Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
Require Import mathcomp.ssreflect.ssreflect. | |
From mathcomp | |
Require Import ssrbool ssrfun eqtype ssrnat seq path div choice fintype. | |
From mathcomp | |
Require Import tuple finfun bigop order prime ssralg poly finset center. | |
From mathcomp | |
Require Import fingroup morphism perm automorphism quotient action zmodp. | |
From mathcomp | |
Require Import gfunctor gproduct cyclic pgroup frobenius. | |
From mathcomp | |
Require Import matrix mxalgebra mxrepresentation vector ssrint. | |
From mathcomp | |
Require Import ssrnum algC classfun character inertia vcharacter. | |
From odd_order | |
Require Import PFsection1 PFsection2 PFsection3 PFsection4. | |
(******************************************************************************) | |
(* This file covers Peterfalvi, Section 5: Coherence. *) | |
(* Defined here: *) | |
(* coherent_with S A tau tau1 <-> tau1 is a Z-linear isometry from 'Z[S] to *) | |
(* 'Z[irr G] that coincides with tau on 'Z[S, A]. *) | |
(* coherent S A tau <-> (S, A, tau) is coherent, i.e., there is a Z-linear *) | |
(* isometry tau1 s.t. coherent_with S A tau tau1. *) | |
(* subcoherent S tau R <-> S : seq 'cfun(L) is non empty, pairwise orthogonal *) | |
(* and closed under complex conjugation, tau is an *) | |
(* isometry from 'Z[S, L^#] to virtual characters in *) | |
(* G that maps the difference chi - chi^*, for each *) | |
(* chi \in S, to the sum of an orthonormal family *) | |
(* R chi of virtual characters of G; also, R chi and *) | |
(* R phi are orthogonal unless phi \in chi :: chi^*. *) | |
(* dual_iso nu == the Z-linear (additive) mapping phi |-> - nu phi^* *) | |
(* for nu : {additive 'CF(L) -> 'CF(G)}. If nu is an *) | |
(* isometry extending a subcoherent tau on 'Z[S] with *) | |
(* size S = 2, then so is dual_iso nu. *) | |
(* We provide a set of definitions that cover the various \cal S notations *) | |
(* introduced in Peterfalvi sections 5, 6, 7, and 9 to 14. *) | |
(* Iirr_ker K A == the set of all i : Iirr K such that the kernel of *) | |
(* 'chi_i contains A. *) | |
(* Iirr_kerD K B A == the set of all i : Iirr K such that the kernel of *) | |
(* 'chi_i contains A but not B. *) | |
(* seqInd L calX == the duplicate-free sequence of characters of L *) | |
(* induced from K by the 'chi_i for i in calX. *) | |
(* seqIndT K L == the duplicate-free sequence of all characters of L *) | |
(* induced by irreducible characters of K. *) | |
(* seqIndD K L H M == the duplicate-free sequence of characters of L *) | |
(* induced by irreducible characters of K that have M *) | |
(* in their kernel, but not H. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import GroupScope Order.TTheory GRing.Theory Num.Theory. | |
Local Open Scope ring_scope. | |
(* Results about the set of induced irreducible characters *) | |
Section InducedIrrs. | |
Variables (gT : finGroupType) (K L : {group gT}). | |
