Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
Require Import mathcomp.ssreflect.ssreflect. | |
From mathcomp | |
Require Import ssrbool ssrfun eqtype ssrnat seq path div choice fintype. | |
From mathcomp | |
Require Import tuple finfun bigop order prime ssralg poly finset center. | |
From mathcomp | |
Require Import fingroup morphism perm automorphism quotient action zmodp. | |
From mathcomp | |
Require Import gfunctor gproduct cyclic pgroup commutator gseries nilpotent. | |
From mathcomp | |
Require Import sylow abelian maximal hall frobenius. | |
From mathcomp | |
Require Import matrix mxalgebra mxrepresentation vector ssrnum algC algnum. | |
From mathcomp | |
Require Import classfun character inertia vcharacter integral_char. | |
From odd_order | |
Require Import PFsection1 PFsection2 PFsection3 PFsection4 PFsection5. | |
(******************************************************************************) | |
(* This file covers Peterfalvi, Section 6: *) | |
(* Some Coherence Theorems *) | |
(* Defined here: *) | |
(* odd_Frobenius_quotient K L M <-> *) | |
(* L has odd order, M <| L, K with K / M nilpotent, and L / H1 is a *) | |
(* Frobenius group with kernel K / H1, where H1 / M = (K / M)^(1). *) | |
(* This is the statement of Peterfalvi, Hypothesis (6.4), except for *) | |
(* the K <| L and subcoherence assumptions, to be required separately. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import GroupScope Order.TTheory GRing.Theory Num.Theory. | |
Local Open Scope ring_scope. | |
(* The main section *) | |
Section Six. | |
Variables (gT : finGroupType) (G : {group gT}). | |
Implicit Types H K L P M W Z : {group gT}. | |
(* Grouping lemmas that assume Hypothesis (6.1). *) | |
Section GeneralCoherence. | |
Variables K L : {group gT}. | |
Local Notation S M := (seqIndD K L K M). | |
Local Notation calS := (S 1). | |
Variables (R : 'CF(L) -> seq 'CF(G)) (tau : {linear 'CF(L) -> 'CF(G)}). | |
(* These may need to be grouped, in order to make the proofs of 6.8, 10.10, *) | |
(* and 12.6 more manageable. *) | |
Hypotheses (nsKL : K <| L) (solK : solvable K). | |
Hypothesis Itau : {in 'Z[calS, L^#] &, isometry tau}. | |
Hypothesis scohS : subcoherent calS tau R. | |
Let sKL : K \subset L. Proof. exact: normal_sub. Qed. | |
Let nKL : L \subset 'N(K). Proof. exact: normal_norm. Qed. | |
Let orthS: pairwise_orthogonal calS. Proof. by case: scohS. Qed. | |
Let sSS M : {subset S M <= calS}. Proof. exact: seqInd_sub. Qed. | |
Let ccS M : cfConjC_closed (S M). Proof. exact: cfAut_seqInd. Qed. | |
Let uniqS M : uniq (S M). Proof. exact: seqInd_uniq. Qed. | |
Let nrS : ~~ has cfReal calS. Proof. by case: scohS => [[]]. Qed. | |
Lemma exists_linInd M : | |
M \proper K -> M <| K -> exists2 phi, phi \in S M & phi 1%g = #|L : K|%:R. | |
Proof. | |
move=> ltMK nsMK; have [sMK nMK] := andP nsMK. | |
have ntKM: (K / M)%g != 1%g by rewrite -subG1 quotient_sub1 // proper_subn. | |
have [r lin_r ntr] := solvable_has_lin_char ntKM (quotient_sol M solK). | |
pose i := mod_Iirr r; exists ('Ind[L] 'chi_i); last first. | |
by rewrite cfInd1 ?mod_IirrE // cfMod1 lin_char1 ?mulr1. | |
apply/seqIndP; exists i; rewrite // !inE subGcfker mod_IirrE ?cfker_mod //=. | |
by rewrite mod_Iirr_eq0 // -irr_eq1 ntr. | |
Qed. | |
(* This is Peterfalvi (6.2). *) | |
Lemma coherent_seqIndD_bound (A B C D : {group gT}) : | |
[/\ A <| L, B <| L, C <| L & D <| L] -> | |
(*a*) [/\ A \proper K, B \subset D, D \subset C, C \subset K | |
& D / B \subset 'Z(C / B)]%g -> | |
(*b*) coherent (S A) L^# tau -> \unless coherent (S B) L^# tau, | |
#|K : A|%:R - 1 <= 2%:R * #|L : C|%:R * sqrtC #|C : D|%:R :> algC. | |
Proof. | |
move=> [nsAL nsBL nsCL nsDL] [ltAK sBD sDC sCK sDbZC] cohA. | |
have sBC := subset_trans sBD sDC; have sBK := subset_trans sBC sCK. | |
have [sAK nsBK] := (proper_sub ltAK, normalS sBK sKL nsBL). | |
have{sBC} [nsAK nsBC] := (normalS sAK sKL nsAL, normalS sBC sCK nsBK). | |
rewrite real_leNgt ?rpredB ?ger0_real ?mulr_ge0 ?sqrtC_ge0 ?ler0n ?ler01 //. | |
apply/unless_contra; rewrite negbK -(Lagrange_index sKL sCK) natrM => lb_KA. | |
pose S2 : seq 'CF(L) := [::]; pose S1 := S2 ++ S A; rewrite -[S A]/S1 in cohA. | |
have ccsS1S: cfConjC_subset S1 calS by apply: seqInd_conjC_subset1. | |
move: {2}_.+1 (leq_addr (size S1) (size calS).+1) => n. | |
elim: n => [|n IHn] in (S2) S1 ccsS1S cohA * => lb_n. | |
by rewrite ltnNge uniq_leq_size // in lb_n; case: ccsS1S. | |
without loss /allPn[psi /= SBpsi S1'psi]: / ~~ all (mem S1) (S B). | |
by case: allP => [sAB1 _ | _]; [apply: subset_coherent cohA | apply]. | |
have [[_ sS1S _] Spsi] := (ccsS1S, sSS SBpsi). | |
apply (IHn [:: psi, psi^* & S2]%CF); rewrite ?addnS 1?leqW {n lb_n IHn}//= -/S1. | |
exact: extend_cfConjC_subset. | |
have [phi SAphi phi1] := exists_linInd ltAK nsAK. | |
have{SAphi} S1phi: phi \in S1 by rewrite mem_cat SAphi orbT. | |
apply: (extend_coherent scohS) ccsS1S S1phi Spsi S1'psi _. | |
have{SBpsi} /seqIndP[i /setDP[kBi _] {psi}->] := SBpsi; rewrite inE in kBi. | |
rewrite {phi}phi1 cfInd1 // dvdC_mulr //; last by rewrite CintE Cnat_irr1. | |
split; rewrite // big_cat sum_seqIndD_square // big_seq ltr_paddl //=. | |
apply/sumr_ge0=> xi S2xi; rewrite divr_ge0 ?cfnorm_ge0 ?exprn_ge0 //. | |
by rewrite Cnat_ge0 // (Cnat_seqInd1 (sS1S _ _)) // mem_cat S2xi. | |
rewrite mulrC ltr_pmul2l ?gt0CiG //; apply: le_lt_trans lb_KA. | |
by rewrite -!mulrA !ler_wpmul2l ?ler0n // (irr1_bound_quo nsBC). | |
Qed. | |
(* This is Peterfalvi, Theorem (6.3). *) | |
Theorem bounded_seqIndD_coherence M H H1 : | |
[/\ M <| L, H <| L & H1 <| L] -> | |
[/\ M \subset H1, H1 \subset H & H \subset K] -> | |
(*a*) nilpotent (H / M) -> | |
(*b*) coherent (S H1) L^# tau -> | |
(*c*) (#|H : H1| > 4 * #|L : K| ^ 2 + 1)%N -> | |
coherent (S M) L^# tau. | |
Proof. | |
move: H1 => A [nsML nsHL nsAL] [sMA sAH sHK] nilHb cohA lbHA. | |
elim: {A}_.+1 {-2}A (ltnSn #|A|) => // m IHm A leAm in nsAL sMA sAH cohA lbHA *. | |
have [/group_inj-> // | ltMA] := eqVproper sMA; have [sAL nAL] := andP nsAL. | |
have{ltMA} [B maxB sMB]: {B : {group gT} | maxnormal B A L & M \subset B}. | |
by apply: maxgroup_exists; rewrite ltMA normal_norm. | |
have /andP[ltBA nBL] := maxgroupp maxB; have [sBA not_sAB] := andP ltBA. | |
have [sBH sBL] := (subset_trans sBA sAH, subset_trans sBA sAL). | |
have nsBL: B <| L by apply/andP. | |
suffices{m IHm leAm} cohB: coherent (S B) L^# tau. | |
apply: IHm cohB _ => //; first exact: leq_trans (proper_card ltBA) _. | |
by rewrite (leq_trans lbHA) // dvdn_leq // indexgS. | |
have /andP[sHL nHL] := nsHL. | |
have sAbZH: (A / B \subset 'Z(H / B))%g. | |
have nBA := subset_trans sAL nBL; have nsBA : B <| A by apply/andP. | |
set Zbar := 'Z(H / B); set Abar := (A / B)%g; pose Lbar := (L / B)%g. | |
have nZHbar: Lbar \subset 'N(Zbar) by rewrite gFnorm_trans ?quotient_norms. | |
have /mingroupP[/andP[ntAbar nALbar] minBbar]: minnormal Abar Lbar. | |
apply/mingroupP; split=> [|Dbar /andP[ntDbar nDLbar] sDAbar]. | |
by rewrite -subG1 quotient_sub1 // not_sAB quotient_norms. | |
have: Dbar <| Lbar by rewrite /normal (subset_trans sDAbar) ?quotientS. | |
case/(inv_quotientN nsBL)=> D defDbar sBD /andP[sDL nDL]. | |
apply: contraNeq ntDbar => neqDAbar; rewrite defDbar quotientS1 //. | |
have [_ /(_ D) {1}<- //] := maxgroupP maxB. | |
rewrite -(quotient_proper (normalS sBD sDL nsBL)) // -defDbar. | |
by rewrite properEneq sDAbar neqDAbar. | |
apply/setIidPl/minBbar; rewrite ?subsetIl {minBbar}//= andbC -/Abar -/Zbar. | |
rewrite normsI ?meet_center_nil ?quotient_normal ?(normalS sAH sHL) //=. | |
suffices /homgP[f /= <-]: (H / B)%g \homg (H / M)%g by rewrite morphim_nil. | |
by apply: homg_quotientS; rewrite ?(subset_trans sHL) ?normal_norm. | |
have ltAH: A \proper H. | |
by rewrite properEneq sAH (contraTneq _ lbHA) // => ->; rewrite indexgg addn1. | |
set x : algC := sqrtC #|H : A|%:R. | |
have [nz_x x_gt0]: x != 0 /\ 0 < x by rewrite gt_eqF sqrtC_gt0 gt0CiG. | |
without loss{cohA} ubKA: / #|K : A|%:R - 1 <= 2%:R * #|L : H|%:R * x. | |
have [sAK ltAK] := (subset_trans sAH sHK, proper_sub_trans ltAH sHK). | |
exact: coherent_seqIndD_bound id. | |
suffices{lbHA}: (x - x^-1) ^+ 2 <= (2 * #|L : K|)%:R ^+ 2. | |
rewrite lt_geF // sqrrB divff // sqrtCK ltr_spaddr ?exprn_gt0 ?invr_gt0 //. | |
by rewrite ler_subr_addr -natrX -natrD ler_nat expnMn addnS lbHA. | |
rewrite ler_pexpn2r ?unfold_in /= ?ler0n //; last first. | |
by rewrite subr_ge0 -div1r ler_pdivr_mulr // -expr2 sqrtCK ler1n. | |
rewrite -(ler_pmul2l x_gt0) -(ler_pmul2l (gt0CiG K H)) 2!mulrBr -expr2 sqrtCK. | |
rewrite !mulrA mulfK // mulrAC natrM mulrCA -2!natrM [in _ * x]mulnC. | |
by rewrite !Lagrange_index // (le_trans _ ubKA) // ler_add2l ler_opp2 ler1n. | |
Qed. | |
(* This is the statement of Peterfalvi, Hypothesis (6.4). *) | |
Definition odd_Frobenius_quotient M (H1 := K^`(1) <*> M) := | |
[/\ (*a*) odd #|L|, | |
(*b*) [/\ M <| L, M \subset K & nilpotent (K / M)] | |
& (*c*) [Frobenius L / H1 with kernel K / H1] ]%g. | |
(* This is Peterfalvi (6.5). *) | |
Lemma non_coherent_chief M (H1 := (K^`(1) <*> M)%G) : | |
odd_Frobenius_quotient M -> \unless coherent (S M) L^# tau, | |
[/\ (*a*) chief_factor L H1 K /\ (#|K : H1| <= 4 * #|L : K| ^ 2 + 1)%N | |
& (*b*) exists2 p : nat, p.-group (K / M)%g /\ ~~ abelian (K / M) | |
& (*c*) ~~ (#|L : K| %| p - 1)]. | |
Proof. | |
case=> oddL [nsML sMK nilKM]; rewrite /= -(erefl (gval H1)) => frobLb. | |
set e := #|L : K|; have odd_e: odd e := dvdn_odd (dvdn_indexg L K) oddL. | |
have{odd_e} mod1e_lb m: odd m -> m == 1 %[mod e] -> (m > 1 -> 2 * e + 1 <= m)%N. | |
move=> odd_m e_dv_m1 m_gt1; rewrite eqn_mod_dvd 1?ltnW // subn1 in e_dv_m1. | |
by rewrite mul2n addn1 dvdn_double_ltn. | |
have nsH1L: H1 <| L by rewrite normalY // gFnormal_trans. | |
have nsH1K: H1 <| K by rewrite (normalS _ sKL nsH1L) // join_subG der_sub. | |
have [sH1K nH1K] := andP nsH1K; have sMH1: M \subset H1 by apply: joing_subr. | |
have cohH1: coherent (S H1) L^# tau. | |
apply: uniform_degree_coherence (subset_subcoherent scohS _) _ => //. | |
