Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: A while language | |
Author: Tobias Nipkow, 2001/2006 | |
Maintainer: Tobias Nipkow | |
*) | |
section "Hoare Logics for While" | |
theory Lang imports Main begin | |
subsection\<open>The language \label{sec:lang}\<close> | |
text\<open>We start by declaring a type of states:\<close> | |
typedecl state | |
text\<open>\noindent | |
Our approach is completely parametric in the state space. | |
We define expressions (\<open>bexp\<close>) as functions from states | |
to the booleans:\<close> | |
type_synonym bexp = "state \<Rightarrow> bool" | |
text\<open> | |
Instead of modelling the syntax of boolean expressions, we | |
model their semantics. The (abstract and concrete) | |
syntax of our programming is defined as a recursive datatype: | |
\<close> | |
datatype com = Do "(state \<Rightarrow> state set)" | |
| Semi com com ("_; _" [60, 60] 10) | |
| Cond bexp com com ("IF _ THEN _ ELSE _" 60) | |
| While bexp com ("WHILE _ DO _" 60) | |
| Local "(state \<Rightarrow> state)" com "(state \<Rightarrow> state \<Rightarrow> state)" | |
("LOCAL _; _; _" [0,0,60] 60) | |
text\<open>\noindent Statements in this language are called | |
\emph{commands}. They are modelled as terms of type @{typ | |
com}. @{term"Do f"} represents an atomic nondeterministic command that | |
changes the state from @{term s} to some element of @{term"f s"}. | |
Thus the command that does nothing, often called \texttt{skip}, can be | |
represented by @{term"Do(\<lambda>s. {s})"}. Again we have chosen to model the | |
semantics rather than the syntax, which simplifies matters | |
enormously. Of course it means that we can no longer talk about | |
certain syntactic matters, but that is just fine. | |
The constructors @{term Semi}, @{term Cond} and @{term While} | |
represent sequential composition, conditional and while-loop. | |
The annotations allow us to write | |
\begin{center} | |
@{term"c\<^sub>1;c\<^sub>2"} \qquad @{term"IF b THEN c\<^sub>1 ELSE c\<^sub>2"} | |
\qquad @{term"WHILE b DO c"} | |
\end{center} | |
instead of @{term[source]"Semi c\<^sub>1 c\<^sub>2"}, @{term[source]"Cond b c\<^sub>1 c\<^sub>2"} | |
and @{term[source]"While b c"}. | |
The command @{term"LOCAL f;c;g"} applies function \<open>f\<close> to the state, | |
executes @{term c}, and then combines initial and final state via function | |
\<open>g\<close>. More below. | |
The semantics of commands is defined inductively by a so-called | |
big-step semantics.\<close> | |
inductive | |
exec :: "state \<Rightarrow> com \<Rightarrow> state \<Rightarrow> bool" ("_/ -_\<rightarrow>/ _" [50,0,50] 50) | |
where | |
(*<*)Do:(*>*)"t \<in> f s \<Longrightarrow> s -Do f\<rightarrow> t" | |
| (*<*)Semi:(*>*)"\<lbrakk> s0 -c1\<rightarrow> s1; s1 -c2\<rightarrow> s2 \<rbrakk> \<Longrightarrow> s0 -c1;c2\<rightarrow> s2" | |
| (*<*)IfT:(*>*)"\<lbrakk> b s; s -c1\<rightarrow> t \<rbrakk> \<Longrightarrow> s -IF b THEN c1 ELSE c2\<rightarrow> t" | |
| (*<*)IfF:(*>*)"\<lbrakk> \<not>b s; s -c2\<rightarrow> t \<rbrakk> \<Longrightarrow> s -IF b THEN c1 ELSE c2\<rightarrow> t" | |
| (*<*)WhileF:(*>*)"\<not>b s \<Longrightarrow> s -WHILE b DO c\<rightarrow> s" | |
| (*<*)WhileT:(*>*)"\<lbrakk> b s; s -c\<rightarrow> t; t -WHILE b DO c\<rightarrow> u \<rbrakk> \<Longrightarrow> s -WHILE b DO c\<rightarrow> u" | |
| (*<*)Local:(*>*) "f s -c\<rightarrow> t \<Longrightarrow> s -LOCAL f; c; g\<rightarrow> g s t" | |
text\<open>Assuming that the state is a function from variables to values, | |
the declaration of a new local variable \<open>x\<close> with inital value | |
\<open>a\<close> can be modelled as | |
\<open>LOCAL (\<lambda>s. s(x := a s)); c; (\<lambda>s t. t(x := s x))\<close>.\<close> | |
lemma exec_Do_iff[iff]: "(s -Do f\<rightarrow> t) = (t \<in> f s)" | |
by(auto elim: exec.cases intro:exec.intros) | |
lemma [iff]: "(s -c;d\<rightarrow> u) = (\<exists>t. s -c\<rightarrow> t \<and> t -d\<rightarrow> u)" | |
by(best elim: exec.cases intro:exec.intros) | |
lemma [iff]: "(s -IF b THEN c ELSE d\<rightarrow> t) = | |
(s -if b s then c else d\<rightarrow> t)" | |
apply auto | |
apply(blast elim: exec.cases intro:exec.intros)+ | |
done | |
lemma [iff]: "(s -LOCAL f; c; g\<rightarrow> u) = (\<exists>t. f s -c\<rightarrow> t \<and> u = g s t)" | |
by(fastforce elim: exec.cases intro:exec.intros) | |
lemma unfold_while: | |
"(s -WHILE b DO c\<rightarrow> u) = | |
(s -IF b THEN c;WHILE b DO c ELSE Do(\<lambda>s. {s})\<rightarrow> u)" | |
by(auto elim: exec.cases intro:exec.intros split:if_split_asm) | |
lemma while_lemma[rule_format]: | |
"s -w\<rightarrow> t \<Longrightarrow> \<forall>b c. w = WHILE b DO c \<and> P s \<and> | |
(\<forall>s s'. P s \<and> b s \<and> s -c\<rightarrow> s' \<longrightarrow> P s') \<longrightarrow> P t \<and> \<not>b t" | |
apply(erule exec.induct) | |
apply clarify+ | |
defer | |
apply clarify+ | |
apply(subgoal_tac "P t") | |
apply blast | |
apply blast | |
done | |
lemma while_rule: | |
"\<lbrakk>s -WHILE b DO c\<rightarrow> t; P s; \<forall>s s'. P s \<and> b s \<and> s -c\<rightarrow> s' \<longrightarrow> P s'\<rbrakk> | |
\<Longrightarrow> P t \<and> \<not>b t" | |
apply(drule while_lemma) | |
prefer 2 apply assumption | |
apply blast | |
done | |
end | |