Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /Abstract-Rewriting /Relative_Rewriting.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
75.5 kB
(* Title: Abstract Rewriting
Author: Christian Sternagel <christian.sternagel@uibk.ac.at>
Rene Thiemann <rene.tiemann@uibk.ac.at>
Maintainer: Christian Sternagel and Rene Thiemann
License: LGPL
*)
(*
Copyright 2010 Christian Sternagel and René Thiemann
This file is part of IsaFoR/CeTA.
IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with IsaFoR/CeTA. If not, see <http://www.gnu.org/licenses/>.
*)
section \<open>Relative Rewriting\<close>
theory Relative_Rewriting
imports Abstract_Rewriting
begin
text \<open>Considering a relation @{term R} relative to another relation @{term S}, i.e.,
@{term R}-steps may be preceded and followed by arbitrary many @{term S}-steps.\<close>
abbreviation (input) relto :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel" where
"relto R S \<equiv> S^* O R O S^*"
definition SN_rel_on :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"SN_rel_on R S \<equiv> SN_on (relto R S)"
definition SN_rel_on_alt :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"SN_rel_on_alt R S T = (\<forall>f. chain (R \<union> S) f \<and> f 0 \<in> T \<longrightarrow> \<not> (INFM j. (f j, f (Suc j)) \<in> R))"
abbreviation SN_rel :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where
"SN_rel R S \<equiv> SN_rel_on R S UNIV"
abbreviation SN_rel_alt :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where
"SN_rel_alt R S \<equiv> SN_rel_on_alt R S UNIV"
lemma relto_absorb [simp]: "relto R E O E\<^sup>* = relto R E" "E\<^sup>* O relto R E = relto R E"
using O_assoc and rtrancl_idemp_self_comp by (metis)+
lemma steps_preserve_SN_on_relto:
assumes steps: "(a, b) \<in> (R \<union> S)^*"
and SN: "SN_on (relto R S) {a}"
shows "SN_on (relto R S) {b}"
proof -
let ?RS = "relto R S"
have "(R \<union> S)^* \<subseteq> S^* \<union> ?RS^*" by regexp
with steps have "(a,b) \<in> S^* \<or> (a,b) \<in> ?RS^*" by auto
thus ?thesis
proof
assume "(a,b) \<in> ?RS^*"
from steps_preserve_SN_on[OF this SN] show ?thesis .
next
assume Ssteps: "(a,b) \<in> S^*"
show ?thesis
proof
fix f
assume "f 0 \<in> {b}" and "chain ?RS f"
hence f0: "f 0 = b" and steps: "\<And>i. (f i, f (Suc i)) \<in> ?RS" by auto
let ?g = "\<lambda> i. if i = 0 then a else f i"
have "\<not> SN_on ?RS {a}" unfolding SN_on_def not_not
proof (rule exI[of _ ?g], intro conjI allI)
fix i
show "(?g i, ?g (Suc i)) \<in> ?RS"
proof (cases i)
case (Suc j)
show ?thesis using steps[of i] unfolding Suc by simp
next
case 0
from steps[of 0, unfolded f0] Ssteps have steps: "(a,f (Suc 0)) \<in> S^* O ?RS" by blast
have "(a,f (Suc 0)) \<in> ?RS"
by (rule subsetD[OF _ steps], regexp)
thus ?thesis unfolding 0 by simp
qed
qed simp
with SN show False by simp
qed
qed
qed
lemma step_preserves_SN_on_relto: assumes st: "(s,t) \<in> R \<union> E"
and SN: "SN_on (relto R E) {s}"
shows "SN_on (relto R E) {t}"
by (rule steps_preserve_SN_on_relto[OF _ SN], insert st, auto)
lemma SN_rel_on_imp_SN_rel_on_alt: "SN_rel_on R S T \<Longrightarrow> SN_rel_on_alt R S T"
proof (unfold SN_rel_on_def)
assume SN: "SN_on (relto R S) T"
show ?thesis
proof (unfold SN_rel_on_alt_def, intro allI impI)
fix f
assume steps: "chain (R \<union> S) f \<and> f 0 \<in> T"
with SN have SN: "SN_on (relto R S) {f 0}"
and steps: "\<And> i. (f i, f (Suc i)) \<in> R \<union> S" unfolding SN_defs by auto
obtain r where r: "\<And> j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)"
proof (rule ccontr)
assume "\<not> ?thesis"
hence ih: "infinitely_many r" unfolding infinitely_many_def r by blast
obtain r_index where "r_index = infinitely_many.index r" by simp
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih]
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" ..
{
fix i
let ?ri = "r_index i"
let ?rsi = "r_index (Suc i)"
from r_index have isi: "?ri < ?rsi" by auto
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto
from ri isi rsi have risi: "ri < rsi" by simp
{
fix n
assume "Suc n \<le> rsi - ri"
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*"
proof (induct n, simp)
case (Suc n)
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S"
using inter[of "Suc n + ri"] Suc(2) by auto
with stepps show ?case by simp
qed
}
from this[of "rsi - ri - 1"] risi have
"(f (Suc ri), f rsi) \<in> S^*" by simp
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto
}
hence nSN: "\<not> SN_on (S^* O R O S^*) {g 0}" unfolding SN_defs by blast
have SN: "SN_on (S^* O R O S^*) {f (r_index 0)}"
proof (rule steps_preserve_SN_on_relto[OF _ SN])
show "(f 0, f (r_index 0)) \<in> (R \<union> S)^*"
unfolding rtrancl_fun_conv
by (rule exI[of _ f], rule exI[of _ "r_index 0"], insert steps, auto)
qed
with nSN show False unfolding g ..
qed
qed
qed
lemma SN_rel_on_alt_imp_SN_rel_on: "SN_rel_on_alt R S T \<Longrightarrow> SN_rel_on R S T"
proof (unfold SN_rel_on_def)
assume SN: "SN_rel_on_alt R S T"
show "SN_on (relto R S) T"
proof
fix f
assume start: "f 0 \<in> T" and "chain (relto R S) f"
hence steps: "\<And> i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*"
{
fix i
from steps obtain bi ai where "?prop i ai bi" by blast
hence "\<exists> ai bi. ?prop i ai bi" by blast
}
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast
from steps[of 0] have fa0: "(f 0, a 0) \<in> S^* O R" by auto
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)"
{
fix i
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" ..
with R have "?prop i li" by blast
hence "\<exists> li. ?prop i li" ..
}
hence "\<forall> i. \<exists> li. ?prop i li" ..
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto
let ?p = "\<lambda> i. ?prop i (l i)"
from steps have steps: "\<And> i. ?p i" by blast
let ?l = "\<lambda> i. a i # l i"
let ?l' = "\<lambda> i. length (?l i)"
let ?g = "\<lambda> i. inf_concat_simple ?l' i"
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto
have g0: "g 0 = a 0" unfolding g Let_def by simp
with fa0 have fg0: "(f 0, g 0) \<in> S^* O R" by auto
have fg0: "(f 0, g 0) \<in> (R \<union> S)^*"
by (rule subsetD[OF _ fg0], regexp)
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)"
proof -
fix i j n
assume n: "?g n = (i,j)"
show "j < length (?l i)"
proof (cases n)
case 0
with n have "j = 0" by auto
thus ?thesis by simp
next
case (Suc nn)
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto)
show ?thesis
proof (cases "Suc jj < length (?l ii)")
case True
with nn Suc have "?g n = (ii, Suc jj)" by auto
with n True show ?thesis by simp
next
case False
with nn Suc have "?g n = (Suc ii, 0)" by auto
with n show ?thesis by simp
qed
qed
qed
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S"
proof -
fix n
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto)
show "(g n, g (Suc n)) \<in> R \<union> S"
proof (cases "Suc j < length (?l i)")
case True
with n have "?g (Suc n) = (i, Suc j)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto
thus ?thesis using steps[of i] True by auto
next
case False
with n have "?g (Suc n) = (Suc i, 0)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto
from gn len[OF n] False have "j = length (?l i) - 1" by auto
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto
qed
qed
have infR: "INFM j. (g j, g (Suc j)) \<in> R" unfolding INFM_nat_le
proof
fix n
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto)
from len[OF n] have j: "j < ?l' i" .
let ?k = "?l' i - 1 - j"
obtain k where k: "k = j + ?k" by auto
from j k have k2: "k = ?l' i - 1" and k3: "j + ?k < ?l' i" by auto
from inf_concat_simple_add[OF n, of ?k, OF k3]
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k)
hence "g (n + ?k) = ?l i ! k" unfolding g by auto
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R"
by (simp only: gnk2 gnsk2)
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
by (rule exI[of _ "n + ?k"], auto simp: main[simplified])
qed
from fg0[unfolded rtrancl_fun_conv] obtain gg n where start: "gg 0 = f 0"
and n: "gg n = g 0" and steps: "\<And> i. i < n \<Longrightarrow> (gg i, gg (Suc i)) \<in> R \<union> S" by auto
let ?h = "\<lambda> i. if i < n then gg i else g (i - n)"
obtain h where h: "h = ?h" by auto
{
fix i
assume i: "i \<le> n"
have "h i = gg i" using i unfolding h
by (cases "i < n", auto simp: n)
} note gg = this
from gg[of 0] \<open>f 0 \<in> T\<close> have h0: "h 0 \<in> T" unfolding start by auto
{
fix i
have "(h i, h (Suc i)) \<in> R \<union> S"
proof (cases "i < n")
case True
from steps[of i] gg[of i] gg[of "Suc i"] True show ?thesis by auto
next
case False
hence "i = n + (i - n)" by auto
then obtain k where i: "i = n + k" by auto
from gsteps[of k] show ?thesis unfolding h i by simp
qed
} note hsteps = this
from SN[unfolded SN_rel_on_alt_def, rule_format, OF conjI[OF allI[OF hsteps] h0]]
have "\<not> (INFM j. (h j, h (Suc j)) \<in> R)" .
