Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Abstract Rewriting | |
Author: Christian Sternagel <christian.sternagel@uibk.ac.at> | |
Rene Thiemann <rene.tiemann@uibk.ac.at> | |
Maintainer: Christian Sternagel and Rene Thiemann | |
License: LGPL | |
*) | |
(* | |
Copyright 2010 Christian Sternagel and René Thiemann | |
This file is part of IsaFoR/CeTA. | |
IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the | |
terms of the GNU Lesser General Public License as published by the Free Software | |
Foundation, either version 3 of the License, or (at your option) any later | |
version. | |
IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY | |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A | |
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. | |
You should have received a copy of the GNU Lesser General Public License along | |
with IsaFoR/CeTA. If not, see <http://www.gnu.org/licenses/>. | |
*) | |
section \<open>Relative Rewriting\<close> | |
theory Relative_Rewriting | |
imports Abstract_Rewriting | |
begin | |
text \<open>Considering a relation @{term R} relative to another relation @{term S}, i.e., | |
@{term R}-steps may be preceded and followed by arbitrary many @{term S}-steps.\<close> | |
abbreviation (input) relto :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel" where | |
"relto R S \<equiv> S^* O R O S^*" | |
definition SN_rel_on :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"SN_rel_on R S \<equiv> SN_on (relto R S)" | |
definition SN_rel_on_alt :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where | |
"SN_rel_on_alt R S T = (\<forall>f. chain (R \<union> S) f \<and> f 0 \<in> T \<longrightarrow> \<not> (INFM j. (f j, f (Suc j)) \<in> R))" | |
abbreviation SN_rel :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where | |
"SN_rel R S \<equiv> SN_rel_on R S UNIV" | |
abbreviation SN_rel_alt :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where | |
"SN_rel_alt R S \<equiv> SN_rel_on_alt R S UNIV" | |
lemma relto_absorb [simp]: "relto R E O E\<^sup>* = relto R E" "E\<^sup>* O relto R E = relto R E" | |
using O_assoc and rtrancl_idemp_self_comp by (metis)+ | |
lemma steps_preserve_SN_on_relto: | |
assumes steps: "(a, b) \<in> (R \<union> S)^*" | |
and SN: "SN_on (relto R S) {a}" | |
shows "SN_on (relto R S) {b}" | |
proof - | |
let ?RS = "relto R S" | |
have "(R \<union> S)^* \<subseteq> S^* \<union> ?RS^*" by regexp | |
with steps have "(a,b) \<in> S^* \<or> (a,b) \<in> ?RS^*" by auto | |
thus ?thesis | |
proof | |
assume "(a,b) \<in> ?RS^*" | |
from steps_preserve_SN_on[OF this SN] show ?thesis . | |
next | |
assume Ssteps: "(a,b) \<in> S^*" | |
show ?thesis | |
proof | |
fix f | |
assume "f 0 \<in> {b}" and "chain ?RS f" | |
hence f0: "f 0 = b" and steps: "\<And>i. (f i, f (Suc i)) \<in> ?RS" by auto | |
let ?g = "\<lambda> i. if i = 0 then a else f i" | |
have "\<not> SN_on ?RS {a}" unfolding SN_on_def not_not | |
proof (rule exI[of _ ?g], intro conjI allI) | |
fix i | |
show "(?g i, ?g (Suc i)) \<in> ?RS" | |
proof (cases i) | |
case (Suc j) | |
show ?thesis using steps[of i] unfolding Suc by simp | |
next | |
case 0 | |
from steps[of 0, unfolded f0] Ssteps have steps: "(a,f (Suc 0)) \<in> S^* O ?RS" by blast | |
have "(a,f (Suc 0)) \<in> ?RS" | |
by (rule subsetD[OF _ steps], regexp) | |
thus ?thesis unfolding 0 by simp | |
qed | |
qed simp | |
with SN show False by simp | |
qed | |
qed | |
qed | |
lemma step_preserves_SN_on_relto: assumes st: "(s,t) \<in> R \<union> E" | |
and SN: "SN_on (relto R E) {s}" | |
shows "SN_on (relto R E) {t}" | |
by (rule steps_preserve_SN_on_relto[OF _ SN], insert st, auto) | |
lemma SN_rel_on_imp_SN_rel_on_alt: "SN_rel_on R S T \<Longrightarrow> SN_rel_on_alt R S T" | |
proof (unfold SN_rel_on_def) | |
assume SN: "SN_on (relto R S) T" | |
show ?thesis | |
proof (unfold SN_rel_on_alt_def, intro allI impI) | |
fix f | |
assume steps: "chain (R \<union> S) f \<and> f 0 \<in> T" | |
with SN have SN: "SN_on (relto R S) {f 0}" | |
and steps: "\<And> i. (f i, f (Suc i)) \<in> R \<union> S" unfolding SN_defs by auto | |
obtain r where r: "\<And> j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto | |
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)" | |
proof (rule ccontr) | |
assume "\<not> ?thesis" | |
hence ih: "infinitely_many r" unfolding infinitely_many_def r by blast | |
obtain r_index where "r_index = infinitely_many.index r" by simp | |
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih] | |
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto | |
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" .. | |
{ | |
fix i | |
let ?ri = "r_index i" | |
let ?rsi = "r_index (Suc i)" | |
from r_index have isi: "?ri < ?rsi" by auto | |
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto | |
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto | |
from ri isi rsi have risi: "ri < rsi" by simp | |
{ | |
fix n | |
assume "Suc n \<le> rsi - ri" | |
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*" | |
proof (induct n, simp) | |
case (Suc n) | |
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp | |
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S" | |
using inter[of "Suc n + ri"] Suc(2) by auto | |
with stepps show ?case by simp | |
qed | |
} | |
from this[of "rsi - ri - 1"] risi have | |
"(f (Suc ri), f rsi) \<in> S^*" by simp | |
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp | |
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto | |
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto | |
} | |
hence nSN: "\<not> SN_on (S^* O R O S^*) {g 0}" unfolding SN_defs by blast | |
have SN: "SN_on (S^* O R O S^*) {f (r_index 0)}" | |
proof (rule steps_preserve_SN_on_relto[OF _ SN]) | |
show "(f 0, f (r_index 0)) \<in> (R \<union> S)^*" | |
unfolding rtrancl_fun_conv | |
by (rule exI[of _ f], rule exI[of _ "r_index 0"], insert steps, auto) | |
qed | |
with nSN show False unfolding g .. | |
qed | |
qed | |
qed | |
lemma SN_rel_on_alt_imp_SN_rel_on: "SN_rel_on_alt R S T \<Longrightarrow> SN_rel_on R S T" | |
proof (unfold SN_rel_on_def) | |
assume SN: "SN_rel_on_alt R S T" | |
show "SN_on (relto R S) T" | |
proof | |
fix f | |
assume start: "f 0 \<in> T" and "chain (relto R S) f" | |
hence steps: "\<And> i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto | |
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*" | |
{ | |
fix i | |
from steps obtain bi ai where "?prop i ai bi" by blast | |
hence "\<exists> ai bi. ?prop i ai bi" by blast | |
} | |
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast | |
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast | |
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast | |
from steps[of 0] have fa0: "(f 0, a 0) \<in> S^* O R" by auto | |
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)" | |
{ | |
fix i | |
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto | |
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+ | |
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" .. | |
with R have "?prop i li" by blast | |
hence "\<exists> li. ?prop i li" .. | |
} | |
hence "\<forall> i. \<exists> li. ?prop i li" .. | |
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto | |
let ?p = "\<lambda> i. ?prop i (l i)" | |
from steps have steps: "\<And> i. ?p i" by blast | |
let ?l = "\<lambda> i. a i # l i" | |
let ?l' = "\<lambda> i. length (?l i)" | |
let ?g = "\<lambda> i. inf_concat_simple ?l' i" | |
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto | |
have g0: "g 0 = a 0" unfolding g Let_def by simp | |
with fa0 have fg0: "(f 0, g 0) \<in> S^* O R" by auto | |
have fg0: "(f 0, g 0) \<in> (R \<union> S)^*" | |
by (rule subsetD[OF _ fg0], regexp) | |
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)" | |
proof - | |
fix i j n | |
assume n: "?g n = (i,j)" | |
show "j < length (?l i)" | |
proof (cases n) | |
case 0 | |
with n have "j = 0" by auto | |
thus ?thesis by simp | |
next | |
case (Suc nn) | |
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto) | |
show ?thesis | |
proof (cases "Suc jj < length (?l ii)") | |
case True | |
with nn Suc have "?g n = (ii, Suc jj)" by auto | |
with n True show ?thesis by simp | |
next | |
case False | |
with nn Suc have "?g n = (Suc ii, 0)" by auto | |
with n show ?thesis by simp | |
qed | |
qed | |
qed | |
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S" | |
proof - | |
fix n | |
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto) | |
show "(g n, g (Suc n)) \<in> R \<union> S" | |
proof (cases "Suc j < length (?l i)") | |
case True | |
with n have "?g (Suc n) = (i, Suc j)" by auto | |
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto | |
thus ?thesis using steps[of i] True by auto | |
next | |
case False | |
with n have "?g (Suc n) = (Suc i, 0)" by auto | |