apply/(@all_pred1_constant _ e%:R)/allP=> _ /mapP[chi Schi ->] /=. | |
have [i /setIdP[_]] := seqIndP Schi; rewrite inE join_subG -lin_irr_der1. | |
by case/andP=> lin_chi _ ->; rewrite cfInd1 ?lin_char1 ?mulr1. | |
apply/unlessP; have [/val_inj-> | ltMH1] := eqVproper sMH1; first by left. | |
have [lbK|ubK] := ltnP; [by left; apply: bounded_seqIndD_coherence lbK | right]. | |
have{} ubK: (#|K : H1| < (2 * e + 1) ^ 2)%N. | |
apply: leq_ltn_trans ubK _; rewrite -subn_gt0 sqrnD expnMn addKn. | |
by rewrite !muln_gt0 indexg_gt0. | |
have{frobLb} [[E1b frobLb] [sH1L nH1L]] := (existsP frobLb, andP nsH1L). | |
have [defLb ntKb _ _ /andP[sE1L _]] := Frobenius_context frobLb. | |
have iH1_mod1e H2: | |
H1 \subset H2 -> H2 \subset K -> L \subset 'N(H2) -> #|H2 : H1| == 1 %[mod e]. | |
- move=> sH12 sH2K nPL; have sH2L := subset_trans sH2K sKL. | |
rewrite eqn_mod_dvd // subn1 -card_quotient ?(subset_trans sH2L) //. | |
have [-> | ntH2b] := eqVneq (H2 / H1)%g 1%g; first by rewrite cards1. | |
have ->: e = #|E1b|. | |
by rewrite (index_sdprod defLb) index_quotient_eq ?(setIidPr sH1L). | |
have /Frobenius_subl/Frobenius_dvd_ker1-> := frobLb; rewrite ?quotientS //. | |
by rewrite (subset_trans sE1L) ?quotient_norms. | |
have{iH1_mod1e} chiefH1: chief_factor L H1 K. | |
have ltH1K: H1 \proper K by rewrite /proper sH1K -quotient_sub1 ?subG1. | |
rewrite /chief_factor nsKL andbT; apply/maxgroupP; rewrite ltH1K. | |
split=> // H2 /andP[ltH2K nH2L] sH12; have sH2K := proper_sub ltH2K. | |
have /eqVproper[// | ltH21] := sH12; case/idPn: ubK; rewrite -leqNgt. | |
have iKH1: (#|K : H2| * #|H2 : H1|)%N = #|K : H1| by apply: Lagrange_index. | |
have iH21_mod1e: #|H2 : H1| == 1 %[mod e] by apply/iH1_mod1e. | |
have iKH1_mod1e: #|K : H1| = 1 %[mod e] by apply/eqP/iH1_mod1e. | |
have iKH2_mod1e: #|K : H2| == 1 %[mod e]. | |
by rewrite -iKH1_mod1e -iKH1 -modnMmr (eqP iH21_mod1e) modnMmr muln1. | |
have odd_iK := dvdn_odd (dvdn_indexg _ _) (oddSg (subset_trans _ sKL) oddL). | |
by rewrite -iKH1 leq_mul ?mod1e_lb ?odd_iK ?indexg_gt1 ?proper_subn. | |
have nMK: K \subset 'N(M) := subset_trans sKL (normal_norm nsML). | |
have nMK1: K^`(1)%g \subset 'N(M) by apply: gFsub_trans. | |
have not_abKb: ~~ abelian (K / M). | |
apply: contra (proper_subn ltMH1) => /derG1P/trivgP/=. | |
by rewrite join_subG subxx andbT -quotient_der ?quotient_sub1. | |
have /is_abelemP[p p_pr /and3P[pKb _ _]]: is_abelem (K / H1). | |
have: solvable (K / H1)%g by apply: quotient_sol solK. | |
by case/(minnormal_solvable (chief_factor_minnormal chiefH1)). | |
have [[_ p_dv_Kb _] nsMK] := (pgroup_pdiv pKb ntKb, normalS sMK sKL nsML). | |
have isoKb: K / M / (H1 / M) \isog K / H1 := third_isog sMH1 nsMK nsH1K. | |
have{nilKM} pKM: p.-group (K / M)%g. | |
pose Q := 'O_p^'(K / M); have defKM: _ \x Q = _ := nilpotent_pcoreC p nilKM. | |
have nH1Q: Q \subset 'N(H1 / M) by rewrite gFsub_trans ?quotient_norms. | |
have hallQb := quotient_pHall nH1Q (nilpotent_pcore_Hall p^' nilKM). | |
have{nH1Q hallQb pKb} sQH1: (Q \subset H1 / M)%g. | |
rewrite -quotient_sub1 // subG1 trivg_card1 /= (card_Hall hallQb). | |
by rewrite partG_eq1 pgroupNK (isog_pgroup p isoKb). | |
suffices Q_1: Q = 1%g by rewrite -defKM Q_1 dprodg1 pcore_pgroup. | |
apply: contraTeq sQH1 => ntQ; rewrite quotientYidr ?quotient_der //. | |
rewrite (sameP setIidPl eqP) -(dprod_modr (der_dprod 1 defKM)) ?gFsub //= -/Q. | |
rewrite setIC coprime_TIg ?(coprimeSg (der_sub 1 _)) ?coprime_pcoreC //. | |
by rewrite dprod1g proper_neq ?(sol_der1_proper (nilpotent_sol nilKM)) ?gFsub. | |
split=> //; exists p => //; apply: contra not_abKb => e_dv_p1. | |
rewrite cyclic_abelian // Phi_quotient_cyclic //. | |
have /homgP[f <-]: (K / M / 'Phi(K / M) \homg K / H1)%g. | |
apply: homg_trans (isog_hom isoKb). | |
rewrite homg_quotientS ?gFnorm ?quotient_norms //= quotientYidr //. | |
by rewrite quotient_der // (Phi_joing pKM) joing_subl. | |
rewrite {f}morphim_cyclic // abelian_rank1_cyclic; last first. | |
by rewrite sub_der1_abelian ?joing_subl. | |
rewrite (rank_pgroup pKb) (leq_trans (p_rank_le_logn _ _)) //. | |
rewrite -ltnS -(ltn_exp2l _ _ (prime_gt1 p_pr)) -p_part part_pnat_id //. | |
rewrite card_quotient // (leq_trans ubK) // leq_exp2r //. | |
have odd_p: odd p by rewrite (dvdn_odd p_dv_Kb) ?quotient_odd ?(oddSg sKL). | |
by rewrite mod1e_lb ?eqn_mod_dvd ?prime_gt0 ?prime_gt1. | |
Qed. | |
(* This is Peterfalvi (6.6). *) | |
Lemma seqIndD_irr_coherence Z (calX := seqIndD K L Z 1) : | |
odd_Frobenius_quotient 1 -> | |
[/\ Z <| L, Z :!=: 1 & Z \subset 'Z(K)]%g -> | |
{subset calX <= irr L} -> | |
calX =i [pred chi in irr L | ~~ (Z \subset cfker chi)] | |
/\ coherent calX L^#tau. | |
Proof. | |
move=> Frob_quo1 [nsZL ntZ sZ_ZK] irrX; have [sZL nZL] := andP nsZL. | |
have abZ: abelian Z by rewrite (abelianS sZ_ZK) ?center_abelian. | |
have /andP[sZK nZK]: Z <| K := sub_center_normal sZ_ZK. | |
split=> [chi|]. | |
apply/idP/andP=> [Xchi | [/irrP[r ->{chi}] nkerZr]]. | |
rewrite irrX //; case/seqIndP: Xchi => t /setIdP[nkerZt _] ->. | |
by rewrite inE in nkerZt; rewrite sub_cfker_Ind_irr. | |
have [t Res_r_t] := neq0_has_constt (Res_irr_neq0 K r). | |
pose chi := 'Ind[L] 'chi_t; have chi_r: '[chi, 'chi_r] != 0. | |
by rewrite -cfdot_Res_r cfdotC fmorph_eq0 -irr_consttE. | |
have Xchi: chi \in calX. | |
apply/seqIndP; exists t; rewrite // !inE sub1G andbT. | |
rewrite -(sub_cfker_Ind_irr t sKL nZL). | |
apply: contra nkerZr => /subset_trans-> //. | |
by rewrite cfker_constt // cfInd_char ?irr_char //. | |
case/irrX/irrP: Xchi chi_r (Xchi) => r' ->. | |
by rewrite cfdot_irr pnatr_eq0 -lt0n; case: eqP => // ->. | |
apply: non_coherent_chief (subset_coherent (seqInd_sub sZK)) _ => //= -[_ [p]]. | |
have [oddL _] := Frob_quo1; rewrite joingG1 -/calX => frobLb []. | |
rewrite -(isog_pgroup p (quotient1_isog K)) => pK ab'K. | |
set e := #|L : K| => not_e_dv_p1; have e_gt0: (e > 0)%N by apply: indexg_gt0. | |
have ntK: K != 1%G by apply: contraNneq ab'K => ->; rewrite quotient1 abelian1. | |
have{ab'K ntK} [p_pr p_dv_K _] := pgroup_pdiv pK ntK. | |
set Y := calX; pose d (xi : 'CF(L)) := logn p (truncC (xi 1%g) %/ e). | |
have: cfConjC_closed Y by apply: cfAut_seqInd. | |
have: perm_eq (Y ++ [::]) calX by rewrite cats0. | |
have: {in Y & [::], forall xi1 xi2, d xi1 <= d xi2}%N by []. | |
elim: {Y}_.+1 {-2}Y [::] (ltnSn (size Y)) => // m IHm Y X' leYm leYX' defX ccY. | |
have sYX: {subset Y <= calX}. | |
by move=> xi Yxi; rewrite -(perm_mem defX) mem_cat Yxi. | |
have sX'X: {subset X' <= calX}. | |
by move=> xi X'xi; rewrite -(perm_mem defX) mem_cat X'xi orbT. | |
have uniqY: uniq Y. | |
have: uniq calX := seqInd_uniq L _. | |
by rewrite -(perm_uniq defX) cat_uniq => /and3P[]. | |
have sYS: {subset Y <= calS} by move=> xi /sYX/seqInd_sub->. | |
case homoY: (constant [seq xi 1%g | xi : 'CF(L) <- Y]). | |
exact: uniform_degree_coherence (subset_subcoherent scohS _) homoY. | |
have Ndg: {in calX, forall xi : 'CF(L), xi 1%g = (e * p ^ d xi)%:R}. | |
rewrite /d => _ /seqIndP[i _ ->]; rewrite cfInd1 // -/e. | |
have:= dvd_irr1_cardG i; have /CnatP[n ->] := Cnat_irr1 i. | |
rewrite -natrM natCK dvdC_nat mulKn // -p_part => dv_n_K. | |
by rewrite part_pnat_id // (pnat_dvd dv_n_K). | |
have [chi Ychi leYchi]: {chi | chi \in Y & {in Y, forall xi, d xi <= d chi}%N}. | |
have [/eqP/nilP Y0 | ntY] := posnP (size Y); first by rewrite Y0 in homoY. | |
pose i := [arg max_(i > Ordinal ntY) d Y`_i]. | |
exists Y`_i; first exact: mem_nth. | |
rewrite {}/i; case: fintype.arg_maxnP => //= i _ max_i. | |
by move=> _ /(nthP 0)[j ltj <-]; apply: (max_i (Ordinal ltj)). | |
have{homoY} /hasP[xi1 Yxi1 lt_xi1_chi]: has (fun xi => d xi < d chi)%N Y. | |
apply: contraFT homoY => geYchi; apply: (@all_pred1_constant _ (chi 1%g)). | |
rewrite all_map; apply/allP=> xi Yxi; rewrite /= !Ndg ?sYX // eqr_nat. | |
rewrite eqn_pmul2l // eqn_exp2l ?prime_gt1 //. | |
by rewrite eqn_leq leYchi //= leqNgt (hasPn geYchi). | |
pose Y' := rem chi^*%CF (rem chi Y); pose X'' := [:: chi, chi^*%CF & X']. | |
have ccY': cfConjC_closed Y'. | |
move=> xi; rewrite !(inE, mem_rem_uniq) ?rem_uniq //. | |
by rewrite !(inv_eq (@cfConjCK _ _)) cfConjCK => /and3P[-> -> /ccY->]. | |
have Xchi := sYX _ Ychi; have defY: perm_eq [:: chi, chi^*%CF & Y'] Y. | |
rewrite (permPr (perm_to_rem Ychi)) perm_cons perm_sym perm_to_rem //. | |
by rewrite mem_rem_uniq ?inE ?ccY // (seqInd_conjC_neq _ _ _ Xchi). | |
apply: perm_coherent (defY) _. | |
have d_chic: d chi^*%CF = d chi. | |
by rewrite /d cfunE conj_Cnat // (Cnat_seqInd1 Xchi). | |
have /and3P[uniqY' Y'xi1 notY'chi]: [&& uniq Y', xi1 \in Y' & chi \notin Y']. | |
rewrite !(inE, mem_rem_uniq) ?rem_uniq // Yxi1 eqxx andbF !andbT -negb_or. | |
by apply: contraL lt_xi1_chi => /pred2P[] ->; rewrite ?d_chic ltnn. | |
have sY'Y: {subset Y' <= Y} by move=> xi /mem_rem/mem_rem. | |
have sccY'S: cfConjC_subset Y' calS by split=> // xi /sY'Y/sYS. | |
apply: (extend_coherent scohS _ Y'xi1); rewrite ?sYS {sccY'S notY'chi}//. | |
have{} defX: perm_eq (Y' ++ X'') calX. | |
by rewrite (perm_catCA Y' [::_; _]) catA -(permPr defX) perm_cat2r. | |
have{d_chic} le_chi_X'': {in X'', forall xi, d chi <= d xi}%N. | |
by move=> xi /or3P[/eqP-> | /eqP-> | /leYX'->] //; rewrite d_chic. | |
rewrite !Ndg ?sYX // dvdC_nat dvdn_pmul2l // dvdn_exp2l 1?ltnW //; split=> //. | |
apply: IHm defX ccY' => [|xi xi' /sY'Y/leYchi-le_xi_chi /le_chi_X'']. | |
by rewrite -ltnS // (leq_trans _ leYm) // -(perm_size defY) ltnW. | |
exact: leq_trans. | |
have p_gt0 n: (0 < p ^ n)%N by rewrite expn_gt0 prime_gt0. | |
rewrite -!natrM; apply: (lt_le_trans (y := (e ^ 2 * (p ^ d chi) ^ 2)%:R)). | |
rewrite ltr_nat -expnMn -mulnn mulnAC !mulnA 2?ltn_pmul2r //. | |
rewrite -mulnA mulnCA ltn_pmul2l // -(subnK lt_xi1_chi) addnS expnS. | |
rewrite expnD mulnA ltn_pmul2r // -(muln1 3%N) leq_mul //. | |
rewrite ltn_neqAle prime_gt1 // eq_sym (sameP eqP (prime_oddPn p_pr)). | |
by rewrite (dvdn_odd p_dv_K) // (oddSg sKL). | |
have [r] := seqIndP (sYX _ Ychi); rewrite !inE => /andP[nkerZr _] def_chi. | |