moreover have "INFM j. (h j, h (Suc j)) \<in> R" unfolding INFM_nat_le
proof (rule)
fix m
from infR[unfolded INFM_nat_le, rule_format, of m]
obtain i where i: "i \<ge> m" and g: "(g i, g (Suc i)) \<in> R" by auto
show "\<exists> n \<ge> m. (h n , h (Suc n)) \<in> R"
by (rule exI[of _ "i + n"], unfold h, insert g i, auto)
qed
ultimately show False ..
qed
qed
lemma SN_rel_on_conv: "SN_rel_on = SN_rel_on_alt"
by (intro ext) (blast intro: SN_rel_on_imp_SN_rel_on_alt SN_rel_on_alt_imp_SN_rel_on)
lemmas SN_rel_defs = SN_rel_on_def SN_rel_on_alt_def
lemma SN_rel_on_alt_r_empty : "SN_rel_on_alt {} S T"
unfolding SN_rel_defs by auto
lemma SN_rel_on_alt_s_empty : "SN_rel_on_alt R {} = SN_on R"
by (intro ext, unfold SN_rel_defs SN_defs, auto)
lemma SN_rel_on_mono':
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> R' \<union> S'" and SN: "SN_rel_on R' S' T"
shows "SN_rel_on R S T"
proof -
note conv = SN_rel_on_conv SN_rel_on_alt_def INFM_nat_le
show ?thesis unfolding conv
proof(intro allI impI)
fix f
assume "chain (R \<union> S) f \<and> f 0 \<in> T"
with R S have "chain (R' \<union> S') f \<and> f 0 \<in> T" by auto
from SN[unfolded conv, rule_format, OF this]
show "\<not> (\<forall> m. \<exists> n \<ge> m. (f n, f (Suc n)) \<in> R)" using R by auto
qed
qed
lemma relto_mono:
assumes "R \<subseteq> R'" and "S \<subseteq> S'"
shows "relto R S \<subseteq> relto R' S'"
using assms rtrancl_mono by blast
lemma SN_rel_on_mono:
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'"
and SN: "SN_rel_on R' S' T"
shows "SN_rel_on R S T"
using SN
unfolding SN_rel_on_def using SN_on_mono[OF _ relto_mono[OF R S]] by blast
lemmas SN_rel_on_alt_mono = SN_rel_on_mono[unfolded SN_rel_on_conv]
lemma SN_rel_on_imp_SN_on:
assumes "SN_rel_on R S T" shows "SN_on R T"
proof
fix f
assume "chain R f"
and f0: "f 0 \<in> T"
hence "\<And>i. (f i, f (Suc i)) \<in> relto R S" by blast
thus False using assms f0 unfolding SN_rel_on_def SN_defs by blast
qed
lemma relto_Id: "relto R (S \<union> Id) = relto R S" by simp
lemma SN_rel_on_Id:
shows "SN_rel_on R (S \<union> Id) T = SN_rel_on R S T"
unfolding SN_rel_on_def by (simp only: relto_Id)
lemma SN_rel_on_empty[simp]: "SN_rel_on R {} T = SN_on R T"
unfolding SN_rel_on_def by auto
lemma SN_rel_on_ideriv: "SN_rel_on R S T = (\<not> (\<exists> as. ideriv R S as \<and> as 0 \<in> T))" (is "?L = ?R")
proof
assume ?L
show ?R
proof
assume "\<exists> as. ideriv R S as \<and> as 0 \<in> T"
then obtain as where id: "ideriv R S as" and T: "as 0 \<in> T" by auto
note id = id[unfolded ideriv_def]
from \<open>?L\<close>[unfolded SN_rel_on_conv SN_rel_on_alt_def, THEN spec[of _ as]]
id T obtain i where i: "\<And> j. j \<ge> i \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
with id[unfolded INFM_nat, THEN conjunct2, THEN spec[of _ "Suc i"]] show False by auto
qed
next
assume ?R
show ?L
unfolding SN_rel_on_conv SN_rel_on_alt_def
proof(intro allI impI)
fix as
assume "chain (R \<union> S) as \<and> as 0 \<in> T"
with \<open>?R\<close>[unfolded ideriv_def] have "\<not> (INFM i. (as i, as (Suc i)) \<in> R)" by auto
from this[unfolded INFM_nat] obtain i where i: "\<And>j. i < j \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
show "\<not> (INFM j. (as j, as (Suc j)) \<in> R)" unfolding INFM_nat using i by blast
qed
qed
lemma SN_rel_to_SN_rel_alt: "SN_rel R S \<Longrightarrow> SN_rel_alt R S"
proof (unfold SN_rel_on_def)
assume SN: "SN (relto R S)"
show ?thesis
proof (unfold SN_rel_on_alt_def, intro allI impI)
fix f
presume steps: "chain (R \<union> S) f"
obtain r where r: "\<And>j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)"
proof (rule ccontr)
assume "\<not> ?thesis"
hence ih: "infinitely_many r" unfolding infinitely_many_def r by blast
obtain r_index where "r_index = infinitely_many.index r" by simp
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih]
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" ..
{
fix i
let ?ri = "r_index i"
let ?rsi = "r_index (Suc i)"
from r_index have isi: "?ri < ?rsi" by auto
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto
from ri isi rsi have risi: "ri < rsi" by simp
{
fix n
assume "Suc n \<le> rsi - ri"
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*"
proof (induct n, simp)
case (Suc n)
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S"
using inter[of "Suc n + ri"] Suc(2) by auto
with stepps show ?case by simp
qed
}
from this[of "rsi - ri - 1"] risi have
"(f (Suc ri), f rsi) \<in> S^*" by simp
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto
}
hence "\<not> SN (S^* O R O S^*)" unfolding SN_defs by blast
with SN show False by simp
qed
qed simp
qed
lemma SN_rel_alt_to_SN_rel : "SN_rel_alt R S \<Longrightarrow> SN_rel R S"
proof (unfold SN_rel_on_def)
assume SN: "SN_rel_alt R S"
show "SN (relto R S)"
proof
fix f
assume "chain (relto R S) f"
hence steps: "\<And>i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*"
{
fix i
from steps obtain bi ai where "?prop i ai bi" by blast
hence "\<exists> ai bi. ?prop i ai bi" by blast
}
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)"
{
fix i
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" ..
with R have "?prop i li" by blast
hence "\<exists> li. ?prop i li" ..
}
hence "\<forall> i. \<exists> li. ?prop i li" ..
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto
let ?p = "\<lambda> i. ?prop i (l i)"
from steps have steps: "\<And> i. ?p i" by blast
let ?l = "\<lambda> i. a i # l i"
let ?l' = "\<lambda> i. length (?l i)"
let ?g = "\<lambda> i. inf_concat_simple ?l' i"
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)"
proof -
fix i j n
assume n: "?g n = (i,j)"
show "j < length (?l i)"
proof (cases n)
case 0
with n have "j = 0" by auto
thus ?thesis by simp
next
case (Suc nn)
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto)
show ?thesis
proof (cases "Suc jj < length (?l ii)")
case True
with nn Suc have "?g n = (ii, Suc jj)" by auto
with n True show ?thesis by simp
next
case False
with nn Suc have "?g n = (Suc ii, 0)" by auto
with n show ?thesis by simp
qed
qed
qed
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S"
proof -
fix n
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto)
show "(g n, g (Suc n)) \<in> R \<union> S"
proof (cases "Suc j < length (?l i)")
case True
with n have "?g (Suc n) = (i, Suc j)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto
thus ?thesis using steps[of i] True by auto
next
case False
with n have "?g (Suc n) = (Suc i, 0)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto
from gn len[OF n] False have "j = length (?l i) - 1" by auto
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto
qed
qed
have infR: "INFM j. (g j, g (Suc j)) \<in> R" unfolding INFM_nat_le
proof
fix n
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto)
from len[OF n] have j: "j < ?l' i" .