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto | |
from gn len[OF n] False have "j = length (?l i) - 1" by auto | |
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto | |
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto | |
qed | |
qed | |
have infR: "INFM j. (g j, g (Suc j)) \<in> R" unfolding INFM_nat_le | |
proof | |
fix n | |
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto) | |
from len[OF n] have j: "j < ?l' i" . | |
let ?k = "?l' i - 1 - j" | |
obtain k where k: "k = j + ?k" by auto | |
from j k have k2: "k = ?l' i - 1" and k3: "j + ?k < ?l' i" by auto | |
from inf_concat_simple_add[OF n, of ?k, OF k3] | |
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k) | |
hence "g (n + ?k) = ?l i ! k" unfolding g by auto | |
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto | |
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto | |
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto | |
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R" | |
by (simp only: gnk2 gnsk2) | |
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R" | |
by (rule exI[of _ "n + ?k"], auto simp: main[simplified]) | |
qed | |
from fg0[unfolded rtrancl_fun_conv] obtain gg n where start: "gg 0 = f 0" | |
and n: "gg n = g 0" and steps: "\<And> i. i < n \<Longrightarrow> (gg i, gg (Suc i)) \<in> R \<union> S" by auto | |
let ?h = "\<lambda> i. if i < n then gg i else g (i - n)" | |
obtain h where h: "h = ?h" by auto | |
{ | |
fix i | |
assume i: "i \<le> n" | |
have "h i = gg i" using i unfolding h | |
by (cases "i < n", auto simp: n) | |
} note gg = this | |
from gg[of 0] \<open>f 0 \<in> T\<close> have h0: "h 0 \<in> T" unfolding start by auto | |
{ | |
fix i | |
have "(h i, h (Suc i)) \<in> R \<union> S" | |
proof (cases "i < n") | |
case True | |
from steps[of i] gg[of i] gg[of "Suc i"] True show ?thesis by auto | |
next | |
case False | |
hence "i = n + (i - n)" by auto | |
then obtain k where i: "i = n + k" by auto | |
from gsteps[of k] show ?thesis unfolding h i by simp | |
qed | |
} note hsteps = this | |
from SN[unfolded SN_rel_on_alt_def, rule_format, OF conjI[OF allI[OF hsteps] h0]] | |
have "\<not> (INFM j. (h j, h (Suc j)) \<in> R)" . | |
moreover have "INFM j. (h j, h (Suc j)) \<in> R" unfolding INFM_nat_le | |
proof (rule) | |
fix m | |
from infR[unfolded INFM_nat_le, rule_format, of m] | |
obtain i where i: "i \<ge> m" and g: "(g i, g (Suc i)) \<in> R" by auto | |
show "\<exists> n \<ge> m. (h n , h (Suc n)) \<in> R" | |
by (rule exI[of _ "i + n"], unfold h, insert g i, auto) | |
qed | |
ultimately show False .. | |
qed | |
qed | |
lemma SN_rel_on_conv: "SN_rel_on = SN_rel_on_alt" | |
by (intro ext) (blast intro: SN_rel_on_imp_SN_rel_on_alt SN_rel_on_alt_imp_SN_rel_on) | |
lemmas SN_rel_defs = SN_rel_on_def SN_rel_on_alt_def | |
lemma SN_rel_on_alt_r_empty : "SN_rel_on_alt {} S T" | |
unfolding SN_rel_defs by auto | |
lemma SN_rel_on_alt_s_empty : "SN_rel_on_alt R {} = SN_on R" | |
by (intro ext, unfold SN_rel_defs SN_defs, auto) | |
lemma SN_rel_on_mono': | |
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> R' \<union> S'" and SN: "SN_rel_on R' S' T" | |
shows "SN_rel_on R S T" | |
proof - | |
note conv = SN_rel_on_conv SN_rel_on_alt_def INFM_nat_le | |
show ?thesis unfolding conv | |
proof(intro allI impI) | |
fix f | |
assume "chain (R \<union> S) f \<and> f 0 \<in> T" | |
with R S have "chain (R' \<union> S') f \<and> f 0 \<in> T" by auto | |
from SN[unfolded conv, rule_format, OF this] | |
show "\<not> (\<forall> m. \<exists> n \<ge> m. (f n, f (Suc n)) \<in> R)" using R by auto | |
qed | |
qed | |
lemma relto_mono: | |
assumes "R \<subseteq> R'" and "S \<subseteq> S'" | |
shows "relto R S \<subseteq> relto R' S'" | |
using assms rtrancl_mono by blast | |
lemma SN_rel_on_mono: | |
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'" | |
and SN: "SN_rel_on R' S' T" | |
shows "SN_rel_on R S T" | |
using SN | |
unfolding SN_rel_on_def using SN_on_mono[OF _ relto_mono[OF R S]] by blast | |
lemmas SN_rel_on_alt_mono = SN_rel_on_mono[unfolded SN_rel_on_conv] | |
lemma SN_rel_on_imp_SN_on: | |
assumes "SN_rel_on R S T" shows "SN_on R T" | |
proof | |
fix f | |
assume "chain R f" | |
and f0: "f 0 \<in> T" | |
hence "\<And>i. (f i, f (Suc i)) \<in> relto R S" by blast | |
thus False using assms f0 unfolding SN_rel_on_def SN_defs by blast | |
qed | |
lemma relto_Id: "relto R (S \<union> Id) = relto R S" by simp | |
lemma SN_rel_on_Id: | |
shows "SN_rel_on R (S \<union> Id) T = SN_rel_on R S T" | |
unfolding SN_rel_on_def by (simp only: relto_Id) | |
lemma SN_rel_on_empty[simp]: "SN_rel_on R {} T = SN_on R T" | |
unfolding SN_rel_on_def by auto | |
lemma SN_rel_on_ideriv: "SN_rel_on R S T = (\<not> (\<exists> as. ideriv R S as \<and> as 0 \<in> T))" (is "?L = ?R") | |
proof | |
assume ?L | |
show ?R | |
proof | |
assume "\<exists> as. ideriv R S as \<and> as 0 \<in> T" | |
then obtain as where id: "ideriv R S as" and T: "as 0 \<in> T" by auto | |
note id = id[unfolded ideriv_def] | |
from \<open>?L\<close>[unfolded SN_rel_on_conv SN_rel_on_alt_def, THEN spec[of _ as]] | |
id T obtain i where i: "\<And> j. j \<ge> i \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto | |
with id[unfolded INFM_nat, THEN conjunct2, THEN spec[of _ "Suc i"]] show False by auto | |
qed | |
next | |
assume ?R | |
show ?L | |
unfolding SN_rel_on_conv SN_rel_on_alt_def | |
proof(intro allI impI) | |
fix as | |
assume "chain (R \<union> S) as \<and> as 0 \<in> T" | |
with \<open>?R\<close>[unfolded ideriv_def] have "\<not> (INFM i. (as i, as (Suc i)) \<in> R)" by auto | |
from this[unfolded INFM_nat] obtain i where i: "\<And>j. i < j \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto | |
show "\<not> (INFM j. (as j, as (Suc j)) \<in> R)" unfolding INFM_nat using i by blast | |
qed | |
qed | |
lemma SN_rel_to_SN_rel_alt: "SN_rel R S \<Longrightarrow> SN_rel_alt R S" | |
proof (unfold SN_rel_on_def) | |
assume SN: "SN (relto R S)" | |
show ?thesis | |
proof (unfold SN_rel_on_alt_def, intro allI impI) | |
fix f | |
presume steps: "chain (R \<union> S) f" | |
obtain r where r: "\<And>j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto | |
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)" | |
proof (rule ccontr) | |
assume "\<not> ?thesis" | |
hence ih: "infinitely_many r" unfolding infinitely_many_def r by blast | |
obtain r_index where "r_index = infinitely_many.index r" by simp | |
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih] | |
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto | |
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" .. | |
{ | |
fix i | |
let ?ri = "r_index i" | |
let ?rsi = "r_index (Suc i)" | |
from r_index have isi: "?ri < ?rsi" by auto | |
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto | |
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto | |
from ri isi rsi have risi: "ri < rsi" by simp | |
{ | |
fix n | |
assume "Suc n \<le> rsi - ri" | |
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*" | |
proof (induct n, simp) | |
case (Suc n) | |
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp | |
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S" | |
using inter[of "Suc n + ri"] Suc(2) by auto | |
with stepps show ?case by simp | |
qed | |
} | |
from this[of "rsi - ri - 1"] risi have | |
"(f (Suc ri), f rsi) \<in> S^*" by simp | |
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp | |
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto | |
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto | |
} | |
hence "\<not> SN (S^* O R O S^*)" unfolding SN_defs by blast | |
with SN show False by simp | |
qed | |
qed simp | |
qed | |
lemma SN_rel_alt_to_SN_rel : "SN_rel_alt R S \<Longrightarrow> SN_rel R S" | |
proof (unfold SN_rel_on_def) | |
assume SN: "SN_rel_alt R S" | |
show "SN (relto R S)" | |
proof | |
fix f | |
assume "chain (relto R S) f" | |
hence steps: "\<And>i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto | |
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*" | |
{ | |
fix i | |
from steps obtain bi ai where "?prop i ai bi" by blast | |
hence "\<exists> ai bi. ?prop i ai bi" by blast | |
} | |
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast | |
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast | |
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast | |
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)" | |
{ | |
fix i | |
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto | |
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+ | |
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" .. | |
with R have "?prop i li" by blast | |
hence "\<exists> li. ?prop i li" .. | |
} | |
hence "\<forall> i. \<exists> li. ?prop i li" .. | |
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto | |
let ?p = "\<lambda> i. ?prop i (l i)" | |
from steps have steps: "\<And> i. ?p i" by blast | |
let ?l = "\<lambda> i. a i # l i" | |
let ?l' = "\<lambda> i. length (?l i)" | |
let ?g = "\<lambda> i. inf_concat_simple ?l' i" | |
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto | |
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)" | |
proof - | |
fix i j n | |
assume n: "?g n = (i,j)" | |
show "j < length (?l i)" | |
proof (cases n) | |
case 0 | |
with n have "j = 0" by auto | |
thus ?thesis by simp | |
next | |
case (Suc nn) | |
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto) | |
show ?thesis | |
proof (cases "Suc jj < length (?l ii)") | |
case True | |
with nn Suc have "?g n = (ii, Suc jj)" by auto | |
with n True show ?thesis by simp | |
next | |
case False | |
with nn Suc have "?g n = (Suc ii, 0)" by auto | |
with n show ?thesis by simp | |
qed | |
qed | |
qed | |
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S" | |
proof - | |
fix n | |
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto) | |
show "(g n, g (Suc n)) \<in> R \<union> S" | |
proof (cases "Suc j < length (?l i)") | |
case True | |
with n have "?g (Suc n) = (i, Suc j)" by auto | |
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto | |
thus ?thesis using steps[of i] True by auto | |
next | |
case False | |
with n have "?g (Suc n) = (Suc i, 0)" by auto | |
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto | |
from gn len[OF n] False have "j = length (?l i) - 1" by auto | |
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto | |
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto | |
qed | |
qed | |
have infR: "INFM j. (g j, g (Suc j)) \<in> R" unfolding INFM_nat_le | |
proof | |
fix n | |
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto) | |
from len[OF n] have j: "j < ?l' i" . | |
let ?k = "?l' i - 1 - j" | |
obtain k where k: "k = j + ?k" by auto | |
from j k have k2: "k = ?l' i - 1" and k3: "j + ?k < ?l' i" by auto | |
from inf_concat_simple_add[OF n, of ?k, OF k3] | |
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k) | |
hence "g (n + ?k) = ?l i ! k" unfolding g by auto | |
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto | |
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto | |
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto | |
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R" | |
by (simp only: gnk2 gnsk2) | |
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R" | |
by (rule exI[of _ "n + ?k"], auto simp: main[simplified]) | |
qed | |
from SN[unfolded SN_rel_on_alt_def] gsteps infR show False by blast | |
qed | |
qed | |
lemma SN_rel_alt_r_empty : "SN_rel_alt {} S" | |
unfolding SN_rel_defs by auto | |
lemma SN_rel_alt_s_empty : "SN_rel_alt R {} = SN R" | |
unfolding SN_rel_defs SN_defs by auto | |
lemma SN_rel_mono': | |
"R \<subseteq> R' \<Longrightarrow> S \<subseteq> R' \<union> S' \<Longrightarrow> SN_rel R' S' \<Longrightarrow> SN_rel R S" | |
unfolding SN_rel_on_conv SN_rel_defs INFM_nat_le | |
by (metis contra_subsetD sup.left_idem sup.mono) | |
lemma SN_rel_mono: | |
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'" and SN: "SN_rel R' S'" | |
shows "SN_rel R S" | |
using SN unfolding SN_rel_defs using SN_subset[OF _ relto_mono[OF R S]] by blast | |
lemmas SN_rel_alt_mono = SN_rel_mono[unfolded SN_rel_on_conv] | |
lemma SN_rel_imp_SN : assumes "SN_rel R S" shows "SN R" | |
proof | |
fix f | |
assume "\<forall> i. (f i, f (Suc i)) \<in> R" | |
hence "\<And> i. (f i, f (Suc i)) \<in> relto R S" by blast | |
thus False using assms unfolding SN_rel_defs SN_defs by fast | |
qed | |
lemma relto_trancl_conv : "(relto R S)^+ = ((R \<union> S))^* O R O ((R \<union> S))^*" by regexp | |
lemma SN_rel_Id: | |
shows "SN_rel R (S \<union> Id) = SN_rel R S" | |
unfolding SN_rel_defs by (simp only: relto_Id) | |
lemma relto_rtrancl: "relto R (S^*) = relto R S" by regexp | |
lemma SN_rel_empty[simp]: "SN_rel R {} = SN R" | |
unfolding SN_rel_defs by auto | |
lemma SN_rel_ideriv: "SN_rel R S = (\<not> (\<exists> as. ideriv R S as))" (is "?L = ?R") | |
proof | |
assume ?L | |
show ?R | |
proof | |
assume "\<exists> as. ideriv R S as" | |
then obtain as where id: "ideriv R S as" by auto | |
note id = id[unfolded ideriv_def] | |
from \<open>?L\<close>[unfolded SN_rel_on_conv SN_rel_defs, THEN spec[of _ as]] | |
id obtain i where i: "\<And> j. j \<ge> i \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto | |
with id[unfolded INFM_nat, THEN conjunct2, THEN spec[of _ "Suc i"]] show False by auto | |
qed | |
next | |
assume ?R | |
show ?L | |
unfolding SN_rel_on_conv SN_rel_defs | |
proof (intro allI impI) | |
fix as | |
presume "chain (R \<union> S) as" | |
with \<open>?R\<close>[unfolded ideriv_def] have "\<not> (INFM i. (as i, as (Suc i)) \<in> R)" by auto | |
from this[unfolded INFM_nat] obtain i where i: "\<And> j. i < j \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto | |
show "\<not> (INFM j. (as j, as (Suc j)) \<in> R)" unfolding INFM_nat using i by blast | |
qed simp | |
qed | |
lemma SN_rel_map: | |
fixes R Rw R' Rw' :: "'a rel" | |
defines A: "A \<equiv> R' \<union> Rw'" | |
assumes SN: "SN_rel R' Rw'" | |
and R: "\<And>s t. (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> A^* O R' O A^*" | |
and Rw: "\<And>s t. (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^*" | |
shows "SN_rel R Rw" | |
unfolding SN_rel_defs | |
proof | |
fix g | |
assume steps: "chain (relto R Rw) g" | |
let ?f = "\<lambda>i. (f (g i))" | |
obtain h where h: "h = ?f" by auto | |
{ | |
fix i | |
let ?m = "\<lambda> (x,y). (f x, f y)" | |
{ | |
fix s t | |
assume "(s,t) \<in> Rw^*" | |
hence "?m (s,t) \<in> A^*" | |
proof (induct) | |
case base show ?case by simp | |
next | |
case (step t u) | |
from Rw[OF step(2)] step(3) | |
show ?case by auto | |
qed | |
} note Rw = this | |
from steps have "(g i, g (Suc i)) \<in> relto R Rw" .. | |
from this | |
obtain s t where gs: "(g i,s) \<in> Rw^*" and st: "(s,t) \<in> R" and tg: "(t, g (Suc i)) \<in> Rw^*" by auto | |
from Rw[OF gs] R[OF st] Rw[OF tg] | |
have step: "(?f i, ?f (Suc i)) \<in> A^* O (A^* O R' O A^*) O A^*" | |
by fast | |
have "(?f i, ?f (Suc i)) \<in> A^* O R' O A^*" | |
by (rule subsetD[OF _ step], regexp) | |
hence "(h i, h (Suc i)) \<in> (relto R' Rw')^+" | |
unfolding A h relto_trancl_conv . | |
} | |
hence "\<not> SN ((relto R' Rw')^+)" by auto | |
with SN_imp_SN_trancl[OF SN[unfolded SN_rel_on_def]] | |
show False by simp | |
qed | |
datatype SN_rel_ext_type = top_s | top_ns | normal_s | normal_ns | |
fun SN_rel_ext_step :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> SN_rel_ext_type \<Rightarrow> 'a rel" where | |
"SN_rel_ext_step P Pw R Rw top_s = P" | |
| "SN_rel_ext_step P Pw R Rw top_ns = Pw" | |
| "SN_rel_ext_step P Pw R Rw normal_s = R" | |
| "SN_rel_ext_step P Pw R Rw normal_ns = Rw" | |
(* relative termination with four relations as required in DP-framework *) | |
definition SN_rel_ext :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where | |
"SN_rel_ext P Pw R Rw M \<equiv> (\<not> (\<exists>f t. | |
(\<forall> i. (f i, f (Suc i)) \<in> SN_rel_ext_step P Pw R Rw (t i)) | |
\<and> (\<forall> i. M (f i)) | |
\<and> (INFM i. t i \<in> {top_s,top_ns}) | |
\<and> (INFM i. t i \<in> {top_s,normal_s})))" | |
lemma SN_rel_ext_step_mono: assumes "P \<subseteq> P'" "Pw \<subseteq> Pw'" "R \<subseteq> R'" "Rw \<subseteq> Rw'" | |
shows "SN_rel_ext_step P Pw R Rw t \<subseteq> SN_rel_ext_step P' Pw' R' Rw' t" | |
using assms | |
by (cases t, auto) | |
lemma SN_rel_ext_mono: assumes subset: "P \<subseteq> P'" "Pw \<subseteq> Pw'" "R \<subseteq> R'" "Rw \<subseteq> Rw'" and | |
SN: "SN_rel_ext P' Pw' R' Rw' M" shows "SN_rel_ext P Pw R Rw M" | |
using SN_rel_ext_step_mono[OF subset] SN unfolding SN_rel_ext_def by blast | |
lemma SN_rel_ext_trans: | |
fixes P Pw R Rw :: "'a rel" and M :: "'a \<Rightarrow> bool" | |
defines M': "M' \<equiv> {(s,t). M t}" | |
defines A: "A \<equiv> (P \<union> Pw \<union> R \<union> Rw) \<inter> M'" | |
assumes "SN_rel_ext P Pw R Rw M" | |
shows "SN_rel_ext (A^* O (P \<inter> M') O A^*) (A^* O ((P \<union> Pw) \<inter> M') O A^*) (A^* O ((P \<union> R) \<inter> M') O A^*) (A^*) M" (is "SN_rel_ext ?P ?Pw ?R ?Rw M") | |
proof (rule ccontr) | |
let ?relt = "SN_rel_ext_step ?P ?Pw ?R ?Rw" | |
let ?rel = "SN_rel_ext_step P Pw R Rw" | |
assume "\<not> ?thesis" | |
from this[unfolded SN_rel_ext_def] | |
obtain f ty | |
where steps: "\<And> i. (f i, f (Suc i)) \<in> ?relt (ty i)" | |
and min: "\<And> i. M (f i)" | |
and inf1: "INFM i. ty i \<in> {top_s, top_ns}" | |
and inf2: "INFM i. ty i \<in> {top_s, normal_s}" | |
by auto | |
let ?Un = "\<lambda> tt. \<Union> (?rel ` tt)" | |
let ?UnM = "\<lambda> tt. (\<Union> (?rel ` tt)) \<inter> M'" | |