have d_r: 'chi_r 1%g = (p ^ d chi)%:R. | |
by apply: (mulfI (neq0CiG L K)); rewrite -cfInd1 // -def_chi -natrM Ndg. | |
pose sum_p2d S := (\sum_(xi <- S) p ^ (d xi * 2))%N. | |
pose sum_xi1 (S : seq 'CF(L)) := \sum_(xi <- S) xi 1%g ^+ 2 / '[xi]. | |
have def_sum_xi1 S: {subset S <= calX} -> sum_xi1 S = (e ^ 2 * sum_p2d S)%:R. | |
move=> sSX; rewrite big_distrr natr_sum /=; apply: eq_big_seq => xi /sSX Xxi. | |
rewrite expnM -expnMn natrX -Ndg //. | |
by have /irrP[i ->] := irrX _ Xxi; rewrite cfnorm_irr divr1. | |
rewrite -/(sum_xi1 _) def_sum_xi1 ?leC_nat 1?dvdn_leq => [|||_ /sY'Y/sYX] //. | |
by rewrite muln_gt0 expn_gt0 e_gt0 [_ Y'](bigD1_seq xi1) //= addn_gt0 p_gt0. | |
have coep: coprime e p. | |
have:= Frobenius_ker_coprime frobLb; rewrite coprime_sym. | |
have /andP[_ nK'L]: K^`(1) <| L by apply: gFnormal_trans. | |
rewrite index_quotient_eq ?subIset ?der_sub ?orbT {nK'L}// -/e. | |
have ntKb: (K / K^`(1))%g != 1%g by case/Frobenius_kerP: frobLb. | |
have [_ _ [k ->]] := pgroup_pdiv (quotient_pgroup _ pK) ntKb. | |
by rewrite coprime_pexpr. | |
rewrite -expnM Gauss_dvd ?coprimeXl ?coprimeXr {coep}// dvdn_mulr //=. | |
have /dvdn_addl <-: p ^ (d chi * 2) %| e ^ 2 * sum_p2d X''. | |
rewrite big_distrr big_seq dvdn_sum //= => xi /le_chi_X'' le_chi_xi. | |
by rewrite dvdn_mull // dvdn_exp2l ?leq_pmul2r. | |
rewrite -mulnDr -big_cat (perm_big _ defX) -(natCK (e ^ 2 * _)) /=. | |
rewrite -def_sum_xi1 // /sum_xi1 sum_seqIndD_square ?normal1 ?sub1G //. | |
rewrite indexg1 -(natrB _ (cardG_gt0 Z)) -natrM natCK. | |
rewrite -(Lagrange_index sKL sZK) mulnAC dvdn_mull //. | |
have /p_natP[k defKZ]: p.-nat #|K : Z| by rewrite (pnat_dvd (dvdn_indexg K Z)). | |
rewrite defKZ dvdn_exp2l // -(leq_exp2l _ _ (prime_gt1 p_pr)) -{k}defKZ. | |
rewrite -leC_nat expnM natrX -d_r ?(le_trans (irr1_bound r).1) //. | |
rewrite ler_nat dvdn_leq ?indexgS ?(subset_trans sZ_ZK) //=. | |
by rewrite -cap_cfcenter_irr bigcap_inf. | |
Qed. | |
End GeneralCoherence. | |
(* This is Peterfalvi (6.7). *) | |
(* In (6.8) we only know initially the P group is Sylow in L; perhaps this *) | |
(* lemma should be stated with this equivalent (but weaker) assumption. *) | |
Lemma constant_irr_mod_TI_Sylow Z L P p i : | |
p.-Sylow(G) P -> odd #|L| -> normedTI P^# G L -> | |
[/\ Z <| L, Z :!=: 1%g & Z \subset 'Z(P)] -> | |
{in Z^# &, forall x y, #|'C_L[x]| = #|'C_L[y]| } -> | |
let phi := 'chi[G]_i in | |
{in Z^# &, forall x y, phi x = phi y} -> | |
{in Z^#, forall x, phi x \in Cint /\ (#|P| %| phi x - phi 1%g)%C}. | |
Proof. | |
move=> sylP oddL tiP [/andP[sZL nZL] ntZ sZ_ZP] prZL; move: i. | |
pose a := @gring_classM_coef _ G; pose C (i : 'I_#|classes G|) := enum_val i. | |
have [[sPG pP p'PiG] [sZP cPZ]] := (and3P sylP, subsetIP sZ_ZP). | |
have [ntP sLG memJ_P1] := normedTI_memJ_P tiP; rewrite setD_eq0 subG1 in ntP. | |
have nsPL: P <| L. | |
by have [_ _ /eqP<-] := and3P tiP; rewrite normD1 normal_subnorm. | |
have [p_pr _ [e oP]] := pgroup_pdiv pP ntP. | |
have [sZG [sPL _]] := (subset_trans sZP sPG, andP nsPL). | |
pose dC i (A : {set gT}) := [disjoint C i & A]. | |
have actsGC i: {acts G, on C i | 'J}. | |
apply/actsP; rewrite astabsJ /C; have /imsetP[x _ ->] := enum_valP i. | |
by apply/normsP; apply: classGidr. | |
have{actsGC} PdvKa i j s: | |
~~ dC i Z^# -> ~~ dC j Z^# -> dC s Z -> (#|P| %| a i j s * #|C s|)%N. | |
- pose Omega := [set uv in [predX C i & C j] | mulgm uv \in C s]%g. | |
pose to_fn uv x := prod_curry (fun u v : gT => (u ^ x, v ^ x)%g) uv. | |
have toAct: is_action setT to_fn. | |
by apply: is_total_action => [[u v]|[u v] x y] /=; rewrite ?conjg1 ?conjgM. | |
move=> Zi Zj Z's; pose to := Action toAct. | |
have actsPO: [acts P, on Omega | to]. | |
apply/(subset_trans sPG)/subsetP=> x Gx; rewrite !inE. | |
apply/subsetP=> [[u v] /setIdP[/andP/=[Ciu Cjv] Csuv]]. | |
by rewrite !inE /= -conjMg !actsGC // Ciu Cjv. | |
have <-: #|Omega| = (a i j s * #|C s|)%N. | |
have /repr_classesP[_ defCs] := enum_valP s; rewrite -/(C s) in defCs. | |
rewrite -sum1_card mulnC -sum_nat_const. | |
rewrite (partition_big mulgm (mem (C s))) => [|[u v] /setIdP[]//]. | |
apply: eq_bigr; rewrite /= defCs => _ /imsetP[z Gz ->]. | |
rewrite -[a i j s]sum1_card -!/(C _) (reindex_inj (act_inj to z)) /=. | |
apply: eq_bigl => [[u v]]; rewrite !inE /= -conjMg (inj_eq (conjg_inj _)). | |
by apply: andb_id2r => /eqP->; rewrite {2}defCs imset_f ?andbT ?actsGC. | |
suffices regPO: {in Omega, forall uv, 'C_P[uv | to] = 1%g}. | |
rewrite -(acts_sum_card_orbit actsPO) dvdn_sum // => _ /imsetP[uv Ouv ->]. | |
by rewrite card_orbit regPO // indexg1. | |
case=> u v /setIdP[/andP[/= Ciu Cjv] Csuv]; apply: contraTeq Z's. | |
case/trivgPn=> x /setIP[Px /astab1P[/= cux cvx]] nt_x. | |
suffices inZ k y: y \in C k -> ~~ dC k Z^# -> y ^ x = y -> y \in Z. | |
apply/exists_inP; exists (u * v)%g => //=. | |
by rewrite groupM // (inZ i u, inZ j v). | |
rewrite /dC /C; have /imsetP[_ _ ->{k} /class_eqP <-] := enum_valP k. | |
case/exists_inP=> _ /imsetP[g Gg ->] /setD1P[nt_yg Zyg] yx. | |
have xy: (x ^ y = x)%g by rewrite /conjg (conjgCV x) -{2}yx conjgK mulKg. | |
rewrite -(memJ_conjg _ g) (normsP nZL) //. | |
rewrite -(memJ_P1 y) ?inE //=; first by rewrite nt_yg (subsetP sZP). | |
rewrite -order_eq1 -(orderJ y g) order_eq1 nt_yg. | |
rewrite (mem_normal_Hall (pHall_subl sPL sLG sylP)) //. | |
by rewrite -(p_eltJ _ _ g) (mem_p_elt pP) ?(subsetP sZP). | |
rewrite -(memJ_P1 x) // ?xy ?inE ?nt_x // -[y](conjgK g) groupJ ?groupV //. | |
by rewrite (subsetP sZG). | |
pose a2 i j := (\sum_(s | ~~ dC s Z^#) a i j s)%N. | |
pose kerZ l := {in Z^# &, forall x y, 'chi[G]_l x = 'chi_l y}. | |
move=> l phi kerZl z Z1z; move: l @phi {kerZl}(kerZl : kerZ l). | |
have [ntz Zz] := setD1P Z1z. | |
have [[Pz Lz] Gz] := (subsetP sZP z Zz, subsetP sZL z Zz, subsetP sZG z Zz). | |
pose inC y Gy := enum_rank_in (@mem_classes _ y G Gy) (y ^: G). | |
have CE y Gy: C (inC y Gy) = y ^: G by rewrite /C enum_rankK_in ?mem_classes. | |
pose i0 := inC _ (group1 G); pose i1 := inC z Gz; pose i2 := inC _ (groupVr Gz). | |
suffices Ea2 l (phi := 'chi[G]_l) (kerZphi : kerZ l): | |
(phi z *+ a2 i1 i1 == phi 1%g + phi z *+ a2 i1 i2 %[mod #|P|])%A. | |
- move=> l phi kerZphi. | |
have Zphi1: phi 1%g \in Cint by rewrite irr1_degree rpred_nat. | |
have chi0 x: x \in Z -> 'chi[G]_0 x = 1. | |
by rewrite irr0 cfun1E => /(subsetP sZG) ->. | |
have: kerZ 0 by move=> x y /setD1P[_ Zx] /setD1P[_ Zy]; rewrite !chi0. | |
move/Ea2/(eqAmodMl (Aint_irr l z)); rewrite !{}chi0 // -/phi eqAmod_sym. | |
rewrite mulrDr mulr1 !mulr_natr => /eqAmod_trans/(_ (Ea2 l kerZphi)). | |
rewrite eqAmodDr -/phi eqAmod_rat ?rpred_nat ?(rpred_Cint _ Zphi1) //. | |
move=> PdvDphi; split; rewrite // -[phi z](subrK (phi 1%g)) rpredD //. | |
by have /dvdCP[b Zb ->] := PdvDphi; rewrite rpredM ?rpred_nat. | |
have nz_Z1: #|Z^#|%:R != 0 :> algC. | |
by rewrite pnatr_eq0 cards_eq0 setD_eq0 subG1. | |
rewrite -[phi z](mulfK nz_Z1) rpred_div ?rpred_nat // mulr_natr. | |
rewrite -(rpredDl _ (rpred_Cint _ Zphi1)) //. | |
rewrite -[_ + _](mulVKf (neq0CG Z)) rpredM ?rpred_nat //. | |
have: '['Res[Z] phi, 'chi_0] \in Crat. | |
by rewrite rpred_Cnat ?Cnat_cfdot_char ?cfRes_char ?irr_char. | |
rewrite irr0 cfdotE (big_setD1 _ (group1 Z)) cfun1E cfResE ?group1 //=. | |
rewrite rmorph1 mulr1; congr (_ * (_ + _) \in Crat). | |
rewrite -sumr_const; apply: eq_bigr => x Z1x; have [_ Zx] := setD1P Z1x. | |
by rewrite cfun1E cfResE ?Zx // rmorph1 mulr1; apply: kerZphi. | |
pose alpha := 'omega_l['K_i1]; pose phi1 := phi 1%g. | |
have tiZG: {in Z^#, forall y, 'C_G[y] \subset L}. | |
move=> y /setD1P[nty /(subsetP sZP)Py]. | |
apply/subsetP=> u /setIP[Gu /cent1P-cuy]. | |
by rewrite -(memJ_P1 y) // /conjg -?cuy ?mulKg !inE nty. | |
have Dalpha s: ~~ dC s Z^# -> alpha = 'omega_l['K_s]. | |
case/exists_inP=> x /= /gring_mode_class_sum_eq-> Z1x. | |
have Ci1z: z \in C i1 by rewrite CE class_refl. | |
rewrite [alpha](gring_mode_class_sum_eq _ Ci1z) -/phi (kerZphi z x) //. | |
have{} tiZG: {in Z^#, forall y, 'C_G[y] = 'C_L[y]}. | |
by move=> y /tiZG/setIidPr; rewrite setIA (setIidPl sLG). | |
by rewrite -!index_cent1 -!divgS ?subsetIl //= !tiZG ?(prZL z x). | |
have Ci01: 1%g \in C i0 by rewrite CE class_refl. | |
have rCi10: repr (C i0) = 1%g by rewrite CE class1G repr_set1. | |
have Dalpha2 i j: ~~ dC i Z^# -> ~~ dC j Z^# -> | |
(phi1 * alpha ^+ 2 == phi1 * ((a i j i0)%:R + alpha *+ a2 i j) %[mod #|P|])%A. | |
- move=> Z1i Z1j. | |
have ->: phi1 * alpha ^+ 2 = \sum_s (phi1 *+ a i j s) * 'omega_l['K_s]. | |
rewrite expr2 {1}(Dalpha i Z1i) (Dalpha j Z1j). | |
rewrite -gring_irr_modeM ?gring_class_sum_central //. | |
rewrite gring_classM_expansion raddf_sum mulr_sumr; apply: eq_bigr => s _. | |
by rewrite scaler_nat raddfMn mulrnAl mulrnAr. | |
rewrite (bigID (fun s => dC s Z^#)) (bigD1 i0) //=; last first. | |
by rewrite [dC _ _]disjoints_subset CE class1G sub1set !inE eqxx. | |
rewrite (gring_mode_class_sum_eq _ Ci01) mulfK ?irr1_neq0 //. | |
rewrite class1G cards1 mulr1 mulrDr mulr_natr -addrA eqAmodDl. | |
rewrite /eqAmod -addrA rpredD //; last first. | |
rewrite -mulr_natr natr_sum !mulr_sumr -sumrB rpred_sum // => s Z1s. | |
by rewrite -Dalpha // mulr_natr mulrnAl mulrnAr subrr rpred0. | |
apply: rpred_sum => // s /andP[Z1'Cs ntCs]; rewrite mulrnAl mulrC. | |
have /imsetP[x _ defCs] := enum_valP s. | |
have Cs_x: x \in C s by rewrite /C defCs class_refl. | |
rewrite (gring_mode_class_sum_eq _ Cs_x) divfK ?irr1_neq0 // -defCs -/(C s). | |
rewrite -mulrnAl -mulrnA mulnC -[_%:R]subr0 mulrBl. | |
apply: eqAmodMr; first exact: Aint_irr. | |
rewrite eqAmod0_rat ?rpred_nat // dvdC_nat PdvKa //. | |
rewrite -(setD1K (group1 Z)) [dC _ _]disjoint_sym disjoints_subset. | |
rewrite subUset sub1set inE -disjoints_subset disjoint_sym. | |
rewrite (contra _ ntCs) // [C s]defCs => /class_eqP. | |
by rewrite -(inj_eq enum_val_inj) defCs -/(C _) CE => ->. | |
have zG'z1: (z^-1 \notin z ^: G)%g. | |
have genL2 y: y \in L -> <[y]> = <[y ^+ 2]>. | |