let ?k = "?l' i - 1 - j"
obtain k where k: "k = j + ?k" by auto
from j k have k2: "k = ?l' i - 1" and k3: "j + ?k < ?l' i" by auto
from inf_concat_simple_add[OF n, of ?k, OF k3]
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k)
hence "g (n + ?k) = ?l i ! k" unfolding g by auto
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R"
by (simp only: gnk2 gnsk2)
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
by (rule exI[of _ "n + ?k"], auto simp: main[simplified])
qed
from SN[unfolded SN_rel_on_alt_def] gsteps infR show False by blast
qed
qed
lemma SN_rel_alt_r_empty : "SN_rel_alt {} S"
unfolding SN_rel_defs by auto
lemma SN_rel_alt_s_empty : "SN_rel_alt R {} = SN R"
unfolding SN_rel_defs SN_defs by auto
lemma SN_rel_mono':
"R \<subseteq> R' \<Longrightarrow> S \<subseteq> R' \<union> S' \<Longrightarrow> SN_rel R' S' \<Longrightarrow> SN_rel R S"
unfolding SN_rel_on_conv SN_rel_defs INFM_nat_le
by (metis contra_subsetD sup.left_idem sup.mono)
lemma SN_rel_mono:
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'" and SN: "SN_rel R' S'"
shows "SN_rel R S"
using SN unfolding SN_rel_defs using SN_subset[OF _ relto_mono[OF R S]] by blast
lemmas SN_rel_alt_mono = SN_rel_mono[unfolded SN_rel_on_conv]
lemma SN_rel_imp_SN : assumes "SN_rel R S" shows "SN R"
proof
fix f
assume "\<forall> i. (f i, f (Suc i)) \<in> R"
hence "\<And> i. (f i, f (Suc i)) \<in> relto R S" by blast
thus False using assms unfolding SN_rel_defs SN_defs by fast
qed
lemma relto_trancl_conv : "(relto R S)^+ = ((R \<union> S))^* O R O ((R \<union> S))^*" by regexp
lemma SN_rel_Id:
shows "SN_rel R (S \<union> Id) = SN_rel R S"
unfolding SN_rel_defs by (simp only: relto_Id)
lemma relto_rtrancl: "relto R (S^*) = relto R S" by regexp
lemma SN_rel_empty[simp]: "SN_rel R {} = SN R"
unfolding SN_rel_defs by auto
lemma SN_rel_ideriv: "SN_rel R S = (\<not> (\<exists> as. ideriv R S as))" (is "?L = ?R")
proof
assume ?L
show ?R
proof
assume "\<exists> as. ideriv R S as"
then obtain as where id: "ideriv R S as" by auto
note id = id[unfolded ideriv_def]
from \<open>?L\<close>[unfolded SN_rel_on_conv SN_rel_defs, THEN spec[of _ as]]
id obtain i where i: "\<And> j. j \<ge> i \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
with id[unfolded INFM_nat, THEN conjunct2, THEN spec[of _ "Suc i"]] show False by auto
qed
next
assume ?R
show ?L
unfolding SN_rel_on_conv SN_rel_defs
proof (intro allI impI)
fix as
presume "chain (R \<union> S) as"
with \<open>?R\<close>[unfolded ideriv_def] have "\<not> (INFM i. (as i, as (Suc i)) \<in> R)" by auto
from this[unfolded INFM_nat] obtain i where i: "\<And> j. i < j \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
show "\<not> (INFM j. (as j, as (Suc j)) \<in> R)" unfolding INFM_nat using i by blast
qed simp
qed
lemma SN_rel_map:
fixes R Rw R' Rw' :: "'a rel"
defines A: "A \<equiv> R' \<union> Rw'"
assumes SN: "SN_rel R' Rw'"
and R: "\<And>s t. (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> A^* O R' O A^*"
and Rw: "\<And>s t. (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^*"
shows "SN_rel R Rw"
unfolding SN_rel_defs
proof
fix g
assume steps: "chain (relto R Rw) g"
let ?f = "\<lambda>i. (f (g i))"
obtain h where h: "h = ?f" by auto
{
fix i
let ?m = "\<lambda> (x,y). (f x, f y)"
{
fix s t
assume "(s,t) \<in> Rw^*"
hence "?m (s,t) \<in> A^*"
proof (induct)
case base show ?case by simp
next
case (step t u)
from Rw[OF step(2)] step(3)
show ?case by auto
qed
} note Rw = this
from steps have "(g i, g (Suc i)) \<in> relto R Rw" ..
from this
obtain s t where gs: "(g i,s) \<in> Rw^*" and st: "(s,t) \<in> R" and tg: "(t, g (Suc i)) \<in> Rw^*" by auto
from Rw[OF gs] R[OF st] Rw[OF tg]
have step: "(?f i, ?f (Suc i)) \<in> A^* O (A^* O R' O A^*) O A^*"
by fast
have "(?f i, ?f (Suc i)) \<in> A^* O R' O A^*"
by (rule subsetD[OF _ step], regexp)
hence "(h i, h (Suc i)) \<in> (relto R' Rw')^+"
unfolding A h relto_trancl_conv .
}
hence "\<not> SN ((relto R' Rw')^+)" by auto
with SN_imp_SN_trancl[OF SN[unfolded SN_rel_on_def]]
show False by simp
qed
datatype SN_rel_ext_type = top_s | top_ns | normal_s | normal_ns
fun SN_rel_ext_step :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> SN_rel_ext_type \<Rightarrow> 'a rel" where
"SN_rel_ext_step P Pw R Rw top_s = P"
| "SN_rel_ext_step P Pw R Rw top_ns = Pw"
| "SN_rel_ext_step P Pw R Rw normal_s = R"
| "SN_rel_ext_step P Pw R Rw normal_ns = Rw"
(* relative termination with four relations as required in DP-framework *)
definition SN_rel_ext :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
"SN_rel_ext P Pw R Rw M \<equiv> (\<not> (\<exists>f t.
(\<forall> i. (f i, f (Suc i)) \<in> SN_rel_ext_step P Pw R Rw (t i))
\<and> (\<forall> i. M (f i))
\<and> (INFM i. t i \<in> {top_s,top_ns})
\<and> (INFM i. t i \<in> {top_s,normal_s})))"
lemma SN_rel_ext_step_mono: assumes "P \<subseteq> P'" "Pw \<subseteq> Pw'" "R \<subseteq> R'" "Rw \<subseteq> Rw'"
shows "SN_rel_ext_step P Pw R Rw t \<subseteq> SN_rel_ext_step P' Pw' R' Rw' t"
using assms
by (cases t, auto)
lemma SN_rel_ext_mono: assumes subset: "P \<subseteq> P'" "Pw \<subseteq> Pw'" "R \<subseteq> R'" "Rw \<subseteq> Rw'" and
SN: "SN_rel_ext P' Pw' R' Rw' M" shows "SN_rel_ext P Pw R Rw M"
using SN_rel_ext_step_mono[OF subset] SN unfolding SN_rel_ext_def by blast
lemma SN_rel_ext_trans:
fixes P Pw R Rw :: "'a rel" and M :: "'a \<Rightarrow> bool"
defines M': "M' \<equiv> {(s,t). M t}"
defines A: "A \<equiv> (P \<union> Pw \<union> R \<union> Rw) \<inter> M'"
assumes "SN_rel_ext P Pw R Rw M"
shows "SN_rel_ext (A^* O (P \<inter> M') O A^*) (A^* O ((P \<union> Pw) \<inter> M') O A^*) (A^* O ((P \<union> R) \<inter> M') O A^*) (A^*) M" (is "SN_rel_ext ?P ?Pw ?R ?Rw M")
proof (rule ccontr)
let ?relt = "SN_rel_ext_step ?P ?Pw ?R ?Rw"
let ?rel = "SN_rel_ext_step P Pw R Rw"
assume "\<not> ?thesis"
from this[unfolded SN_rel_ext_def]
obtain f ty
where steps: "\<And> i. (f i, f (Suc i)) \<in> ?relt (ty i)"
and min: "\<And> i. M (f i)"
and inf1: "INFM i. ty i \<in> {top_s, top_ns}"
and inf2: "INFM i. ty i \<in> {top_s, normal_s}"
by auto
let ?Un = "\<lambda> tt. \<Union> (?rel ` tt)"
let ?UnM = "\<lambda> tt. (\<Union> (?rel ` tt)) \<inter> M'"
let ?A = "?UnM {top_s,top_ns,normal_s,normal_ns}"
let ?P' = "?UnM {top_s}"
let ?Pw' = "?UnM {top_s,top_ns}"
let ?R' = "?UnM {top_s,normal_s}"
let ?Rw' = "?UnM {top_s,top_ns,normal_s,normal_ns}"
have A: "A = ?A" unfolding A by auto
have P: "(P \<inter> M') = ?P'" by auto
have Pw: "(P \<union> Pw) \<inter> M' = ?Pw'" by auto
have R: "(P \<union> R) \<inter> M' = ?R'" by auto
have Rw: "A = ?Rw'" unfolding A ..
