Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: AVL Trees | |
Author: Tobias Nipkow and Cornelia Pusch, | |
converted to Isar by Gerwin Klein | |
contributions by Achim Brucker, Burkhart Wolff and Jan Smaus | |
delete formalization and a transformation to Isar by Ondrej Kuncar | |
Maintainer: Gerwin Klein <gerwin.klein at nicta.com.au> | |
see the file Changelog for a list of changes | |
*) | |
section "AVL Trees" | |
theory AVL | |
imports Main | |
begin | |
text \<open> | |
This is a monolithic formalization of AVL trees. | |
\<close> | |
subsection \<open>AVL tree type definition\<close> | |
datatype (set_of: 'a) tree = ET | MKT 'a "'a tree" "'a tree" nat | |
subsection \<open>Invariants and auxiliary functions\<close> | |
primrec height :: "'a tree \<Rightarrow> nat" where | |
"height ET = 0" | | |
"height (MKT x l r h) = max (height l) (height r) + 1" | |
primrec avl :: "'a tree \<Rightarrow> bool" where | |
"avl ET = True" | | |
"avl (MKT x l r h) = | |
((height l = height r \<or> height l = height r + 1 \<or> height r = height l + 1) \<and> | |
h = max (height l) (height r) + 1 \<and> avl l \<and> avl r)" | |
primrec is_ord :: "('a::order) tree \<Rightarrow> bool" where | |
"is_ord ET = True" | | |
"is_ord (MKT n l r h) = | |
((\<forall>n' \<in> set_of l. n' < n) \<and> (\<forall>n' \<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)" | |
subsection \<open>AVL interface and implementation\<close> | |
primrec is_in :: "('a::order) \<Rightarrow> 'a tree \<Rightarrow> bool" where | |
"is_in k ET = False" | | |
"is_in k (MKT n l r h) = (if k = n then True else | |
if k < n then (is_in k l) | |
else (is_in k r))" | |
primrec ht :: "'a tree \<Rightarrow> nat" where | |
"ht ET = 0" | | |
"ht (MKT x l r h) = h" | |
definition | |
mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | |
"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)" | |
fun mkt_bal_l where | |
"mkt_bal_l n l r = ( | |
if ht l = ht r + 2 then (case l of | |
MKT ln ll lr _ \<Rightarrow> (if ht ll < ht lr | |
then case lr of | |
MKT lrn lrl lrr _ \<Rightarrow> mkt lrn (mkt ln ll lrl) (mkt n lrr r) | |
else mkt ln ll (mkt n lr r))) | |
else mkt n l r | |
)" | |
fun mkt_bal_r where | |
"mkt_bal_r n l r = ( | |
if ht r = ht l + 2 then (case r of | |
MKT rn rl rr _ \<Rightarrow> (if ht rl > ht rr | |
then case rl of | |
MKT rln rll rlr _ \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr) | |
else mkt rn (mkt n l rl) rr)) | |
else mkt n l r | |
)" | |
primrec insert :: "'a::order \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | |
"insert x ET = MKT x ET ET 1" | | |
"insert x (MKT n l r h) = | |
(if x=n | |
then MKT n l r h | |
else if x<n | |
then mkt_bal_l n (insert x l) r | |
else mkt_bal_r n l (insert x r))" | |
fun delete_max where | |
"delete_max (MKT n l ET h) = (n,l)" | | |
"delete_max (MKT n l r h) = ( | |
let (n',r') = delete_max r in | |
(n',mkt_bal_l n l r'))" | |
lemmas delete_max_induct = delete_max.induct[case_names ET MKT] | |
fun delete_root where | |
