Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Executable multivariate polynomials | |
Author: Christian Sternagel <christian.sternagel@uibk.ac.at> | |
René Thiemann <rene.thiemann@uibk.ac.at> | |
Maintainer: Christian Sternagel and René Thiemann | |
License: LGPL | |
*) | |
(* | |
Copyright 2010 Christian Sternagel and René Thiemann | |
This file is part of IsaFoR/CeTA. | |
IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the | |
terms of the GNU Lesser General Public License as published by the Free Software | |
Foundation, either version 3 of the License, or (at your option) any later | |
version. | |
IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY | |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A | |
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. | |
You should have received a copy of the GNU Lesser General Public License along | |
with IsaFoR/CeTA. If not, see <http://www.gnu.org/licenses/>. | |
*) | |
section \<open>Strongly Normalizing Orders\<close> | |
theory SN_Orders | |
imports Abstract_Rewriting | |
begin | |
text \<open> | |
We define several classes of orders which are used to build ordered semirings. | |
Note that we do not use Isabelle's preorders since the condition | |
$x > y = x \geq y \wedge y \not\geq x$ | |
is sometimes not applicable. E.g., for $\delta$-orders over the rationals | |
we have $0.2 \geq 0.1 \wedge 0.1 \not\geq 0.2$, but $0.2 >_\delta 0.1$ does not | |
hold if $\delta$ is larger than $0.1$. | |
\<close> | |
class non_strict_order = ord + | |
assumes ge_refl: "x \<ge> (x :: 'a)" | |
and ge_trans[trans]: "\<lbrakk>x \<ge> y; (y :: 'a) \<ge> z\<rbrakk> \<Longrightarrow> x \<ge> z" | |
and max_comm: "max x y = max y x" | |
and max_ge_x[intro]: "max x y \<ge> x" | |
and max_id: "x \<ge> y \<Longrightarrow> max x y = x" | |
and max_mono: "x \<ge> y \<Longrightarrow> max z x \<ge> max z y" | |
begin | |
lemma max_ge_y[intro]: "max x y \<ge> y" | |
unfolding max_comm[of x y] .. | |
lemma max_mono2: "x \<ge> y \<Longrightarrow> max x z \<ge> max y z" | |
unfolding max_comm[of _ z] by (rule max_mono) | |
end | |
class ordered_ab_semigroup = non_strict_order + ab_semigroup_add + monoid_add + | |
assumes plus_left_mono: "x \<ge> y \<Longrightarrow> x + z \<ge> y + z" | |
lemma plus_right_mono: "y \<ge> (z :: 'a :: ordered_ab_semigroup) \<Longrightarrow> x + y \<ge> x + z" | |
by (simp add: add.commute[of x], rule plus_left_mono, auto) | |
class ordered_semiring_0 = ordered_ab_semigroup + semiring_0 + | |
assumes times_left_mono: "z \<ge> 0 \<Longrightarrow> x \<ge> y \<Longrightarrow> x * z \<ge> y * z" | |
and times_right_mono: "x \<ge> 0 \<Longrightarrow> y \<ge> z \<Longrightarrow> x * y \<ge> x * z" | |
and times_left_anti_mono: "x \<ge> y \<Longrightarrow> 0 \<ge> z \<Longrightarrow> y * z \<ge> x * z" | |
class ordered_semiring_1 = ordered_semiring_0 + semiring_1 + | |
assumes one_ge_zero: "1 \<ge> 0" | |
text \<open> | |
We do not use a class to define order-pairs of a strict and a weak-order | |
since often we | |
have parametric strict orders, e.g. on rational numbers there are several orders | |
$>$ where $x > y = x \geq y + \delta$ for some parameter $\delta$ | |
\<close> | |
locale order_pair = | |
fixes gt :: "'a :: {non_strict_order,zero} \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<succ>" 50) | |
and default :: "'a" | |
assumes compat[trans]: "\<lbrakk>x \<ge> y; y \<succ> z\<rbrakk> \<Longrightarrow> x \<succ> z" | |
and compat2[trans]: "\<lbrakk>x \<succ> y; y \<ge> z\<rbrakk> \<Longrightarrow> x \<succ> z" | |
and gt_imp_ge: "x \<succ> y \<Longrightarrow> x \<ge> y" | |