Implicit Types (A B : {set gT}) (H M : {group gT}). | |
Implicit Type u : {rmorphism algC -> algC}. | |
Section KerIirr. | |
Definition Iirr_ker A := [set i | A \subset cfker 'chi[K]_i]. | |
Lemma Iirr_kerS A B : B \subset A -> Iirr_ker A \subset Iirr_ker B. | |
Proof. by move/subset_trans=> sBA; apply/subsetP=> i; rewrite !inE => /sBA. Qed. | |
Lemma sum_Iirr_ker_square H : | |
H <| K -> \sum_(i in Iirr_ker H) 'chi_i 1%g ^+ 2 = #|K : H|%:R. | |
Proof. | |
move=> nsHK; rewrite -card_quotient ?normal_norm // -irr_sum_square. | |
rewrite (eq_bigl _ _ (in_set _)) (reindex _ (mod_Iirr_bij nsHK)) /=. | |
by apply: eq_big => [i | i _]; rewrite mod_IirrE ?cfker_mod ?cfMod1. | |
Qed. | |
Definition Iirr_kerD B A := Iirr_ker A :\: Iirr_ker B. | |
Lemma sum_Iirr_kerD_square H M : | |
H <| K -> M <| K -> M \subset H -> | |
\sum_(i in Iirr_kerD H M) 'chi_i 1%g ^+ 2 = #|K : H|%:R * (#|H : M|%:R - 1). | |
Proof. | |
move=> nsHK nsMK sMH; have [sHK _] := andP nsHK. | |
rewrite mulrBr mulr1 -natrM Lagrange_index // -!sum_Iirr_ker_square //. | |
apply/esym/(canLR (addrK _)); rewrite /= addrC (big_setID (Iirr_ker H)). | |
by rewrite (setIidPr _) ?Iirr_kerS //. | |
Qed. | |
Lemma Iirr_ker_aut u A i : (aut_Iirr u i \in Iirr_ker A) = (i \in Iirr_ker A). | |
Proof. by rewrite !inE aut_IirrE cfker_aut. Qed. | |
Lemma Iirr_ker_conjg A i x : | |
x \in 'N(A) -> (conjg_Iirr i x \in Iirr_ker A) = (i \in Iirr_ker A). | |
Proof. | |
move=> nAx; rewrite !inE conjg_IirrE. | |
have [nKx | /cfConjgEout-> //] := boolP (x \in 'N(K)). | |
by rewrite cfker_conjg // -{1}(normP nAx) conjSg. | |
Qed. | |
Lemma Iirr_kerDS A1 A2 B1 B2 : | |
A2 \subset A1 -> B1 \subset B2 -> Iirr_kerD B1 A1 \subset Iirr_kerD B2 A2. | |
Proof. by move=> sA12 sB21; rewrite setDSS ?Iirr_kerS. Qed. | |
Lemma Iirr_kerDY B A : Iirr_kerD (A <*> B) A = Iirr_kerD B A. | |
Proof. by apply/setP=> i; rewrite !inE join_subG; apply: andb_id2r => ->. Qed. | |
Lemma mem_Iirr_ker1 i : (i \in Iirr_kerD K 1%g) = (i != 0). | |
Proof. by rewrite !inE sub1G andbT subGcfker. Qed. | |
End KerIirr. | |
Hypothesis nsKL : K <| L. | |
Let sKL := normal_sub nsKL. | |
Let nKL := normal_norm nsKL. | |
Let e := #|L : K|%:R : algC. | |
Let nze : e != 0 := neq0CiG _ _. | |
Section SeqInd. | |
Variable calX : {set (Iirr K)}. | |
(* The set of characters induced from the irreducibles in calX. *) | |
Definition seqInd := undup [seq 'Ind[L] 'chi_i | i in calX]. | |
Local Notation S := seqInd. | |
Lemma seqInd_uniq : uniq S. Proof. exact: undup_uniq. Qed. | |
Lemma seqIndP phi : | |
reflect (exists2 i, i \in calX & phi = 'Ind[L] 'chi_i) (phi \in S). | |
Proof. by rewrite mem_undup; apply: imageP. Qed. | |
Lemma seqInd_on : {subset S <= 'CF(L, K)}. | |
Proof. by move=> _ /seqIndP[i _ ->]; apply: cfInd_normal. Qed. | |
Lemma seqInd_char : {subset S <= character}. | |
Proof. by move=> _ /seqIndP[i _ ->]; rewrite cfInd_char ?irr_char. Qed. | |