"delete_root (MKT n ET r h) = r" | | |
"delete_root (MKT n l ET h) = l" | | |
"delete_root (MKT n l r h) = | |
(let (new_n, l') = delete_max l in | |
mkt_bal_r new_n l' r | |
)" | |
lemmas delete_root_cases = delete_root.cases[case_names ET_t MKT_ET MKT_MKT] | |
primrec delete :: "'a::order \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where | |
"delete _ ET = ET" | | |
"delete x (MKT n l r h) = ( | |
if x = n then delete_root (MKT n l r h) | |
else if x < n then | |
let l' = delete x l in | |
mkt_bal_r n l' r | |
else | |
let r' = delete x r in | |
mkt_bal_l n l r' | |
)" | |
subsection \<open>Correctness proof\<close> | |
subsubsection \<open>Insertion maintains AVL balance\<close> | |
declare Let_def [simp] | |
lemma [simp]: "avl t \<Longrightarrow> ht t = height t" | |
by (induct t) simp_all | |
lemma height_mkt_bal_l: | |
"\<lbrakk> height l = height r + 2; avl l; avl r \<rbrakk> \<Longrightarrow> | |
height (mkt_bal_l n l r) = height r + 2 \<or> | |
height (mkt_bal_l n l r) = height r + 3" | |
by (cases l) (auto simp:mkt_def split:tree.split) | |
lemma height_mkt_bal_r: | |
"\<lbrakk> height r = height l + 2; avl l; avl r \<rbrakk> \<Longrightarrow> | |
height (mkt_bal_r n l r) = height l + 2 \<or> | |
height (mkt_bal_r n l r) = height l + 3" | |
by (cases r) (auto simp add:mkt_def split:tree.split) | |
lemma [simp]: "height(mkt x l r) = max (height l) (height r) + 1" | |
by (simp add: mkt_def) | |
lemma avl_mkt: | |
"\<lbrakk> avl l; avl r; | |
height l = height r \<or> height l = height r + 1 \<or> height r = height l + 1 | |
\<rbrakk> \<Longrightarrow> avl(mkt x l r)" | |
by (auto simp add:max_def mkt_def) | |
lemma height_mkt_bal_l2: | |
"\<lbrakk> avl l; avl r; height l \<noteq> height r + 2 \<rbrakk> \<Longrightarrow> | |
height (mkt_bal_l n l r) = (1 + max (height l) (height r))" | |
by (cases l, cases r) simp_all | |
lemma height_mkt_bal_r2: | |
"\<lbrakk> avl l; avl r; height r \<noteq> height l + 2 \<rbrakk> \<Longrightarrow> | |
height (mkt_bal_r n l r) = (1 + max (height l) (height r))" | |
by (cases l, cases r) simp_all | |
lemma avl_mkt_bal_l: | |
assumes "avl l" "avl r" and "height l = height r \<or> height l = height r + 1 | |
\<or> height r = height l + 1 \<or> height l = height r + 2" | |
shows "avl(mkt_bal_l n l r)" | |
proof(cases l) | |
case ET | |
with assms show ?thesis by (simp add: mkt_def) | |
next | |
case (MKT ln ll lr lh) | |
with assms show ?thesis | |
proof(cases "height l = height r + 2") | |
case True | |
from True MKT assms show ?thesis by (auto intro!: avl_mkt split: tree.split) | |
next | |
case False | |
with assms show ?thesis by (simp add: avl_mkt) | |
qed | |
qed | |
lemma avl_mkt_bal_r: | |
assumes "avl l" and "avl r" and "height l = height r \<or> height l = height r + 1 | |
\<or> height r = height l + 1 \<or> height r = height l + 2" | |
shows "avl(mkt_bal_r n l r)" | |
proof(cases r) | |
case ET | |
with assms show ?thesis by (simp add: mkt_def) | |
next | |
case (MKT rn rl rr rh) | |
with assms show ?thesis | |
