Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
13.9 kB
(* Title: Executable multivariate polynomials
Author: Christian Sternagel <christian.sternagel@uibk.ac.at>
René Thiemann <rene.thiemann@uibk.ac.at>
Maintainer: Christian Sternagel and René Thiemann
License: LGPL
*)
(*
Copyright 2010 Christian Sternagel and René Thiemann
This file is part of IsaFoR/CeTA.
IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with IsaFoR/CeTA. If not, see <http://www.gnu.org/licenses/>.
*)
section \<open>Strongly Normalizing Orders\<close>
theory SN_Orders
imports Abstract_Rewriting
begin
text \<open>
We define several classes of orders which are used to build ordered semirings.
Note that we do not use Isabelle's preorders since the condition
$x > y = x \geq y \wedge y \not\geq x$
is sometimes not applicable. E.g., for $\delta$-orders over the rationals
we have $0.2 \geq 0.1 \wedge 0.1 \not\geq 0.2$, but $0.2 >_\delta 0.1$ does not
hold if $\delta$ is larger than $0.1$.
\<close>
class non_strict_order = ord +
assumes ge_refl: "x \<ge> (x :: 'a)"
and ge_trans[trans]: "\<lbrakk>x \<ge> y; (y :: 'a) \<ge> z\<rbrakk> \<Longrightarrow> x \<ge> z"
and max_comm: "max x y = max y x"
and max_ge_x[intro]: "max x y \<ge> x"
and max_id: "x \<ge> y \<Longrightarrow> max x y = x"
and max_mono: "x \<ge> y \<Longrightarrow> max z x \<ge> max z y"
begin
lemma max_ge_y[intro]: "max x y \<ge> y"
unfolding max_comm[of x y] ..
lemma max_mono2: "x \<ge> y \<Longrightarrow> max x z \<ge> max y z"
unfolding max_comm[of _ z] by (rule max_mono)
end
class ordered_ab_semigroup = non_strict_order + ab_semigroup_add + monoid_add +
assumes plus_left_mono: "x \<ge> y \<Longrightarrow> x + z \<ge> y + z"
lemma plus_right_mono: "y \<ge> (z :: 'a :: ordered_ab_semigroup) \<Longrightarrow> x + y \<ge> x + z"
by (simp add: add.commute[of x], rule plus_left_mono, auto)
class ordered_semiring_0 = ordered_ab_semigroup + semiring_0 +
assumes times_left_mono: "z \<ge> 0 \<Longrightarrow> x \<ge> y \<Longrightarrow> x * z \<ge> y * z"
and times_right_mono: "x \<ge> 0 \<Longrightarrow> y \<ge> z \<Longrightarrow> x * y \<ge> x * z"
and times_left_anti_mono: "x \<ge> y \<Longrightarrow> 0 \<ge> z \<Longrightarrow> y * z \<ge> x * z"
class ordered_semiring_1 = ordered_semiring_0 + semiring_1 +
assumes one_ge_zero: "1 \<ge> 0"
text \<open>
We do not use a class to define order-pairs of a strict and a weak-order
since often we
have parametric strict orders, e.g. on rational numbers there are several orders
$>$ where $x > y = x \geq y + \delta$ for some parameter $\delta$
\<close>
locale order_pair =
fixes gt :: "'a :: {non_strict_order,zero} \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<succ>" 50)
and default :: "'a"
assumes compat[trans]: "\<lbrakk>x \<ge> y; y \<succ> z\<rbrakk> \<Longrightarrow> x \<succ> z"
and compat2[trans]: "\<lbrakk>x \<succ> y; y \<ge> z\<rbrakk> \<Longrightarrow> x \<succ> z"
and gt_imp_ge: "x \<succ> y \<Longrightarrow> x \<ge> y"
and default_ge_zero: "default \<ge> 0"
begin
lemma gt_trans[trans]: "\<lbrakk>x \<succ> y; y \<succ> z\<rbrakk> \<Longrightarrow> x \<succ> z"
by (rule compat[OF gt_imp_ge])
end
locale one_mono_ordered_semiring_1 = order_pair gt
for gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<succ>" 50) +