Lemma Cnat_seqInd1 phi : phi \in S -> phi 1%g \in Cnat. | |
Proof. by move/seqInd_char/Cnat_char1. Qed. | |
Lemma Cint_seqInd1 phi : phi \in S -> phi 1%g \in Cint. | |
Proof. by rewrite CintE; move/Cnat_seqInd1->. Qed. | |
Lemma seqInd_neq0 psi : psi \in S -> psi != 0. | |
Proof. by move=> /seqIndP[i _ ->]; apply: Ind_irr_neq0. Qed. | |
Lemma seqInd1_neq0 psi : psi \in S -> psi 1%g != 0. | |
Proof. by move=> Spsi; rewrite char1_eq0 ?seqInd_char ?seqInd_neq0. Qed. | |
Lemma cfnorm_seqInd_neq0 psi : psi \in S -> '[psi] != 0. | |
Proof. by move/seqInd_neq0; rewrite cfnorm_eq0. Qed. | |
Lemma seqInd_ortho : {in S &, forall phi psi, phi != psi -> '[phi, psi] = 0}. | |
Proof. | |
move=> _ _ /seqIndP[i _ ->] /seqIndP[j _ ->]. | |
by case: ifP (cfclass_Ind_cases i j nsKL) => // _ -> /eqP. | |
Qed. | |
Lemma seqInd_orthogonal : pairwise_orthogonal S. | |
Proof. | |
apply/pairwise_orthogonalP; split; last exact: seqInd_ortho. | |
by rewrite /= undup_uniq andbT; move/memPn: seqInd_neq0. | |
Qed. | |
Lemma seqInd_free : free S. | |
Proof. exact: (orthogonal_free seqInd_orthogonal). Qed. | |
Lemma seqInd_zcharW : {subset S <= 'Z[S]}. | |
Proof. by move=> phi Sphi; rewrite mem_zchar ?seqInd_free. Qed. | |
Lemma seqInd_zchar : {subset S <= 'Z[S, K]}. | |
Proof. by move=> phi Sphi; rewrite zchar_split seqInd_zcharW ?seqInd_on. Qed. | |
Lemma seqInd_vcharW : {subset S <= 'Z[irr L]}. | |
Proof. by move=> phi Sphi; rewrite char_vchar ?seqInd_char. Qed. | |
Lemma seqInd_vchar : {subset S <= 'Z[irr L, K]}. | |
Proof. by move=> phi Sphi; rewrite zchar_split seqInd_vcharW ?seqInd_on. Qed. | |
Lemma zcharD1_seqInd : 'Z[S, L^#] =i 'Z[S, K^#]. | |
Proof. | |
move=> phi; rewrite zcharD1E (zchar_split _ K^#) cfun_onD1. | |
by apply: andb_id2l => /(zchar_trans_on seqInd_zchar)/zchar_on->. | |
Qed. | |
Lemma zcharD1_seqInd_on : {subset 'Z[S, L^#] <= 'CF(L, K^#)}. | |
Proof. by move=> phi; rewrite zcharD1_seqInd => /zchar_on. Qed. | |
Lemma zcharD1_seqInd_Dade A : | |
1%g \notin A -> {subset S <= 'CF(L, 1%g |: A)} -> 'Z[S, L^#] =i 'Z[S, A]. | |
Proof. | |
move=> notA1 A_S phi; rewrite zcharD1E (zchar_split _ A). | |
apply/andb_id2l=> ZSphi; apply/idP/idP=> [phi10 | /cfun_on0-> //]. | |
rewrite -(setU1K notA1) cfun_onD1 {}phi10 andbT. | |
have{phi ZSphi} [c -> _] := free_span seqInd_free (zchar_span ZSphi). | |
by rewrite big_seq memv_suml // => xi /A_S/memvZ. | |
Qed. | |
Lemma dvd_index_seqInd1 phi : phi \in S -> phi 1%g / e \in Cnat. | |
Proof. | |
by case/seqIndP=> i _ ->; rewrite cfInd1 // mulrC mulKf ?Cnat_irr1. | |
Qed. | |
Lemma sub_seqInd_zchar phi psi : | |
phi \in S -> psi \in S -> psi 1%g *: phi - phi 1%g *: psi \in 'Z[S, K^#]. | |
Proof. | |
move=> Sphi Spsi; rewrite zcharD1 !cfunE mulrC subrr eqxx. | |
by rewrite rpredB ?scale_zchar ?Cint_seqInd1 ?seqInd_zchar. | |
Qed. | |
Lemma sub_seqInd_on phi psi : | |
phi \in S -> psi \in S -> psi 1%g *: phi - phi 1%g *: psi \in 'CF(L, K^#). | |