proof(cases "height r = height l + 2") | |
case True | |
from True MKT assms show ?thesis by (auto intro!: avl_mkt split: tree.split) | |
next | |
case False | |
with assms show ?thesis by (simp add: avl_mkt) | |
qed | |
qed | |
(* It apppears that these two properties need to be proved simultaneously: *) | |
text\<open>Insertion maintains the AVL property:\<close> | |
theorem avl_insert_aux: | |
assumes "avl t" | |
shows "avl(insert x t)" | |
"(height (insert x t) = height t \<or> height (insert x t) = height t + 1)" | |
using assms | |
proof (induction t) | |
case (MKT n l r h) | |
case 1 | |
with MKT show ?case | |
proof(cases "x = n") | |
case True | |
with MKT 1 show ?thesis by simp | |
next | |
case False | |
with MKT 1 show ?thesis | |
proof(cases "x<n") | |
case True | |
with MKT 1 show ?thesis by (auto simp add:avl_mkt_bal_l simp del:mkt_bal_l.simps) | |
next | |
case False | |
with MKT 1 \<open>x\<noteq>n\<close> show ?thesis by (auto simp add:avl_mkt_bal_r simp del:mkt_bal_r.simps) | |
qed | |
qed | |
case 2 | |
from 2 MKT show ?case | |
proof(cases "x = n") | |
case True | |
with MKT 1 show ?thesis by simp | |
next | |
case False | |
with MKT 1 show ?thesis | |
proof(cases "x<n") | |
case True | |
with MKT 2 show ?thesis | |
proof(cases "height (AVL.insert x l) = height r + 2") | |
case False with MKT 2 \<open>x < n\<close> show ?thesis by (auto simp del: mkt_bal_l.simps simp: height_mkt_bal_l2) | |
next | |
case True | |
then consider (a) "height (mkt_bal_l n (AVL.insert x l) r) = height r + 2" | |
| (b) "height (mkt_bal_l n (AVL.insert x l) r) = height r + 3" | |
using MKT 2 by (atomize_elim, intro height_mkt_bal_l) simp_all | |
then show ?thesis | |
proof cases | |
case a | |
with 2 \<open>x < n\<close> show ?thesis by (auto simp del: mkt_bal_l.simps) | |
next | |
case b | |
with True 1 MKT(2) \<open>x < n\<close> show ?thesis by (simp del: mkt_bal_l.simps) arith | |
qed | |
qed | |
next | |
case False | |
with MKT 2 show ?thesis | |
proof(cases "height (AVL.insert x r) = height l + 2") | |
case False with MKT 2 \<open>\<not>x < n\<close> show ?thesis by (auto simp del: mkt_bal_r.simps simp: height_mkt_bal_r2) | |
next | |
case True | |
then consider (a) "height (mkt_bal_r n l (AVL.insert x r)) = height l + 2" | |
| (b) "height (mkt_bal_r n l (AVL.insert x r)) = height l + 3" | |
using MKT 2 by (atomize_elim, intro height_mkt_bal_r) simp_all | |
then show ?thesis | |
proof cases | |
case a | |
with 2 \<open>\<not>x < n\<close> show ?thesis by (auto simp del: mkt_bal_r.simps) | |
next | |
case b | |
with True 1 MKT(4) \<open>\<not>x < n\<close> show ?thesis by (simp del: mkt_bal_r.simps) arith | |
qed | |
qed | |
qed | |
qed | |
qed simp_all | |
lemmas avl_insert = avl_insert_aux(1) | |
subsubsection \<open>Deletion maintains AVL balance\<close> | |
lemma avl_delete_max: | |
assumes "avl x" and "x \<noteq> ET" | |
shows "avl (snd (delete_max x))" "height x = height(snd (delete_max x)) \<or> | |
height x = height(snd (delete_max x)) + 1" | |
using assms | |