assumes plus_gt_left_mono: "x \<succ> y \<Longrightarrow> x + z \<succ> y + z"
and default_gt_zero: "default \<succ> 0"
begin
lemma plus_gt_right_mono: "x \<succ> y \<Longrightarrow> a + x \<succ> a + y"
unfolding add.commute[of a] by (rule plus_gt_left_mono)
lemma plus_gt_both_mono: "x \<succ> y \<Longrightarrow> a \<succ> b \<Longrightarrow> x + a \<succ> y + b"
by (rule gt_trans[OF plus_gt_left_mono plus_gt_right_mono])
end
locale SN_one_mono_ordered_semiring_1 = one_mono_ordered_semiring_1 + order_pair +
assumes SN: "SN {(x,y) . y \<ge> 0 \<and> x \<succ> y}"
locale SN_strict_mono_ordered_semiring_1 = SN_one_mono_ordered_semiring_1 +
fixes mono :: "'a :: ordered_semiring_1 \<Rightarrow> bool"
assumes mono: "\<lbrakk>mono x; y \<succ> z; x \<ge> 0\<rbrakk> \<Longrightarrow> x * y \<succ> x * z"
locale both_mono_ordered_semiring_1 = order_pair gt
for gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<succ>" 50) +
fixes arc_pos :: "'a \<Rightarrow> bool"
assumes plus_gt_both_mono: "\<lbrakk>x \<succ> y; z \<succ> u\<rbrakk> \<Longrightarrow> x + z \<succ> y + u"
and times_gt_left_mono: "x \<succ> y \<Longrightarrow> x * z \<succ> y * z"
and times_gt_right_mono: "y \<succ> z \<Longrightarrow> x * y \<succ> x * z"
and zero_leastI: "x \<succ> 0"
and zero_leastII: "0 \<succ> x \<Longrightarrow> x = 0"
and zero_leastIII: "(x :: 'a) \<ge> 0"
and arc_pos_one: "arc_pos (1 :: 'a)"
and arc_pos_default: "arc_pos default"
and arc_pos_zero: "\<not> arc_pos 0"
and arc_pos_plus: "arc_pos x \<Longrightarrow> arc_pos (x + y)"
and arc_pos_mult: "\<lbrakk>arc_pos x; arc_pos y\<rbrakk> \<Longrightarrow> arc_pos (x * y)"
and not_all_ge: "\<And> c d. arc_pos d \<Longrightarrow> \<exists> e. e \<ge> 0 \<and> arc_pos e \<and> \<not> (c \<ge> d * e)"
begin
lemma max0_id: "max 0 (x :: 'a) = x"
unfolding max_comm[of 0]
by (rule max_id[OF zero_leastIII])
end
locale SN_both_mono_ordered_semiring_1 = both_mono_ordered_semiring_1 +
assumes SN: "SN {(x,y) . arc_pos y \<and> x \<succ> y}"
locale weak_SN_strict_mono_ordered_semiring_1 =
fixes weak_gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool"
and default :: "'a"
and mono :: "'a \<Rightarrow> bool"
assumes weak_gt_mono: "\<forall> x y. (x,y) \<in> set xys \<longrightarrow> weak_gt x y \<Longrightarrow> \<exists> gt. SN_strict_mono_ordered_semiring_1 default gt mono \<and> (\<forall> x y. (x,y) \<in> set xys \<longrightarrow> gt x y)"
locale weak_SN_both_mono_ordered_semiring_1 =
fixes weak_gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool"
and default :: "'a"
and arc_pos :: "'a \<Rightarrow> bool"
assumes weak_gt_both_mono: "\<forall> x y. (x,y) \<in> set xys \<longrightarrow> weak_gt x y \<Longrightarrow> \<exists> gt. SN_both_mono_ordered_semiring_1 default gt arc_pos \<and> (\<forall> x y. (x,y) \<in> set xys \<longrightarrow> gt x y)"
class poly_carrier = ordered_semiring_1 + comm_semiring_1
locale poly_order_carrier = SN_one_mono_ordered_semiring_1 default gt
for default :: "'a :: poly_carrier" and gt (infix "\<succ>" 50) +
fixes power_mono :: "bool"
and discrete :: "bool"
assumes times_gt_mono: "\<lbrakk>y \<succ> z; x \<ge> 1\<rbrakk> \<Longrightarrow> y * x \<succ> z * x"
and power_mono: "power_mono \<Longrightarrow> x \<succ> y \<Longrightarrow> y \<ge> 0 \<Longrightarrow> n \<ge> 1 \<Longrightarrow> x ^ n \<succ> y ^ n"