Proof. by move=> Sphi Spsi; apply: zchar_on (sub_seqInd_zchar Sphi Spsi). Qed. | |
Lemma size_irr_subseq_seqInd S1 : | |
subseq S1 S -> {subset S1 <= irr L} -> | |
(#|L : K| * size S1 = #|[set i | 'Ind 'chi[K]_i \in S1]|)%N. | |
Proof. | |
move=> sS1S irrS1; have uniqS1: uniq S1 := subseq_uniq sS1S seqInd_uniq. | |
rewrite (card_imset_Ind_irr nsKL) => [|i|i y]; first 1 last. | |
- by rewrite inE => /irrS1. | |
- by rewrite !inE => *; rewrite conjg_IirrE -(cfConjgInd _ _ nsKL) ?cfConjg_id. | |
congr (_ * _)%N; transitivity #|map cfIirr S1|. | |
rewrite (card_uniqP _) ?size_map ?map_inj_in_uniq //. | |
exact: sub_in2 irrS1 _ (can_in_inj (@cfIirrE _ _)). | |
apply: eq_card => s; apply/idP/imsetP=> [/mapP[phi S1phi] | [i S1iG]] {s}->. | |
have /seqIndP[i _ Dphi]: phi \in S := mem_subseq sS1S S1phi. | |
by exists i; rewrite ?inE -Dphi. | |
by apply: map_f; rewrite inE in S1iG. | |
Qed. | |
Section Beta. | |
Variable xi : 'CF(L). | |
Hypotheses (Sxi : xi \in S) (xi1 : xi 1%g = e). | |
Lemma cfInd1_sub_lin_vchar : 'Ind[L, K] 1 - xi \in 'Z[irr L, K^#]. | |
Proof. | |
rewrite zcharD1 !cfunE xi1 cfInd1 // cfun11 mulr1 subrr eqxx andbT. | |
rewrite rpredB ?(seqInd_vchar Sxi) // zchar_split cfInd_normal ?char_vchar //. | |
by rewrite cfInd_char ?cfun1_char. | |
Qed. | |
Lemma cfInd1_sub_lin_on : 'Ind[L, K] 1 - xi \in 'CF(L, K^#). | |
Proof. exact: zchar_on cfInd1_sub_lin_vchar. Qed. | |
Lemma seqInd_sub_lin_vchar : | |
{in S, forall phi : 'CF(L), phi - (phi 1%g / e) *: xi \in 'Z[S, K^#]}. | |
Proof. | |
move=> phi Sphi; rewrite /= zcharD1 !cfunE xi1 divfK // subrr eqxx. | |
by rewrite rpredB ?scale_zchar ?seqInd_zchar // CintE dvd_index_seqInd1. | |
Qed. | |
Lemma seqInd_sub_lin_on : | |
{in S, forall phi : 'CF(L), phi - (phi 1%g / e) *: xi \in 'CF(L, K^#)}. | |
Proof. by move=> phi /seqInd_sub_lin_vchar/zchar_on. Qed. | |
End Beta. | |
End SeqInd. | |
Arguments seqIndP {calX phi}. | |
Lemma seqIndS (calX calY : {set Iirr K}) : | |
calX \subset calY -> {subset seqInd calX <= seqInd calY}. | |
Proof. | |
by move=> sXY _ /seqIndP[i /(subsetP sXY)Yi ->]; apply/seqIndP; exists i. | |
Qed. | |
Definition seqIndT := seqInd setT. | |
Lemma seqInd_subT calX : {subset seqInd calX <= seqIndT}. | |
Proof. exact: seqIndS (subsetT calX). Qed. | |
Lemma mem_seqIndT i : 'Ind[L, K] 'chi_i \in seqIndT. | |
Proof. by apply/seqIndP; exists i; rewrite ?inE. Qed. | |
Lemma seqIndT_Ind1 : 'Ind[L, K] 1 \in seqIndT. | |
Proof. by rewrite -irr0 mem_seqIndT. Qed. | |
Lemma cfAut_seqIndT u : cfAut_closed u seqIndT. | |
Proof. | |
by move=> _ /seqIndP[i _ ->]; rewrite cfAutInd -aut_IirrE mem_seqIndT. | |
Qed. | |
Definition seqIndD H M := seqInd (Iirr_kerD H M). | |
Lemma seqIndDY H M : seqIndD (M <*> H) M = seqIndD H M. | |
Proof. by rewrite /seqIndD Iirr_kerDY. Qed. | |
Lemma mem_seqInd H M i : | |
H <| L -> M <| L -> ('Ind 'chi_i \in seqIndD H M) = (i \in Iirr_kerD H M). | |
Proof. | |