{
fix s t tt
assume m: "M s" and st: "(s,t) \<in> ?UnM tt"
hence "\<exists> typ \<in> tt. (s,t) \<in> ?rel typ \<and> M s \<and> M t" unfolding M' by auto
} note one_step = this
let ?seq = "\<lambda> s t g n ty. s = g 0 \<and> t = g n \<and> (\<forall> i < n. (g i, g (Suc i)) \<in> ?rel (ty i)) \<and> (\<forall> i \<le> n. M (g i))"
{
fix s t
assume m: "M s" and st: "(s,t) \<in> A^*"
from st[unfolded rtrancl_fun_conv]
obtain g n where g0: "g 0 = s" and gn: "g n = t" and steps: "\<And> i. i < n \<Longrightarrow> (g i, g (Suc i)) \<in> ?A" unfolding A by auto
{
fix i
assume "i \<le> n"
have "M (g i)"
proof (cases i)
case 0
show ?thesis unfolding 0 g0 by (rule m)
next
case (Suc j)
with \<open>i \<le> n\<close> have "j < n" by auto
from steps[OF this] show ?thesis unfolding Suc M' by auto
qed
} note min = this
{
fix i
assume i: "i < n" hence i': "i \<le> n" by auto
from i' one_step[OF min steps[OF i]]
have "\<exists> ty. (g i, g (Suc i)) \<in> ?rel ty" by blast
}
hence "\<forall> i. (\<exists> ty. i < n \<longrightarrow> (g i, g (Suc i)) \<in> ?rel ty)" by auto
from choice[OF this]
obtain tt where steps: "\<And> i. i < n \<Longrightarrow> (g i, g (Suc i)) \<in> ?rel (tt i)" by auto
from g0 gn steps min
have "?seq s t g n tt" by auto
hence "\<exists> g n tt. ?seq s t g n tt" by blast
} note A_steps = this
let ?seqtt = "\<lambda> s t tt g n ty. s = g 0 \<and> t = g n \<and> n > 0 \<and> (\<forall> i<n. (g i, g (Suc i)) \<in> ?rel (ty i)) \<and> (\<forall> i \<le> n. M (g i)) \<and> (\<exists> i < n. ty i \<in> tt)"
{
fix s t tt
assume m: "M s" and st: "(s,t) \<in> A^* O ?UnM tt O A^*"
then obtain u v where su: "(s,u) \<in> A^*" and uv: "(u,v) \<in> ?UnM tt" and vt: "(v,t) \<in> A^*"
by auto
from A_steps[OF m su] obtain g1 n1 ty1 where seq1: "?seq s u g1 n1 ty1" by auto
from uv have "M v" unfolding M' by auto
from A_steps[OF this vt] obtain g2 n2 ty2 where seq2: "?seq v t g2 n2 ty2" by auto
from seq1 have "M u" by auto
from one_step[OF this uv] obtain ty where ty: "ty \<in> tt" and uv: "(u,v) \<in> ?rel ty" by auto
let ?g = "\<lambda> i. if i \<le> n1 then g1 i else g2 (i - (Suc n1))"
let ?ty = "\<lambda> i. if i < n1 then ty1 i else if i = n1 then ty else ty2 (i - (Suc n1))"
let ?n = "Suc (n1 + n2)"
have ex: "\<exists> i < ?n. ?ty i \<in> tt"
by (rule exI[of _ n1], simp add: ty)
have steps: "\<forall> i < ?n. (?g i, ?g (Suc i)) \<in> ?rel (?ty i)"
proof (intro allI impI)
fix i
assume "i < ?n"
show "(?g i, ?g (Suc i)) \<in> ?rel (?ty i)"
proof (cases "i \<le> n1")
case True
with seq1 seq2 uv show ?thesis by auto
next
case False
hence "i = Suc n1 + (i - Suc n1)" by auto
then obtain k where i: "i = Suc n1 + k" by auto
with \<open>i < ?n\<close> have "k < n2" by auto
thus ?thesis using seq2 unfolding i by auto
qed
qed
from steps seq1 seq2 ex
have seq: "?seqtt s t tt ?g ?n ?ty" by auto
have "\<exists> g n ty. ?seqtt s t tt g n ty"
by (intro exI, rule seq)
} note A_tt_A = this
let ?tycon = "\<lambda> ty1 ty2 tt ty' n. ty1 = ty2 \<longrightarrow> (\<exists>i < n. ty' i \<in> tt)"
let ?seqt = "\<lambda> i ty g n ty'. f i = g 0 \<and> f (Suc i) = g n \<and> (\<forall> j < n. (g j, g (Suc j)) \<in> ?rel (ty' j)) \<and> (\<forall> j \<le> n. M (g j))
\<and> (?tycon (ty i) top_s {top_s} ty' n)
\<and> (?tycon (ty i) top_ns {top_s,top_ns} ty' n)
\<and> (?tycon (ty i) normal_s {top_s,normal_s} ty' n)"
{
fix i
have "\<exists> g n ty'. ?seqt i ty g n ty'"
proof (cases "ty i")
case top_s
from steps[of i, unfolded top_s]
have "(f i, f (Suc i)) \<in> ?P" by auto
from A_tt_A[OF min this[unfolded P]]
show ?thesis unfolding top_s by auto
next
case top_ns
from steps[of i, unfolded top_ns]
have "(f i, f (Suc i)) \<in> ?Pw" by auto
from A_tt_A[OF min this[unfolded Pw]]
show ?thesis unfolding top_ns by auto
next
case normal_s
from steps[of i, unfolded normal_s]
have "(f i, f (Suc i)) \<in> ?R" by auto
from A_tt_A[OF min this[unfolded R]]
show ?thesis unfolding normal_s by auto
next
case normal_ns
from steps[of i, unfolded normal_ns]
have "(f i, f (Suc i)) \<in> ?Rw" by auto
from A_steps[OF min this]
show ?thesis unfolding normal_ns by auto
qed
}
hence "\<forall> i. \<exists> g n ty'. ?seqt i ty g n ty'" by auto
from choice[OF this] obtain g where "\<forall> i. \<exists> n ty'. ?seqt i ty (g i) n ty'" by auto
from choice[OF this] obtain n where "\<forall> i. \<exists> ty'. ?seqt i ty (g i) (n i) ty'" by auto
from choice[OF this] obtain ty' where "\<forall> i. ?seqt i ty (g i) (n i) (ty' i)" by auto
hence partial: "\<And> i. ?seqt i ty (g i) (n i) (ty' i)" ..
(* it remains to concatenate all these finite sequences to an infinite one *)
let ?ind = "inf_concat n"
let ?g = "\<lambda> k. (\<lambda> (i,j). g i j) (?ind k)"
let ?ty = "\<lambda> k. (\<lambda> (i,j). ty' i j) (?ind k)"
have inf: "INFM i. 0 < n i"
unfolding INFM_nat_le
proof (intro allI)
fix m
from inf1[unfolded INFM_nat_le]
obtain k where k: "k \<ge> m" and ty: "ty k \<in> {top_s, top_ns}" by auto
show "\<exists> k \<ge> m. 0 < n k"
proof (intro exI conjI, rule k)
from partial[of k] ty show "0 < n k" by (cases "n k", auto)
qed
qed
note bounds = inf_concat_bounds[OF inf]
note inf_Suc = inf_concat_Suc[OF inf]
note inf_mono = inf_concat_mono[OF inf]
have "\<not> SN_rel_ext P Pw R Rw M"
unfolding SN_rel_ext_def simp_thms
proof (rule exI[of _ ?g], rule exI[of _ ?ty], intro conjI allI)
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from bounds[OF this] have j: "j < n i" by auto
show "M (?g k)" unfolding ik using partial[of i] j by auto
next
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from bounds[OF this] have j: "j < n i" by auto
from partial[of i] j have step: "(g i j, g i (Suc j)) \<in> ?rel (ty' i j)" by auto
obtain i' j' where isk: "?ind (Suc k) = (i',j')" by force
have i'j': "g i' j' = g i (Suc j)"
proof (rule inf_Suc[OF _ ik isk])
fix i
from partial[of i]
have "g i (n i) = f (Suc i)" by simp
also have "... = g (Suc i) 0" using partial[of "Suc i"] by simp
finally show "g i (n i) = g (Suc i) 0" .
qed
show "(?g k, ?g (Suc k)) \<in> ?rel (?ty k)"
unfolding ik isk split i'j'
by (rule step)
next
show "INFM i. ?ty i \<in> {top_s, top_ns}"
unfolding INFM_nat_le
proof (intro allI)
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from inf1[unfolded INFM_nat] obtain i' where i': "i' > i" and ty: "ty i' \<in> {top_s, top_ns}" by auto
from partial[of i'] ty obtain j' where j': "j' < n i'" and ty': "ty' i' j' \<in> {top_s, top_ns}" by auto
from inf_concat_surj[of _ n, OF j'] obtain k' where ik': "?ind k' = (i',j')" ..
from inf_mono[OF ik ik' i'] have k: "k \<le> k'" by simp
show "\<exists> k' \<ge> k. ?ty k' \<in> {top_s, top_ns}"
by (intro exI conjI, rule k, unfold ik' split, rule ty')
qed
next
show "INFM i. ?ty i \<in> {top_s, normal_s}"
unfolding INFM_nat_le
proof (intro allI)
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from inf2[unfolded INFM_nat] obtain i' where i': "i' > i" and ty: "ty i' \<in> {top_s, normal_s}" by auto
from partial[of i'] ty obtain j' where j': "j' < n i'" and ty': "ty' i' j' \<in> {top_s, normal_s}" by auto
from inf_concat_surj[of _ n, OF j'] obtain k' where ik': "?ind k' = (i',j')" ..