proof (induct x rule: delete_max_induct) | |
case (MKT n l rn rl rr rh h) | |
case 1 | |
with MKT have "avl l" "avl (snd (delete_max (MKT rn rl rr rh)))" by auto | |
with 1 MKT have "avl (mkt_bal_l n l (snd (delete_max (MKT rn rl rr rh))))" | |
by (intro avl_mkt_bal_l) fastforce+ | |
then show ?case | |
by (auto simp: height_mkt_bal_l height_mkt_bal_l2 | |
linorder_class.max.absorb1 linorder_class.max.absorb2 | |
split:prod.split simp del:mkt_bal_l.simps) | |
next | |
case (MKT n l rn rl rr rh h) | |
case 2 | |
let ?r = "MKT rn rl rr rh" | |
let ?r' = "snd (delete_max ?r)" | |
from \<open>avl x\<close> MKT 2 have "avl l" and "avl ?r" by simp_all | |
then show ?case using MKT 2 height_mkt_bal_l[of l ?r' n] height_mkt_bal_l2[of l ?r' n] | |
apply (auto split:prod.splits simp del:avl.simps mkt_bal_l.simps) by arith+ | |
qed auto | |
lemma avl_delete_root: | |
assumes "avl t" and "t \<noteq> ET" | |
shows "avl(delete_root t)" | |
using assms | |
proof (cases t rule:delete_root_cases) | |
case (MKT_MKT n ln ll lr lh rn rl rr rh h) | |
let ?l = "MKT ln ll lr lh" | |
let ?r = "MKT rn rl rr rh" | |
let ?l' = "snd (delete_max ?l)" | |
from \<open>avl t\<close> and MKT_MKT have "avl ?r" by simp | |
from \<open>avl t\<close> and MKT_MKT have "avl ?l" by simp | |
then have "avl(?l')" "height ?l = height(?l') \<or> | |
height ?l = height(?l') + 1" by (rule avl_delete_max,simp)+ | |
with \<open>avl t\<close> MKT_MKT have "height ?l' = height ?r \<or> height ?l' = height ?r + 1 | |
\<or> height ?r = height ?l' + 1 \<or> height ?r = height ?l' + 2" by fastforce | |
with \<open>avl ?l'\<close> \<open>avl ?r\<close> have "avl(mkt_bal_r (fst(delete_max ?l)) ?l' ?r)" | |
by (rule avl_mkt_bal_r) | |
with MKT_MKT show ?thesis by (auto split:prod.splits simp del:mkt_bal_r.simps) | |
qed simp_all | |
lemma height_delete_root: | |
assumes "avl t" and "t \<noteq> ET" | |
shows "height t = height(delete_root t) \<or> height t = height(delete_root t) + 1" | |
using assms | |
proof (cases t rule: delete_root_cases) | |
case (MKT_MKT n ln ll lr lh rn rl rr rh h) | |
let ?l = "MKT ln ll lr lh" | |
let ?r = "MKT rn rl rr rh" | |
let ?l' = "snd (delete_max ?l)" | |
let ?t' = "mkt_bal_r (fst(delete_max ?l)) ?l' ?r" | |
from \<open>avl t\<close> and MKT_MKT have "avl ?r" by simp | |
from \<open>avl t\<close> and MKT_MKT have "avl ?l" by simp | |
then have "avl(?l')" by (rule avl_delete_max,simp) | |
have l'_height: "height ?l = height ?l' \<or> height ?l = height ?l' + 1" using \<open>avl ?l\<close> by (intro avl_delete_max) auto | |
have t_height: "height t = 1 + max (height ?l) (height ?r)" using \<open>avl t\<close> MKT_MKT by simp | |
have "height t = height ?t' \<or> height t = height ?t' + 1" using \<open>avl t\<close> MKT_MKT | |
proof(cases "height ?r = height ?l' + 2") | |
case False | |
show ?thesis using l'_height t_height False by (subst height_mkt_bal_r2[OF \<open>avl ?l'\<close> \<open>avl ?r\<close> False])+ arith | |
next | |
case True | |
show ?thesis | |