let ?A = "?UnM {top_s,top_ns,normal_s,normal_ns}" | |
let ?P' = "?UnM {top_s}" | |
let ?Pw' = "?UnM {top_s,top_ns}" | |
let ?R' = "?UnM {top_s,normal_s}" | |
let ?Rw' = "?UnM {top_s,top_ns,normal_s,normal_ns}" | |
have A: "A = ?A" unfolding A by auto | |
have P: "(P \<inter> M') = ?P'" by auto | |
have Pw: "(P \<union> Pw) \<inter> M' = ?Pw'" by auto | |
have R: "(P \<union> R) \<inter> M' = ?R'" by auto | |
have Rw: "A = ?Rw'" unfolding A .. | |
{ | |
fix s t tt | |
assume m: "M s" and st: "(s,t) \<in> ?UnM tt" | |
hence "\<exists> typ \<in> tt. (s,t) \<in> ?rel typ \<and> M s \<and> M t" unfolding M' by auto | |
} note one_step = this | |
let ?seq = "\<lambda> s t g n ty. s = g 0 \<and> t = g n \<and> (\<forall> i < n. (g i, g (Suc i)) \<in> ?rel (ty i)) \<and> (\<forall> i \<le> n. M (g i))" | |
{ | |
fix s t | |
assume m: "M s" and st: "(s,t) \<in> A^*" | |
from st[unfolded rtrancl_fun_conv] | |
obtain g n where g0: "g 0 = s" and gn: "g n = t" and steps: "\<And> i. i < n \<Longrightarrow> (g i, g (Suc i)) \<in> ?A" unfolding A by auto | |
{ | |
fix i | |
assume "i \<le> n" | |
have "M (g i)" | |
proof (cases i) | |
case 0 | |
show ?thesis unfolding 0 g0 by (rule m) | |
next | |
case (Suc j) | |
with \<open>i \<le> n\<close> have "j < n" by auto | |
from steps[OF this] show ?thesis unfolding Suc M' by auto | |
qed | |
} note min = this | |
{ | |
fix i | |
assume i: "i < n" hence i': "i \<le> n" by auto | |
from i' one_step[OF min steps[OF i]] | |
have "\<exists> ty. (g i, g (Suc i)) \<in> ?rel ty" by blast | |
} | |
hence "\<forall> i. (\<exists> ty. i < n \<longrightarrow> (g i, g (Suc i)) \<in> ?rel ty)" by auto | |
from choice[OF this] | |
obtain tt where steps: "\<And> i. i < n \<Longrightarrow> (g i, g (Suc i)) \<in> ?rel (tt i)" by auto | |
from g0 gn steps min | |
have "?seq s t g n tt" by auto | |
hence "\<exists> g n tt. ?seq s t g n tt" by blast | |
} note A_steps = this | |
let ?seqtt = "\<lambda> s t tt g n ty. s = g 0 \<and> t = g n \<and> n > 0 \<and> (\<forall> i<n. (g i, g (Suc i)) \<in> ?rel (ty i)) \<and> (\<forall> i \<le> n. M (g i)) \<and> (\<exists> i < n. ty i \<in> tt)" | |
{ | |
fix s t tt | |
assume m: "M s" and st: "(s,t) \<in> A^* O ?UnM tt O A^*" | |
then obtain u v where su: "(s,u) \<in> A^*" and uv: "(u,v) \<in> ?UnM tt" and vt: "(v,t) \<in> A^*" | |
by auto | |
from A_steps[OF m su] obtain g1 n1 ty1 where seq1: "?seq s u g1 n1 ty1" by auto | |
from uv have "M v" unfolding M' by auto | |
from A_steps[OF this vt] obtain g2 n2 ty2 where seq2: "?seq v t g2 n2 ty2" by auto | |
from seq1 have "M u" by auto | |
from one_step[OF this uv] obtain ty where ty: "ty \<in> tt" and uv: "(u,v) \<in> ?rel ty" by auto | |
let ?g = "\<lambda> i. if i \<le> n1 then g1 i else g2 (i - (Suc n1))" | |
let ?ty = "\<lambda> i. if i < n1 then ty1 i else if i = n1 then ty else ty2 (i - (Suc n1))" | |
let ?n = "Suc (n1 + n2)" | |
have ex: "\<exists> i < ?n. ?ty i \<in> tt" | |
by (rule exI[of _ n1], simp add: ty) | |
have steps: "\<forall> i < ?n. (?g i, ?g (Suc i)) \<in> ?rel (?ty i)" | |
proof (intro allI impI) | |
fix i | |
assume "i < ?n" | |
show "(?g i, ?g (Suc i)) \<in> ?rel (?ty i)" | |
proof (cases "i \<le> n1") | |
case True | |
with seq1 seq2 uv show ?thesis by auto | |
next | |
case False | |
hence "i = Suc n1 + (i - Suc n1)" by auto | |
then obtain k where i: "i = Suc n1 + k" by auto | |
with \<open>i < ?n\<close> have "k < n2" by auto | |
thus ?thesis using seq2 unfolding i by auto | |
qed | |
qed | |
from steps seq1 seq2 ex | |
have seq: "?seqtt s t tt ?g ?n ?ty" by auto | |
have "\<exists> g n ty. ?seqtt s t tt g n ty" | |
by (intro exI, rule seq) | |
} note A_tt_A = this | |
let ?tycon = "\<lambda> ty1 ty2 tt ty' n. ty1 = ty2 \<longrightarrow> (\<exists>i < n. ty' i \<in> tt)" | |
let ?seqt = "\<lambda> i ty g n ty'. f i = g 0 \<and> f (Suc i) = g n \<and> (\<forall> j < n. (g j, g (Suc j)) \<in> ?rel (ty' j)) \<and> (\<forall> j \<le> n. M (g j)) | |
\<and> (?tycon (ty i) top_s {top_s} ty' n) | |
\<and> (?tycon (ty i) top_ns {top_s,top_ns} ty' n) | |
\<and> (?tycon (ty i) normal_s {top_s,normal_s} ty' n)" | |
{ | |
fix i | |
have "\<exists> g n ty'. ?seqt i ty g n ty'" | |
proof (cases "ty i") | |
case top_s | |
from steps[of i, unfolded top_s] | |
have "(f i, f (Suc i)) \<in> ?P" by auto | |
from A_tt_A[OF min this[unfolded P]] | |
show ?thesis unfolding top_s by auto | |
next | |
case top_ns | |
from steps[of i, unfolded top_ns] | |
have "(f i, f (Suc i)) \<in> ?Pw" by auto | |
from A_tt_A[OF min this[unfolded Pw]] | |
show ?thesis unfolding top_ns by auto | |
next | |
case normal_s | |
from steps[of i, unfolded normal_s] | |
have "(f i, f (Suc i)) \<in> ?R" by auto | |
from A_tt_A[OF min this[unfolded R]] | |
show ?thesis unfolding normal_s by auto | |
next | |
case normal_ns | |
from steps[of i, unfolded normal_ns] | |
have "(f i, f (Suc i)) \<in> ?Rw" by auto | |
from A_steps[OF min this] | |
show ?thesis unfolding normal_ns by auto | |
qed | |
} | |
hence "\<forall> i. \<exists> g n ty'. ?seqt i ty g n ty'" by auto | |
from choice[OF this] obtain g where "\<forall> i. \<exists> n ty'. ?seqt i ty (g i) n ty'" by auto | |
from choice[OF this] obtain n where "\<forall> i. \<exists> ty'. ?seqt i ty (g i) (n i) ty'" by auto | |
from choice[OF this] obtain ty' where "\<forall> i. ?seqt i ty (g i) (n i) (ty' i)" by auto | |
hence partial: "\<And> i. ?seqt i ty (g i) (n i) (ty' i)" .. | |
(* it remains to concatenate all these finite sequences to an infinite one *) | |
let ?ind = "inf_concat n" | |
let ?g = "\<lambda> k. (\<lambda> (i,j). g i j) (?ind k)" | |
let ?ty = "\<lambda> k. (\<lambda> (i,j). ty' i j) (?ind k)" | |
have inf: "INFM i. 0 < n i" | |
unfolding INFM_nat_le | |
proof (intro allI) | |
fix m | |
from inf1[unfolded INFM_nat_le] | |
obtain k where k: "k \<ge> m" and ty: "ty k \<in> {top_s, top_ns}" by auto | |
show "\<exists> k \<ge> m. 0 < n k" | |
proof (intro exI conjI, rule k) | |
from partial[of k] ty show "0 < n k" by (cases "n k", auto) | |
qed | |
qed | |
note bounds = inf_concat_bounds[OF inf] | |
note inf_Suc = inf_concat_Suc[OF inf] | |
note inf_mono = inf_concat_mono[OF inf] | |
have "\<not> SN_rel_ext P Pw R Rw M" | |
unfolding SN_rel_ext_def simp_thms | |
proof (rule exI[of _ ?g], rule exI[of _ ?ty], intro conjI allI) | |
fix k | |
obtain i j where ik: "?ind k = (i,j)" by force | |
from bounds[OF this] have j: "j < n i" by auto | |
show "M (?g k)" unfolding ik using partial[of i] j by auto | |
next | |
fix k | |
obtain i j where ik: "?ind k = (i,j)" by force | |
from bounds[OF this] have j: "j < n i" by auto | |
from partial[of i] j have step: "(g i j, g i (Suc j)) \<in> ?rel (ty' i j)" by auto | |
obtain i' j' where isk: "?ind (Suc k) = (i',j')" by force | |
have i'j': "g i' j' = g i (Suc j)" | |
proof (rule inf_Suc[OF _ ik isk]) | |
fix i | |
from partial[of i] | |
have "g i (n i) = f (Suc i)" by simp | |
also have "... = g (Suc i) 0" using partial[of "Suc i"] by simp | |
finally show "g i (n i) = g (Suc i) 0" . | |
qed | |
show "(?g k, ?g (Suc k)) \<in> ?rel (?ty k)" | |
unfolding ik isk split i'j' | |
by (rule step) | |
next | |
show "INFM i. ?ty i \<in> {top_s, top_ns}" | |
unfolding INFM_nat_le | |
proof (intro allI) | |
fix k | |
obtain i j where ik: "?ind k = (i,j)" by force | |
from inf1[unfolded INFM_nat] obtain i' where i': "i' > i" and ty: "ty i' \<in> {top_s, top_ns}" by auto | |
from partial[of i'] ty obtain j' where j': "j' < n i'" and ty': "ty' i' j' \<in> {top_s, top_ns}" by auto | |
from inf_concat_surj[of _ n, OF j'] obtain k' where ik': "?ind k' = (i',j')" .. | |
from inf_mono[OF ik ik' i'] have k: "k \<le> k'" by simp | |
show "\<exists> k' \<ge> k. ?ty k' \<in> {top_s, top_ns}" | |
by (intro exI conjI, rule k, unfold ik' split, rule ty') | |
qed | |
next | |
show "INFM i. ?ty i \<in> {top_s, normal_s}" | |
unfolding INFM_nat_le | |
proof (intro allI) | |
fix k | |
obtain i j where ik: "?ind k = (i,j)" by force | |
from inf2[unfolded INFM_nat] obtain i' where i': "i' > i" and ty: "ty i' \<in> {top_s, normal_s}" by auto | |
from partial[of i'] ty obtain j' where j': "j' < n i'" and ty': "ty' i' j' \<in> {top_s, normal_s}" by auto | |
from inf_concat_surj[of _ n, OF j'] obtain k' where ik': "?ind k' = (i',j')" .. | |
from inf_mono[OF ik ik' i'] have k: "k \<le> k'" by simp | |
show "\<exists> k' \<ge> k. ?ty k' \<in> {top_s, normal_s}" | |
by (intro exI conjI, rule k, unfold ik' split, rule ty') | |
qed | |
qed | |
with assms show False by auto | |
qed | |
lemma SN_rel_ext_map: fixes P Pw R Rw P' Pw' R' Rw' :: "'a rel" and M M' :: "'a \<Rightarrow> bool" | |
defines Ms: "Ms \<equiv> {(s,t). M' t}" | |
defines A: "A \<equiv> (P' \<union> Pw' \<union> R' \<union> Rw') \<inter> Ms" | |
assumes SN: "SN_rel_ext P' Pw' R' Rw' M'" | |