from inf_mono[OF ik ik' i'] have k: "k \<le> k'" by simp
show "\<exists> k' \<ge> k. ?ty k' \<in> {top_s, normal_s}"
by (intro exI conjI, rule k, unfold ik' split, rule ty')
qed
qed
with assms show False by auto
qed
lemma SN_rel_ext_map: fixes P Pw R Rw P' Pw' R' Rw' :: "'a rel" and M M' :: "'a \<Rightarrow> bool"
defines Ms: "Ms \<equiv> {(s,t). M' t}"
defines A: "A \<equiv> (P' \<union> Pw' \<union> R' \<union> Rw') \<inter> Ms"
assumes SN: "SN_rel_ext P' Pw' R' Rw' M'"
and P: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> P \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms) O A^*) \<and> I t"
and Pw: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> Pw \<Longrightarrow> (f s, f t) \<in> (A^* O ((P' \<union> Pw') \<inter> Ms) O A^*) \<and> I t"
and R: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> (A^* O ((P' \<union> R') \<inter> Ms) O A^*) \<and> I t"
and Rw: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^* \<and> I t"
shows "SN_rel_ext P Pw R Rw M"
proof -
note SN = SN_rel_ext_trans[OF SN]
let ?P = "(A^* O (P' \<inter> Ms) O A^*)"
let ?Pw = "(A^* O ((P' \<union> Pw') \<inter> Ms) O A^*)"
let ?R = "(A^* O ((P' \<union> R') \<inter> Ms) O A^*)"
let ?Rw = "A^*"
let ?relt = "SN_rel_ext_step ?P ?Pw ?R ?Rw"
let ?rel = "SN_rel_ext_step P Pw R Rw"
show ?thesis
proof (rule ccontr)
assume "\<not> ?thesis"
from this[unfolded SN_rel_ext_def]
obtain g ty
where steps: "\<And> i. (g i, g (Suc i)) \<in> ?rel (ty i)"
and min: "\<And> i. M (g i)"
and inf1: "INFM i. ty i \<in> {top_s, top_ns}"
and inf2: "INFM i. ty i \<in> {top_s, normal_s}"
by auto
from inf1[unfolded INFM_nat] obtain k where k: "ty k \<in> {top_s, top_ns}" by auto
let ?k = "Suc k"
let ?i = "shift id ?k"
let ?f = "\<lambda> i. f (shift g ?k i)"
let ?ty = "shift ty ?k"
{
fix i
assume ty: "ty i \<in> {top_s,top_ns}"
note m = min[of i]
note ms = min[of "Suc i"]
from P[OF m ms]
Pw[OF m ms]
steps[of i]
ty
have "(f (g i), f (g (Suc i))) \<in> ?relt (ty i) \<and> I (g (Suc i))"
by (cases "ty i", auto)
} note stepsP = this
{
fix i
assume I: "I (g i)"
note m = min[of i]
note ms = min[of "Suc i"]
from P[OF m ms]
Pw[OF m ms]
R[OF I m ms]
Rw[OF I m ms]
steps[of i]
have "(f (g i), f (g (Suc i))) \<in> ?relt (ty i) \<and> I (g (Suc i))"
by (cases "ty i", auto)
} note stepsI = this
{
fix i
have "I (g (?i i))"
proof (induct i)
case 0
show ?case using stepsP[OF k] by simp
next
case (Suc i)
from stepsI[OF Suc] show ?case by simp
qed
} note I = this
have "\<not> SN_rel_ext ?P ?Pw ?R ?Rw M'"
unfolding SN_rel_ext_def simp_thms
proof (rule exI[of _ ?f], rule exI[of _ ?ty], intro allI conjI)
fix i
show "(?f i, ?f (Suc i)) \<in> ?relt (?ty i)"
using stepsI[OF I[of i]] by auto
next
show "INFM i. ?ty i \<in> {top_s, top_ns}"
unfolding Infm_shift[of "\<lambda>i. i \<in> {top_s,top_ns}" ty ?k]
by (rule inf1)
next
show "INFM i. ?ty i \<in> {top_s, normal_s}"
unfolding Infm_shift[of "\<lambda>i. i \<in> {top_s,normal_s}" ty ?k]
by (rule inf2)
next
fix i
have A: "A \<subseteq> Ms" unfolding A by auto
from rtrancl_mono[OF this] have As: "A^* \<subseteq> Ms^*" by auto
have PM: "?P \<subseteq> Ms^* O Ms O Ms^*" using As by auto
have PwM: "?Pw \<subseteq> Ms^* O Ms O Ms^*" using As by auto
have RM: "?R \<subseteq> Ms^* O Ms O Ms^*" using As by auto
have RwM: "?Rw \<subseteq> Ms^*" using As by auto
from PM PwM RM have "?P \<union> ?Pw \<union> ?R \<subseteq> Ms^* O Ms O Ms^*" (is "?PPR \<subseteq> _") by auto
also have "... \<subseteq> Ms^+" by regexp
also have "... = Ms"
proof
have "Ms^+ \<subseteq> Ms^* O Ms" by regexp
also have "... \<subseteq> Ms" unfolding Ms by auto
finally show "Ms^+ \<subseteq> Ms" .
qed regexp
finally have PPR: "?PPR \<subseteq> Ms" .
show "M' (?f i)"
proof (induct i)
case 0
from stepsP[OF k] k
have "(f (g k), f (g (Suc k))) \<in> ?PPR" by (cases "ty k", auto)
with PPR show ?case unfolding Ms by simp blast
next
case (Suc i)
show ?case
proof (cases "?ty i = normal_ns")
case False
hence "?ty i \<in> {top_s,top_ns,normal_s}"
by (cases "?ty i", auto)
with stepsI[OF I[of i]] have "(?f i, ?f (Suc i)) \<in> ?PPR"
by auto
from subsetD[OF PPR this] have "(?f i, ?f (Suc i)) \<in> Ms" .
thus ?thesis unfolding Ms by auto
next
case True
with stepsI[OF I[of i]] have "(?f i, ?f (Suc i)) \<in> ?Rw" by auto
with RwM have mem: "(?f i, ?f (Suc i)) \<in> Ms^*" by auto
thus ?thesis
proof (cases)
case base
with Suc show ?thesis by simp
next
case step
thus ?thesis unfolding Ms by simp
qed
qed
qed
qed
with SN
show False unfolding A Ms by simp
qed
qed
(* and a version where it is assumed that f always preserves M and that R' and Rw' preserve M' *)
lemma SN_rel_ext_map_min: fixes P Pw R Rw P' Pw' R' Rw' :: "'a rel" and M M' :: "'a \<Rightarrow> bool"
defines Ms: "Ms \<equiv> {(s,t). M' t}"
defines A: "A \<equiv> P' \<inter> Ms \<union> Pw' \<inter> Ms \<union> R' \<union> Rw'"
assumes SN: "SN_rel_ext P' Pw' R' Rw' M'"
and M: "\<And> t. M t \<Longrightarrow> M' (f t)"
and M': "\<And> s t. M' s \<Longrightarrow> (s,t) \<in> R' \<union> Rw' \<Longrightarrow> M' t"
and P: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> P \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms) O A^*) \<and> I t"
and Pw: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> Pw \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms \<union> Pw' \<inter> Ms) O A^*) \<and> I t"
and R: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms \<union> R') O A^*) \<and> I t"
and Rw: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^* \<and> I t"
shows "SN_rel_ext P Pw R Rw M"
proof -
let ?Ms = "{(s,t). M' t}"
let ?A = "(P' \<union> Pw' \<union> R' \<union> Rw') \<inter> ?Ms"
{
fix s t
assume s: "M' s" and "(s,t) \<in> A"
with M'[OF s, of t] have "(s,t) \<in> ?A \<and> M' t" unfolding Ms A by auto
} note Aone = this
{
fix s t
assume s: "M' s" and steps: "(s,t) \<in> A^*"
from steps have "(s,t) \<in> ?A^* \<and> M' t"
proof (induct)
case base from s show ?case by simp
next
case (step t u)
note one = Aone[OF step(3)[THEN conjunct2] step(2)]
from step(3) one
have steps: "(s,u) \<in> ?A^* O ?A" by blast
have "(s,u) \<in> ?A^*"
by (rule subsetD[OF _ steps], regexp)
with one show ?case by simp
qed
} note Amany = this
let ?P = "(A^* O (P' \<inter> Ms) O A^*)"
let ?Pw = "(A^* O (P' \<inter> Ms \<union> Pw' \<inter> Ms) O A^*)"
let ?R = "(A^* O (P' \<inter> Ms \<union> R') O A^*)"
let ?Rw = "A^*"
let ?P' = "(?A^* O (P' \<inter> ?Ms) O ?A^*)"
let ?Pw' = "(?A^* O ((P' \<union> Pw') \<inter> ?Ms) O ?A^*)"
let ?R' = "(?A^* O ((P' \<union> R') \<inter> ?Ms) O ?A^*)"
let ?Rw' = "?A^*"
show ?thesis
proof (rule SN_rel_ext_map[OF SN])
fix s t
assume s: "M s" and t: "M t" and step: "(s,t) \<in> P"
from P[OF s t M[OF s] M[OF t] step]
have "(f s, f t) \<in> ?P" and I: "I t" by auto
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms"
and vt: "(v,f t) \<in> A^*" by auto
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto
from uv have v: "M' v" unfolding Ms by auto
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto
from su uv vt I
show "(f s, f t) \<in> ?P' \<and> I t" unfolding Ms by auto
next
fix s t
assume s: "M s" and t: "M t" and step: "(s,t) \<in> Pw"
from Pw[OF s t M[OF s] M[OF t] step]
have "(f s, f t) \<in> ?Pw" and I: "I t" by auto
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms \<union> Pw' \<inter> Ms"
and vt: "(v,f t) \<in> A^*" by auto
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto
from uv have uv: "(u,v) \<in> (P' \<union> Pw') \<inter> ?Ms" and v: "M' v" unfolding Ms
by auto
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto
from su uv vt I
show "(f s, f t) \<in> ?Pw' \<and> I t" by auto
next
fix s t
assume I: "I s" and s: "M s" and t: "M t" and step: "(s,t) \<in> R"
from R[OF I s t M[OF s] M[OF t] step]
have "(f s, f t) \<in> ?R" and I: "I t" by auto
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms \<union> R'"
and vt: "(v,f t) \<in> A^*" by auto
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto
from uv M'[OF u, of v] have uv: "(u,v) \<in> (P' \<union> R') \<inter> ?Ms" and v: "M' v" unfolding Ms
by auto
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto
from su uv vt I
show "(f s, f t) \<in> ?R' \<and> I t" by auto
next
fix s t
assume I: "I s" and s: "M s" and t: "M t" and step: "(s,t) \<in> Rw"
from Rw[OF I s t M[OF s] M[OF t] step]
have steps: "(f s, f t) \<in> ?Rw" and I: "I t" by auto
from Amany[OF M[OF s] steps] I
show "(f s, f t) \<in> ?Rw' \<and> I t" by auto
qed
qed
(*OLD PART*)
lemma SN_relto_imp_SN_rel: "SN (relto R S) \<Longrightarrow> SN_rel R S"
proof -
assume SN: "SN (relto R S)"
show ?thesis
proof (simp only: SN_rel_on_conv SN_rel_defs, intro allI impI)
fix f
presume steps: "chain (R \<union> S) f"
obtain r where r: "\<And> j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)"
proof (rule ccontr)
assume "\<not> ?thesis"
hence ih: "infinitely_many r" unfolding infinitely_many_def r INFM_nat_le by blast
obtain r_index where "r_index = infinitely_many.index r" by simp
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih]
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" ..