proof(cases rule: disjE[OF height_mkt_bal_r[OF True \<open>avl ?l'\<close> \<open>avl ?r\<close>, of "fst (delete_max ?l)"]]) | |
case 1 | |
then show ?thesis using l'_height t_height True by arith | |
next | |
case 2 | |
then show ?thesis using l'_height t_height True by arith | |
qed | |
qed | |
thus ?thesis using MKT_MKT by (auto split:prod.splits simp del:mkt_bal_r.simps) | |
qed simp_all | |
text\<open>Deletion maintains the AVL property:\<close> | |
theorem avl_delete_aux: | |
assumes "avl t" | |
shows "avl(delete x t)" and "height t = (height (delete x t)) \<or> height t = height (delete x t) + 1" | |
using assms | |
proof (induct t) | |
case (MKT n l r h) | |
case 1 | |
with MKT show ?case | |
proof(cases "x = n") | |
case True | |
with MKT 1 show ?thesis by (auto simp:avl_delete_root) | |
next | |
case False | |
with MKT 1 show ?thesis | |
proof(cases "x<n") | |
case True | |
with MKT 1 show ?thesis by (auto simp add:avl_mkt_bal_r simp del:mkt_bal_r.simps) | |
next | |
case False | |
with MKT 1 \<open>x\<noteq>n\<close> show ?thesis by (auto simp add:avl_mkt_bal_l simp del:mkt_bal_l.simps) | |
qed | |
qed | |
case 2 | |
with MKT show ?case | |
proof(cases "x = n") | |
case True | |
with 1 have "height (MKT n l r h) = height(delete_root (MKT n l r h)) | |
\<or> height (MKT n l r h) = height(delete_root (MKT n l r h)) + 1" | |
by (subst height_delete_root,simp_all) | |
with True show ?thesis by simp | |
next | |
case False | |
with MKT 1 show ?thesis | |
proof(cases "x<n") | |
case True | |
show ?thesis | |
proof(cases "height r = height (delete x l) + 2") | |
case False with MKT 1 \<open>x < n\<close> show ?thesis by auto | |
next | |
case True | |
then consider (a) "height (mkt_bal_r n (delete x l) r) = height (delete x l) + 2" | |
| (b) "height (mkt_bal_r n (delete x l) r) = height (delete x l) + 3" | |
using MKT 2 by (atomize_elim, intro height_mkt_bal_r) auto | |
then show ?thesis | |
proof cases | |
case a | |
with \<open>x < n\<close> MKT 2 show ?thesis by auto | |
next | |
case b | |
with \<open>x < n\<close> MKT 2 show ?thesis by auto | |
qed | |
qed | |
next | |
case False | |
show ?thesis | |
proof(cases "height l = height (delete x r) + 2") | |
case False with MKT 1 \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> show ?thesis by auto | |
next | |
case True | |
then consider (a) "height (mkt_bal_l n l (delete x r)) = height (delete x r) + 2" | |
| (b) "height (mkt_bal_l n l (delete x r)) = height (delete x r) + 3" | |
using MKT 2 by (atomize_elim, intro height_mkt_bal_l) auto | |
then show ?thesis | |
proof cases | |
case a | |
with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> MKT 2 show ?thesis by auto | |
next | |
case b | |
with \<open>\<not>x < n\<close> \<open>x \<noteq> n\<close> MKT 2 show ?thesis by auto | |
qed | |
qed | |
qed | |
qed | |
qed simp_all | |
lemmas avl_delete = avl_delete_aux(1) | |
subsubsection \<open>Correctness of insertion\<close> | |
lemma set_of_mkt_bal_l: | |
"\<lbrakk> avl l; avl r \<rbrakk> \<Longrightarrow> | |