and P: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> P \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms) O A^*) \<and> I t" | |
and Pw: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> Pw \<Longrightarrow> (f s, f t) \<in> (A^* O ((P' \<union> Pw') \<inter> Ms) O A^*) \<and> I t" | |
and R: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> (A^* O ((P' \<union> R') \<inter> Ms) O A^*) \<and> I t" | |
and Rw: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^* \<and> I t" | |
shows "SN_rel_ext P Pw R Rw M" | |
proof - | |
note SN = SN_rel_ext_trans[OF SN] | |
let ?P = "(A^* O (P' \<inter> Ms) O A^*)" | |
let ?Pw = "(A^* O ((P' \<union> Pw') \<inter> Ms) O A^*)" | |
let ?R = "(A^* O ((P' \<union> R') \<inter> Ms) O A^*)" | |
let ?Rw = "A^*" | |
let ?relt = "SN_rel_ext_step ?P ?Pw ?R ?Rw" | |
let ?rel = "SN_rel_ext_step P Pw R Rw" | |
show ?thesis | |
proof (rule ccontr) | |
assume "\<not> ?thesis" | |
from this[unfolded SN_rel_ext_def] | |
obtain g ty | |
where steps: "\<And> i. (g i, g (Suc i)) \<in> ?rel (ty i)" | |
and min: "\<And> i. M (g i)" | |
and inf1: "INFM i. ty i \<in> {top_s, top_ns}" | |
and inf2: "INFM i. ty i \<in> {top_s, normal_s}" | |
by auto | |
from inf1[unfolded INFM_nat] obtain k where k: "ty k \<in> {top_s, top_ns}" by auto | |
let ?k = "Suc k" | |
let ?i = "shift id ?k" | |
let ?f = "\<lambda> i. f (shift g ?k i)" | |
let ?ty = "shift ty ?k" | |
{ | |
fix i | |
assume ty: "ty i \<in> {top_s,top_ns}" | |
note m = min[of i] | |
note ms = min[of "Suc i"] | |
from P[OF m ms] | |
Pw[OF m ms] | |
steps[of i] | |
ty | |
have "(f (g i), f (g (Suc i))) \<in> ?relt (ty i) \<and> I (g (Suc i))" | |
by (cases "ty i", auto) | |
} note stepsP = this | |
{ | |
fix i | |
assume I: "I (g i)" | |
note m = min[of i] | |
note ms = min[of "Suc i"] | |
from P[OF m ms] | |
Pw[OF m ms] | |
R[OF I m ms] | |
Rw[OF I m ms] | |
steps[of i] | |
have "(f (g i), f (g (Suc i))) \<in> ?relt (ty i) \<and> I (g (Suc i))" | |
by (cases "ty i", auto) | |
} note stepsI = this | |
{ | |
fix i | |
have "I (g (?i i))" | |
proof (induct i) | |
case 0 | |
show ?case using stepsP[OF k] by simp | |
next | |
case (Suc i) | |
from stepsI[OF Suc] show ?case by simp | |
qed | |
} note I = this | |
have "\<not> SN_rel_ext ?P ?Pw ?R ?Rw M'" | |
unfolding SN_rel_ext_def simp_thms | |
proof (rule exI[of _ ?f], rule exI[of _ ?ty], intro allI conjI) | |
fix i | |
show "(?f i, ?f (Suc i)) \<in> ?relt (?ty i)" | |
using stepsI[OF I[of i]] by auto | |
next | |
show "INFM i. ?ty i \<in> {top_s, top_ns}" | |
unfolding Infm_shift[of "\<lambda>i. i \<in> {top_s,top_ns}" ty ?k] | |
by (rule inf1) | |
next | |
show "INFM i. ?ty i \<in> {top_s, normal_s}" | |
unfolding Infm_shift[of "\<lambda>i. i \<in> {top_s,normal_s}" ty ?k] | |
by (rule inf2) | |
next | |
fix i | |
have A: "A \<subseteq> Ms" unfolding A by auto | |
from rtrancl_mono[OF this] have As: "A^* \<subseteq> Ms^*" by auto | |
have PM: "?P \<subseteq> Ms^* O Ms O Ms^*" using As by auto | |
have PwM: "?Pw \<subseteq> Ms^* O Ms O Ms^*" using As by auto | |
have RM: "?R \<subseteq> Ms^* O Ms O Ms^*" using As by auto | |
have RwM: "?Rw \<subseteq> Ms^*" using As by auto | |
from PM PwM RM have "?P \<union> ?Pw \<union> ?R \<subseteq> Ms^* O Ms O Ms^*" (is "?PPR \<subseteq> _") by auto | |
also have "... \<subseteq> Ms^+" by regexp | |
also have "... = Ms" | |
proof | |
have "Ms^+ \<subseteq> Ms^* O Ms" by regexp | |
also have "... \<subseteq> Ms" unfolding Ms by auto | |
finally show "Ms^+ \<subseteq> Ms" . | |
qed regexp | |
finally have PPR: "?PPR \<subseteq> Ms" . | |
show "M' (?f i)" | |
proof (induct i) | |
case 0 | |
from stepsP[OF k] k | |
have "(f (g k), f (g (Suc k))) \<in> ?PPR" by (cases "ty k", auto) | |
with PPR show ?case unfolding Ms by simp blast | |
next | |
case (Suc i) | |
show ?case | |
proof (cases "?ty i = normal_ns") | |
case False | |
hence "?ty i \<in> {top_s,top_ns,normal_s}" | |
by (cases "?ty i", auto) | |
with stepsI[OF I[of i]] have "(?f i, ?f (Suc i)) \<in> ?PPR" | |
by auto | |
from subsetD[OF PPR this] have "(?f i, ?f (Suc i)) \<in> Ms" . | |
thus ?thesis unfolding Ms by auto | |
next | |
case True | |
with stepsI[OF I[of i]] have "(?f i, ?f (Suc i)) \<in> ?Rw" by auto | |
with RwM have mem: "(?f i, ?f (Suc i)) \<in> Ms^*" by auto | |
thus ?thesis | |
proof (cases) | |
case base | |
with Suc show ?thesis by simp | |
next | |
case step | |
thus ?thesis unfolding Ms by simp | |
qed | |
qed | |
qed | |
qed | |
with SN | |
show False unfolding A Ms by simp | |
qed | |
qed | |
(* and a version where it is assumed that f always preserves M and that R' and Rw' preserve M' *) | |
lemma SN_rel_ext_map_min: fixes P Pw R Rw P' Pw' R' Rw' :: "'a rel" and M M' :: "'a \<Rightarrow> bool" | |
defines Ms: "Ms \<equiv> {(s,t). M' t}" | |
defines A: "A \<equiv> P' \<inter> Ms \<union> Pw' \<inter> Ms \<union> R' \<union> Rw'" | |
assumes SN: "SN_rel_ext P' Pw' R' Rw' M'" | |
and M: "\<And> t. M t \<Longrightarrow> M' (f t)" | |
and M': "\<And> s t. M' s \<Longrightarrow> (s,t) \<in> R' \<union> Rw' \<Longrightarrow> M' t" | |
and P: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> P \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms) O A^*) \<and> I t" | |
and Pw: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> Pw \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms \<union> Pw' \<inter> Ms) O A^*) \<and> I t" | |
and R: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms \<union> R') O A^*) \<and> I t" | |
and Rw: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^* \<and> I t" | |
shows "SN_rel_ext P Pw R Rw M" | |
proof - | |
let ?Ms = "{(s,t). M' t}" | |
let ?A = "(P' \<union> Pw' \<union> R' \<union> Rw') \<inter> ?Ms" | |
{ | |
fix s t | |
assume s: "M' s" and "(s,t) \<in> A" | |
with M'[OF s, of t] have "(s,t) \<in> ?A \<and> M' t" unfolding Ms A by auto | |
} note Aone = this | |
{ | |
fix s t | |
assume s: "M' s" and steps: "(s,t) \<in> A^*" | |
from steps have "(s,t) \<in> ?A^* \<and> M' t" | |
proof (induct) | |
case base from s show ?case by simp | |
next | |
case (step t u) | |
note one = Aone[OF step(3)[THEN conjunct2] step(2)] | |
from step(3) one | |
have steps: "(s,u) \<in> ?A^* O ?A" by blast | |
have "(s,u) \<in> ?A^*" | |
by (rule subsetD[OF _ steps], regexp) | |
with one show ?case by simp | |
qed | |
} note Amany = this | |
let ?P = "(A^* O (P' \<inter> Ms) O A^*)" | |
let ?Pw = "(A^* O (P' \<inter> Ms \<union> Pw' \<inter> Ms) O A^*)" | |
let ?R = "(A^* O (P' \<inter> Ms \<union> R') O A^*)" | |
let ?Rw = "A^*" | |
let ?P' = "(?A^* O (P' \<inter> ?Ms) O ?A^*)" | |
let ?Pw' = "(?A^* O ((P' \<union> Pw') \<inter> ?Ms) O ?A^*)" | |
let ?R' = "(?A^* O ((P' \<union> R') \<inter> ?Ms) O ?A^*)" | |
let ?Rw' = "?A^*" | |
show ?thesis | |
proof (rule SN_rel_ext_map[OF SN]) | |
fix s t | |
assume s: "M s" and t: "M t" and step: "(s,t) \<in> P" | |
from P[OF s t M[OF s] M[OF t] step] | |
have "(f s, f t) \<in> ?P" and I: "I t" by auto | |
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms" | |
and vt: "(v,f t) \<in> A^*" by auto | |
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto | |
from uv have v: "M' v" unfolding Ms by auto | |
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto | |
from su uv vt I | |
show "(f s, f t) \<in> ?P' \<and> I t" unfolding Ms by auto | |
next | |
fix s t | |
assume s: "M s" and t: "M t" and step: "(s,t) \<in> Pw" | |
from Pw[OF s t M[OF s] M[OF t] step] | |
have "(f s, f t) \<in> ?Pw" and I: "I t" by auto | |
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms \<union> Pw' \<inter> Ms" | |
and vt: "(v,f t) \<in> A^*" by auto | |
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto | |
from uv have uv: "(u,v) \<in> (P' \<union> Pw') \<inter> ?Ms" and v: "M' v" unfolding Ms | |
by auto | |
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto | |
from su uv vt I | |
show "(f s, f t) \<in> ?Pw' \<and> I t" by auto | |
next | |
fix s t | |
assume I: "I s" and s: "M s" and t: "M t" and step: "(s,t) \<in> R" | |
from R[OF I s t M[OF s] M[OF t] step] | |
have "(f s, f t) \<in> ?R" and I: "I t" by auto | |
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms \<union> R'" | |
and vt: "(v,f t) \<in> A^*" by auto | |
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto | |
from uv M'[OF u, of v] have uv: "(u,v) \<in> (P' \<union> R') \<inter> ?Ms" and v: "M' v" unfolding Ms | |
by auto | |
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto | |
from su uv vt I | |
show "(f s, f t) \<in> ?R' \<and> I t" by auto | |
next | |
fix s t | |
assume I: "I s" and s: "M s" and t: "M t" and step: "(s,t) \<in> Rw" | |
from Rw[OF I s t M[OF s] M[OF t] step] | |
have steps: "(f s, f t) \<in> ?Rw" and I: "I t" by auto | |
from Amany[OF M[OF s] steps] I | |
show "(f s, f t) \<in> ?Rw' \<and> I t" by auto | |
qed | |
qed | |