and default_ge_zero: "default \<ge> 0" | |
begin | |
lemma gt_trans[trans]: "\<lbrakk>x \<succ> y; y \<succ> z\<rbrakk> \<Longrightarrow> x \<succ> z" | |
by (rule compat[OF gt_imp_ge]) | |
end | |
locale one_mono_ordered_semiring_1 = order_pair gt | |
for gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<succ>" 50) + | |
assumes plus_gt_left_mono: "x \<succ> y \<Longrightarrow> x + z \<succ> y + z" | |
and default_gt_zero: "default \<succ> 0" | |
begin | |
lemma plus_gt_right_mono: "x \<succ> y \<Longrightarrow> a + x \<succ> a + y" | |
unfolding add.commute[of a] by (rule plus_gt_left_mono) | |
lemma plus_gt_both_mono: "x \<succ> y \<Longrightarrow> a \<succ> b \<Longrightarrow> x + a \<succ> y + b" | |
by (rule gt_trans[OF plus_gt_left_mono plus_gt_right_mono]) | |
end | |
locale SN_one_mono_ordered_semiring_1 = one_mono_ordered_semiring_1 + order_pair + | |
assumes SN: "SN {(x,y) . y \<ge> 0 \<and> x \<succ> y}" | |
locale SN_strict_mono_ordered_semiring_1 = SN_one_mono_ordered_semiring_1 + | |
fixes mono :: "'a :: ordered_semiring_1 \<Rightarrow> bool" | |
assumes mono: "\<lbrakk>mono x; y \<succ> z; x \<ge> 0\<rbrakk> \<Longrightarrow> x * y \<succ> x * z" | |
locale both_mono_ordered_semiring_1 = order_pair gt | |
for gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<succ>" 50) + | |
fixes arc_pos :: "'a \<Rightarrow> bool" | |
assumes plus_gt_both_mono: "\<lbrakk>x \<succ> y; z \<succ> u\<rbrakk> \<Longrightarrow> x + z \<succ> y + u" | |
and times_gt_left_mono: "x \<succ> y \<Longrightarrow> x * z \<succ> y * z" | |
and times_gt_right_mono: "y \<succ> z \<Longrightarrow> x * y \<succ> x * z" | |
and zero_leastI: "x \<succ> 0" | |
and zero_leastII: "0 \<succ> x \<Longrightarrow> x = 0" | |
and zero_leastIII: "(x :: 'a) \<ge> 0" | |
and arc_pos_one: "arc_pos (1 :: 'a)" | |
and arc_pos_default: "arc_pos default" | |
and arc_pos_zero: "\<not> arc_pos 0" | |
and arc_pos_plus: "arc_pos x \<Longrightarrow> arc_pos (x + y)" | |
and arc_pos_mult: "\<lbrakk>arc_pos x; arc_pos y\<rbrakk> \<Longrightarrow> arc_pos (x * y)" | |
and not_all_ge: "\<And> c d. arc_pos d \<Longrightarrow> \<exists> e. e \<ge> 0 \<and> arc_pos e \<and> \<not> (c \<ge> d * e)" | |
begin | |
lemma max0_id: "max 0 (x :: 'a) = x" | |
unfolding max_comm[of 0] | |
by (rule max_id[OF zero_leastIII]) | |
end | |
locale SN_both_mono_ordered_semiring_1 = both_mono_ordered_semiring_1 + | |
assumes SN: "SN {(x,y) . arc_pos y \<and> x \<succ> y}" | |
locale weak_SN_strict_mono_ordered_semiring_1 = | |
fixes weak_gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool" | |
and default :: "'a" | |
and mono :: "'a \<Rightarrow> bool" | |
assumes weak_gt_mono: "\<forall> x y. (x,y) \<in> set xys \<longrightarrow> weak_gt x y \<Longrightarrow> \<exists> gt. SN_strict_mono_ordered_semiring_1 default gt mono \<and> (\<forall> x y. (x,y) \<in> set xys \<longrightarrow> gt x y)" | |
locale weak_SN_both_mono_ordered_semiring_1 = | |
fixes weak_gt :: "'a :: ordered_semiring_1 \<Rightarrow> 'a \<Rightarrow> bool" | |
and default :: "'a" | |
and arc_pos :: "'a \<Rightarrow> bool" | |
assumes weak_gt_both_mono: "\<forall> x y. (x,y) \<in> set xys \<longrightarrow> weak_gt x y \<Longrightarrow> \<exists> gt. SN_both_mono_ordered_semiring_1 default gt arc_pos \<and> (\<forall> x y. (x,y) \<in> set xys \<longrightarrow> gt x y)" | |
class poly_carrier = ordered_semiring_1 + comm_semiring_1 | |
locale poly_order_carrier = SN_one_mono_ordered_semiring_1 default gt | |
for default :: "'a :: poly_carrier" and gt (infix "\<succ>" 50) + | |
fixes power_mono :: "bool" | |