{
fix i
let ?ri = "r_index i"
let ?rsi = "r_index (Suc i)"
from r_index have isi: "?ri < ?rsi" by auto
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto
from ri isi rsi have risi: "ri < rsi" by simp
{
fix n
assume "Suc n \<le> rsi - ri"
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*"
proof (induct n, simp)
case (Suc n)
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S"
using inter[of "Suc n + ri"] Suc(2) by auto
with stepps show ?case by simp
qed
}
from this[of "rsi - ri - 1"] risi have
"(f (Suc ri), f rsi) \<in> S^*" by simp
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto
}
hence "\<not> SN (S^* O R O S^*)" unfolding SN_defs by blast
with SN show False by simp
qed
qed simp
qed
(*FIXME: move*)
lemma rtrancl_list_conv:
"((s,t) \<in> R^*) =
(\<exists>list. last (s # list) = t \<and> (\<forall>i. i < length list \<longrightarrow> ((s # list) ! i, (s # list) ! Suc i) \<in> R))" (is "?l = ?r")
proof
assume ?r
then obtain list where "last (s # list) = t \<and> (\<forall> i. i < length list \<longrightarrow> ((s # list) ! i, (s # list) ! Suc i) \<in> R)" ..
thus ?l
proof (induct list arbitrary: s, simp)
case (Cons u ll)
hence "last (u # ll) = t \<and> (\<forall> i. i < length ll \<longrightarrow> ((u # ll) ! i, (u # ll) ! Suc i) \<in> R)" by auto
from Cons(1)[OF this] have rec: "(u,t) \<in> R^*" .
from Cons have "(s, u) \<in> R" by auto
with rec show ?case by auto
qed
next
assume ?l
from rtrancl_imp_seq[OF this]
obtain S n where s: "S 0 = s" and t: "S n = t" and steps: "\<forall> i<n. (S i, S (Suc i)) \<in> R" by auto
let ?list = "map (\<lambda> i. S (Suc i)) [0 ..< n]"
show ?r
proof (rule exI[of _ ?list], intro conjI,
cases n, simp add: s[symmetric] t[symmetric], simp add: t[symmetric])
show "\<forall> i < length ?list. ((s # ?list) ! i, (s # ?list) ! Suc i) \<in> R"
proof (intro allI impI)
fix i
assume i: "i < length ?list"
thus "((s # ?list) ! i, (s # ?list) ! Suc i) \<in> R"
proof (cases i, simp add: s[symmetric] steps)
case (Suc j)
with i steps show ?thesis by simp
qed
qed
qed
qed
fun choice :: "(nat \<Rightarrow> 'a list) \<Rightarrow> nat \<Rightarrow> (nat \<times> nat)" where
"choice f 0 = (0,0)"
| "choice f (Suc n) = (let (i, j) = choice f n in
if Suc j < length (f i)
then (i, Suc j)
else (Suc i, 0))"
lemma SN_rel_imp_SN_relto : "SN_rel R S \<Longrightarrow> SN (relto R S)"
proof -
assume SN: "SN_rel R S"
show "SN (relto R S)"
proof
fix f
assume "\<forall> i. (f i, f (Suc i)) \<in> relto R S"
hence steps: "\<And> i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*"
{
fix i
from steps obtain bi ai where "?prop i ai bi" by blast
hence "\<exists> ai bi. ?prop i ai bi" by blast
}
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)"
{
fix i
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" ..
with R have "?prop i li" by blast
hence "\<exists> li. ?prop i li" ..
}
hence "\<forall> i. \<exists> li. ?prop i li" ..
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto
let ?p = "\<lambda> i. ?prop i (l i)"
from steps have steps: "\<And> i. ?p i" by blast
let ?l = "\<lambda> i. a i # l i"
let ?g = "\<lambda> i. choice (\<lambda> j. ?l j) i"
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)"
proof -
fix i j n
assume n: "?g n = (i,j)"
show "j < length (?l i)"
proof (cases n)
case 0
with n have "j = 0" by auto
thus ?thesis by simp
next
case (Suc nn)
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto)
show ?thesis
proof (cases "Suc jj < length (?l ii)")
case True
with nn Suc have "?g n = (ii, Suc jj)" by auto
with n True show ?thesis by simp
next
case False
with nn Suc have "?g n = (Suc ii, 0)" by auto
with n show ?thesis by simp
qed
qed
qed
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S"
proof -
fix n
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto)
show "(g n, g (Suc n)) \<in> R \<union> S"
proof (cases "Suc j < length (?l i)")
case True
with n have "?g (Suc n) = (i, Suc j)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto
thus ?thesis using steps[of i] True by auto
next
case False
with n have "?g (Suc n) = (Suc i, 0)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto
from gn len[OF n] False have "j = length (?l i) - 1" by auto
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto
qed
qed
have infR: "\<forall> n. \<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
proof
fix n
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto)
from len[OF n] have j: "j \<le> length (?l i) - 1" by simp
let ?k = "length (?l i) - 1 - j"
obtain k where k: "k = j + ?k" by auto
from j k have k2: "k = length (?l i) - 1" and k3: "j + ?k < length (?l i)" by auto
{
fix n i j k l
assume n: "choice l n = (i,j)" and "j + k < length (l i)"
hence "choice l (n + k) = (i, j + k)"
by (induct k arbitrary: j, simp, auto)
}
from this[OF n, of ?k, OF k3]
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k)
hence "g (n + ?k) = ?l i ! k" unfolding g by auto
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R"
by (simp only: gnk2 gnsk2)
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
by (rule exI[of _ "n + ?k"], auto simp: main[simplified])
qed
from SN[simplified SN_rel_on_conv SN_rel_defs] gsteps infR show False
unfolding INFM_nat_le by fast
qed
qed
hide_const choice
lemma SN_relto_SN_rel_conv: "SN (relto R S) = SN_rel R S"
by (blast intro: SN_relto_imp_SN_rel SN_rel_imp_SN_relto)
lemma SN_rel_empty1: "SN_rel {} S"
unfolding SN_rel_defs by auto
lemma SN_rel_empty2: "SN_rel R {} = SN R"
unfolding SN_rel_defs SN_defs by auto
lemma SN_relto_mono:
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'"
and SN: "SN (relto R' S')"
shows "SN (relto R S)"
using SN SN_subset[OF _ relto_mono[OF R S]] by blast
lemma SN_relto_imp_SN:
assumes "SN (relto R S)" shows "SN R"
proof
fix f
assume "\<forall>i. (f i, f (Suc i)) \<in> R"
hence "\<And>i. (f i, f (Suc i)) \<in> relto R S" by blast
thus False using assms unfolding SN_defs by blast
qed
lemma SN_relto_Id:
"SN (relto R (S \<union> Id)) = SN (relto R S)"
by (simp only: relto_Id)
text \<open>Termination inheritance by transitivity (see, e.g., Geser's thesis).\<close>
lemma trans_subset_SN:
assumes "trans R" and "R \<subseteq> (r \<union> s)" and "SN r" and "SN s"
shows "SN R"
proof
fix f :: "nat \<Rightarrow> 'a"
assume "f 0 \<in> UNIV"
and chain: "chain R f"
have *: "\<And>i j. i < j \<Longrightarrow> (f i, f j) \<in> r \<union> s"
using assms and chain_imp_trancl [OF chain] by auto
let ?M = "{i. \<forall>j>i. (f i, f j) \<notin> r}"
show False
proof (cases "finite ?M")
let ?n = "Max ?M"
assume "finite ?M"
with Max_ge have "\<forall>i\<in>?M. i \<le> ?n" by simp
then have "\<forall>k\<ge>Suc ?n. \<exists>k'>k. (f k, f k') \<in> r" by auto
with steps_imp_chainp [of "Suc ?n" "\<lambda>x y. (x, y) \<in> r"] and assms
show False by auto
next
assume "infinite ?M"
then have "INFM j. j \<in> ?M" by (simp add: Inf_many_def)
then interpret infinitely_many "\<lambda>i. i \<in> ?M" by (unfold_locales) assumption
define g where [simp]: "g = index"
have "\<forall>i. (f (g i), f (g (Suc i))) \<in> s"
proof
fix i
have less: "g i < g (Suc i)" using index_ordered_less [of i "Suc i"] by simp
have "g i \<in> ?M" using index_p by simp
then have "(f (g i), f (g (Suc i))) \<notin> r" using less by simp
moreover have "(f (g i), f (g (Suc i))) \<in> r \<union> s" using * [OF less] by simp
ultimately show "(f (g i), f (g (Suc i))) \<in> s" by blast
qed
with \<open>SN s\<close> show False by (auto simp: SN_defs)
qed
qed
lemma SN_Un_conv:
assumes "trans (r \<union> s)"
shows "SN (r \<union> s) \<longleftrightarrow> SN r \<and> SN s"
(is "SN ?r \<longleftrightarrow> ?rhs")
proof
assume "SN (r \<union> s)" thus "SN r \<and> SN s"
using SN_subset[of ?r] by blast
next
assume "SN r \<and> SN s"
with trans_subset_SN[OF assms subset_refl] show "SN ?r" by simp
qed
lemma SN_relto_Un:
"SN (relto (R \<union> S) Q) \<longleftrightarrow> SN (relto R (S \<union> Q)) \<and> SN (relto S Q)"
(is "SN ?a \<longleftrightarrow> SN ?b \<and> SN ?c")
proof -
have eq: "?a^+ = ?b^+ \<union> ?c^+" by regexp
from SN_Un_conv[of "?b^+" "?c^+", unfolded eq[symmetric]]
show ?thesis unfolding SN_trancl_SN_conv by simp
qed
lemma SN_relto_split:
assumes "SN (relto r (s \<union> q2) \<union> relto q1 (s \<union> q2))" (is "SN ?a")
and "SN (relto s q2)" (is "SN ?b")
shows "SN (relto r (q1 \<union> q2) \<union> relto s (q1 \<union> q2))" (is "SN ?c")
proof -
have "?c^+ \<subseteq> ?a^+ \<union> ?b^+" by regexp
from trans_subset_SN[OF _ this, unfolded SN_trancl_SN_conv, OF _ assms]
show ?thesis by simp
qed
lemma relto_trancl_subset: assumes "a \<subseteq> c" and "b \<subseteq> c" shows "relto a b \<subseteq> c^+"
proof -
have "relto a b \<subseteq> (a \<union> b)^+" by regexp
also have "\<dots> \<subseteq> c^+"
by (rule trancl_mono_set, insert assms, auto)
finally show ?thesis .