set_of (mkt_bal_l n l r) = Set.insert n (set_of l \<union> set_of r)" | |
by (auto simp: mkt_def split:tree.splits) | |
lemma set_of_mkt_bal_r: | |
"\<lbrakk> avl l; avl r \<rbrakk> \<Longrightarrow> | |
set_of (mkt_bal_r n l r) = Set.insert n (set_of l \<union> set_of r)" | |
by (auto simp: mkt_def split:tree.splits) | |
text\<open>Correctness of @{const insert}:\<close> | |
theorem set_of_insert: | |
"avl t \<Longrightarrow> set_of(insert x t) = Set.insert x (set_of t)" | |
by (induct t) | |
(auto simp: avl_insert set_of_mkt_bal_l set_of_mkt_bal_r simp del:mkt_bal_l.simps mkt_bal_r.simps) | |
subsubsection \<open>Correctness of deletion\<close> | |
fun rightmost_item :: "'a tree \<Rightarrow> 'a" where | |
"rightmost_item (MKT n l ET h) = n" | | |
"rightmost_item (MKT n l r h) = rightmost_item r" | |
lemma avl_dist: | |
"\<lbrakk> avl(MKT n l r h); is_ord(MKT n l r h); x \<in> set_of l \<rbrakk> \<Longrightarrow> | |
x \<notin> set_of r" | |
by fastforce | |
lemma avl_dist2: | |
"\<lbrakk> avl(MKT n l r h); is_ord(MKT n l r h); x \<in> set_of l \<or> x \<in> set_of r \<rbrakk> \<Longrightarrow> | |
x \<noteq> n" | |
by auto | |
lemma ritem_in_rset: "r \<noteq> ET \<Longrightarrow> rightmost_item r \<in> set_of r" | |
by(induct r rule:rightmost_item.induct) auto | |
lemma ritem_greatest_in_rset: | |
"\<lbrakk> r \<noteq> ET; is_ord r \<rbrakk> \<Longrightarrow> | |
\<forall>x. x \<in> set_of r \<longrightarrow> x \<noteq> rightmost_item r \<longrightarrow> x < rightmost_item r" | |
proof(induct r rule:rightmost_item.induct) | |
case (2 n l rn rl rr rh h) | |
show ?case (is "\<forall>x. ?P x") | |
proof | |
fix x | |
from 2 have "is_ord (MKT rn rl rr rh)" by auto | |
moreover from 2 have "n < rightmost_item (MKT rn rl rr rh)" | |
by (metis is_ord.simps(2) ritem_in_rset tree.simps(2)) | |
moreover from 2 have "x \<in> set_of l \<longrightarrow> x < rightmost_item (MKT rn rl rr rh)" | |
by (metis calculation(2) is_ord.simps(2) xt1(10)) | |
ultimately show "?P x" using 2 by simp | |
qed | |
qed auto | |
lemma ritem_not_in_ltree: | |
"\<lbrakk> avl(MKT n l r h); is_ord(MKT n l r h); r \<noteq> ET \<rbrakk> \<Longrightarrow> | |
rightmost_item r \<notin> set_of l" | |
by (metis avl_dist ritem_in_rset) | |
lemma set_of_delete_max: | |
"\<lbrakk> avl t; is_ord t; t\<noteq>ET \<rbrakk> \<Longrightarrow> | |
set_of (snd(delete_max t)) = (set_of t) - {rightmost_item t}" | |
proof (induct t rule: delete_max_induct) | |
case (MKT n l rn rl rr rh h) | |
let ?r = "MKT rn rl rr rh" | |
from MKT have "avl l" and "avl ?r" by simp_all | |
let ?t' = "mkt_bal_l n l (snd (delete_max ?r))" | |
from MKT have "avl (snd(delete_max ?r))" by (auto simp add: avl_delete_max) | |
with MKT ritem_not_in_ltree[of n l ?r h] | |
have "set_of ?t' = (set_of l) \<union> (set_of ?r) - {rightmost_item ?r} \<union> {n}" | |
by (auto simp add:set_of_mkt_bal_l simp del: mkt_bal_l.simps) | |
moreover have "n \<notin> {rightmost_item ?r}" | |
by (metis MKT(2) MKT(3) avl_dist2 ritem_in_rset singletonE tree.simps(3)) | |
ultimately show ?case | |