move=> nsHL nsML; apply/seqIndP/idP=> [[j Xj] | Xi]; last by exists i. | |
case/cfclass_Ind_irrP/cfclassP=> // y Ly; rewrite -conjg_IirrE => /irr_inj->. | |
by rewrite inE !Iirr_ker_conjg -?in_setD ?(subsetP _ y Ly) ?normal_norm. | |
Qed. | |
Lemma seqIndC1P phi : | |
reflect (exists2 i, i != 0 & phi = 'Ind 'chi[K]_i) (phi \in seqIndD K 1). | |
Proof. | |
by apply: (iffP seqIndP) => [] [i nzi ->]; | |
exists i; rewrite // mem_Iirr_ker1 in nzi *. | |
Qed. | |
Lemma seqIndC1_filter : seqIndD K 1 = filter (predC1 ('Ind[L, K] 1)) seqIndT. | |
Proof. | |
rewrite filter_undup filter_map (eq_enum (in_set _)) enumT. | |
congr (undup (map _ _)); apply: eq_filter => i /=. | |
by rewrite mem_Iirr_ker1 cfInd_irr_eq1. | |
Qed. | |
Lemma seqIndC1_rem : seqIndD K 1 = rem ('Ind[L, K] 1) seqIndT. | |
Proof. by rewrite rem_filter ?seqIndC1_filter ?undup_uniq. Qed. | |
Section SeqIndD. | |
Variables H0 H M : {group gT}. | |
Local Notation S := (seqIndD H M). | |
Lemma cfAut_seqInd u : cfAut_closed u S. | |
Proof. | |
move=> _ /seqIndP[i /setDP[kMi not_kHi] ->]; rewrite cfAutInd -aut_IirrE. | |
by apply/seqIndP; exists (aut_Iirr u i); rewrite // inE !Iirr_ker_aut not_kHi. | |
Qed. | |
Lemma seqInd_conjC_subset1 : H \subset H0 -> cfConjC_subset S (seqIndD H0 1). | |
Proof. | |
move=> sHH0; split; [exact: seqInd_uniq | apply: seqIndS | exact: cfAut_seqInd]. | |
by rewrite Iirr_kerDS ?sub1G. | |
Qed. | |
Lemma seqInd_sub_aut_zchar u : | |
{in S, forall phi, phi - cfAut u phi \in 'Z[S, K^#]}. | |
Proof. | |
move=> phi Sphi /=; rewrite sub_aut_zchar ?seqInd_zchar ?cfAut_seqInd //. | |
exact: seqInd_vcharW. | |
Qed. | |
Lemma seqIndD_nonempty : H <| K -> M <| K -> M \proper H -> {phi | phi \in S}. | |
Proof. | |
move=> nsHK nsMK /andP[sMH ltMH]; pose X := Iirr_kerD H M. | |
suffices: \sum_(i in X) 'chi_i 1%g ^+ 2 > 0. | |
have [->|[i Xi]] := set_0Vmem X; first by rewrite big_set0 ltxx. | |
by exists ('Ind 'chi_i); apply/seqIndP; exists i. | |
by rewrite sum_Iirr_kerD_square ?mulr_gt0 ?gt0CiG ?subr_gt0 // ltr1n indexg_gt1. | |
Qed. | |
Hypothesis sHK : H \subset K. | |
Lemma seqInd_sub : {subset S <= seqIndD K 1}. | |
Proof. by apply: seqIndS; apply: Iirr_kerDS (sub1G M) sHK. Qed. | |
Lemma seqInd_ortho_Ind1 : {in S, forall phi, '[phi, 'Ind[L, K] 1] = 0}. | |
Proof. | |
move=> _ /seqInd_sub/seqIndC1P[i nzi ->]. | |
by rewrite -irr0 not_cfclass_Ind_ortho // irr0 cfclass1 // inE irr_eq1. | |
Qed. | |
Lemma seqInd_ortho_cfuni : {in S, forall phi, '[phi, '1_K] = 0}. | |
Proof. | |
move=> phi /seqInd_ortho_Ind1/eqP; apply: contraTeq => not_o_phi_1K. | |
by rewrite cfInd_cfun1 // cfdotZr rmorph_nat mulf_neq0. | |
Qed. | |
Lemma seqInd_ortho_1 : {in S, forall phi, '[phi, 1] = 0}. | |
Proof. | |
move=> _ /seqInd_sub/seqIndC1P[i nzi ->]. | |
by rewrite -cfdot_Res_r cfRes_cfun1 // -irr0 cfdot_irr (negbTE nzi). | |
Qed. | |
Lemma sum_seqIndD_square : | |
H <| L -> M <| L -> M \subset H -> | |