and discrete: "discrete \<Longrightarrow> x \<ge> y \<Longrightarrow> \<exists> k. x = (((+) 1)^^k) y"
class large_ordered_semiring_1 = poly_carrier +
assumes ex_large_of_nat: "\<exists> x. of_nat x \<ge> y"
context ordered_semiring_1
begin
lemma pow_mono: assumes ab: "a \<ge> b" and b: "b \<ge> 0"
shows "a ^ n \<ge> b ^ n \<and> b ^ n \<ge> 0"
proof (induct n)
case 0
show ?case by (auto simp: ge_refl one_ge_zero)
next
case (Suc n)
hence abn: "a ^ n \<ge> b ^ n" and bn: "b ^ n \<ge> 0" by auto
have bsn: "b ^ Suc n \<ge> 0" unfolding power_Suc
using times_left_mono[OF bn b] by auto
have "a ^ Suc n = a * a ^ n" unfolding power_Suc by simp
also have "... \<ge> b * a ^ n"
by (rule times_left_mono[OF ge_trans[OF abn bn] ab])
also have "b * a ^ n \<ge> b * b ^ n"
by (rule times_right_mono[OF b abn])
finally show ?case using bsn unfolding power_Suc by simp
qed
lemma pow_ge_zero[intro]: assumes a: "a \<ge> (0 :: 'a)"
shows "a ^ n \<ge> 0"
proof (induct n)
case 0
from one_ge_zero show ?case by simp
next
case (Suc n)
show ?case using times_left_mono[OF Suc a] by simp
qed
end
lemma of_nat_ge_zero[intro,simp]: "of_nat n \<ge> (0 :: 'a :: ordered_semiring_1)"
proof (induct n)
case 0
show ?case by (simp add: ge_refl)
next
case (Suc n)
from plus_right_mono[OF Suc, of 1] have "of_nat (Suc n) \<ge> (1 :: 'a)" by simp
also have "(1 :: 'a) \<ge> 0" using one_ge_zero .
finally show ?case .
qed
lemma mult_ge_zero[intro]: "(a :: 'a :: ordered_semiring_1) \<ge> 0 \<Longrightarrow> b \<ge> 0 \<Longrightarrow> a * b \<ge> 0"
using times_left_mono[of b 0 a] by auto
lemma pow_mono_one: assumes a: "a \<ge> (1 :: 'a :: ordered_semiring_1)"
shows "a ^ n \<ge> 1"
proof (induct n)
case (Suc n)
show ?case unfolding power_Suc
using ge_trans[OF times_right_mono[OF ge_trans[OF a one_ge_zero] Suc], of 1]
a
by (auto simp: field_simps)
qed (auto simp: ge_refl)
lemma pow_mono_exp: assumes a: "a \<ge> (1 :: 'a :: ordered_semiring_1)"
shows "n \<ge> m \<Longrightarrow> a ^ n \<ge> a ^ m"
proof (induct m arbitrary: n)
case 0
show ?case using pow_mono_one[OF a] by auto
next
case (Suc m nn)
then obtain n where nn: "nn = Suc n" by (cases nn, auto)
note Suc = Suc[unfolded nn]
hence rec: "a ^ n \<ge> a ^ m" by auto
show ?case unfolding nn power_Suc
by (rule times_right_mono[OF ge_trans[OF a one_ge_zero] rec])
qed
lemma mult_ge_one[intro]: assumes a: "(a :: 'a :: ordered_semiring_1) \<ge> 1"
and b: "b \<ge> 1"
shows "a * b \<ge> 1"
proof -
from ge_trans[OF b one_ge_zero] have b0: "b \<ge> 0" .
from times_left_mono[OF b0 a] have "a * b \<ge> b" by simp
from ge_trans[OF this b] show ?thesis .
qed
lemma sum_list_ge_mono: fixes as :: "('a :: ordered_semiring_0) list"
assumes "length as = length bs"
and "\<And> i. i < length bs \<Longrightarrow> as ! i \<ge> bs ! i"
shows "sum_list as \<ge> sum_list bs"
using assms
proof (induct as arbitrary: bs)
case (Nil bs)
from Nil(1) show ?case by (simp add: ge_refl)
next
case (Cons a as bbs)
from Cons(2) obtain b bs where bbs: "bbs = b # bs" and len: "length as = length bs" by (cases bbs, auto)
note ge = Cons(3)[unfolded bbs]
{
fix i
assume "i < length bs"
hence "Suc i < length (b # bs)" by simp
from ge[OF this] have "as ! i \<ge> bs ! i" by simp
}
from Cons(1)[OF len this] have IH: "sum_list as \<ge> sum_list bs" .