move=> Ly; apply/eqP; rewrite [_ == _]generator_coprime. | |
by rewrite coprime_sym prime_coprime // dvdn2 (oddSg _ oddL) ?cycle_subG. | |
apply: contra (ntz) => /imsetP[y Gy zy]. | |
have cz_y2: (y ^+ 2 \in 'C[z])%g. | |
by rewrite !inE conjg_set1 conjgM -zy conjVg -zy invgK. | |
rewrite -cycle_eq1 genL2 // cycle_eq1 -eq_invg_mul zy (sameP eqP conjg_fixP). | |
rewrite (sameP commgP cent1P) cent1C -cycle_subG genL2 ?cycle_subG //. | |
by rewrite -(memJ_P1 z) -?zy ?in_setD ?groupV ?inE ?ntz. | |
have a110: a i1 i1 i0 = 0%N. | |
apply: contraNeq zG'z1 => /existsP[[u v] /setIdP[/andP[/=]]]. | |
rewrite rCi10 -!/(C _) !CE -eq_invg_mul => /imsetP[x Gx ->] /class_eqP <-. | |
by move/eqP <-; rewrite -conjVg classGidl ?class_refl. | |
have a120: a i1 i2 i0 = #|C i1|. | |
rewrite -(card_imset _ (@can_inj _ _ (fun y => (y, y^-1)%g) (@fst _ _) _)) //. | |
apply/eq_card=> [[u v]]; rewrite !inE rCi10 -eq_invg_mul -!/(C _) !CE -andbA. | |
apply/and3P/imsetP=> /= [[zGu _ /eqP<-] | [y zGy [-> ->]]]; first by exists u. | |
by rewrite classVg inE invgK. | |
have Z1i1: ~~ dC i1 Z^#. | |
by apply/exists_inP; exists z; rewrite //= CE class_refl. | |
have Z1i2: ~~ dC i2 Z^#. | |
apply/exists_inP; exists z^-1%g; first by rewrite /= CE class_refl. | |
by rewrite /= in_setD !groupV !inE ntz. | |
have{Dalpha2}: (phi1 * (alpha *+ a2 i1 i1) | |
== phi1 * (#|C i1|%:R + alpha *+ a2 i1 i2) %[mod #|P|])%A. | |
- rewrite -a120; apply: eqAmod_trans (Dalpha2 i1 i2 Z1i1 Z1i2). | |
by have:= Dalpha2 _ _ Z1i1 Z1i1; rewrite a110 add0r eqAmod_sym. | |
rewrite mulrDr !mulrnAr mulr1 -/phi1. | |
have ->: phi1 * alpha = phi z *+ #|C i1|. | |
have Ci1z: z \in C i1 by rewrite CE class_refl. | |
rewrite [alpha](gring_mode_class_sum_eq _ Ci1z) mulrC divfK ?irr1_neq0 //. | |
by rewrite mulr_natl CE. | |
rewrite -!mulrnA !(mulnC #|C _|) !mulrnA -mulrnDl. | |
have [|r _ /dvdnP[q Dqr]] := @Bezoutl #|C i1| #|P|. | |
by rewrite CE -index_cent1. | |
have Zq: q%:R \in Aint by apply: rpred_nat. | |
move/(eqAmodMr Zq); rewrite ![_ *+ #|C _| * _]mulrnAl -!mulrnAr -mulrnA -Dqr. | |
have /eqnP->: coprime #|C i1| #|P|. | |
rewrite (p'nat_coprime _ pP) // (pnat_dvd _ p'PiG) // CE -index_cent1. | |
by rewrite indexgS // subsetI sPG sub_cent1 (subsetP cPZ). | |
rewrite add1n !mulrS !mulrDr !mulr1 natrM !mulrA. | |
set u := _ * r%:R; set v := _ * r%:R; rewrite -[u](subrK v) mulrDl addrA. | |
rewrite eqAmodDr; apply: eqAmod_trans; rewrite eqAmod_sym addrC. | |
rewrite eqAmod_addl_mul // -mulrBl mulr_natr. | |
by rewrite !(rpredB, rpredD, rpredMn, Aint_irr). | |
Qed. | |
(* This is Peterfalvi, Theorem (6.8). *) | |
(* We omit the semi-direct structure of L in assumption (a), since it is *) | |
(* implied by our statement of assumption (c). *) | |
Theorem Sibley_coherence L H W1 : | |
(*a*) [/\ odd #|L|, nilpotent H & normedTI H^# G L] -> | |
(*b*) let calS := seqIndD H L H 1 in let tau := 'Ind[G, L] in | |
(*c*) [\/ (*c1*) [Frobenius L = H ><| W1] | |
| (*c2*) exists2 W2 : {group gT}, prime #|W2| /\ W2 \subset H^`(1)%G | |
& exists A0, exists W : {group gT}, exists defW : W1 \x W2 = W, | |
prime_Dade_hypothesis G L H H H^# A0 defW] -> | |
coherent calS L^# tau. | |
Proof. | |
set case_c1 := [Frobenius L = H ><| W1]; pose case_c2 := ~~ case_c1. | |
set A := H^#; set H' := H^`(1)%G => -[oddL nilH tiA] S tau hyp_c. | |
have sLG: L \subset G by have [] := normedTI_memJ_P tiA. | |
have ntH: H :!=: 1%g by have [] := normedTI_P tiA; rewrite setD_eq0 subG1. | |
have [defL ntW1]: H ><| W1 = L /\ W1 :!=: 1%g. | |
by have [/Frobenius_context[] | [? _ [? [? [? [_ [[]]]]]]]] := hyp_c. | |
have [nsHL _ /mulG_sub[sHL sW1L] _ _] := sdprod_context defL. | |
have [uccS nrS]: cfConjC_subset S S /\ ~~ has cfReal S. | |
by do 2?split; rewrite ?seqInd_uniq ?seqInd_notReal //; apply: cfAut_seqInd. | |
have defZS: 'Z[S, L^#] =i 'Z[S, A] by apply: zcharD1_seqInd. | |
have c1_irrS: case_c1 -> {subset S <= irr L}. | |
move/FrobeniusWker=> frobL _ /seqIndC1P[i nz_i ->]. | |
exact: irr_induced_Frobenius_ker. | |
move defW2: 'C_H(W1)%G => W2; move defW: (W1 <*> W2)%G => W. | |
have{} defW: W1 \x W2 = W. | |
rewrite -defW dprodEY // -defW2 ?subsetIr // setICA setIA. | |
by have [_ _ _ ->] := sdprodP defL; rewrite setI1g. | |
pose V := cyclicTIset defW; pose A0 := A :|: class_support V L. | |
pose ddA0hyp := prime_Dade_hypothesis G L H H A A0 defW. | |
have c1W2: case_c1 -> W2 = 1%G by move/Frobenius_trivg_cent/group_inj <-. | |
have{hyp_c} hyp_c2: case_c2 -> [/\ prime #|W2|, W2 \subset H' & ddA0hyp]. | |
case: hyp_c => [/idPn// | [W2_ [prW2_ sW2_H'] [A0_ [W_ [defW_ ddA0_]]]] _]. | |
have idW2_: W2_ = W2. | |
have [[_ _ _ /cyclicP[x defW1]] [_ _ _ prW12] _] := prDade_prTI ddA0_. | |
have W1x: x \in W1^# by rewrite !inE -cycle_eq1 -defW1 ntW1 defW1 cycle_id. | |
by apply/group_inj; rewrite -defW2 /= defW1 cent_cycle prW12. | |
have idW_: W_ = W by apply/group_inj; rewrite -defW_ idW2_. | |
rewrite {}/ddA0hyp {}/A0 {}/V; rewrite -idW2_ -idW_ in defW *. | |
by rewrite (eq_irrelevance defW defW_); have [_ _ <-] := prDade_def ddA0_. | |
have{hyp_c2} [c2_prW2 c2_sW2H' c2_ddA0] := all_and3 hyp_c2. | |
have c2_ptiL c2 := prDade_prTI (c2_ddA0 c2). | |
have{c2_sW2H'} sW2H': W2 \subset H'. | |
by have [/c1W2-> | /c2_sW2H'//] := boolP case_c1; apply: sub1G. | |
pose sigma c2 := cyclicTIiso (c2_ddA0 c2). | |
have [R scohS oRW]: exists2 R, subcoherent S tau R & forall c2 : case_c2, | |
{in [predI S & irr L] & irr W, forall phi w, orthogonal (R phi) (sigma c2 w)}. | |
- have sAG: A \subset G^# by rewrite setSD // (subset_trans sHL). | |
have Itau: {in 'Z[S, L^#], isometry tau, to 'Z[irr G, G^#]}. | |
split=> [xi1 xi2|xi]; first rewrite !defZS => /zchar_on-Axi1 /zchar_on-Axi2. | |
exact: normedTI_isometry Axi1 Axi2. | |
rewrite !zcharD1E cfInd1 // => /andP[Zxi /eqP->]; rewrite mulr0. | |
by rewrite cfInd_vchar ?(zchar_trans_on _ Zxi) //=; apply: seqInd_vcharW. | |
have [/= c1 | /c2_ddA0-ddA0] := boolP (idfun case_c1). | |
suffices [R scohS]: {R | subcoherent S tau R} by exists R => // /negP[]. | |
by apply: irr_subcoherent; first have [[]] := (uccS, c1_irrS c1). | |
have Dtau: {in 'CF(L, A), tau =1 Dade ddA0}. | |
have nAL: L \subset 'N(A) by have [_ /subsetIP[]] := normedTI_P tiA. | |
have sAA0: A \subset A0 by apply: subsetUl. | |
by move=> phi Aphi /=; rewrite -(restr_DadeE _ sAA0) // [RHS]Dade_Ind. | |
have [R [subcohR oRW _]] := prDade_subcoherent ddA0 uccS nrS. | |
exists R => [|c2 phi w irrSphi irr_w]; last first. | |
by rewrite /sigma -(cycTIiso_irrel ddA0) oRW. | |
have [Sok _ oSS Rok oRR] := subcohR; split=> {Sok oSS oRR}// phi Sphi. | |
have [ZR oNR <-] := Rok _ Sphi; split=> {ZR oNR}//. | |
exact/Dtau/(zchar_on (seqInd_sub_aut_zchar _ _ Sphi)). | |
have solH := nilpotent_sol nilH; have nsH'H: H' <| H := der_normal 1 H. | |
have ltH'H: H' \proper H by rewrite (sol_der1_proper solH). | |
have nsH'L: H' <| L by apply: gFnormal_trans. | |
have [sH'H [sH'L nH'L]] := (normal_sub nsH'H, andP nsH'L). | |
have coHW1: coprime #|H| #|W1|. | |
suffices: Hall L W1 by rewrite (coprime_sdprod_Hall_r defL). | |
by have [/Frobenius_compl_Hall | /c2_ddA0/prDade_prTI[[]]] := boolP case_c1. | |
have oW1: #|W1| = #|L : H| by rewrite (index_sdprod defL). | |
have frobL1: [Frobenius L / H' = (H / H') ><| (W1 / H')]. | |
apply: (Frobenius_coprime_quotient defL nsH'L) => //; split=> // x W1x. | |
have [frobL | /c2_ptiL[_ [_ _ _ -> //]]] := boolP case_c1. | |
by rewrite (Frobenius_reg_ker frobL) ?sub1G. | |
have odd_frobL1: odd_Frobenius_quotient H L 1. | |
split=> //=; last by rewrite joingG1 (FrobeniusWker frobL1). | |
by rewrite normal1 sub1G quotient_nil. | |
without loss [/p_groupP[p p_pr pH] not_cHH]: / p_group H /\ ~~ abelian H. | |
apply: (non_coherent_chief _ _ scohS odd_frobL1) => // -[_ [p [pH ab'H] _]]. | |
have isoH := quotient1_isog H; rewrite -(isog_pgroup p isoH) in pH. | |
by apply; rewrite (isog_abelian isoH) (pgroup_p pH). | |
have sylH: p.-Sylow(G) H. (* required for (6.7) *) | |
rewrite -Sylow_subnorm -normD1; have [_ _ /eqP->] := and3P tiA. | |
by apply/and3P; rewrite -oW1 -pgroupE (coprime_p'group _ pH) // coprime_sym. | |
pose caseA := 'Z(H) :&: W2 \subset [1]%g; pose caseB := ~~ caseA. | |
have caseB_P: caseB -> [/\ case_c2, W2 :!=: 1%g & W2 \subset 'Z(H)]. | |
rewrite /caseB /caseA; have [->|] := eqP; first by rewrite subsetIr. | |
rewrite /case_c2; have [/c1W2->// | /c2_prW2-prW2 _] := boolP case_c1. | |
by rewrite setIC subG1 => /prime_meetG->. | |
pose Z := (if caseA then 'Z(H) :&: H' else W2)%G. | |
have /subsetIP[sZZH sZH']: Z \subset 'Z(H) :&: H'. | |
by rewrite /Z; case: ifPn => // /caseB_P[_ _ sZZH]; apply/subsetIP. | |
have caseB_sZZL: caseB -> Z \subset 'Z(L). | |
move=> in_caseB; have [_ _ /subsetIP[sW2H cW2H]] := caseB_P in_caseB. | |
rewrite /Z ifN // subsetI (subset_trans sW2H sHL). | |
by rewrite -(sdprodW defL) centM subsetI cW2H -defW2 subsetIr. | |
have nsZL: Z <| L; last have [sZL nZL] := andP nsZL. | |
have [in_caseA | /caseB_sZZL/sub_center_normal//] := boolP caseA. | |
by rewrite /Z in_caseA normalI ?gFnormal_trans. | |
have ntZ: Z :!=: 1%g. | |
rewrite /Z; case: ifPn => [_ | /caseB_P[] //]. | |
by rewrite /= setIC meet_center_nil // (sameP eqP derG1P). | |
have nsZH: Z <| H := sub_center_normal sZZH; have [sZH nZH] := andP nsZH. | |
have regZL: {in Z^# &, forall x y, #|'C_L[x]| = #|'C_L[y]| }. | |
have [in_caseA | /caseB_sZZL/subsetIP[_ cZL]] := boolP caseA; last first. | |
suffices defC x: x \in Z^# -> 'C_L[x] = L by move=> x y /defC-> /defC->. | |
by case/setD1P=> _ /(subsetP cZL); rewrite -sub_cent1 => /setIidPl. | |
suffices defC x: x \in Z^# -> 'C_L[x] = H by move=> x y /defC-> /defC->. | |
case/setD1P=> ntx Zx; have /setIP[Hx cHx] := subsetP sZZH x Zx. | |
have [_ <- _ _] := sdprodP defL; rewrite -group_modl ?sub_cent1 //=. | |
suffices ->: 'C_W1[x] = 1%g by rewrite mulg1. | |
have [/Frobenius_reg_compl-> // | c2] := boolP case_c1; first exact/setD1P. | |
have [_ [_ _ _ regW1] _] := c2_ptiL c2. | |
apply: contraTeq in_caseA => /trivgPn[y /setIP[W1y cxy] nty]; apply/subsetPn. | |