(*OLD PART*) | |
lemma SN_relto_imp_SN_rel: "SN (relto R S) \<Longrightarrow> SN_rel R S" | |
proof - | |
assume SN: "SN (relto R S)" | |
show ?thesis | |
proof (simp only: SN_rel_on_conv SN_rel_defs, intro allI impI) | |
fix f | |
presume steps: "chain (R \<union> S) f" | |
obtain r where r: "\<And> j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto | |
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)" | |
proof (rule ccontr) | |
assume "\<not> ?thesis" | |
hence ih: "infinitely_many r" unfolding infinitely_many_def r INFM_nat_le by blast | |
obtain r_index where "r_index = infinitely_many.index r" by simp | |
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih] | |
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto | |
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" .. | |
{ | |
fix i | |
let ?ri = "r_index i" | |
let ?rsi = "r_index (Suc i)" | |
from r_index have isi: "?ri < ?rsi" by auto | |
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto | |
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto | |
from ri isi rsi have risi: "ri < rsi" by simp | |
{ | |
fix n | |
assume "Suc n \<le> rsi - ri" | |
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*" | |
proof (induct n, simp) | |
case (Suc n) | |
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp | |
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S" | |
using inter[of "Suc n + ri"] Suc(2) by auto | |
with stepps show ?case by simp | |
qed | |
} | |
from this[of "rsi - ri - 1"] risi have | |
"(f (Suc ri), f rsi) \<in> S^*" by simp | |
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp | |
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto | |
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto | |
} | |
hence "\<not> SN (S^* O R O S^*)" unfolding SN_defs by blast | |
with SN show False by simp | |
qed | |
qed simp | |
qed | |
(*FIXME: move*) | |
lemma rtrancl_list_conv: | |
"((s,t) \<in> R^*) = | |
(\<exists>list. last (s # list) = t \<and> (\<forall>i. i < length list \<longrightarrow> ((s # list) ! i, (s # list) ! Suc i) \<in> R))" (is "?l = ?r") | |
proof | |
assume ?r | |
then obtain list where "last (s # list) = t \<and> (\<forall> i. i < length list \<longrightarrow> ((s # list) ! i, (s # list) ! Suc i) \<in> R)" .. | |
thus ?l | |
proof (induct list arbitrary: s, simp) | |
case (Cons u ll) | |
hence "last (u # ll) = t \<and> (\<forall> i. i < length ll \<longrightarrow> ((u # ll) ! i, (u # ll) ! Suc i) \<in> R)" by auto | |
from Cons(1)[OF this] have rec: "(u,t) \<in> R^*" . | |
from Cons have "(s, u) \<in> R" by auto | |
with rec show ?case by auto | |
qed | |
next | |
assume ?l | |
from rtrancl_imp_seq[OF this] | |
obtain S n where s: "S 0 = s" and t: "S n = t" and steps: "\<forall> i<n. (S i, S (Suc i)) \<in> R" by auto | |
let ?list = "map (\<lambda> i. S (Suc i)) [0 ..< n]" | |
show ?r | |
proof (rule exI[of _ ?list], intro conjI, | |
cases n, simp add: s[symmetric] t[symmetric], simp add: t[symmetric]) | |
show "\<forall> i < length ?list. ((s # ?list) ! i, (s # ?list) ! Suc i) \<in> R" | |
proof (intro allI impI) | |
fix i | |
assume i: "i < length ?list" | |
thus "((s # ?list) ! i, (s # ?list) ! Suc i) \<in> R" | |
proof (cases i, simp add: s[symmetric] steps) | |
case (Suc j) | |
with i steps show ?thesis by simp | |
qed | |
qed | |
qed | |
qed | |
fun choice :: "(nat \<Rightarrow> 'a list) \<Rightarrow> nat \<Rightarrow> (nat \<times> nat)" where | |
"choice f 0 = (0,0)" | |
| "choice f (Suc n) = (let (i, j) = choice f n in | |
if Suc j < length (f i) | |
then (i, Suc j) | |
else (Suc i, 0))" | |
lemma SN_rel_imp_SN_relto : "SN_rel R S \<Longrightarrow> SN (relto R S)" | |
proof - | |
assume SN: "SN_rel R S" | |
show "SN (relto R S)" | |
proof | |
fix f | |
assume "\<forall> i. (f i, f (Suc i)) \<in> relto R S" | |
hence steps: "\<And> i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto | |
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*" | |
{ | |
fix i | |
from steps obtain bi ai where "?prop i ai bi" by blast | |
hence "\<exists> ai bi. ?prop i ai bi" by blast | |
} | |
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast | |
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast | |
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast | |
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)" | |
{ | |
fix i | |
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto | |
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+ | |
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" .. | |
with R have "?prop i li" by blast | |
hence "\<exists> li. ?prop i li" .. | |
} | |
hence "\<forall> i. \<exists> li. ?prop i li" .. | |
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto | |
let ?p = "\<lambda> i. ?prop i (l i)" | |
from steps have steps: "\<And> i. ?p i" by blast | |
let ?l = "\<lambda> i. a i # l i" | |
let ?g = "\<lambda> i. choice (\<lambda> j. ?l j) i" | |
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto | |
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)" | |
proof - | |
fix i j n | |
assume n: "?g n = (i,j)" | |
show "j < length (?l i)" | |
proof (cases n) | |
case 0 | |
with n have "j = 0" by auto | |
thus ?thesis by simp | |
next | |
case (Suc nn) | |
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto) | |
show ?thesis | |
proof (cases "Suc jj < length (?l ii)") | |
case True | |
with nn Suc have "?g n = (ii, Suc jj)" by auto | |
with n True show ?thesis by simp | |
next | |
case False | |
with nn Suc have "?g n = (Suc ii, 0)" by auto | |
with n show ?thesis by simp | |
qed | |
qed | |
qed | |
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S" | |
proof - | |
fix n | |
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto) | |
show "(g n, g (Suc n)) \<in> R \<union> S" | |
proof (cases "Suc j < length (?l i)") | |
case True | |
with n have "?g (Suc n) = (i, Suc j)" by auto | |
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto | |
thus ?thesis using steps[of i] True by auto | |
next | |
case False | |
with n have "?g (Suc n) = (Suc i, 0)" by auto | |
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto | |
from gn len[OF n] False have "j = length (?l i) - 1" by auto | |
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto | |
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto | |
qed | |
qed | |
have infR: "\<forall> n. \<exists> j \<ge> n. (g j, g (Suc j)) \<in> R" | |
proof | |
fix n | |
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto) | |
from len[OF n] have j: "j \<le> length (?l i) - 1" by simp | |
let ?k = "length (?l i) - 1 - j" | |
obtain k where k: "k = j + ?k" by auto | |
from j k have k2: "k = length (?l i) - 1" and k3: "j + ?k < length (?l i)" by auto | |
{ | |
fix n i j k l | |
assume n: "choice l n = (i,j)" and "j + k < length (l i)" | |
hence "choice l (n + k) = (i, j + k)" | |
by (induct k arbitrary: j, simp, auto) | |
} | |
from this[OF n, of ?k, OF k3] | |
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k) | |
hence "g (n + ?k) = ?l i ! k" unfolding g by auto | |
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto | |
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto | |
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto | |
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R" | |
by (simp only: gnk2 gnsk2) | |
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R" | |
by (rule exI[of _ "n + ?k"], auto simp: main[simplified]) | |
qed | |
from SN[simplified SN_rel_on_conv SN_rel_defs] gsteps infR show False | |
unfolding INFM_nat_le by fast | |
qed | |
qed | |
hide_const choice | |
lemma SN_relto_SN_rel_conv: "SN (relto R S) = SN_rel R S" | |
by (blast intro: SN_relto_imp_SN_rel SN_rel_imp_SN_relto) | |
lemma SN_rel_empty1: "SN_rel {} S" | |
unfolding SN_rel_defs by auto | |
lemma SN_rel_empty2: "SN_rel R {} = SN R" | |
unfolding SN_rel_defs SN_defs by auto | |
lemma SN_relto_mono: | |
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'" | |
and SN: "SN (relto R' S')" | |
shows "SN (relto R S)" | |
using SN SN_subset[OF _ relto_mono[OF R S]] by blast | |
lemma SN_relto_imp_SN: | |
assumes "SN (relto R S)" shows "SN R" | |
proof | |
fix f | |
assume "\<forall>i. (f i, f (Suc i)) \<in> R" | |
hence "\<And>i. (f i, f (Suc i)) \<in> relto R S" by blast | |
thus False using assms unfolding SN_defs by blast | |
qed | |
lemma SN_relto_Id: | |
"SN (relto R (S \<union> Id)) = SN (relto R S)" | |
by (simp only: relto_Id) | |
text \<open>Termination inheritance by transitivity (see, e.g., Geser's thesis).\<close> | |
lemma trans_subset_SN: | |
assumes "trans R" and "R \<subseteq> (r \<union> s)" and "SN r" and "SN s" | |
shows "SN R" | |
proof | |
fix f :: "nat \<Rightarrow> 'a" | |
assume "f 0 \<in> UNIV" | |
and chain: "chain R f" | |