from ge[of 0] have ab: "a \<ge> b" by simp
from ge_trans[OF plus_left_mono[OF ab] plus_right_mono[OF IH]]
show ?case unfolding bbs by simp
qed
lemma sum_list_ge_0_nth: fixes xs :: "('a :: ordered_semiring_0)list"
assumes ge: "\<And> i. i < length xs \<Longrightarrow> xs ! i \<ge> 0"
shows "sum_list xs \<ge> 0"
proof -
let ?l = "replicate (length xs) (0 :: 'a)"
have "length xs = length ?l" by simp
from sum_list_ge_mono[OF this] ge have "sum_list xs \<ge> sum_list ?l" by simp
also have "sum_list ?l = 0" using sum_list_0[of ?l] by auto
finally show ?thesis .
qed
lemma sum_list_ge_0: fixes xs :: "('a :: ordered_semiring_0)list"
assumes ge: "\<And> x. x \<in> set xs \<Longrightarrow> x \<ge> 0"
shows "sum_list xs \<ge> 0"
by (rule sum_list_ge_0_nth, insert ge[unfolded set_conv_nth], auto)
lemma foldr_max: "a \<in> set as \<Longrightarrow> foldr max as b \<ge> (a :: 'a :: ordered_ab_semigroup)"
proof (induct as arbitrary: b)
case Nil thus ?case by simp
next
case (Cons c as)
show ?case
proof (cases "a = c")
case True
show ?thesis unfolding True by auto
next
case False
with Cons have "foldr max as b \<ge> a" by auto
from ge_trans[OF _ this] show ?thesis by auto
qed
qed
lemma of_nat_mono[intro]: assumes "n \<ge> m" shows "(of_nat n :: 'a :: ordered_semiring_1) \<ge> of_nat m"
proof -
let ?n = "of_nat :: nat \<Rightarrow> 'a"
from assms
show ?thesis
proof (induct m arbitrary: n)
case 0
show ?case by auto
next
case (Suc m nn)
then obtain n where nn: "nn = Suc n" by (cases nn, auto)
note Suc = Suc[unfolded nn]
hence rec: "?n n \<ge> ?n m" by simp
show ?case unfolding nn of_nat_Suc
by (rule plus_right_mono[OF rec])
qed
qed
text \<open>non infinitesmal is the same as in the CADE07 bounded increase paper\<close>
definition non_inf :: "'a rel \<Rightarrow> bool"
where "non_inf r \<equiv> \<forall> a f. \<exists> i. (f i, f (Suc i)) \<notin> r \<or> (f i, a) \<notin> r"
lemma non_infI[intro]: assumes "\<And> a f. \<lbrakk> \<And> i. (f i, f (Suc i)) \<in> r\<rbrakk> \<Longrightarrow> \<exists> i. (f i, a) \<notin> r"
shows "non_inf r"
using assms unfolding non_inf_def by blast
lemma non_infE[elim]: assumes "non_inf r" and "\<And> i. (f i, f (Suc i)) \<notin> r \<or> (f i, a) \<notin> r \<Longrightarrow> P"
shows P
using assms unfolding non_inf_def by blast
lemma non_inf_image:
assumes ni: "non_inf r" and image: "\<And> a b. (a,b) \<in> s \<Longrightarrow> (f a, f b) \<in> r"
shows "non_inf s"
proof
fix a g
assume s: "\<And> i. (g i, g (Suc i)) \<in> s"
define h where "h = f o g"
from image[OF s] have h: "\<And> i. (h i, h (Suc i)) \<in> r" unfolding h_def comp_def .
from non_infE[OF ni, of h] have "\<And> a. \<exists> i. (h i, a) \<notin> r" using h by blast
thus "\<exists>i. (g i, a) \<notin> s" using image unfolding h_def comp_def by blast
qed
lemma SN_imp_non_inf: "SN r \<Longrightarrow> non_inf r"
by (intro non_infI, auto)
lemma non_inf_imp_SN_bound: "non_inf r \<Longrightarrow> SN {(a,b). (b,c) \<in> r \<and> (a,b) \<in> r}"
by (rule, auto)
end