by exists x; rewrite inE // -(regW1 y) 2!inE ?nty // Hx cHx cent1C. | |
have{regZL} irrZmodH := | |
constant_irr_mod_TI_Sylow sylH oddL tiA (And3 nsZL ntZ sZZH) regZL. | |
pose X := seqIndD H L Z 1; pose Y := seqIndD H L H H'. | |
have ccsXS: cfConjC_subset X S by apply: seqInd_conjC_subset1. | |
have ccsYS: cfConjC_subset Y S by apply: seqInd_conjC_subset1. | |
have [[uX sXS ccX] [uY sYS ccY]] := (ccsXS, ccsYS). | |
have X'Y: {subset Y <= [predC X]}. | |
move=> _ /seqIndP[i /setIdP[_ kH'i] ->]; rewrite inE in kH'i. | |
by rewrite !inE mem_seqInd ?normal1 // !inE (subset_trans sZH'). | |
have oXY: orthogonal X Y. | |
apply/orthogonalP=> xi eta Xxi Yeta; apply: orthoPr xi Xxi. | |
exact: (subset_ortho_subcoherent scohS sXS (sYS _ Yeta) (X'Y _ Yeta)). | |
have irrY: {subset Y <= irr L}. | |
move=> _ /seqIndP[i /setIdP[not_kHi kH'i] ->]; rewrite !inE in not_kHi kH'i. | |
rewrite -(cfQuo_irr nsH'L) ?sub_cfker_Ind_irr -?cfIndQuo -?quo_IirrE //. | |
apply: (irr_induced_Frobenius_ker (FrobeniusWker frobL1)). | |
by rewrite quo_Iirr_eq0 -?subGcfker. | |
have oY: orthonormal Y by apply: sub_orthonormal (irr_orthonormal L). | |
have uniY: {in Y, forall phi : 'CF(L), phi 1%g = #|W1|%:R}. | |
move=> _ /seqIndP[i /setIdP[_ kH'i] ->]; rewrite inE -lin_irr_der1 in kH'i. | |
by rewrite cfInd1 // -divgS // -(sdprod_card defL) mulKn // lin_char1 ?mulr1. | |
have scohY: subcoherent Y tau R by apply: (subset_subcoherent scohS). | |
have [tau1 cohY]: coherent Y L^# tau. | |
apply/(uniform_degree_coherence scohY)/(@all_pred1_constant _ #|W1|%:R). | |
by apply/allP=> _ /mapP[phi Yphi ->]; rewrite /= uniY. | |
have [[Itau1 Ztau1] Dtau1] := cohY. | |
have oYtau: orthonormal (map tau1 Y) by apply: map_orthonormal. | |
have [[_ oYY] [_ oYYt]] := (orthonormalP oY, orthonormalP oYtau). | |
have [eta1 Yeta1]: {eta1 | eta1 \in Y} by apply: seqIndD_nonempty. | |
pose m : algC := (size Y)%:R; pose m_ub2 a := (a - 1) ^+ 2 + (m - 1) * a ^+ 2. | |
have m_ub2_lt2 a: a \in Cint -> m_ub2 a < 2%:R -> a = 0 \/ a = 1 /\ size Y = 2%N. | |
move=> Za ub_a; have [|nza] := eqVneq a 0; [by left | right]. | |
have ntY: (1 < size Y)%N by apply: seqInd_nontrivial Yeta1. | |
have m1_ge1: 1 <= m - 1 by rewrite ler_subr_addr (ler_nat _ 2). | |
have a1: a = 1. | |
apply: contraFeq (lt_geF ub_a); rewrite -subr_eq0 /m_ub2 => nz_a1. | |
by rewrite ler_add ?(mulr_ege1 m1_ge1) // sqr_Cint_ge1 ?rpredB. | |
rewrite /m_ub2 a1 subrr expr0n add0r expr1n mulr1 in ub_a. | |
rewrite ltr_subl_addr -mulrSr ltr_nat ltnS in ub_a. | |
by split; last apply/anti_leq/andP. | |
have{odd_frobL1} caseA_cohXY: caseA -> coherent (X ++ Y) L^# tau. | |
move=> in_caseA. | |
have scohX: subcoherent X tau R by apply: subset_subcoherent ccsXS. | |
have irrX: {subset X <= irr L}. | |
have [c1 | c2] := boolP case_c1; first by move=> phi /sXS/c1_irrS->. | |
have ptiL := c2_ptiL c2; have [_ [ntW2 sW2H _ _] _] := ptiL. | |
have{sW2H} isoW2: W2 / Z \isog W2. | |
apply/isog_symr/quotient_isog; first exact: subset_trans sW2H nZH. | |
exact/trivgP/(subset_trans _ in_caseA)/setSI. | |
have{ntW2} ntW2bar: (W2 / Z != 1)%g by rewrite (isog_eq1 isoW2). | |
have{ntW2bar} [defWbar ptiLZ] := primeTIhyp_quotient ptiL ntW2bar sZH nsZL. | |
pose IchiZ := [set mod_Iirr (primeTI_Ires ptiLZ j) | j : Iirr (W2 / Z)]. | |
suffices /eqP-eq_Ichi: IchiZ == [set primeTI_Ires ptiL j | j : Iirr W2]. | |
move=> _ /seqIndP[k /setDP[_ kZ'k] ->]. | |
have [[j /irr_inj-Dk] | [] //] := prTIres_irr_cases ptiL k. | |
have{j Dk} /imsetP[j _ Dk]: k \in IchiZ by rewrite eq_Ichi Dk imset_f. | |
by rewrite !inE Dk mod_IirrE ?cfker_mod in kZ'k. | |
rewrite eqEcard !card_imset; last exact: prTIres_inj; first last. | |
exact: inj_comp (morph_Iirr_inj _) (prTIres_inj _). | |
apply/andP; split; last by rewrite !card_ord !NirrE (nclasses_isog isoW2). | |
apply/subsetP=> k /imsetP[j _ Dk]. | |
have [[j1 /irr_inj->]|] := prTIres_irr_cases ptiL k; first exact: imset_f. | |
case=> /idPn[]; rewrite {k}Dk mod_IirrE ?cfIndMod ?cfMod_irr //. | |
by rewrite cfInd_prTIres prTIred_not_irr. | |
have [//|defX [tau2 cohX]]: X =i _ /\ coherent X L^# tau := | |
seqIndD_irr_coherence nsHL solH scohS odd_frobL1 _ irrX. | |
have [[Itau2 Ztau2] Dtau2] := cohX. | |
pose dvd_degrees_X (d : algC) := {in X, forall xi : 'CF(L), d %| xi 1%g}%C. | |
have [xi1 Xxi1 dvd_xi1_1]: exists2 xi1, xi1 \in X & dvd_degrees_X (xi1 1%g). | |
have /all_sig[e De] i: {e | 'chi[H]_i 1%g = (p ^ e)%:R}. | |
have:= dvd_irr1_cardG i; rewrite irr1_degree dvdC_nat => dv_chi1_H. | |
by have /p_natP[e ->] := pnat_dvd dv_chi1_H pH; exists e. | |
have [_ /seqIndP[i0 IXi0 _]]: {phi | phi \in X}. | |
by apply: seqIndD_nonempty; rewrite ?normal1 ?proper1G. | |
pose xi1 := 'Ind[L] 'chi_[arg min_(i < i0 in Iirr_kerD H Z 1%G) e i]. | |
case: fintype.arg_minnP => {i0 IXi0}//= i1 IXi1 min_i1 in xi1. | |
exists xi1 => [|_ /seqIndP[i IXi ->]]; first by apply/seqIndP; exists i1. | |
rewrite !cfInd1 // !De -!natrM dvdC_nat dvdn_pmul2l //. | |
by rewrite dvdn_Pexp2l ?min_i1 ?prime_gt1. | |
have nz_xi1_1: xi1 1%g != 0 by apply: seqInd1_neq0 Xxi1. | |
pose d (xi : 'CF(L)) : algC := (truncC (xi 1%g / xi1 1%g))%:R. | |
have{dvd_xi1_1} def_d xi: xi \in X -> xi 1%g = d xi * xi1 1%g. | |
rewrite /d => Xxi; have Xge0 := Cnat_ge0 (Cnat_seqInd1 (_ : _ \in X)). | |
by have /dvdCP_nat[||q ->] := dvd_xi1_1 xi Xxi; rewrite ?Xge0 ?mulfK ?natCK. | |
have d_xi1: d xi1 = 1 by rewrite /d divff ?truncC1. | |
have [_ [Itau /(_ _ _)/zcharW-Ztau] _ _ _] := scohS. | |
have o_tauXY: orthogonal (map tau2 X) (map tau1 Y). | |
exact: (coherent_ortho scohS). | |
have [a Na xi1_1]: exists2 a, a \in Cnat & xi1 1%g = a * #|W1|%:R. | |
have [i _ ->] := seqIndP Xxi1; rewrite cfInd1 // -oW1 mulrC. | |
by exists ('chi_i 1%g); first apply: Cnat_irr1. | |
pose psi1 := xi1 - a *: eta1. | |
have Zpsi1: psi1 \in 'Z[S, L^#]. | |
rewrite zcharD1E !cfunE (uniY _ Yeta1) -xi1_1 subrr eqxx andbT. | |
by rewrite rpredB ?rpredZ_Cnat ?mem_zchar ?(sXS _ Xxi1) // sYS. | |
have [Y1 dY1 [X1 [dX1 _ oX1tauY]]] := orthogonal_split (map tau1 Y)(tau psi1). | |
have{dX1 Y1 dY1 oYtau} [b Zb tau_psi1]: {b | b \in Cint & | |
tau psi1 = X1 - a *: tau1 eta1 + b *: (\sum_(eta <- Y) tau1 eta)}. | |
- exists ('[tau psi1, tau1 eta1] + a). | |
by rewrite rpredD ?Cint_cfdot_vchar ?Cint_Cnat ?Ztau ?Ztau1 ?mem_zchar. | |
rewrite [LHS]dX1 addrC -addrA; congr (_ + _). | |
have{dY1} [_ -> ->] := orthonormal_span oYtau dY1. | |
transitivity (\sum_(xi <- map tau1 Y) '[tau psi1, xi] *: xi). | |
by apply/eq_big_seq=> xi ?; rewrite dX1 cfdotDl (orthoPl oX1tauY) ?addr0. | |
rewrite big_map scaler_sumr !(big_rem eta1 Yeta1) /= addrCA addrA scalerDl. | |
rewrite addrK; congr (_ + _); apply: eq_big_seq => eta. | |
rewrite mem_rem_uniq // => /andP[eta1'eta /= Yeta]; congr (_ *: _). | |
apply/(canRL (addNKr _)); rewrite addrC -2!raddfB /=. | |
have Zeta: eta - eta1 \in 'Z[Y, L^#]. | |
by rewrite zcharD1E rpredB ?seqInd_zcharW //= !cfunE !uniY ?subrr. | |
rewrite Dtau1 // Itau // ?(zchar_subset sYS) // cfdotBl cfdotZl. | |
rewrite (span_orthogonal oXY) ?rpredB ?memv_span // add0r cfdotBr. | |
by rewrite !oYY // !mulrb eqxx ifN_eqC // sub0r mulrN1 opprK. | |
have oX: orthonormal X by apply: sub_orthonormal (irr_orthonormal L). | |
have [_ oXX] := orthonormalP oX. | |
have Zxi1Xd xi: xi \in X -> xi - d xi *: xi1 \in 'Z[X, L^#]. | |
move=> Xxi; rewrite zcharD1E !cfunE -def_d // subrr eqxx. | |
by rewrite rpredB ?rpredZnat ?mem_zchar. | |
pose psi := 'Res[L] (tau1 eta1); move Dc: '[psi, xi1] => c. | |
have Zpsi: psi \in 'Z[irr L] by rewrite cfRes_vchar ?Ztau1 ?seqInd_zcharW. | |
pose sumXd : 'CF(L) := \sum_(xi <- X) d xi *: xi. | |
have{Dc} [xi2 Dpsi oxi2X]: {xi2 | psi = c *: sumXd + xi2 & orthogonal xi2 X}. | |
exists (psi - c *: sumXd); first by rewrite addrC subrK. | |
apply/orthoPl=> xi Xxi; rewrite cfdotBl cfdotZl cfproj_sum_orthonormal //. | |
rewrite mulrC -[d xi]conjCK -Dc -cfdotZr -cfdotBr cfdot_Res_l -conjC0. | |
rewrite -/tau rmorph_nat -Dtau2 ?Zxi1Xd // raddfB raddfZnat -/(d xi) cfdotC. | |
by rewrite (span_orthogonal o_tauXY) ?rpredB ?rpredZ ?memv_span ?map_f. | |
have Exi2 z: z \in Z -> xi2 z = xi2 1%g. | |
rewrite [xi2]cfun_sum_constt => Zz; apply/cfker1; apply: subsetP z Zz. | |
apply: subset_trans (cfker_sum _ _ _); rewrite subsetI sZL. | |
apply/bigcapsP=> i; rewrite inE => xi2_i; rewrite cfker_scale_nz //. | |
by apply: contraR xi2_i => X_i; rewrite (orthoPl oxi2X) // defX inE mem_irr. | |
have Eba: '[psi, psi1] = b - a. | |
rewrite cfdotC cfdot_Res_r -/tau tau_psi1 cfdotDl cfdotBl cfdotZl. | |
rewrite (orthoPl oX1tauY) 1?oYYt ?map_f // eqxx sub0r addrC mulr1 rmorphB. | |
by rewrite scaler_sumr cfproj_sum_orthonormal // aut_Cint // aut_Cnat. | |
have{Eba oxi2X} Ebc: (a %| b - c)%C. | |
rewrite -[b](subrK a) -Eba cfdotBr {1}Dpsi cfdotDl cfdotZl. | |
rewrite cfproj_sum_orthonormal // (orthoPl oxi2X) // addr0 d_xi1 mulr1. | |
rewrite addrC -addrA addKr addrC rpredB ?dvdC_refl //= cfdotZr aut_Cnat //. | |
by rewrite dvdC_mulr // Cint_cfdot_vchar ?(seqInd_vcharW Yeta1). | |
have DsumXd: sumXd = (xi1 1%g)^-1 *: (cfReg L - cfReg (L / Z) %% Z)%CF. | |
apply/(canRL (scalerK nz_xi1_1))/(canRL (addrK _)); rewrite !cfReg_sum. | |
pose kerZ := [pred i : Iirr L | Z \subset cfker 'chi_i]. | |
rewrite 2!linear_sum (bigID kerZ) (reindex _ (mod_Iirr_bij nsZL)) /= addrC. | |
congr (_ + _). | |
apply: eq_big => [i | i _]; first by rewrite mod_IirrE ?cfker_mod. | |
by rewrite linearZ mod_IirrE // cfMod1. | |
transitivity (\sum_(xi <- X) xi 1%g *: xi). | |
by apply: eq_big_seq => xi Xxi; rewrite scalerA mulrC -def_d. | |
rewrite (perm_big [seq 'chi_i | i in [predC kerZ]]). | |
by rewrite big_map big_filter. | |
apply: uniq_perm => // [|xi]. | |
by rewrite (map_inj_uniq irr_inj) ?enum_uniq. | |
rewrite defX; apply/andP/imageP=> [[/irrP[i ->]] | [i]]; first by exists i. | |
by move=> kerZ'i ->; rewrite mem_irr. | |
have nz_a: a != 0 by have:= nz_xi1_1; rewrite xi1_1 mulf_eq0 => /norP[]. | |
have{psi Dpsi Zpsi xi2 Exi2 sumXd DsumXd} tau_eta1_Z z: | |
z \in Z^# -> tau1 eta1 z - tau1 eta1 1%g = - c * #|H|%:R / a. | |