\sum_(phi <- S) phi 1%g ^+ 2 / '[phi] = #|L : H|%:R * (#|H : M|%:R - 1). | |
Proof. | |
move=> nsHL nsML sMH; rewrite -(Lagrange_index sKL sHK) natrM -/e -mulrA. | |
rewrite -sum_Iirr_kerD_square ?(normalS _ sKL) ?(subset_trans sMH) //. | |
pose h i := @Ordinal (size S).+1 _ (index_size ('Ind 'chi[K]_i) S). | |
rewrite (partition_big h (ltn^~ (size S))) => /= [|i Xi]; last first. | |
by rewrite index_mem mem_seqInd. | |
rewrite big_distrr big_ord_narrow //= big_index_uniq ?seqInd_uniq //=. | |
apply: eq_big_seq => phi Sphi; rewrite /eq_op insubT ?index_mem //= => _. | |
have /seqIndP[i kHMi def_phi] := Sphi. | |
have/cfunP/(_ 1%g) := scaled_cfResInd_sum_cfclass i nsKL. | |
rewrite !cfunE sum_cfunE -def_phi cfResE // mulrAC => ->; congr (_ * _). | |
rewrite reindex_cfclass //=; apply/esym/eq_big => j; last by rewrite !cfunE. | |
rewrite (sameP (cfclass_Ind_irrP _ _ nsKL) eqP) -def_phi -mem_seqInd //. | |
by apply/andP/eqP=> [[Sj /eqP/(congr1 (nth 0 S))] | ->]; rewrite ?nth_index. | |
Qed. | |
Section Odd. | |
Hypothesis oddL : odd #|L|. | |
Lemma seqInd_conjC_ortho : {in S, forall phi, '[phi, phi^*] = 0}. | |
Proof. | |
by move=> _ /seqInd_sub/seqIndC1P[i nzi ->]; apply: odd_induced_orthogonal. | |
Qed. | |
Lemma seqInd_conjC_neq : {in S, forall phi, phi^* != phi}%CF. | |
Proof. | |
move=> phi Sphi; apply: contraNneq (cfnorm_seqInd_neq0 Sphi) => {2}<-. | |
by rewrite seqInd_conjC_ortho. | |
Qed. | |
Lemma seqInd_notReal : ~~ has cfReal S. | |
Proof. exact/hasPn/seqInd_conjC_neq. Qed. | |
Lemma seqInd_nontrivial chi : chi \in S -> (1 < size S)%N. | |
Proof. | |
move=> Schi; pose S2 := chi^*%CF :: chi. | |
have: {subset S2 <= S} by apply/allP/and3P; rewrite /= cfAut_seqInd. | |
by apply: uniq_leq_size; rewrite /= inE seqInd_conjC_neq. | |
Qed. | |
Variable chi : 'CF(L). | |
Hypotheses (irr_chi : chi \in irr L) (Schi : chi \in S). | |
Lemma seqInd_conjC_ortho2 : orthonormal (chi :: chi^*)%CF. | |
Proof. | |
by rewrite /orthonormal/= cfnorm_conjC irrWnorm ?seqInd_conjC_ortho ?eqxx. | |
Qed. | |
Lemma seqInd_nontrivial_irr : (#|[set i | 'chi_i \in S]| > 1)%N. | |
Proof. | |
have /irrP[i Dchi] := irr_chi; rewrite (cardsD1 i) (cardsD1 (conjC_Iirr i)). | |
rewrite !inE -(inj_eq irr_inj) conjC_IirrE -Dchi seqInd_conjC_neq //. | |
by rewrite cfAut_seqInd Schi. | |
Qed. | |
End Odd. | |
End SeqIndD. | |
Lemma sum_seqIndC1_square : | |
\sum_(phi <- seqIndD K 1) phi 1%g ^+ 2 / '[phi] = e * (#|K|%:R - 1). | |
Proof. by rewrite sum_seqIndD_square ?normal1 ?sub1G // indexg1. Qed. | |
End InducedIrrs. | |
Arguments seqIndP {gT K L calX phi}. | |
Arguments seqIndC1P {gT K L phi}. | |
Section Five. | |
Variable gT : finGroupType. | |
Section Defs. | |
Variables L G : {group gT}. | |
(* This is Peterfalvi, Definition (5.1). *) | |
(* We depart from the text in Section 5 on three points: *) | |
(* - We drop non-triviality condition in Z[S, A], which is not used *) | |