and discrete :: "bool" | |
assumes times_gt_mono: "\<lbrakk>y \<succ> z; x \<ge> 1\<rbrakk> \<Longrightarrow> y * x \<succ> z * x" | |
and power_mono: "power_mono \<Longrightarrow> x \<succ> y \<Longrightarrow> y \<ge> 0 \<Longrightarrow> n \<ge> 1 \<Longrightarrow> x ^ n \<succ> y ^ n" | |
and discrete: "discrete \<Longrightarrow> x \<ge> y \<Longrightarrow> \<exists> k. x = (((+) 1)^^k) y" | |
class large_ordered_semiring_1 = poly_carrier + | |
assumes ex_large_of_nat: "\<exists> x. of_nat x \<ge> y" | |
context ordered_semiring_1 | |
begin | |
lemma pow_mono: assumes ab: "a \<ge> b" and b: "b \<ge> 0" | |
shows "a ^ n \<ge> b ^ n \<and> b ^ n \<ge> 0" | |
proof (induct n) | |
case 0 | |
show ?case by (auto simp: ge_refl one_ge_zero) | |
next | |
case (Suc n) | |
hence abn: "a ^ n \<ge> b ^ n" and bn: "b ^ n \<ge> 0" by auto | |
have bsn: "b ^ Suc n \<ge> 0" unfolding power_Suc | |
using times_left_mono[OF bn b] by auto | |
have "a ^ Suc n = a * a ^ n" unfolding power_Suc by simp | |
also have "... \<ge> b * a ^ n" | |
by (rule times_left_mono[OF ge_trans[OF abn bn] ab]) | |
also have "b * a ^ n \<ge> b * b ^ n" | |
by (rule times_right_mono[OF b abn]) | |
finally show ?case using bsn unfolding power_Suc by simp | |
qed | |
lemma pow_ge_zero[intro]: assumes a: "a \<ge> (0 :: 'a)" | |
shows "a ^ n \<ge> 0" | |
proof (induct n) | |
case 0 | |
from one_ge_zero show ?case by simp | |
next | |
case (Suc n) | |
show ?case using times_left_mono[OF Suc a] by simp | |
qed | |
end | |
lemma of_nat_ge_zero[intro,simp]: "of_nat n \<ge> (0 :: 'a :: ordered_semiring_1)" | |
proof (induct n) | |
case 0 | |
show ?case by (simp add: ge_refl) | |
next | |
case (Suc n) | |
from plus_right_mono[OF Suc, of 1] have "of_nat (Suc n) \<ge> (1 :: 'a)" by simp | |
also have "(1 :: 'a) \<ge> 0" using one_ge_zero . | |
finally show ?case . | |
qed | |
lemma mult_ge_zero[intro]: "(a :: 'a :: ordered_semiring_1) \<ge> 0 \<Longrightarrow> b \<ge> 0 \<Longrightarrow> a * b \<ge> 0" | |
using times_left_mono[of b 0 a] by auto | |
lemma pow_mono_one: assumes a: "a \<ge> (1 :: 'a :: ordered_semiring_1)" | |
shows "a ^ n \<ge> 1" | |
proof (induct n) | |
case (Suc n) | |
show ?case unfolding power_Suc | |
using ge_trans[OF times_right_mono[OF ge_trans[OF a one_ge_zero] Suc], of 1] | |
a | |
by (auto simp: field_simps) | |
qed (auto simp: ge_refl) | |
lemma pow_mono_exp: assumes a: "a \<ge> (1 :: 'a :: ordered_semiring_1)" | |
shows "n \<ge> m \<Longrightarrow> a ^ n \<ge> a ^ m" | |
proof (induct m arbitrary: n) | |
case 0 | |
show ?case using pow_mono_one[OF a] by auto | |
next | |
case (Suc m nn) | |
then obtain n where nn: "nn = Suc n" by (cases nn, auto) | |
note Suc = Suc[unfolded nn] | |
hence rec: "a ^ n \<ge> a ^ m" by auto | |
show ?case unfolding nn power_Suc | |
by (rule times_right_mono[OF ge_trans[OF a one_ge_zero] rec]) | |
qed | |
lemma mult_ge_one[intro]: assumes a: "(a :: 'a :: ordered_semiring_1) \<ge> 1" | |
and b: "b \<ge> 1" | |
shows "a * b \<ge> 1" | |
proof - | |
from ge_trans[OF b one_ge_zero] have b0: "b \<ge> 0" . | |
from times_left_mono[OF b0 a] have "a * b \<ge> b" by simp | |
from ge_trans[OF this b] show ?thesis . | |
qed | |
lemma sum_list_ge_mono: fixes as :: "('a :: ordered_semiring_0) list" | |
assumes "length as = length bs" | |
and "\<And> i. i < length bs \<Longrightarrow> as ! i \<ge> bs ! i" | |
shows "sum_list as \<ge> sum_list bs" | |
using assms | |
proof (induct as arbitrary: bs) | |
case (Nil bs) | |
from Nil(1) show ?case by (simp add: ge_refl) | |
next | |
case (Cons a as bbs) | |