- case/setD1P=> /negPf-ntz Zz; have Lz := subsetP sZL z Zz. | |
transitivity (psi z - psi 1%g); first by rewrite !cfResE. | |
rewrite Dpsi DsumXd !(cfRegE, cfunE) eqxx -opprB 2!mulrDr -[_ + xi2 _]addrA. | |
rewrite Exi2 ?cfModE ?morph1 ?coset_id // ntz add0r addrK -mulNr mulrAC. | |
by rewrite xi1_1 invfM -(sdprod_card defL) mulnC natrM !mulrA divfK ?neq0CG. | |
have{tau_eta1_Z} dvH_cHa: (#|H| %| c * #|H|%:R / a)%C. | |
have /dirrP[e [i /(canLR (signrZK e))Deta1]]: tau1 eta1 \in dirr G. | |
by rewrite dirrE Ztau1 ?seqInd_zcharW //= oYYt ?map_f ?eqxx. | |
have /set0Pn[z Zz]: Z^# != set0 by rewrite setD_eq0 subG1. | |
have [z1 z2 Zz1 Zz2|_] := irrZmodH i _ z Zz. | |
rewrite -Deta1 !cfunE; congr (_ * _); apply/(addIr (- tau1 eta1 1%g)). | |
by rewrite !tau_eta1_Z. | |
by rewrite -Deta1 !cfunE -mulrBr rpredMsign ?tau_eta1_Z ?mulNr ?rpredN. | |
have{dvH_cHa} dv_ac: (a %| c)%C. | |
by rewrite -(@dvdC_mul2r _ a) ?divfK // mulrC dvdC_mul2l ?neq0CG in dvH_cHa. | |
have{c Ebc dv_ac} /dvdCP[q Zq Db]: (a %| b)%C by rewrite rpredBr in Ebc. | |
have norm_psi1: '[psi1] = 1 + a ^+ 2. | |
rewrite cfnormBd; last by rewrite cfdotZr (orthogonalP oXY) ?mulr0. | |
by rewrite cfnormZ norm_Cnat // oXX // oYY // !eqxx mulr1. | |
have{Zb oYYt} norm_tau_psi1: '[tau psi1] = '[X1] + a ^+ 2 * m_ub2 q. | |
rewrite tau_psi1 -addrA cfnormDd /m_ub2; last first. | |
rewrite addrC big_seq (span_orthogonal oX1tauY) ?memv_span1 //. | |
by rewrite rpredB ?rpredZ ?rpred_sum // => *; rewrite memv_span ?map_f. | |
congr (_ + _); transitivity (b ^+ 2 * m + a ^+ 2 - a * b *+ 2); last first. | |
rewrite [RHS]mulrC [in RHS]addrC mulrBl sqrrB1 !addrA mulrDl !mul1r subrK. | |
by rewrite mulrBl [m * _]mulrC mulrnAl mulrAC Db exprMn (mulrCA a) addrAC. | |
rewrite addrC cfnormB !cfnormZ Cint_normK ?norm_Cnat // cfdotZr. | |
rewrite cfnorm_map_orthonormal // -/m linear_sum cfproj_sum_orthonormal //. | |
by rewrite oYYt ?map_f // eqxx mulr1 rmorphM conjCK aut_Cnat ?aut_Cint. | |
have{norm_tau_psi1} mq2_lt2: m_ub2 q < 2%:R. | |
suffices a2_gt1: a ^+ 2 > 1. | |
have /ltr_pmul2l <-: a ^+ 2 > 0 by apply: lt_trans a2_gt1. | |
rewrite -(ltr_add2l '[X1]) -norm_tau_psi1 ltr_paddl ?cfnorm_ge0 //. | |
by rewrite Itau // mulr_natr norm_psi1 ltr_add2r. | |
suffices a_neq1: a != 1. | |
rewrite expr_gt1 ?Cnat_ge0 // lt_neqAle eq_sym a_neq1. | |
by rewrite -(norm_Cnat Na) norm_Cint_ge1 ?Cint_Cnat. | |
have /seqIndP[i1 /setDP[_ not_kerH'i1] Dxi1] := Xxi1. | |
apply: contraNneq not_kerH'i1 => a_eq1; rewrite inE (subset_trans sZH') //. | |
rewrite -lin_irr_der1 qualifE irr_char /= -(inj_eq (mulfI (neq0CiG L H))). | |
by rewrite -cfInd1 // -Dxi1 xi1_1 a_eq1 mul1r mulr1 oW1. | |
without loss{tau_psi1 Itau1 Ztau1 Dtau1 b q Db mq2_lt2 Zq} tau_psi1: | |
tau1 cohY o_tauXY oX1tauY / tau psi1 = X1 - a *: tau1 eta1. | |
- move=> IH; have [q0 | [q1 /eq_leq-szY2]] := m_ub2_lt2 q Zq mq2_lt2. | |
by apply: (IH tau1) => //; rewrite tau_psi1 Db q0 mul0r scale0r addr0. | |
have defY: perm_eq Y (eta1 :: eta1^*)%CF. | |
have uYeta: uniq (eta1 :: eta1^*)%CF. | |
by rewrite /= inE eq_sym (hasPn nrS) ?sYS. | |
rewrite perm_sym uniq_perm //. | |
have [|//]:= uniq_min_size uYeta _ szY2. | |
by apply/allP; rewrite /= Yeta1 ccY. | |
have memYtau1c: {subset [seq tau1 eta^* | eta <- Y]%CF <= map tau1 Y}. | |
by move=> _ /mapP[eta Yeta ->]; rewrite /= map_f ?ccY. | |
apply: IH (dual_coherence scohY cohY szY2) _ _ _. | |
- rewrite (map_comp -%R) orthogonal_oppr. | |
by apply/orthogonalP=> phi psi ? /memYtau1c; apply: (orthogonalP o_tauXY). | |
- rewrite (map_comp -%R) orthogonal_oppr. | |
by apply/orthoPl=> psi /memYtau1c; apply: (orthoPl oX1tauY). | |
rewrite tau_psi1 (perm_big _ defY) Db q1 /= mul1r big_cons big_seq1. | |
by rewrite scalerDr addrA subrK -scalerN opprK. | |
have [[Itau1 Ztau1] Dtau1] := cohY. | |
have n1X1: '[X1] = 1. | |
rewrite -(canLR (addrK _) norm_psi1) -Itau // tau_psi1. | |
rewrite cfnormBd; last by rewrite cfdotZr (orthoPl oX1tauY) ?map_f ?mulr0. | |
by rewrite cfnormZ norm_Cnat // Itau1 ?mem_zchar ?oYY // eqxx mulr1 addrK. | |
without loss{Itau2 Ztau2 Dtau2} defX1: tau2 cohX o_tauXY / X1 = tau2 xi1. | |
move=> IH; have ZX: {subset X <= 'Z[X]} by apply: seqInd_zcharW. | |
have dirrXtau xi: xi \in X -> tau2 xi \in dirr G. | |
by move=> Xxi; rewrite dirrE Ztau2 1?Itau2 ?ZX //= oXX ?eqxx. | |
have dirrX1: X1 \in dirr G. | |
rewrite dirrE n1X1 eqxx -(canLR (subrK _) tau_psi1). | |
by rewrite rpredD ?rpredZ_Cnat ?(zcharW (Ztau _ _)) ?Ztau1 ?seqInd_zcharW. | |
have{Zxi1Xd} oXdX1 xi: xi \in X -> xi != xi1 -> | |
'[d xi *: tau2 xi1 - tau2 xi, X1] = d xi. | |
- move=> Xxi xi1'xi; have ZXxi := Zxi1Xd xi Xxi. | |
rewrite -(canLR (subrK _) tau_psi1) cfdotDr addrC. | |
rewrite (span_orthogonal o_tauXY) ?rpredB ?rpredZ ?memv_span ?map_f //. | |
rewrite add0r -opprB cfdotNl -{1}raddfZ_Cnat ?Cnat_nat // -raddfB. | |
rewrite Dtau2 // Itau ?cfdotBr ?opprB //; last exact: zchar_subset ZXxi. | |
rewrite (span_orthogonal oXY) ?rpredB ?rpredZ ?memv_span // sub0r. | |
by rewrite cfdotBl cfdotZl opprB !oXX // eqxx mulr1 mulrb ifN ?subr0. | |
pose xi3 := xi1^*%CF; have Xxi3: xi3 \in X by apply: ccX. | |
have xi1'3: xi3 != xi1 by rewrite (hasPn nrS) ?sXS. | |
have [| defX1]: X1 = tau2 xi1 \/ X1 = - tau2 xi3; first 2 [exact : IH]. | |
have d_xi3: d xi3 = 1 by rewrite /d cfunE conj_Cnat ?(Cnat_seqInd1 Xxi1). | |
have:= oXdX1 xi3 Xxi3 xi1'3; rewrite d_xi3 scale1r. | |
by apply: cfdot_add_dirr_eq1; rewrite // ?rpredN dirrXtau. | |
have szX2: (size X <= 2)%N. | |
apply: uniq_leq_size (xi1 :: xi3) uX _ => // xi4 Xxi4; rewrite !inE. | |
apply: contraR (seqInd1_neq0 nsHL Xxi4) => /norP[xi1'4 xi3'4]. | |
rewrite def_d // -oXdX1 // defX1 cfdotNr cfdotBl cfdotZl opprB. | |
by rewrite !Itau2 ?ZX ?oXX // !mulrb ifN ?ifN_eqC // mulr0 subr0 mul0r. | |
apply: (IH _ (dual_coherence scohX cohX szX2)) defX1. | |
apply/orthogonalP=> _ psi2 /mapP[xi Xxi -> /=] Ytau_psi2. | |
by rewrite cfdotNl (orthogonalP o_tauXY) ?oppr0 // map_f ?ccX. | |
rewrite -raddfZ_Cnat // defX1 in tau_psi1. | |
apply: (bridge_coherent scohS ccsXS cohX ccsYS cohY X'Y) tau_psi1. | |
by rewrite (zchar_on Zpsi1) rpredZ_Cnat ?mem_zchar. | |
have{caseA_cohXY Itau1 Ztau1 Dtau1 oYYt} cohXY: coherent (X ++ Y) L^# tau. | |
have [in_caseA | in_caseB] := boolP caseA; first exact: caseA_cohXY. | |
have defZ: Z = W2 by rewrite /Z ifN. | |
have /subsetIP[_ cZL] := caseB_sZZL in_caseB. | |
have{in_caseB} [c2 _ _] := caseB_P in_caseB; move/(_ c2) in oRW. | |
pose PtypeL := c2_ddA0 c2; pose w2 := #|W2|. | |
have{c2_prW2} pr_w2: prime w2 := c2_prW2 c2. | |
have /cyclicP[z0 cycZ]: cyclic Z by rewrite defZ prime_cyclic. | |
have oz0: #[z0] = w2 by rewrite /w2 -defZ cycZ. | |
have regYZ: {in Y & Z^#, forall (eta : 'CF(L)) x, tau1 eta x = tau1 eta z0}. | |
rewrite cycZ => eta x Yeta /setD1P[ntx /cyclePmin[k lt_k_z0 Dx]]. | |
have{ntx} k_gt0: (0 < k)%N by case: (k) Dx ntx => // -> /eqP[]. | |
have{lt_k_z0} [cokw2 zz0_dv_w2]: coprime k w2 /\ #[z0] %| w2. | |
by rewrite coprime_sym prime_coprime // -oz0 // gtnNdvd. | |
have [u Du _]:= make_pi_cfAut G cokw2; rewrite Dx -Du ?Ztau1 ?mem_zchar //. | |
have nAL: L \subset 'N(A) by have [_ /subsetIP[]] := normedTI_P tiA. | |
pose ddA := restr_Dade_hyp PtypeL (subsetUl _ _) nAL. | |
have{} Dtau1: {in 'Z[Y, L^#], tau1 =1 Dade ddA}. | |
by move=> phi Yphi/=; rewrite Dtau1 ?Dade_Ind ?(zcharD1_seqInd_on _ Yphi). | |
have cohY_Dade: coherent_with Y L^# (Dade ddA) tau1 by []. | |
rewrite (cfAut_Dade_coherent cohY_Dade) ?irrY //; last first. | |
split; last exact: cfAut_seqInd. | |
exact: seqInd_nontrivial_irr (irrY _ Yeta) (Yeta). | |
rewrite -[cfAut u _](subrK eta) -opprB addrC raddfB !cfunE -[RHS]subr0. | |
congr (_ - _); rewrite Dtau1 ?zcharD1_seqInd ?seqInd_sub_aut_zchar //. | |
rewrite Dade_id; last by rewrite !inE -cycle_eq1 -cycle_subG -cycZ ntZ. | |
rewrite !cfunE cfker1 ?aut_Cnat ?subrr ?(Cnat_seqInd1 Yeta) //. | |
have [j /setDP[kerH'j _] Deta] := seqIndP Yeta; rewrite inE in kerH'j. | |
by rewrite -cycle_subG -cycZ (subset_trans sZH') // Deta sub_cfker_Ind_irr. | |
have [_ [Itau /(_ _ _)/zcharW-Ztau] oSS _ _] := scohS. | |
pose gamma i : 'CF(L) := 'Ind[L] 'chi[Z]_i - #|H : Z|%:R *: eta1. | |
have [Y1 tau_gamma defY1]: exists2 Y1 : 'CF(G), forall i : Iirr Z, i != 0 -> | |
exists2 X1 : 'CF(G), orthogonal X1 (map tau1 Y) | |
& tau (gamma i) = X1 - #|H : Z|%:R *: Y1 | |
& Y1 = tau1 eta1 \/ size Y = 2%N /\ Y1 = dual_iso tau1 eta1. | |
- pose psi1 := tau1 eta1; pose b := psi1 z0. | |
pose a := (psi1 1%g - b) / #|Z|%:R. | |
have sZG := subset_trans sZL sLG. | |
have Dpsi1: 'Res[Z] psi1 = a *: cfReg Z + b%:A. | |
apply/cfun_inP=> z Zz; rewrite cfResE // !(cfRegE, cfunE) cfun1E Zz mulr1. | |
have [-> | ntz] := altP eqP; first by rewrite divfK ?neq0CG ?subrK. | |
by rewrite mulr0 add0r regYZ // !inE ntz. | |
have /dvdCP[x0 Zx0 Dx0]: (#|H : Z| %| a)%C. | |
suffices dvH_p_psi1: (#|H| %| b - psi1 1%g)%C. | |
rewrite -(@dvdC_mul2r _ #|Z|%:R) ?divfK ?neq0CG // -opprB rpredN /=. | |
by rewrite -natrM mulnC Lagrange. | |
have psi1Z z: z \in Z^# -> psi1 z = b by apply: regYZ. | |
have /dirrP[e [i /(canLR (signrZK e))-Epsi1]]: psi1 \in dirr G. | |
have [_ oYt] := orthonormalP oYtau. | |
by rewrite dirrE oYt ?map_f // !eqxx Ztau1 ?seqInd_zcharW. | |
have Zz: z0 \in Z^# by rewrite !inE -cycle_eq1 -cycle_subG -cycZ ntZ /=. | |
have [z1 z2 Zz1 Zz2 |_] := irrZmodH i _ _ Zz. | |
by rewrite -Epsi1 !cfunE !psi1Z. | |
by rewrite -Epsi1 !cfunE -mulrBr rpredMsign psi1Z. | |
pose x1 := '[eta1, 'Res psi1]; pose x := x0 + 1 - x1. | |
have Zx: x \in Cint. | |
rewrite rpredB ?rpredD // Cint_cfdot_vchar // ?(seqInd_vcharW Yeta1) //. | |
by rewrite cfRes_vchar // Ztau1 ?seqInd_zcharW. | |
pose Y1 := - \sum_(eta <- Y) (x - (eta == eta1)%:R) *: tau1 eta. | |
have IndZfacts i: i != 0 -> | |
[/\ 'chi_i 1%g = 1, 'Ind 'chi_i \in 'Z[X] & gamma i \in 'Z[S, L^#]]. | |
- move=> nzi; have /andP[_ /eqP-lin_i]: 'chi_i \is a linear_char. | |
by rewrite lin_irr_der1 (derG1P _) ?sub1G // cycZ cycle_abelian. | |
have Xchi: 'Ind 'chi_i \in 'Z[X]. | |