qed
text \<open>An explicit version of @{const relto} which mentions all intermediate terms\<close>
inductive relto_fun :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a \<times> 'a \<Rightarrow> bool" where
relto_fun: "as 0 = a \<Longrightarrow> as m = b \<Longrightarrow>
(\<And> i. i < m \<Longrightarrow>
(sel i \<longrightarrow> (as i, as (Suc i)) \<in> A) \<and> (\<not> sel i \<longrightarrow> (as i, as (Suc i)) \<in> B))
\<Longrightarrow> n = card { i . i < m \<and> sel i}
\<Longrightarrow> (n = 0 \<longleftrightarrow> m = 0) \<Longrightarrow> relto_fun A B n as sel m (a,b)"
lemma relto_funD: assumes "relto_fun A B n as sel m (a,b)"
shows "as 0 = a" "as m = b"
"\<And> i. i < m \<Longrightarrow> sel i \<Longrightarrow> (as i, as (Suc i)) \<in> A"
"\<And> i. i < m \<Longrightarrow> \<not> sel i \<Longrightarrow> (as i, as (Suc i)) \<in> B"
"n = card { i . i < m \<and> sel i}"
"n = 0 \<longleftrightarrow> m = 0"
using assms[unfolded relto_fun.simps] by blast+
lemma relto_fun_refl: "\<exists> as sel. relto_fun A B 0 as sel 0 (a,a)"
by (rule exI[of _ "\<lambda> _. a"], rule exI, rule relto_fun, auto)
lemma relto_into_relto_fun: assumes "(a,b) \<in> relto A B"
shows "\<exists> as sel m. relto_fun A B (Suc 0) as sel m (a,b)"
proof -
from assms obtain a' b' where aa: "(a,a') \<in> B^*" and ab: "(a',b') \<in> A"
and bb: "(b',b) \<in> B^*" by auto
from aa[unfolded rtrancl_fun_conv] obtain f1 n1 where
f1: "f1 0 = a" "f1 n1 = a'" "\<And> i. i<n1 \<Longrightarrow> (f1 i, f1 (Suc i)) \<in> B" by auto
from bb[unfolded rtrancl_fun_conv] obtain f2 n2 where
f2: "f2 0 = b'" "f2 n2 = b" "\<And> i. i<n2 \<Longrightarrow> (f2 i, f2 (Suc i)) \<in> B" by auto
let ?gen = "\<lambda> aa ab bb i. if i < n1 then aa i else if i = n1 then ab else bb (i - Suc n1)"
let ?f = "?gen f1 a' f2"
let ?sel = "?gen (\<lambda> _. False) True (\<lambda> _. False)"
let ?m = "Suc (n1 + n2)"
show ?thesis
proof (rule exI[of _ ?f], rule exI[of _ ?sel], rule exI[of _ ?m], rule relto_fun)
fix i
assume i: "i < ?m"
show "(?sel i \<longrightarrow> (?f i, ?f (Suc i)) \<in> A) \<and> (\<not> ?sel i \<longrightarrow> (?f i, ?f (Suc i)) \<in> B)"
proof (cases "i < n1")
case True
with f1(3)[OF this] f1(2) show ?thesis by (cases "Suc i = n1", auto)
next
case False note nle = this
show ?thesis
proof (cases "i > n1")
case False
with nle have "i = n1" by auto
thus ?thesis using f1 f2 ab by auto
next
case True
define j where "j = i - Suc n1"
have i: "i = Suc n1 + j" and j: "j < n2" using i True unfolding j_def by auto
thus ?thesis using f2 by auto
qed
qed
qed (insert f1 f2, auto)
qed
lemma relto_fun_trans: assumes ab: "relto_fun A B n1 as1 sel1 m1 (a,b)"
and bc: "relto_fun A B n2 as2 sel2 m2 (b,c)"
shows "\<exists> as sel. relto_fun A B (n1 + n2) as sel (m1 + m2) (a,c)"
proof -
from relto_funD[OF ab]
have 1: "as1 0 = a" "as1 m1 = b"
"\<And> i. i < m1 \<Longrightarrow> (sel1 i \<longrightarrow> (as1 i, as1 (Suc i)) \<in> A) \<and> (\<not> sel1 i \<longrightarrow> (as1 i, as1 (Suc i)) \<in> B)"
"n1 = 0 \<longleftrightarrow> m1 = 0" and card1: "n1 = card {i. i < m1 \<and> sel1 i}" by blast+
from relto_funD[OF bc]
have 2: "as2 0 = b" "as2 m2 = c"
"\<And> i. i < m2 \<Longrightarrow> (sel2 i \<longrightarrow> (as2 i, as2 (Suc i)) \<in> A) \<and> (\<not> sel2 i \<longrightarrow> (as2 i, as2 (Suc i)) \<in> B)"
"n2 = 0 \<longleftrightarrow> m2 = 0" and card2: "n2 = card {i. i < m2 \<and> sel2 i}" by blast+
let ?as = "\<lambda> i. if i < m1 then as1 i else as2 (i - m1)"
let ?sel = "\<lambda> i. if i < m1 then sel1 i else sel2 (i - m1)"
let ?m = "m1 + m2"
let ?n = "n1 + n2"
show ?thesis
proof (rule exI[of _ ?as], rule exI[of _ ?sel], rule relto_fun)
have id: "{ i . i < ?m \<and> ?sel i} = { i . i < m1 \<and> sel1 i} \<union> ((+) m1) ` { i. i < m2 \<and> sel2 i}"
(is "_ = ?A \<union> ?f ` ?B")
by force
have "card (?A \<union> ?f ` ?B) = card ?A + card (?f ` ?B)"
by (rule card_Un_disjoint, auto)
also have "card (?f ` ?B) = card ?B"
by (rule card_image, auto simp: inj_on_def)
finally show "?n = card { i . i < ?m \<and> ?sel i}" unfolding card1 card2 id by simp
next
fix i
assume i: "i < ?m"
show "(?sel i \<longrightarrow> (?as i, ?as (Suc i)) \<in> A) \<and> (\<not> ?sel i \<longrightarrow> (?as i, ?as (Suc i)) \<in> B)"
proof (cases "i < m1")
case True
from 1 2 have [simp]: "as2 0 = as1 m1" by simp
from True 1(3)[of i] 1(2) show ?thesis by (cases "Suc i = m1", auto)
next
case False
define j where "j = i - m1"
have i: "i = m1 + j" and j: "j < m2" using i False unfolding j_def by auto
thus ?thesis using False 2(3)[of j] by auto
qed
qed (insert 1 2, auto)
qed
lemma reltos_into_relto_fun: assumes "(a,b) \<in> (relto A B)^^n"
shows "\<exists> as sel m. relto_fun A B n as sel m (a,b)"
using assms
proof (induct n arbitrary: b)
case (0 b)
hence b: "b = a" by auto
show ?case unfolding b using relto_fun_refl[of A B a] by blast
next
case (Suc n c)
from relpow_Suc_E[OF Suc(2)]
obtain b where ab: "(a,b) \<in> (relto A B)^^n" and bc: "(b,c) \<in> relto A B" by auto
from Suc(1)[OF ab] obtain as sel m where
IH: "relto_fun A B n as sel m (a, b)" by auto
from relto_into_relto_fun[OF bc] obtain as sel m where "relto_fun A B (Suc 0) as sel m (b,c)" by blast
from relto_fun_trans[OF IH this] show ?case by auto
qed
lemma relto_fun_into_reltos: assumes "relto_fun A B n as sel m (a,b)"
shows "(a,b) \<in> (relto A B)^^n"
proof -
note * = relto_funD[OF assms]
{
fix m'
let ?c = "\<lambda> m'. card {i. i < m' \<and> sel i}"
assume "m' \<le> m"
hence "(?c m' > 0 \<longrightarrow> (as 0, as m') \<in> (relto A B)^^ ?c m') \<and> (?c m' = 0 \<longrightarrow> (as 0, as m') \<in> B^*)"
proof (induct m')
case (Suc m')
let ?x = "as 0"
let ?y = "as m'"
let ?z = "as (Suc m')"
let ?C = "?c (Suc m')"
have C: "?C = ?c m' + (if (sel m') then 1 else 0)"
proof -
have id: "{i. i < Suc m' \<and> sel i} = {i. i < m' \<and> sel i} \<union> (if sel m' then {m'} else {})"
by (cases "sel m'", auto, case_tac "x = m'", auto)
show ?thesis unfolding id by auto
qed
from Suc(2) have m': "m' \<le> m" and lt: "m' < m" by auto
from Suc(1)[OF m'] have IH: "?c m' > 0 \<Longrightarrow> (?x, ?y) \<in> (relto A B) ^^ ?c m'"
"?c m' = 0 \<Longrightarrow> (?x, ?y) \<in> B^*" by auto
from *(3-4)[OF lt] have yz: "sel m' \<Longrightarrow> (?y, ?z) \<in> A" "\<not> sel m' \<Longrightarrow> (?y, ?z) \<in> B" by auto
show ?case
proof (cases "?c m' = 0")
case True note c = this
from IH(2)[OF this] have xy: "(?x, ?y) \<in> B^*" by auto
show ?thesis
proof (cases "sel m'")
case False
from xy yz(2)[OF False] have xz: "(?x, ?z) \<in> B^*" by auto
from False c have C: "?C = 0" unfolding C by simp
from xz show ?thesis unfolding C by auto
next
case True
from xy yz(1)[OF True] have xz: "(?x,?z) \<in> relto A B" by auto
from True c have C: "?C = 1" unfolding C by simp
from xz show ?thesis unfolding C by auto
qed
next
case False
hence c: "?c m' > 0" "(?c m' = 0) = False" by arith+
from IH(1)[OF c(1)] have xy: "(?x, ?y) \<in> (relto A B) ^^ ?c m'" .