by (auto simp add:insert_Diff_if split:prod.splits simp del: mkt_bal_l.simps) | |
qed auto | |
lemma fst_delete_max_eq_ritem: | |
"t\<noteq>ET \<Longrightarrow> fst(delete_max t) = rightmost_item t" | |
by (induct t rule:rightmost_item.induct) (auto split:prod.splits) | |
lemma set_of_delete_root: | |
assumes "t = MKT n l r h" and "avl t" and "is_ord t" | |
shows "set_of (delete_root t) = (set_of t) - {n}" | |
using assms | |
proof(cases t rule:delete_root_cases) | |
case(MKT_MKT n ln ll lr lh rn rl rr rh h) | |
let ?t' = "mkt_bal_r (fst (delete_max l)) (snd (delete_max l)) r" | |
from assms MKT_MKT have "avl l" and "avl r" and "is_ord l" and "l\<noteq>ET" by auto | |
moreover from MKT_MKT assms have "avl (snd(delete_max l))" | |
by (auto simp add: avl_delete_max) | |
ultimately have "set_of ?t' = (set_of l) \<union> (set_of r)" | |
by (fastforce simp add: Set.insert_Diff ritem_in_rset fst_delete_max_eq_ritem | |
set_of_delete_max set_of_mkt_bal_r simp del: mkt_bal_r.simps) | |
moreover from MKT_MKT assms(1) have "set_of (delete_root t) = set_of ?t'" | |
by (simp split:prod.split del:mkt_bal_r.simps) | |
moreover from MKT_MKT assms have "(set_of t) - {n} = set_of l \<union> set_of r" | |
by (metis Diff_insert_absorb UnE avl_dist2 tree.set(2) tree.inject) | |
ultimately show ?thesis using MKT_MKT assms(1) | |
by (simp del: delete_root.simps) | |
qed auto | |
text\<open>Correctness of @{const delete}:\<close> | |
theorem set_of_delete: | |
"\<lbrakk> avl t; is_ord t \<rbrakk> \<Longrightarrow> set_of (delete x t) = (set_of t) - {x}" | |
proof (induct t) | |
case (MKT n l r h) | |
then show ?case | |
proof(cases "x = n") | |
case True | |
with MKT set_of_delete_root[of "MKT n l r h"] show ?thesis by simp | |
next | |
case False | |
with MKT show ?thesis | |
proof(cases "x<n") | |
case True | |
with True MKT show ?thesis | |
by (force simp: avl_delete set_of_mkt_bal_r[of "(delete x l)" r n] simp del:mkt_bal_r.simps) | |
next | |
case False | |
with False MKT \<open>x\<noteq>n\<close> show ?thesis | |
by (force simp: avl_delete set_of_mkt_bal_l[of l "(delete x r)" n] simp del:mkt_bal_l.simps) | |
qed | |
qed | |
qed simp | |
subsubsection \<open>Correctness of lookup\<close> | |
theorem is_in_correct: "is_ord t \<Longrightarrow> is_in k t = (k : set_of t)" | |
by (induct t) auto | |
subsubsection \<open>Insertion maintains order\<close> | |
lemma is_ord_mkt_bal_l: | |
"is_ord(MKT n l r h) \<Longrightarrow> is_ord (mkt_bal_l n l r)" | |
by (cases l) (auto simp: mkt_def split:tree.splits intro: order_less_trans) | |
lemma is_ord_mkt_bal_r: "is_ord(MKT n l r h) \<Longrightarrow> is_ord (mkt_bal_r n l r)" | |
by (cases r) (auto simp: mkt_def split:tree.splits intro: order_less_trans) | |
text\<open>If the order is linear, @{const insert} maintains the order:\<close> | |
theorem is_ord_insert: | |
"\<lbrakk> avl t; is_ord t \<rbrakk> \<Longrightarrow> is_ord(insert (x::'a::linorder) t)" | |
by (induct t) (simp_all add:is_ord_mkt_bal_l is_ord_mkt_bal_r avl_insert set_of_insert | |