have *: "\<And>i j. i < j \<Longrightarrow> (f i, f j) \<in> r \<union> s" | |
using assms and chain_imp_trancl [OF chain] by auto | |
let ?M = "{i. \<forall>j>i. (f i, f j) \<notin> r}" | |
show False | |
proof (cases "finite ?M") | |
let ?n = "Max ?M" | |
assume "finite ?M" | |
with Max_ge have "\<forall>i\<in>?M. i \<le> ?n" by simp | |
then have "\<forall>k\<ge>Suc ?n. \<exists>k'>k. (f k, f k') \<in> r" by auto | |
with steps_imp_chainp [of "Suc ?n" "\<lambda>x y. (x, y) \<in> r"] and assms | |
show False by auto | |
next | |
assume "infinite ?M" | |
then have "INFM j. j \<in> ?M" by (simp add: Inf_many_def) | |
then interpret infinitely_many "\<lambda>i. i \<in> ?M" by (unfold_locales) assumption | |
define g where [simp]: "g = index" | |
have "\<forall>i. (f (g i), f (g (Suc i))) \<in> s" | |
proof | |
fix i | |
have less: "g i < g (Suc i)" using index_ordered_less [of i "Suc i"] by simp | |
have "g i \<in> ?M" using index_p by simp | |
then have "(f (g i), f (g (Suc i))) \<notin> r" using less by simp | |
moreover have "(f (g i), f (g (Suc i))) \<in> r \<union> s" using * [OF less] by simp | |
ultimately show "(f (g i), f (g (Suc i))) \<in> s" by blast | |
qed | |
with \<open>SN s\<close> show False by (auto simp: SN_defs) | |
qed | |
qed | |
lemma SN_Un_conv: | |
assumes "trans (r \<union> s)" | |
shows "SN (r \<union> s) \<longleftrightarrow> SN r \<and> SN s" | |
(is "SN ?r \<longleftrightarrow> ?rhs") | |
proof | |
assume "SN (r \<union> s)" thus "SN r \<and> SN s" | |
using SN_subset[of ?r] by blast | |
next | |
assume "SN r \<and> SN s" | |
with trans_subset_SN[OF assms subset_refl] show "SN ?r" by simp | |
qed | |
lemma SN_relto_Un: | |
"SN (relto (R \<union> S) Q) \<longleftrightarrow> SN (relto R (S \<union> Q)) \<and> SN (relto S Q)" | |
(is "SN ?a \<longleftrightarrow> SN ?b \<and> SN ?c") | |
proof - | |
have eq: "?a^+ = ?b^+ \<union> ?c^+" by regexp | |
from SN_Un_conv[of "?b^+" "?c^+", unfolded eq[symmetric]] | |
show ?thesis unfolding SN_trancl_SN_conv by simp | |
qed | |
lemma SN_relto_split: | |
assumes "SN (relto r (s \<union> q2) \<union> relto q1 (s \<union> q2))" (is "SN ?a") | |
and "SN (relto s q2)" (is "SN ?b") | |
shows "SN (relto r (q1 \<union> q2) \<union> relto s (q1 \<union> q2))" (is "SN ?c") | |
proof - | |
have "?c^+ \<subseteq> ?a^+ \<union> ?b^+" by regexp | |
from trans_subset_SN[OF _ this, unfolded SN_trancl_SN_conv, OF _ assms] | |
show ?thesis by simp | |
qed | |
lemma relto_trancl_subset: assumes "a \<subseteq> c" and "b \<subseteq> c" shows "relto a b \<subseteq> c^+" | |
proof - | |
have "relto a b \<subseteq> (a \<union> b)^+" by regexp | |
also have "\<dots> \<subseteq> c^+" | |
by (rule trancl_mono_set, insert assms, auto) | |
finally show ?thesis . | |
qed | |
text \<open>An explicit version of @{const relto} which mentions all intermediate terms\<close> | |
inductive relto_fun :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a \<times> 'a \<Rightarrow> bool" where | |
relto_fun: "as 0 = a \<Longrightarrow> as m = b \<Longrightarrow> | |
(\<And> i. i < m \<Longrightarrow> | |
(sel i \<longrightarrow> (as i, as (Suc i)) \<in> A) \<and> (\<not> sel i \<longrightarrow> (as i, as (Suc i)) \<in> B)) | |
\<Longrightarrow> n = card { i . i < m \<and> sel i} | |
\<Longrightarrow> (n = 0 \<longleftrightarrow> m = 0) \<Longrightarrow> relto_fun A B n as sel m (a,b)" | |
lemma relto_funD: assumes "relto_fun A B n as sel m (a,b)" | |
shows "as 0 = a" "as m = b" | |
"\<And> i. i < m \<Longrightarrow> sel i \<Longrightarrow> (as i, as (Suc i)) \<in> A" | |
"\<And> i. i < m \<Longrightarrow> \<not> sel i \<Longrightarrow> (as i, as (Suc i)) \<in> B" | |
"n = card { i . i < m \<and> sel i}" | |
"n = 0 \<longleftrightarrow> m = 0" | |
using assms[unfolded relto_fun.simps] by blast+ | |
lemma relto_fun_refl: "\<exists> as sel. relto_fun A B 0 as sel 0 (a,a)" | |
by (rule exI[of _ "\<lambda> _. a"], rule exI, rule relto_fun, auto) | |
lemma relto_into_relto_fun: assumes "(a,b) \<in> relto A B" | |
shows "\<exists> as sel m. relto_fun A B (Suc 0) as sel m (a,b)" | |
proof - | |
from assms obtain a' b' where aa: "(a,a') \<in> B^*" and ab: "(a',b') \<in> A" | |
and bb: "(b',b) \<in> B^*" by auto | |
from aa[unfolded rtrancl_fun_conv] obtain f1 n1 where | |
f1: "f1 0 = a" "f1 n1 = a'" "\<And> i. i<n1 \<Longrightarrow> (f1 i, f1 (Suc i)) \<in> B" by auto | |
from bb[unfolded rtrancl_fun_conv] obtain f2 n2 where | |
f2: "f2 0 = b'" "f2 n2 = b" "\<And> i. i<n2 \<Longrightarrow> (f2 i, f2 (Suc i)) \<in> B" by auto | |
let ?gen = "\<lambda> aa ab bb i. if i < n1 then aa i else if i = n1 then ab else bb (i - Suc n1)" | |
let ?f = "?gen f1 a' f2" | |
let ?sel = "?gen (\<lambda> _. False) True (\<lambda> _. False)" | |
let ?m = "Suc (n1 + n2)" | |
show ?thesis | |
proof (rule exI[of _ ?f], rule exI[of _ ?sel], rule exI[of _ ?m], rule relto_fun) | |
fix i | |
assume i: "i < ?m" | |
show "(?sel i \<longrightarrow> (?f i, ?f (Suc i)) \<in> A) \<and> (\<not> ?sel i \<longrightarrow> (?f i, ?f (Suc i)) \<in> B)" | |
proof (cases "i < n1") | |
case True | |
with f1(3)[OF this] f1(2) show ?thesis by (cases "Suc i = n1", auto) | |
next | |
case False note nle = this | |
show ?thesis | |
proof (cases "i > n1") | |
case False | |
with nle have "i = n1" by auto | |
thus ?thesis using f1 f2 ab by auto | |
next | |
case True | |
define j where "j = i - Suc n1" | |
have i: "i = Suc n1 + j" and j: "j < n2" using i True unfolding j_def by auto | |
thus ?thesis using f2 by auto | |
qed | |
qed | |
qed (insert f1 f2, auto) | |
qed | |
lemma relto_fun_trans: assumes ab: "relto_fun A B n1 as1 sel1 m1 (a,b)" | |
and bc: "relto_fun A B n2 as2 sel2 m2 (b,c)" | |
shows "\<exists> as sel. relto_fun A B (n1 + n2) as sel (m1 + m2) (a,c)" | |
proof - | |
from relto_funD[OF ab] | |
have 1: "as1 0 = a" "as1 m1 = b" | |
"\<And> i. i < m1 \<Longrightarrow> (sel1 i \<longrightarrow> (as1 i, as1 (Suc i)) \<in> A) \<and> (\<not> sel1 i \<longrightarrow> (as1 i, as1 (Suc i)) \<in> B)" | |
"n1 = 0 \<longleftrightarrow> m1 = 0" and card1: "n1 = card {i. i < m1 \<and> sel1 i}" by blast+ | |
from relto_funD[OF bc] | |
have 2: "as2 0 = b" "as2 m2 = c" | |
"\<And> i. i < m2 \<Longrightarrow> (sel2 i \<longrightarrow> (as2 i, as2 (Suc i)) \<in> A) \<and> (\<not> sel2 i \<longrightarrow> (as2 i, as2 (Suc i)) \<in> B)" | |
"n2 = 0 \<longleftrightarrow> m2 = 0" and card2: "n2 = card {i. i < m2 \<and> sel2 i}" by blast+ | |
let ?as = "\<lambda> i. if i < m1 then as1 i else as2 (i - m1)" | |
let ?sel = "\<lambda> i. if i < m1 then sel1 i else sel2 (i - m1)" | |
let ?m = "m1 + m2" | |
let ?n = "n1 + n2" | |
show ?thesis | |
proof (rule exI[of _ ?as], rule exI[of _ ?sel], rule relto_fun) | |
have id: "{ i . i < ?m \<and> ?sel i} = { i . i < m1 \<and> sel1 i} \<union> ((+) m1) ` { i. i < m2 \<and> sel2 i}" | |
(is "_ = ?A \<union> ?f ` ?B") | |
by force | |
have "card (?A \<union> ?f ` ?B) = card ?A + card (?f ` ?B)" | |
by (rule card_Un_disjoint, auto) | |
also have "card (?f ` ?B) = card ?B" | |
by (rule card_image, auto simp: inj_on_def) | |
finally show "?n = card { i . i < ?m \<and> ?sel i}" unfolding card1 card2 id by simp | |
next | |
fix i | |
assume i: "i < ?m" | |
show "(?sel i \<longrightarrow> (?as i, ?as (Suc i)) \<in> A) \<and> (\<not> ?sel i \<longrightarrow> (?as i, ?as (Suc i)) \<in> B)" | |
proof (cases "i < m1") | |
case True | |
from 1 2 have [simp]: "as2 0 = as1 m1" by simp | |
from True 1(3)[of i] 1(2) show ?thesis by (cases "Suc i = m1", auto) | |
next | |
case False | |
define j where "j = i - m1" | |
have i: "i = m1 + j" and j: "j < m2" using i False unfolding j_def by auto | |
thus ?thesis using False 2(3)[of j] by auto | |
qed | |
qed (insert 1 2, auto) | |
qed | |
lemma reltos_into_relto_fun: assumes "(a,b) \<in> (relto A B)^^n" | |
shows "\<exists> as sel m. relto_fun A B n as sel m (a,b)" | |
using assms | |
proof (induct n arbitrary: b) | |
case (0 b) | |
hence b: "b = a" by auto | |
show ?case unfolding b using relto_fun_refl[of A B a] by blast | |
next | |
case (Suc n c) | |
from relpow_Suc_E[OF Suc(2)] | |
obtain b where ab: "(a,b) \<in> (relto A B)^^n" and bc: "(b,c) \<in> relto A B" by auto | |
from Suc(1)[OF ab] obtain as sel m where | |
IH: "relto_fun A B n as sel m (a, b)" by auto | |
from relto_into_relto_fun[OF bc] obtain as sel m where "relto_fun A B (Suc 0) as sel m (b,c)" by blast | |
from relto_fun_trans[OF IH this] show ?case by auto | |
qed | |
lemma relto_fun_into_reltos: assumes "relto_fun A B n as sel m (a,b)" | |
shows "(a,b) \<in> (relto A B)^^n" | |
proof - | |
note * = relto_funD[OF assms] | |
{ | |
fix m' | |
let ?c = "\<lambda> m'. card {i. i < m' \<and> sel i}" | |
assume "m' \<le> m" | |
hence "(?c m' > 0 \<longrightarrow> (as 0, as m') \<in> (relto A B)^^ ?c m') \<and> (?c m' = 0 \<longrightarrow> (as 0, as m') \<in> B^*)" | |