show ?thesis
proof (cases "sel m'")
case False
from c obtain k where ck: "?c m' = Suc k" by (cases "?c m'", auto)
from relpow_Suc_E[OF xy[unfolded this]] obtain
u where xu: "(?x, u) \<in> (relto A B) ^^ k" and uy: "(u, ?y) \<in> relto A B" by auto
from uy yz(2)[OF False] have uz: "(u, ?z) \<in> relto A B" by force
with xu have xz: "(?x,?z) \<in> (relto A B) ^^ ?c m'" unfolding ck by auto
from False c have C: "?C = ?c m'" unfolding C by simp
from xz show ?thesis unfolding C c by auto
next
case True
from xy yz(1)[OF True] have xz: "(?x,?z) \<in> (relto A B) ^^ (Suc (?c m'))" by auto
from c True have C: "?C = Suc (?c m')" unfolding C by simp
from xz show ?thesis unfolding C by auto
qed
qed
qed simp
}
from this[of m] * show ?thesis by auto
qed
lemma relto_relto_fun_conv: "((a,b) \<in> (relto A B)^^n) = (\<exists> as sel m. relto_fun A B n as sel m (a,b))"
using relto_fun_into_reltos[of A B n _ _ _ a b] reltos_into_relto_fun[of a b n B A] by blast
lemma relto_fun_intermediate: assumes "A \<subseteq> C" and "B \<subseteq> C"
and rf: "relto_fun A B n as sel m (a,b)"
shows "i \<le> m \<Longrightarrow> (a,as i) \<in> C^*"
proof (induct i)
case 0
from relto_funD[OF rf] show ?case by simp
next
case (Suc i)
hence IH: "(a, as i) \<in> C^*" and im: "i < m" by auto
from relto_funD(3-4)[OF rf im] assms have "(as i, as (Suc i)) \<in> C" by auto
with IH show ?case by auto
qed
lemma not_SN_on_rel_succ:
assumes "\<not> SN_on (relto R E) {s}"
shows "\<exists>t u. (s, t) \<in> E\<^sup>* \<and> (t, u) \<in> R \<and> \<not> SN_on (relto R E) {u}"
proof -
obtain v where "(s, v) \<in> relto R E" and v: "\<not> SN_on (relto R E) {v}"
using assms by fast
moreover then obtain t and u
where "(s, t) \<in> E^*" and "(t, u) \<in> R" and uv: "(u, v) \<in> E\<^sup>*" by auto
moreover from uv have uv: "(u,v) \<in> (R \<union> E)^*" by regexp
moreover have "\<not> SN_on (relto R E) {u}" using
v steps_preserve_SN_on_relto[OF uv] by auto
ultimately show ?thesis by auto
qed
lemma SN_on_relto_relcomp: "SN_on (relto R S) T = SN_on (S\<^sup>* O R) T" (is "?L T = ?R T")
proof
assume L: "?L T"
{ fix t assume "t \<in> T" hence "?L {t}" using L by fast }
thus "?R T" by fast
next
{ fix s
have "SN_on (relto R S) {s} = SN_on (S\<^sup>* O R) {s}"
proof
let ?X = "{s. \<not>SN_on (relto R S) {s}}"
{ assume "\<not> ?L {s}"
hence "s \<in> ?X" by auto
hence "\<not> ?R {s}"
proof(rule lower_set_imp_not_SN_on, intro ballI)
fix s assume "s \<in> ?X"
then obtain t u where "(s,t) \<in> S\<^sup>*" "(t,u) \<in> R" and u: "u \<in> ?X"
unfolding mem_Collect_eq by (metis not_SN_on_rel_succ)
hence "(s,u) \<in> S\<^sup>* O R" by auto
with u show "\<exists>u \<in> ?X. (s,u) \<in> S\<^sup>* O R" by auto
qed
}
thus "?R {s} \<Longrightarrow> ?L {s}" by auto
assume "?L {s}" thus "?R {s}" by(rule SN_on_mono, auto)
qed
} note main = this
assume R: "?R T"
{ fix t assume "t \<in> T" hence "?L {t}" unfolding main using R by fast }
thus "?L T" by fast
qed
lemma trans_relto:
assumes trans: "trans R" and "S O R \<subseteq> R O S"
shows "trans (relto R S)"
proof
fix a b c
assume ab: "(a, b) \<in> S\<^sup>* O R O S\<^sup>*" and bc: "(b, c) \<in> S\<^sup>* O R O S\<^sup>*"
from rtrancl_O_push [of S R] assms(2) have comm: "S\<^sup>* O R \<subseteq> R O S\<^sup>*" by blast
from ab obtain d e where de: "(a, d) \<in> S\<^sup>*" "(d, e) \<in> R" "(e, b) \<in> S\<^sup>*" by auto
from bc obtain f g where fg: "(b, f) \<in> S\<^sup>*" "(f, g) \<in> R" "(g, c) \<in> S\<^sup>*" by auto
from de(3) fg(1) have "(e, f) \<in> S\<^sup>*" by auto
with fg(2) comm have "(e, g) \<in> R O S\<^sup>*" by blast
then obtain h where h: "(e, h) \<in> R" "(h, g) \<in> S\<^sup>*" by auto
with de(2) trans have dh: "(d, h) \<in> R" unfolding trans_def by blast
from fg(3) h(2) have "(h, c) \<in> S\<^sup>*" by auto
with de(1) dh(1) show "(a, c) \<in> S\<^sup>* O R O S\<^sup>*" by auto
qed
lemma relative_ending: (* general version of non_strict_ending *)
assumes chain: "chain (R \<union> S) t"
and t0: "t 0 \<in> X"
and SN: "SN_on (relto R S) X"
shows "\<exists>j. \<forall>i\<ge>j. (t i, t (Suc i)) \<in> S - R"
proof (rule ccontr)
assume "\<not> ?thesis"
with chain have "\<forall>i. \<exists>j. j \<ge> i \<and> (t j, t (Suc j)) \<in> R" by blast
from choice [OF this] obtain f where R_steps: "\<forall>i. i \<le> f i \<and> (t (f i), t (Suc (f i))) \<in> R" ..
let ?t = "\<lambda>i. t (((Suc \<circ> f) ^^ i) 0)"
have "\<forall>i. (t i, t (Suc (f i))) \<in> (relto R S)\<^sup>+"
proof
fix i
from R_steps have leq: "i\<le>f i" and step: "(t(f i), t(Suc(f i))) \<in> R" by auto
from chain_imp_rtrancl [OF chain leq] have "(t i, t(f i)) \<in> (R \<union> S)\<^sup>*" .
with step have "(t i, t(Suc(f i))) \<in> (R \<union> S)\<^sup>* O R" by auto
then show "(t i, t(Suc(f i))) \<in> (relto R S)\<^sup>+" by regexp
qed
then have "chain ((relto R S)\<^sup>+) ?t" by simp
with t0 have "\<not> SN_on ((relto R S)\<^sup>+) X" by (unfold SN_on_def, auto intro: exI[of _ ?t])
with SN_on_trancl[OF SN] show False by auto
qed
text \<open>from Geser's thesis [p.32, Corollary-1], generalized for @{term SN_on}.\<close>
lemma SN_on_relto_Un:
assumes closure: "relto (R \<union> R') S `` X \<subseteq> X"
shows "SN_on (relto (R \<union> R') S) X \<longleftrightarrow> SN_on (relto R (R' \<union> S)) X \<and> SN_on (relto R' S) X"
(is "?c \<longleftrightarrow> ?a \<and> ?b")
proof(safe)
assume SN: "?a" and SN': "?b"
from SN have SN: "SN_on (relto (relto R S) (relto R' S)) X" by (rule SN_on_subset1) regexp
show "?c"
proof
fix f
assume f0: "f 0 \<in> X" and chain: "chain (relto (R \<union> R') S) f"
then have "chain (relto R S \<union> relto R' S) f" by auto
from relative_ending[OF this f0 SN]
have "\<exists> j. \<forall> i \<ge> j. (f i, f (Suc i)) \<in> relto R' S - relto R S" by auto
then obtain j where "\<forall>i \<ge> j. (f i, f (Suc i)) \<in> relto R' S" by auto
then have "chain (relto R' S) (shift f j)" by auto
moreover have "f j \<in> X"
proof(induct j)
case 0 from f0 show ?case by simp
next
case (Suc j)
let ?s = "(f j, f (Suc j))"
from chain have "?s \<in> relto (R \<union> R') S" by auto
with Image_closed_trancl[OF closure] Suc show "f (Suc j) \<in> X" by blast
qed
then have "shift f j 0 \<in> X" by auto
ultimately have "\<not> SN_on (relto R' S) X" by (intro not_SN_onI)
with SN' show False by auto
qed
next
assume SN: "?c"
then show "?b" by (rule SN_on_subset1, auto)
moreover
from SN have "SN_on ((relto (R \<union> R') S)\<^sup>+) X" by (unfold SN_on_trancl_SN_on_conv)
then show "?a" by (rule SN_on_subset1) regexp
qed
lemma SN_on_Un: "(R \<union> R')``X \<subseteq> X \<Longrightarrow> SN_on (R \<union> R') X \<longleftrightarrow> SN_on (relto R R') X \<and> SN_on R' X"
using SN_on_relto_Un[of "{}"] by simp
end