from Cons(2) obtain b bs where bbs: "bbs = b # bs" and len: "length as = length bs" by (cases bbs, auto) | |
note ge = Cons(3)[unfolded bbs] | |
{ | |
fix i | |
assume "i < length bs" | |
hence "Suc i < length (b # bs)" by simp | |
from ge[OF this] have "as ! i \<ge> bs ! i" by simp | |
} | |
from Cons(1)[OF len this] have IH: "sum_list as \<ge> sum_list bs" . | |
from ge[of 0] have ab: "a \<ge> b" by simp | |
from ge_trans[OF plus_left_mono[OF ab] plus_right_mono[OF IH]] | |
show ?case unfolding bbs by simp | |
qed | |
lemma sum_list_ge_0_nth: fixes xs :: "('a :: ordered_semiring_0)list" | |
assumes ge: "\<And> i. i < length xs \<Longrightarrow> xs ! i \<ge> 0" | |
shows "sum_list xs \<ge> 0" | |
proof - | |
let ?l = "replicate (length xs) (0 :: 'a)" | |
have "length xs = length ?l" by simp | |
from sum_list_ge_mono[OF this] ge have "sum_list xs \<ge> sum_list ?l" by simp | |
also have "sum_list ?l = 0" using sum_list_0[of ?l] by auto | |
finally show ?thesis . | |
qed | |
lemma sum_list_ge_0: fixes xs :: "('a :: ordered_semiring_0)list" | |
assumes ge: "\<And> x. x \<in> set xs \<Longrightarrow> x \<ge> 0" | |
shows "sum_list xs \<ge> 0" | |
by (rule sum_list_ge_0_nth, insert ge[unfolded set_conv_nth], auto) | |
lemma foldr_max: "a \<in> set as \<Longrightarrow> foldr max as b \<ge> (a :: 'a :: ordered_ab_semigroup)" | |
proof (induct as arbitrary: b) | |
case Nil thus ?case by simp | |
next | |
case (Cons c as) | |
show ?case | |
proof (cases "a = c") | |
case True | |
show ?thesis unfolding True by auto | |
next | |
case False | |
with Cons have "foldr max as b \<ge> a" by auto | |
from ge_trans[OF _ this] show ?thesis by auto | |
qed | |
qed | |
lemma of_nat_mono[intro]: assumes "n \<ge> m" shows "(of_nat n :: 'a :: ordered_semiring_1) \<ge> of_nat m" | |
proof - | |
let ?n = "of_nat :: nat \<Rightarrow> 'a" | |
from assms | |
show ?thesis | |
proof (induct m arbitrary: n) | |
case 0 | |
show ?case by auto | |
next | |
case (Suc m nn) | |
then obtain n where nn: "nn = Suc n" by (cases nn, auto) | |
note Suc = Suc[unfolded nn] | |
hence rec: "?n n \<ge> ?n m" by simp | |
show ?case unfolding nn of_nat_Suc | |
by (rule plus_right_mono[OF rec]) | |
qed | |
qed | |
text \<open>non infinitesmal is the same as in the CADE07 bounded increase paper\<close> | |
definition non_inf :: "'a rel \<Rightarrow> bool" | |
where "non_inf r \<equiv> \<forall> a f. \<exists> i. (f i, f (Suc i)) \<notin> r \<or> (f i, a) \<notin> r" | |
lemma non_infI[intro]: assumes "\<And> a f. \<lbrakk> \<And> i. (f i, f (Suc i)) \<in> r\<rbrakk> \<Longrightarrow> \<exists> i. (f i, a) \<notin> r" | |
shows "non_inf r" | |
using assms unfolding non_inf_def by blast | |
lemma non_infE[elim]: assumes "non_inf r" and "\<And> i. (f i, f (Suc i)) \<notin> r \<or> (f i, a) \<notin> r \<Longrightarrow> P" | |
shows P | |
using assms unfolding non_inf_def by blast | |
lemma non_inf_image: | |
assumes ni: "non_inf r" and image: "\<And> a b. (a,b) \<in> s \<Longrightarrow> (f a, f b) \<in> r" | |
shows "non_inf s" | |
proof | |
fix a g | |
assume s: "\<And> i. (g i, g (Suc i)) \<in> s" | |
define h where "h = f o g" | |
from image[OF s] have h: "\<And> i. (h i, h (Suc i)) \<in> r" unfolding h_def comp_def . | |
from non_infE[OF ni, of h] have "\<And> a. \<exists> i. (h i, a) \<notin> r" using h by blast | |
thus "\<exists>i. (g i, a) \<notin> s" using image unfolding h_def comp_def by blast | |
qed | |
lemma SN_imp_non_inf: "SN r \<Longrightarrow> non_inf r" | |
by (intro non_infI, auto) | |
lemma non_inf_imp_SN_bound: "non_inf r \<Longrightarrow> SN {(a,b). (b,c) \<in> r \<and> (a,b) \<in> r}" | |
by (rule, auto) | |
end | |