rewrite -(cfIndInd _ sHL) // ['Ind[H] _]cfun_sum_constt linear_sum. | |
apply: rpred_sum => k k_i; rewrite linearZ rpredZ_Cint ?mem_zchar //=. | |
by rewrite Cint_cfdot_vchar_irr // cfInd_vchar ?irr_vchar. | |
rewrite mem_seqInd ?normal1 // !inE sub1G andbT. | |
by rewrite -(sub_cfker_constt_Ind_irr k_i) // subGcfker. | |
split=> //; rewrite zcharD1E !cfunE cfInd1 // uniY // lin_i mulr1. | |
rewrite oW1 -natrM mulnC Lagrange_index // subrr eqxx andbT. | |
by rewrite rpredB ?rpredZnat ?(zchar_subset sXS Xchi) ?mem_zchar ?sYS. | |
have Dgamma (i : Iirr Z) (nzi : i != 0): | |
exists2 X1 : 'CF(G), orthogonal X1 (map tau1 Y) | |
& tau (gamma i) = X1 - #|H : Z|%:R *: Y1. | |
- have [lin_i Xchi Zgamma] := IndZfacts i nzi. | |
have Da: '[tau (gamma i), psi1] = a - #|H : Z|%:R * x1. | |
rewrite !(=^~ cfdot_Res_r, cfdotBl) cfResRes // cfdotZl -/x1 Dpsi1. | |
congr (_ - _); rewrite cfdotDr cfReg_sum cfdotC cfdotZl cfdotZr. | |
rewrite -(big_tuple _ _ _ xpredT (fun xi : 'CF(Z) => xi 1%g *: xi)). | |
rewrite cfproj_sum_orthonormal ?irr_orthonormal ?mem_irr // lin_i mulr1. | |
rewrite -irr0 cfdot_irr (negPf nzi) mulr0 addr0. | |
by rewrite aut_Cint // Dx0 rpredM ?rpred_nat. | |
exists (tau (gamma i) + #|H : Z|%:R *: Y1); last by rewrite addrK. | |
apply/orthoPl=> _ /mapP[eta Yeta ->]. | |
rewrite scalerN cfdotBl cfdotZl cfproj_sum_orthonormal // [x]addrAC. | |
rewrite -addrA mulrDr mulrBr mulrC -Dx0 -Da opprD addrA -!raddfB /=. | |
have Yeta_1: eta - eta1 \in 'Z[Y, L^#]. | |
by rewrite zcharD1E rpredB ?seqInd_zcharW //= !cfunE !uniY ?subrr. | |
rewrite Dtau1 ?Itau // ?(zchar_subset sYS) // cfdotBl cfdotZl. | |
rewrite (span_orthogonal oXY) ?(zchar_span Xchi) ?(zchar_span Yeta_1) //. | |
by rewrite cfdotBr -mulrN opprB !oYY // eqxx eq_sym addrK. | |
have [i0 nz_i0] := has_nonprincipal_irr ntZ. | |
exists Y1 => //; have{Dgamma} [X1 oX1Y Dgamma] := Dgamma i0 nz_i0. | |
have [lin_i Xchi Zgamma] := IndZfacts i0 nz_i0. | |
have norm_gamma: '[tau (gamma i0)] = (#|L : Z| + #|H : Z| ^ 2)%:R. | |
rewrite natrD Itau // cfnormBd; last first. | |
rewrite (span_orthogonal oXY) ?(zchar_span Xchi) //. | |
by rewrite memvZ ?memv_span. | |
rewrite cfnorm_Ind_irr //; congr (#|_ : Z|%:R + _); last first. | |
by rewrite cfnormZ oYY // eqxx mulr1 normCK rmorph_nat -natrM. | |
by apply/setIidPl; rewrite (subset_trans _ (cent_sub_inertia _)) 1?centsC. | |
have{norm_gamma} ub_norm_gamma: '[tau (gamma i0)] < (#|H : Z| ^ 2).*2%:R. | |
rewrite norm_gamma -addnn ltr_nat ltn_add2r. | |
rewrite -(Lagrange_index sHL) ?ltn_pmul2r // -[#|H : Z| ]prednK // ltnS. | |
have frobL2: [Frobenius L / Z = (H / Z) ><| (W1 / Z)]%g. | |
apply: (Frobenius_coprime_quotient defL nsZL) => //. | |
split=> [|y W1y]; first exact: sub_proper_trans ltH'H. | |
by rewrite defZ; have [/= ? [_ [_ _ _ ->]]] := PtypeL. | |
have nZW1 := subset_trans sW1L nZL. | |
have tiZW1: Z :&: W1 = 1%g by rewrite coprime_TIg ?(coprimeSg sZH). | |
rewrite -oW1 (card_isog (quotient_isog nZW1 tiZW1)) -card_quotient //. | |
rewrite dvdn_leq ?(Frobenius_dvd_ker1 frobL2) // -subn1 subn_gt0. | |
by rewrite cardG_gt1; case/Frobenius_context: frobL2. | |
have{ub_norm_gamma} ub_xm: m_ub2 x < 2%:R. | |
have: '[Y1] < 2%:R. | |
rewrite -2!(ltr_pmul2l (gt0CiG H Z)) -!natrM mulnA muln2. | |
apply: le_lt_trans ub_norm_gamma; rewrite Dgamma cfnormBd. | |
by rewrite cfnormZ normCK rmorph_nat mulrA -subr_ge0 addrK cfnorm_ge0. | |
rewrite (span_orthogonal oX1Y) ?memv_span1 ?rpredZ // rpredN big_seq. | |
by apply/rpred_sum => eta Yeta; rewrite rpredZ ?memv_span ?map_f. | |
rewrite cfnormN cfnorm_sum_orthonormal // (big_rem eta1) //= eqxx. | |
congr (_ + _ < _); first by rewrite Cint_normK 1?rpredB ?rpred1. | |
transitivity (\sum_(eta <- rem eta1 Y) x ^+ 2). | |
rewrite rem_filter // !big_filter; apply/eq_bigr => eta /negPf->. | |
by rewrite subr0 Cint_normK. | |
rewrite big_const_seq count_predT // -Monoid.iteropE -[LHS]mulr_natl. | |
by rewrite /m (perm_size (perm_to_rem Yeta1)) /= mulrSr addrK. | |
have [x_eq0 | [x_eq1 szY2]] := m_ub2_lt2 x Zx ub_xm. | |
left; rewrite /Y1 x_eq0 (big_rem eta1) //= eqxx sub0r scaleN1r. | |
rewrite big_seq big1 ?addr0 ?opprK => // eta. | |
by rewrite mem_rem_uniq // => /andP[/negPf-> _]; rewrite subrr scale0r. | |
have eta1'2: eta1^*%CF != eta1 by apply: seqInd_conjC_neq Yeta1. | |
have defY: perm_eq Y (eta1 :: eta1^*%CF). | |
have uY2: uniq (eta1 :: eta1^*%CF) by rewrite /= inE eq_sym eta1'2. | |
rewrite perm_sym uniq_perm //. | |
have sY2Y: {subset (eta1 :: eta1^*%CF) <= Y}. | |
by apply/allP; rewrite /= cfAut_seqInd ?Yeta1. | |
by have [|//]:= uniq_min_size uY2 sY2Y; rewrite szY2. | |
right; split=> //; congr (- _); rewrite (perm_big _ defY) /= x_eq1. | |
rewrite big_cons big_seq1 eqxx (negPf eta1'2) subrr scale0r add0r subr0. | |
by rewrite scale1r. | |
have normY1: '[Y1] = 1. | |
have [-> | [_ ->]] := defY1; first by rewrite oYYt ?eqxx ?map_f. | |
by rewrite cfnormN oYYt ?eqxx ?map_f ?ccY. | |
have YtauY1: Y1 \in 'Z[map tau1 Y]. | |
have [-> | [_ ->]] := defY1; first by rewrite mem_zchar ?map_f. | |
by rewrite rpredN mem_zchar ?map_f ?ccY. | |
have spanYtau1 := zchar_span YtauY1. | |
have norm_eta1: '[eta1] = 1 by rewrite oYY ?eqxx. | |
have /all_sig2[a Za Dxa] xi: {a | a \in Cnat | |
& xi \in X -> xi 1%g = a * #|W1|%:R | |
/\ (exists2 X1 : 'CF(G), orthogonal X1 (map tau1 Y) | |
& tau (xi - a *: eta1) = X1 - a *: Y1)}. | |
- case Xxi: (xi \in X); last by exists 0; rewrite ?rpred0. | |
have /sig2_eqW[k /setDP[_ kerZ'k] def_xi] := seqIndP Xxi. | |
rewrite inE in kerZ'k. | |
pose a := 'chi_k 1%g; have Na: a \in Cnat by apply: Cnat_irr1. | |
have Dxi1: xi 1%g = a * #|W1|%:R by rewrite mulrC oW1 def_xi cfInd1. | |
exists a => // _; split=> //. | |
have [i0 nzi0 Res_k]: exists2 i, i != 0 & 'Res[Z] 'chi_k = a *: 'chi_i. | |
have [chi lin_chi defRkZ] := cfcenter_Res 'chi_k. | |
have sZ_Zk: Z \subset 'Z('chi_k)%CF. | |
by rewrite (subset_trans sZZH) // -cap_cfcenter_irr bigcap_inf. | |
have{lin_chi} /irrP[i defRk]: 'Res chi \in irr Z. | |
by rewrite lin_char_irr ?cfRes_lin_char. | |
have{chi defRkZ} defRk: 'Res[Z] 'chi_k = a *: 'chi_i. | |
by rewrite -defRk -linearZ -defRkZ /= cfResRes ?cfcenter_sub. | |
exists i => //; apply: contra kerZ'k => i_0; apply/constt0_Res_cfker=> //. | |
by rewrite inE defRk cfdotZl cfdot_irr i_0 mulr1 irr1_neq0. | |
set phi := 'chi_i0 in Res_k; pose a_ i := '['Ind[H] phi, 'chi_i]. | |
pose rp := irr_constt ('Ind[H] phi). | |
have defIphi: 'Ind phi = \sum_(i in rp) a_ i *: 'chi_i. | |
exact: cfun_sum_constt. | |
have a_k: a_ k = a. | |
by rewrite /a_ -cfdot_Res_r Res_k cfdotZr cfnorm_irr mulr1 conj_Cnat. | |
have rp_k: k \in rp by rewrite inE ['[_, _]]a_k irr1_neq0. | |
have resZr i: i \in rp -> 'Res[Z] 'chi_i = a_ i *: phi. | |
rewrite constt_Ind_Res -/phi => /Clifford_Res_sum_cfclass-> //. | |
have Na_i: a_ i \in Cnat by rewrite Cnat_cfdot_char ?cfInd_char ?irr_char. | |
rewrite -/phi cfdot_Res_l cfdotC conj_Cnat {Na_i}//; congr (_ *: _). | |
have <-: 'I_H['Res[Z] 'chi_k] = H. | |
apply/eqP; rewrite eqEsubset subsetIl. | |
by apply: subset_trans (sub_inertia_Res _ _); rewrite ?sub_Inertia. | |
by rewrite Res_k inertia_scale_nz ?irr1_neq0 // cfclass_inertia big_seq1. | |
have lin_phi: phi 1%g = 1. | |
apply: (mulfI (irr1_neq0 k)); have /resZr/cfunP/(_ 1%g) := rp_k. | |
by rewrite cfRes1 // cfunE mulr1 a_k. | |
have Da_ i: i \in rp -> 'chi_i 1%g = a_ i. | |
move/resZr/cfunP/(_ 1%g); rewrite cfRes1 // cfunE => ->. | |
by rewrite lin_phi mulr1. | |
pose chi i := 'Ind[L] 'chi[H]_i; pose alpha i := chi i - a_ i *: eta1. | |
have Aalpha i: i \in rp -> alpha i \in 'CF(L, A). | |
move=> r_i; rewrite cfun_onD1 !cfunE cfInd1 // (uniY _ Yeta1) -oW1. | |
rewrite Da_ // mulrC subrr eqxx. | |
by rewrite memvB ?cfInd_normal ?memvZ // (seqInd_on _ Yeta1). | |
have [sum_alpha sum_a2]: gamma i0 = \sum_(i in rp) a_ i *: alpha i | |
/\ \sum_(i in rp) a_ i ^+ 2 = #|H : Z|%:R. | |
+ set lhs1 := LHS; set lhs2 := (lhs in _ /\ lhs = _). | |
set rhs1 := RHS; set rhs2 := (rhs in _ /\ _ = rhs). | |
have eq_diff: lhs1 - rhs1 = (lhs2 - rhs2) *: eta1. | |
rewrite scalerBl addrAC; congr (_ - _). | |
rewrite -(cfIndInd _ sHL sZH) defIphi linear_sum -sumrB scaler_suml. | |
apply: eq_bigr => i rp_i; rewrite linearZ scalerBr opprD addNKr. | |
by rewrite opprK scalerA. | |
have: (lhs1 - rhs1) 1%g == 0. | |
rewrite !cfunE -(cfIndInd _ sHL sZH) !cfInd1 // lin_phi mulr1. | |
rewrite -divgS // -(sdprod_card defL) mulKn // mulrC uniY // subrr. | |
rewrite sum_cfunE big1 ?subrr // => i rp_i. | |
by rewrite cfunE (cfun_on0 (Aalpha i rp_i)) ?mulr0 // !inE eqxx. | |
rewrite eq_diff cfunE mulf_eq0 subr_eq0 (negPf (seqInd1_neq0 _ Yeta1)) //. | |
rewrite orbF => /eqP-sum_a2; split=> //; apply/eqP; rewrite -subr_eq0. | |
by rewrite eq_diff sum_a2 subrr scale0r. | |
have Xchi i: i \in rp -> chi i \in X. | |
move=> rp_i; apply/seqIndP; exists i => //; rewrite !inE sub1G andbT. | |
apply: contra rp_i => kerZi; rewrite -cfdot_Res_r cfRes_sub_ker //. | |
by rewrite cfdotZr -irr0 cfdot_irr (negPf nzi0) mulr0. | |
have oRY i: i \in rp -> orthogonal (R (chi i)) (map tau1 Y). | |
move/Xchi=> Xchi_i; rewrite orthogonal_sym. | |
by rewrite (coherent_ortho_supp scohS) // ?sXS // (contraL (X'Y _)). | |
have Za_ i: a_ i \in Cint. | |
by rewrite Cint_cfdot_vchar_irr // cfInd_vchar ?irr_vchar. | |
have Zeta1: eta1 \in 'Z[irr L] := seqInd_vcharW Yeta1. | |
have Ztau_alpha i: tau (alpha i) \in 'Z[irr G]. | |
by rewrite !(cfInd_vchar, rpredB) ?irr_vchar ?rpredZ_Cint. | |
have /all_tag2[X1 R_X1 /all_tag2[b Rb /all_sig2[Z1 oZ1R]]] i: | |
{X1 : 'CF(G) & i \in rp -> X1 \in 'Z[R (chi i)] | |
& {b : algC & i \in rp -> b \is Creal | |
& {Z1 : 'CF(G) | i \in rp -> orthogonal Z1 (R (chi i)) | |
& tau (alpha i) = X1 - b *: Y1 + Z1 /\ '[Z1, Y1] = 0}}}. | |
+ have [X1 dX1 [YZ1 [dXYZ _ oYZ1R]]] := | |
orthogonal_split (R (chi i)) (tau (alpha i)). | |
exists X1. | |
have [_ _ _ Rok _] := scohS => /Xchi/sXS/Rok[ZR oRR _]. | |
have [_ -> ->] := orthonormal_span oRR dX1. | |
rewrite big_seq rpred_sum // => aa Raa. | |