linorder_not_less order_neq_le_trans del:mkt_bal_l.simps mkt_bal_r.simps) | |
subsubsection \<open>Deletion maintains order\<close> | |
lemma is_ord_delete_max: | |
"\<lbrakk> avl t; is_ord t; t\<noteq>ET \<rbrakk> \<Longrightarrow> is_ord(snd(delete_max t))" | |
proof(induct t rule:delete_max_induct) | |
case(MKT n l rn rl rr rh h) | |
let ?r = "MKT rn rl rr rh" | |
let ?r' = "snd(delete_max ?r)" | |
from MKT have "\<forall>h. is_ord(MKT n l ?r' h)" by (auto simp: set_of_delete_max) | |
moreover from MKT have "avl(?r')" by (auto simp: avl_delete_max) | |
moreover note MKT is_ord_mkt_bal_l[of n l ?r'] | |
ultimately show ?case by (auto split:prod.splits simp del:is_ord.simps mkt_bal_l.simps) | |
qed auto | |
lemma is_ord_delete_root: | |
assumes "avl t" and "is_ord t" and "t \<noteq> ET" | |
shows "is_ord (delete_root t)" | |
using assms | |
proof(cases t rule:delete_root_cases) | |
case(MKT_MKT n ln ll lr lh rn rl rr rh h) | |
let ?l = "MKT ln ll lr lh" | |
let ?r = "MKT rn rl rr rh" | |
let ?l' = "snd (delete_max ?l)" | |
let ?n' = "fst (delete_max ?l)" | |
from assms MKT_MKT have "\<forall>h. is_ord(MKT ?n' ?l' ?r h)" | |
proof - | |
from assms MKT_MKT have "is_ord ?l'" by (auto simp add: is_ord_delete_max) | |
moreover from assms MKT_MKT have "is_ord ?r" by auto | |
moreover from assms MKT_MKT have "\<forall>x. x \<in> set_of ?r \<longrightarrow> ?n' < x" | |
by (metis fst_delete_max_eq_ritem is_ord.simps(2) order_less_trans ritem_in_rset | |
tree.simps(3)) | |
moreover from assms MKT_MKT ritem_greatest_in_rset have "\<forall>x. x \<in> set_of ?l' \<longrightarrow> x < ?n'" | |
by (metis Diff_iff avl.simps(2) fst_delete_max_eq_ritem is_ord.simps(2) | |
set_of_delete_max singleton_iff tree.simps(3)) | |
ultimately show ?thesis by auto | |
qed | |
moreover from assms MKT_MKT have "avl ?r" by simp | |
moreover from assms MKT_MKT have "avl ?l'" by (simp add: avl_delete_max) | |
moreover note MKT_MKT is_ord_mkt_bal_r[of ?n' ?l' ?r] | |
ultimately show ?thesis by (auto simp del:mkt_bal_r.simps is_ord.simps split:prod.splits) | |
qed simp_all | |
text\<open>If the order is linear, @{const delete} maintains the order:\<close> | |
theorem is_ord_delete: | |
"\<lbrakk> avl t; is_ord t \<rbrakk> \<Longrightarrow> is_ord (delete x t)" | |
proof (induct t) | |
case (MKT n l r h) | |
then show ?case | |
proof(cases "x = n") | |
case True | |
with MKT is_ord_delete_root[of "MKT n l r h"] show ?thesis by simp | |
next | |
case False | |
with MKT show ?thesis | |
proof(cases "x<n") | |
case True | |
with True MKT have "\<forall>h. is_ord (MKT n (delete x l) r h)" by (auto simp:set_of_delete) | |
with True MKT is_ord_mkt_bal_r[of n "(delete x l)" r] show ?thesis | |
by (auto simp add: avl_delete) | |
next | |
case False | |
with False MKT have "\<forall>h. is_ord (MKT n l (delete x r) h)" by (auto simp:set_of_delete) | |
with False MKT is_ord_mkt_bal_l[of n l "(delete x r)"] \<open>x\<noteq>n\<close> show ?thesis by (simp add: avl_delete) | |
qed | |
qed | |
qed simp | |
end | |