], safe) | |
show "snd (root ?t) \<in> R" using pointsTo ct | |
by (auto elim: cwf.cases split: ctree.splits simp: cwf_Link) | |
show "effStep (root ?t) (fimage (fst \<circ> root) (cont ?t))" | |
using pointsTo ct by (auto elim: cwf.cases split: ctree.splits simp: cwf_Link) | |
{fix t' assume t': "t' |\<in>| cont ?t" | |
show "\<exists>ct'. ?\<phi> ct' t'" | |
proof(cases ct) | |
case (Link l) | |
then obtain s r cts where pl: "pointsTo l = cNode (s,r) cts" | |
using pointsTo by (cases "pointsTo l") auto | |
obtain ct' where ct': "ct' |\<in>| cts" and "t' = treeOf pointsTo ct'" | |
using t' by (auto simp: Link pl pointsTo split: ctree.splits) | |
moreover have "cwf ct'" using ct' ct pl unfolding Link | |
by (auto simp: cwf_Link elim: cwf.cases) | |
ultimately show ?thesis by blast | |
next | |
case (cNode step cts) | |
then obtain s r where cNode: "ct = cNode (s,r) cts" by (cases step) auto | |
obtain ct' where ct': "ct' |\<in>| cts" and "t' = treeOf pointsTo ct'" | |
using t' by (auto simp: cNode pointsTo split: ctree.splits) | |
moreover have "cwf ct'" using ct' ct unfolding cNode | |
by (auto simp: cwf_Link elim: cwf.cases) | |
ultimately show ?thesis by blast | |
qed | |
} | |
qed | |
qed | |
} | |
thus ?thesis using assms by blast | |
qed | |
theorem cyclic_soundness: | |
assumes "cwf ct" and "cgood ct" and "S \<in> structure" | |
shows "sat S (seqOf ct)" | |
using infinite_soundness wf_treeOf assms | |
unfolding cgood_def treeOf_seqOf[symmetric] comp_def | |
by blast | |
end (* context *) | |
end (* context Infinite_Soundness *) | |
section \<open>Appendix: The definition of treeOf under more flexible assumptions about pointsTo\<close> | |
definition rels where | |
"rels pointsTo \<equiv> {((pointsTo, pointsTo l'), (pointsTo, Link l')) | l'. True}" | |
definition rel :: "(('link \<Rightarrow> ('sequent, 'rule, 'link) ctree) \<times> ('sequent, 'rule, 'link) ctree) rel" where | |
"rel \<equiv> \<Union> (rels ` {pointsTo. wf {(l, l'). pointsTo l' = Link l}})" | |
lemma wf_rels[simp]: | |
assumes "wf {(l,l'). (pointsTo :: 'link \<Rightarrow> ('sequent, 'rule, 'link)ctree) l' = Link l}" | |
(is "wf ?w") | |
shows "wf (rels pointsTo)" using wf_map_prod_image | |
proof - | |
define r1 :: "(('link \<Rightarrow> ('sequent, 'rule, 'link) ctree) \<times> ('sequent, 'rule, 'link) ctree) rel" where | |
"r1 = {((pointsTo,pointsTo l'), (pointsTo, Link l'::('sequent, 'rule, 'link) ctree)) | l'. | |
(\<forall>l''. pointsTo l' \<noteq> Link l'')}" | |
define r2 :: "(('link \<Rightarrow> ('sequent, 'rule, 'link) ctree) \<times> ('sequent, 'rule, 'link) ctree) rel" where | |
"r2 = image (map_prod (map_prod id Link) (map_prod id Link)) (inv_image ?w snd)" | |
have 0: "rels pointsTo \<subseteq> r1 \<union> r2" | |
unfolding rels_def r1_def r2_def unfolding inv_image_def image_Collect by auto | |
let ?m = "measure (\<lambda>(tOfL,t). case t of Link l' => Suc 0 | _ => 0)" | |
have 1: "wf r1" unfolding r1_def by (rule wf_subset[of ?m]) (auto split: ctree.splits) | |
have 2: "wf r2" using assms unfolding r2_def | |
by (intro wf_map_prod_image wf_inv_image) (auto simp: inj_on_def) | |
have 3: "Domain r1 \<inter> Range r2 = {}" unfolding r1_def r2_def by auto | |
show ?thesis using 1 2 3 by (intro wf_subset[OF _ 0] wf_Un) auto | |
qed | |
lemma rel: "wf rel" | |
unfolding rel_def | |
apply(rule wf_UN) | |
subgoal by (auto intro: wf_UN) | |
unfolding rels_def by auto | |
corecursive treeOf' where | |
"treeOf' pointsTo ct = | |
(if \<not> wf {(l',l). pointsTo l = Link l'} | |
\<comment> \<open>makes sense only if backward links point to normal nodes, not to backwards links:\<close> | |
then undefined | |
else (case ct of | |
Link l \<Rightarrow> treeOf' pointsTo (pointsTo l) | |
|cNode step cts \<Rightarrow> Node step (fimage (treeOf' pointsTo) cts) | |
) | |
)" | |
apply(relation rel) using rel unfolding rel_def rels_def[abs_def] by auto | |
(*<*) | |
end | |
(*>*) | |