rewrite rpredZ_Cint ?mem_zchar // -(canLR (addrK _) dXYZ) cfdotBl. | |
by rewrite (orthoPl oYZ1R) // subr0 Cint_cfdot_vchar ?(ZR aa). | |
pose b := - '[YZ1, Y1]; exists b => [rp_i|]. | |
rewrite Creal_Cint // rpredN -(canLR (addKr _) dXYZ) cfdotDl. | |
rewrite (span_orthogonal (oRY i rp_i)) ?rpredN ?(zchar_span YtauY1) //. | |
rewrite add0r Cint_cfdot_vchar // (zchar_trans_on _ YtauY1) //. | |
by move=> _ /mapP[eta Yeta ->]; rewrite Ztau1 ?mem_zchar. | |
exists (YZ1 + b *: Y1) => [/oRY-oRiY|]; last first. | |
by rewrite addrCA subrK addrC cfdotDl cfdotZl normY1 mulr1 addrN. | |
apply/orthoPl=> aa Raa; rewrite cfdotDl (orthoPl oYZ1R) // add0r. | |
by rewrite cfdotC (span_orthogonal oRiY) ?conjC0 ?rpredZ // memv_span. | |
case/all_and2=> defXbZ oZY1; have spanR_X1 := zchar_span (R_X1 _ _). | |
have ub_alpha i: i \in rp -> | |
[/\ '[chi i] <= '[X1 i] | |
& '[a_ i *: eta1] <= '[b i *: Y1 - Z1 i] -> | |
[/\ '[X1 i] = '[chi i], '[b i *: Y1 - Z1 i] = '[a_ i *: eta1] | |
& exists2 E, subseq E (R (chi i)) & X1 i = \sum_(aa <- E) aa]]. | |
+ move=> rp_i; apply: (subcoherent_norm scohS) (erefl _) _. | |
* rewrite sXS ?Xchi ?rpredZ_Cint /orthogonal //; split=> //=. | |
by rewrite !cfdotZr !(orthogonalP oXY) ?mulr0 ?eqxx ?ccX // Xchi. | |
* have [[/(_ _ _)/char_vchar-Z_S _ _] IZtau _ _ _] := scohS. | |
apply: sub_iso_to IZtau; [apply: zchar_trans_on | exact: zcharW]. | |
apply/allP; rewrite /= zchar_split (cfun_onS (setSD _ sHL)) ?Aalpha //. | |
rewrite rpredB ?rpredZ_Cint ?mem_zchar ?(sYS eta1) // ?sXS ?Xchi //=. | |
by rewrite sub_aut_zchar ?zchar_onG ?mem_zchar ?sXS ?ccX ?Xchi. | |
suffices oYZ_R: orthogonal (b i *: Y1 - Z1 i) (R (chi i)). | |
rewrite opprD opprK addrA -defXbZ cfdotC. | |
by rewrite (span_orthogonal oYZ_R) ?memv_span1 ?spanR_X1 ?conjC0. | |
apply/orthoPl=> aa Raa; rewrite cfdotBl (orthoPl (oZ1R i _)) // cfdotC. | |
by rewrite subr0 (span_orthogonal (oRY i _)) ?conjC0 ?rpredZ // memv_span. | |
have leba i: i \in rp -> b i <= a_ i. | |
move=> rp_i; have ai_gt0: a_ i > 0 by rewrite -Da_ ?irr1_gt0. | |
rewrite (le_trans (real_ler_norm (Rb i _))) //. | |
rewrite -(@ler_pexpn2r _ 2) ?qualifE ?(ltW ai_gt0) ?norm_ger0 //. | |
apply: le_trans (_ : '[b i *: Y1 - Z1 i] <= _). | |
rewrite cfnormBd; last by rewrite cfdotZl cfdotC oZY1 ?conjC0 ?mulr0. | |
by rewrite cfnormZ normY1 mulr1 ler_addl cfnorm_ge0. | |
rewrite -(ler_add2l '[X1 i]) -cfnormBd; last first. | |
rewrite cfdotBr cfdotZr (span_orthogonal (oRY i _)) ?spanR_X1 //. | |
rewrite mulr0 sub0r cfdotC. | |
by rewrite (span_orthogonal (oZ1R i _)) ?raddf0 ?memv_span1 ?spanR_X1. | |
have Salpha: alpha i \in 'Z[S, L^#]. | |
rewrite zcharD1_seqInd // zchar_split Aalpha // andbT. | |
by rewrite rpredB ?rpredZ_Cint ?mem_zchar ?(sYS eta1) ?sXS ?Xchi. | |
rewrite opprD opprK addrA -defXbZ ?Itau //. | |
rewrite cfnormBd; last by rewrite cfdotZr (orthogonalP oXY) ?mulr0 ?Xchi. | |
rewrite cfnormZ Cint_normK ?(oYY eta1) // eqxx mulr1 ler_add2r. | |
by have lbX1i: '[chi i] <= '[X1 i] by have [] := ub_alpha i rp_i. | |
have{leba} eq_ab: {in rp, a_ =1 b}. | |
move=> i rp_i; apply/eqP; rewrite -subr_eq0; apply/eqP. | |
apply: (mulfI (irr1_neq0 i)); rewrite mulr0 Da_ // mulrBr. | |
move: i rp_i; apply: psumr_eq0P => [i rp_i | ]. | |
by rewrite subr_ge0 ler_pmul2l ?leba // -Da_ ?irr1_gt0. | |
have [X2 oX2Y /(congr1 (cfdotr Y1))] := tau_gamma i0 nzi0. | |
rewrite sumrB sum_a2 sum_alpha /tau linear_sum /= cfdot_suml cfdotBl. | |
rewrite (span_orthogonal oX2Y) ?memv_span1 ?(zchar_span YtauY1) // add0r. | |
rewrite cfdotZl normY1 mulr1 => /(canLR (@opprK _)) <-. | |
rewrite -opprD -big_split big1 ?oppr0 //= => i rp_i. | |
rewrite linearZ cfdotZl /= -/tau defXbZ addrC cfdotDl oZY1 addr0. | |
rewrite cfdotBl cfdotZl normY1 mulr1 mulrBr addrC subrK. | |
by rewrite (span_orthogonal (oRY i _)) ?spanR_X1 ?mulr0. | |
exists (X1 k). | |
apply/orthoPl=> psi /memv_span Ypsi. | |
by rewrite (span_orthogonal (oRY k _)) // (zchar_span (R_X1 k rp_k)). | |
apply/eqP; rewrite -/a def_xi -a_k defXbZ addrC -subr_eq0 eq_ab // addrK. | |
rewrite -cfnorm_eq0 -(inj_eq (addrI '[b k *: Y1])). | |
have [_ [|_]] := ub_alpha k rp_k. | |
rewrite cfnormBd; last by rewrite cfdotZl cfdotC oZY1 conjC0 mulr0. | |
by rewrite addrC !cfnormZ eq_ab // normY1 norm_eta1 ler_addr cfnorm_ge0. | |
rewrite cfnormBd; last by rewrite cfdotZl cfdotC oZY1 conjC0 mulr0. | |
by move=> -> _; rewrite addr0 !cfnormZ eq_ab // normY1 norm_eta1. | |
have scohXY: subcoherent (X ++ Y) tau R. | |
apply/(subset_subcoherent scohS). | |
split; first by rewrite cat_uniq uX uY andbT; apply/hasPn. | |
by move=> xi; rewrite mem_cat => /orP[/sXS | /sYS]. | |
by move=> xi; rewrite !mem_cat => /orP[/ccX-> | /ccY->]; rewrite ?orbT. | |
have XYeta1: eta1 \in X ++ Y by rewrite mem_cat Yeta1 orbT. | |
have Z_Y1: Y1 \in 'Z[irr G]. | |
by case: defY1 => [|[_]] ->; rewrite ?rpredN Ztau1 ?mem_zchar ?ccY. | |
apply: pivot_coherence scohXY XYeta1 Z_Y1 _ _; rewrite norm_eta1 //. | |
move=> xi /andP[eta1'xi]; rewrite /= mem_cat => /orP[Xxi | Yxi]. | |
have [Da1 [X1 oX1Y tauX1]] := Dxa _ Xxi. | |
exists (a xi); first by rewrite (uniY _ Yeta1). | |
rewrite -/tau {}tauX1 cfdotBl cfdotZl normY1 !mulr1. | |
by rewrite (span_orthogonal oX1Y) ?add0r ?memv_span1. | |
exists 1; first by rewrite rpred1 mul1r !uniY. | |
rewrite scale1r mulr1 -/tau -Dtau1 ?raddfB ?cfdotBl; last first. | |
by rewrite zcharD1E rpredB ?mem_zchar //= !cfunE !uniY ?subrr. | |
have [-> | [szY2 ->]] := defY1; rewrite ?cfdotNr !Itau1 ?mem_zchar ?ccY //. | |
by rewrite !oYY // eqxx (negPf eta1'xi) add0r. | |
pose Y2 := eta1 :: eta1^*%CF; suffices: xi \in Y2. | |
rewrite opprK !inE (negPf eta1'xi) /= => /eqP->. | |
by rewrite !oYY ?ccY // !mulrb eqxx ifN_eqC ?(hasPn nrS) ?sYS ?addr0. | |
have /uniq_min_size: {subset Y2 <= Y} by apply/allP; rewrite /= Yeta1 ccY. | |
by case=> [||_ ->]; rewrite ?szY2 //= inE eq_sym (hasPn nrS) ?sYS. | |
pose S1 := [::] ++ X ++ Y; set S2 := [::] in S1; rewrite -[X ++ Y]/S1 in cohXY. | |
have ccsS1S: cfConjC_subset S1 S. | |
rewrite /S1 /=; split; first by rewrite cat_uniq uX uY andbT; apply/hasPn. | |
by apply/allP; rewrite all_cat !(introT allP). | |
by move=> xi; rewrite !mem_cat => /orP[/ccX|/ccY]->; rewrite ?orbT. | |
move: {2}_.+1 (leq_addr (size S1) (size S).+1) => n. | |
elim: n => // [|n IHn] in (S2) S1 ccsS1S cohXY * => lb_n. | |
by rewrite ltnNge ?uniq_leq_size // in lb_n; have [] := ccsS1S. | |
have sXYS1: {subset X ++ Y <= S1} by apply/mem_subseq/suffix_subseq. | |
without loss /allPn[psi /= Spsi notS1psi]: / ~~ all (mem S1) S. | |
by case: allP => [/subset_coherent-cohS _ | _ cohS]; apply: cohS. | |
apply: (IHn [:: psi, psi^* & S2]%CF) => [|{lb_n}|]; last by rewrite !addnS leqW. | |
by have [_ _ ccS] := uccS; apply: extend_cfConjC_subset. | |
have /seqIndC1P[i nzi Dpsi] := Spsi. | |
have ltZH': Z \proper H'. | |
rewrite properEneq (contraNneq _ notS1psi) // => eqZH'; apply: sXYS1. | |
rewrite mem_cat Dpsi !mem_seqInd ?normal1 //. | |
by rewrite !inE sub1G andbT subGcfker nzi eqZH' orNb. | |
have Seta1: eta1 \in S1 by rewrite !mem_cat Yeta1 !orbT. | |
apply: (extend_coherent scohS ccsS1S Seta1) => {Seta1}//; split=> //. | |
rewrite (uniY _ Yeta1) Dpsi cfInd1 // oW1 dvdC_mulr //. | |
by rewrite Cint_Cnat ?Cnat_irr1. | |
rewrite !big_cat /= addrCA sum_seqIndD_square ?normal1 ?sub1G // ltr_spaddr //. | |
have /irrY/irrP[j Deta1] := Yeta1; have [_ sS1S _] := ccsS1S. | |
rewrite (big_rem eta1 Yeta1) addrCA -big_cat big_seq ltr_spaddl //=. | |
by rewrite Deta1 cfnorm_irr divr1 exprn_gt0 ?irr1_gt0. | |
apply/sumr_ge0=> phi YS2phi; rewrite divr_ge0 ?cfnorm_ge0 ?exprn_ge0 //. | |
rewrite char1_ge0 ?(seqInd_char (sS1S _ _)) //. | |
by move: YS2phi; rewrite !mem_cat => /orP[-> | /mem_rem->]; rewrite ?orbT. | |
rewrite indexg1 -(Lagrange_index sHL sZH) -oW1 natrM mulrC -mulrA. | |
rewrite uniY ?ler_wpmul2l ?ler0n -?(@natrB _ _ 1) // -natrM. | |
suffices ubW1: (#|W1|.*2 ^ 2 <= #|H : Z| * (#|Z| - 1) ^ 2)%N. | |
have chi1_ge0: 0 <= 'chi_i 1%g by rewrite char1_ge0 ?irr_char. | |
rewrite Dpsi cfInd1 // -oW1 -(@ler_pexpn2r _ 2) ?rpredM ?rpred_nat //. | |
rewrite -natrX expnMn mulnAC natrM mulrA -natrM exprMn -natrX mul2n. | |
rewrite ler_pmul ?ler0n ?exprn_ge0 ?(le_trans (irr1_bound i)) ?ler_nat //. | |
rewrite dvdn_leq ?indexgS ?(subset_trans sZZH) //=. | |
by rewrite -cap_cfcenter_irr bigcap_inf. | |
have nZW1 := subset_trans sW1L nZL. | |
have tiZW1: Z :&: W1 = 1%g by rewrite coprime_TIg ?(coprimeSg sZH). | |
have [in_caseA | in_caseB] := boolP caseA. | |
rewrite (leq_trans _ (leq_pmull _ _)) ?leq_exp2r // subn1 -ltnS prednK //. | |
suffices frobZW1: [Frobenius Z <*> W1 = Z ><| W1]. | |
by apply: ltn_odd_Frobenius_ker frobZW1 (oddSg _ oddL); apply/joing_subP. | |
have [|/c2_ptiL[_ _ prW1H _]] := boolP case_c1; first exact: Frobenius_subl. | |
apply/Frobenius_semiregularP; rewrite ?sdprodEY // => x W1x; apply/trivgP. | |
by rewrite /= -(setIidPl sZH) -setIA -(trivgP in_caseA) prW1H ?setSI. | |
rewrite (leq_trans _ (leq_pmulr _ _)) ?expn_gt0 ?orbF ?subn_gt0 ?cardG_gt1 //. | |
rewrite -(Lagrange_index sH'H sZH') leq_mul // ltnW //. | |
have tiH'W1: H' :&: W1 = 1%g by rewrite coprime_TIg ?(coprimeSg sH'H). | |
rewrite (card_isog (quotient_isog (subset_trans sW1L nH'L) tiH'W1)). | |
rewrite -card_quotient ?gFnorm // (ltn_odd_Frobenius_ker frobL1) //. | |
exact: quotient_odd. | |
suffices frobHW1Z: [Frobenius (H' / Z) <*> (W1 / Z) = (H' / Z) ><| (W1 / Z)]. | |
rewrite (card_isog (quotient_isog nZW1 tiZW1)). | |
rewrite -card_quotient ?(subset_trans sH'H) //. | |
apply: ltn_odd_Frobenius_ker frobHW1Z (oddSg _ (quotient_odd Z oddL)). | |
by rewrite join_subG !quotientS. | |
suffices: [Frobenius (L / Z) = (H / Z) ><| (W1 / Z)]. | |
apply: Frobenius_subl (quotientS Z sH'H) _. | |
by rewrite quotient_neq1 // (normalS sZH' sH'H). | |
by rewrite quotient_norms ?(subset_trans sW1L). | |
apply: (Frobenius_coprime_quotient defL nsZL) => //. | |
split=> [|x W1x]; first exact: sub_proper_trans sZH' ltH'H. | |
by rewrite /Z ifN //; have /caseB_P[/c2_ptiL[_ _ ->]] := in_caseB. | |
Qed. | |
End Six. | |