proof (induct m') | |
case (Suc m') | |
let ?x = "as 0" | |
let ?y = "as m'" | |
let ?z = "as (Suc m')" | |
let ?C = "?c (Suc m')" | |
have C: "?C = ?c m' + (if (sel m') then 1 else 0)" | |
proof - | |
have id: "{i. i < Suc m' \<and> sel i} = {i. i < m' \<and> sel i} \<union> (if sel m' then {m'} else {})" | |
by (cases "sel m'", auto, case_tac "x = m'", auto) | |
show ?thesis unfolding id by auto | |
qed | |
from Suc(2) have m': "m' \<le> m" and lt: "m' < m" by auto | |
from Suc(1)[OF m'] have IH: "?c m' > 0 \<Longrightarrow> (?x, ?y) \<in> (relto A B) ^^ ?c m'" | |
"?c m' = 0 \<Longrightarrow> (?x, ?y) \<in> B^*" by auto | |
from *(3-4)[OF lt] have yz: "sel m' \<Longrightarrow> (?y, ?z) \<in> A" "\<not> sel m' \<Longrightarrow> (?y, ?z) \<in> B" by auto | |
show ?case | |
proof (cases "?c m' = 0") | |
case True note c = this | |
from IH(2)[OF this] have xy: "(?x, ?y) \<in> B^*" by auto | |
show ?thesis | |
proof (cases "sel m'") | |
case False | |
from xy yz(2)[OF False] have xz: "(?x, ?z) \<in> B^*" by auto | |
from False c have C: "?C = 0" unfolding C by simp | |
from xz show ?thesis unfolding C by auto | |
next | |
case True | |
from xy yz(1)[OF True] have xz: "(?x,?z) \<in> relto A B" by auto | |
from True c have C: "?C = 1" unfolding C by simp | |
from xz show ?thesis unfolding C by auto | |
qed | |
next | |
case False | |
hence c: "?c m' > 0" "(?c m' = 0) = False" by arith+ | |
from IH(1)[OF c(1)] have xy: "(?x, ?y) \<in> (relto A B) ^^ ?c m'" . | |
show ?thesis | |
proof (cases "sel m'") | |
case False | |
from c obtain k where ck: "?c m' = Suc k" by (cases "?c m'", auto) | |
from relpow_Suc_E[OF xy[unfolded this]] obtain | |
u where xu: "(?x, u) \<in> (relto A B) ^^ k" and uy: "(u, ?y) \<in> relto A B" by auto | |
from uy yz(2)[OF False] have uz: "(u, ?z) \<in> relto A B" by force | |
with xu have xz: "(?x,?z) \<in> (relto A B) ^^ ?c m'" unfolding ck by auto | |
from False c have C: "?C = ?c m'" unfolding C by simp | |
from xz show ?thesis unfolding C c by auto | |
next | |
case True | |
from xy yz(1)[OF True] have xz: "(?x,?z) \<in> (relto A B) ^^ (Suc (?c m'))" by auto | |
from c True have C: "?C = Suc (?c m')" unfolding C by simp | |
from xz show ?thesis unfolding C by auto | |
qed | |
qed | |
qed simp | |
} | |
from this[of m] * show ?thesis by auto | |
qed | |
lemma relto_relto_fun_conv: "((a,b) \<in> (relto A B)^^n) = (\<exists> as sel m. relto_fun A B n as sel m (a,b))" | |
using relto_fun_into_reltos[of A B n _ _ _ a b] reltos_into_relto_fun[of a b n B A] by blast | |
lemma relto_fun_intermediate: assumes "A \<subseteq> C" and "B \<subseteq> C" | |
and rf: "relto_fun A B n as sel m (a,b)" | |
shows "i \<le> m \<Longrightarrow> (a,as i) \<in> C^*" | |
proof (induct i) | |
case 0 | |
from relto_funD[OF rf] show ?case by simp | |
next | |
case (Suc i) | |
hence IH: "(a, as i) \<in> C^*" and im: "i < m" by auto | |
from relto_funD(3-4)[OF rf im] assms have "(as i, as (Suc i)) \<in> C" by auto | |
with IH show ?case by auto | |
qed | |
lemma not_SN_on_rel_succ: | |
assumes "\<not> SN_on (relto R E) {s}" | |
shows "\<exists>t u. (s, t) \<in> E\<^sup>* \<and> (t, u) \<in> R \<and> \<not> SN_on (relto R E) {u}" | |
proof - | |
obtain v where "(s, v) \<in> relto R E" and v: "\<not> SN_on (relto R E) {v}" | |
using assms by fast | |
moreover then obtain t and u | |
where "(s, t) \<in> E^*" and "(t, u) \<in> R" and uv: "(u, v) \<in> E\<^sup>*" by auto | |
moreover from uv have uv: "(u,v) \<in> (R \<union> E)^*" by regexp | |
moreover have "\<not> SN_on (relto R E) {u}" using | |
v steps_preserve_SN_on_relto[OF uv] by auto | |
ultimately show ?thesis by auto | |
qed | |
lemma SN_on_relto_relcomp: "SN_on (relto R S) T = SN_on (S\<^sup>* O R) T" (is "?L T = ?R T") | |
proof | |
assume L: "?L T" | |
{ fix t assume "t \<in> T" hence "?L {t}" using L by fast } | |
thus "?R T" by fast | |
next | |
{ fix s | |
have "SN_on (relto R S) {s} = SN_on (S\<^sup>* O R) {s}" | |
proof | |
let ?X = "{s. \<not>SN_on (relto R S) {s}}" | |
{ assume "\<not> ?L {s}" | |
hence "s \<in> ?X" by auto | |
hence "\<not> ?R {s}" | |
proof(rule lower_set_imp_not_SN_on, intro ballI) | |
fix s assume "s \<in> ?X" | |
then obtain t u where "(s,t) \<in> S\<^sup>*" "(t,u) \<in> R" and u: "u \<in> ?X" | |
unfolding mem_Collect_eq by (metis not_SN_on_rel_succ) | |
hence "(s,u) \<in> S\<^sup>* O R" by auto | |
with u show "\<exists>u \<in> ?X. (s,u) \<in> S\<^sup>* O R" by auto | |
qed | |
} | |
thus "?R {s} \<Longrightarrow> ?L {s}" by auto | |
assume "?L {s}" thus "?R {s}" by(rule SN_on_mono, auto) | |
qed | |
} note main = this | |
assume R: "?R T" | |
{ fix t assume "t \<in> T" hence "?L {t}" unfolding main using R by fast } | |
thus "?L T" by fast | |
qed | |
lemma trans_relto: | |
assumes trans: "trans R" and "S O R \<subseteq> R O S" | |
shows "trans (relto R S)" | |
proof | |
fix a b c | |
assume ab: "(a, b) \<in> S\<^sup>* O R O S\<^sup>*" and bc: "(b, c) \<in> S\<^sup>* O R O S\<^sup>*" | |
from rtrancl_O_push [of S R] assms(2) have comm: "S\<^sup>* O R \<subseteq> R O S\<^sup>*" by blast | |
from ab obtain d e where de: "(a, d) \<in> S\<^sup>*" "(d, e) \<in> R" "(e, b) \<in> S\<^sup>*" by auto | |
from bc obtain f g where fg: "(b, f) \<in> S\<^sup>*" "(f, g) \<in> R" "(g, c) \<in> S\<^sup>*" by auto | |
from de(3) fg(1) have "(e, f) \<in> S\<^sup>*" by auto | |
with fg(2) comm have "(e, g) \<in> R O S\<^sup>*" by blast | |
then obtain h where h: "(e, h) \<in> R" "(h, g) \<in> S\<^sup>*" by auto | |
with de(2) trans have dh: "(d, h) \<in> R" unfolding trans_def by blast | |
from fg(3) h(2) have "(h, c) \<in> S\<^sup>*" by auto | |
with de(1) dh(1) show "(a, c) \<in> S\<^sup>* O R O S\<^sup>*" by auto | |
qed | |
lemma relative_ending: (* general version of non_strict_ending *) | |
assumes chain: "chain (R \<union> S) t" | |
and t0: "t 0 \<in> X" | |
and SN: "SN_on (relto R S) X" | |
shows "\<exists>j. \<forall>i\<ge>j. (t i, t (Suc i)) \<in> S - R" | |
proof (rule ccontr) | |
assume "\<not> ?thesis" | |
with chain have "\<forall>i. \<exists>j. j \<ge> i \<and> (t j, t (Suc j)) \<in> R" by blast | |
from choice [OF this] obtain f where R_steps: "\<forall>i. i \<le> f i \<and> (t (f i), t (Suc (f i))) \<in> R" .. | |
let ?t = "\<lambda>i. t (((Suc \<circ> f) ^^ i) 0)" | |
have "\<forall>i. (t i, t (Suc (f i))) \<in> (relto R S)\<^sup>+" | |
proof | |
fix i | |
from R_steps have leq: "i\<le>f i" and step: "(t(f i), t(Suc(f i))) \<in> R" by auto | |
from chain_imp_rtrancl [OF chain leq] have "(t i, t(f i)) \<in> (R \<union> S)\<^sup>*" . | |
with step have "(t i, t(Suc(f i))) \<in> (R \<union> S)\<^sup>* O R" by auto | |
then show "(t i, t(Suc(f i))) \<in> (relto R S)\<^sup>+" by regexp | |
qed | |
then have "chain ((relto R S)\<^sup>+) ?t" by simp | |
with t0 have "\<not> SN_on ((relto R S)\<^sup>+) X" by (unfold SN_on_def, auto intro: exI[of _ ?t]) | |
with SN_on_trancl[OF SN] show False by auto | |
qed | |
text \<open>from Geser's thesis [p.32, Corollary-1], generalized for @{term SN_on}.\<close> | |
lemma SN_on_relto_Un: | |
assumes closure: "relto (R \<union> R') S `` X \<subseteq> X" | |
shows "SN_on (relto (R \<union> R') S) X \<longleftrightarrow> SN_on (relto R (R' \<union> S)) X \<and> SN_on (relto R' S) X" | |
(is "?c \<longleftrightarrow> ?a \<and> ?b") | |
proof(safe) | |
assume SN: "?a" and SN': "?b" | |
from SN have SN: "SN_on (relto (relto R S) (relto R' S)) X" by (rule SN_on_subset1) regexp | |
show "?c" | |
proof | |
fix f | |
assume f0: "f 0 \<in> X" and chain: "chain (relto (R \<union> R') S) f" | |
then have "chain (relto R S \<union> relto R' S) f" by auto | |
from relative_ending[OF this f0 SN] | |
have "\<exists> j. \<forall> i \<ge> j. (f i, f (Suc i)) \<in> relto R' S - relto R S" by auto | |
then obtain j where "\<forall>i \<ge> j. (f i, f (Suc i)) \<in> relto R' S" by auto | |
then have "chain (relto R' S) (shift f j)" by auto | |
moreover have "f j \<in> X" | |
proof(induct j) | |
case 0 from f0 show ?case by simp | |
next | |
case (Suc j) | |
let ?s = "(f j, f (Suc j))" | |
from chain have "?s \<in> relto (R \<union> R') S" by auto | |
with Image_closed_trancl[OF closure] Suc show "f (Suc j) \<in> X" by blast | |
qed | |
then have "shift f j 0 \<in> X" by auto | |
ultimately have "\<not> SN_on (relto R' S) X" by (intro not_SN_onI) | |
with SN' show False by auto | |
qed | |
next | |
assume SN: "?c" | |
then show "?b" by (rule SN_on_subset1, auto) | |
moreover | |
from SN have "SN_on ((relto (R \<union> R') S)\<^sup>+) X" by (unfold SN_on_trancl_SN_on_conv) | |
then show "?a" by (rule SN_on_subset1) regexp | |
qed | |
lemma SN_on_Un: "(R \<union> R')``X \<subseteq> X \<Longrightarrow> SN_on (R \<union> R') X \<longleftrightarrow> SN_on (relto R R') X \<and> SN_on R' X" | |
using SN_on_relto_Un[of "{}"] by simp | |
end | |