(* consistently in the rest of the proof. In particular, it is *) | |
(* incompatible with the use of "not coherent" in (6.2), and it is only *) | |
(* really used in (7.8), where it is equivalent to the simpler condition *) | |
(* (size S > 1). For us the empty S is coherent; this avoids duplicate *) | |
(* work in some inductive proofs, e.g., subcoherent_norm - Lemma (5.4) - *) | |
(* below. *) | |
(* - The preconditions for coherence (A < L, S < Z[irr L], and tau Z-linear *) | |
(* on some E < Z[irr L]) are not part of the definition of "coherent". *) | |
(* These will be captured as separate requirements; in particular in the *) | |
(* Odd Order proof tau will always be C-linear on all of 'CF(L). *) | |
(* - By contrast, our "coherent" only supplies an additive (Z-linear) *) | |
(* isometry, where the source text ambiguously specifies a "linear" one. *) | |
(* When S consists of virtual characters this implies the existence of *) | |
(* a C-linear one: the linear extension of the restriction of the *) | |
(* isometry to a basis of the Z-module Z[S]. The latter can be found from *) | |
(* the Smith normal form (see intdiv.v) of the coordinate matrix of S. *) | |
(* The weaker Z-linearity lets us use the dual_iso construction when *) | |
(* size S = 2. *) | |
(* Finally, note that although we have retained the A parameter, in the *) | |
(* sequel we shall always take A = L^#, as in the text it is always the case *) | |
(* that Z[S, A] = Z[S, L^#]. *) | |
Definition coherent_with S A tau (tau1 : {additive 'CF(L) -> 'CF(G)}) := | |
{in 'Z[S], isometry tau1, to 'Z[irr G]} /\ {in 'Z[S, A], tau1 =1 tau}. | |
Definition coherent S A tau := exists tau1, coherent_with S A tau tau1. | |
(* This is Peterfalvi, Hypothesis (5.2). *) | |
(* The Z-linearity constraint on tau will be expressed by an additive or *) | |
(* linear structure on tau. *) | |
Definition subcoherent S tau R := | |
[/\ (*a*) [/\ {subset S <= character}, ~~ has cfReal S & cfConjC_closed S], | |
(*b*) {in 'Z[S, L^#], isometry tau, to 'Z[@irr gT G, G^#]}, | |
(*c*) pairwise_orthogonal S, | |
(*d*) {in S, forall xi : 'CF(L : {set gT}), | |
[/\ {subset R xi <= 'Z[irr G]}, orthonormal (R xi) | |
& tau (xi - xi^*%CF) = \sum_(alpha <- R xi) alpha]} | |
& (*e*) {in S &, forall xi phi : 'CF(L), | |
orthogonal phi (xi :: xi^*%CF) -> orthogonal (R phi) (R xi)}]. | |
Definition dual_iso (nu : {additive 'CF(L) -> 'CF(G)}) := | |
[additive of -%R \o nu \o cfAut conjC]. | |
End Defs. | |
Section SubsetCoherent. | |
Variables L G : {group gT}. | |
Implicit Type tau : 'CF(L) -> 'CF(G). | |
Lemma subgen_coherent S1 S2 A tau: | |
{subset S2 <= 'Z[S1]} -> coherent S1 A tau -> coherent S2 A tau. | |
Proof. | |
move/zchar_trans=> sS21 [tau1 [[Itau1 Ztau1] def_tau]]. | |
exists tau1; split; last exact: sub_in1 def_tau. | |
by split; [apply: sub_in2 Itau1 | apply: sub_in1 Ztau1]. | |
Qed. | |
Lemma subset_coherent S1 S2 A tau: | |
{subset S2 <= S1} -> coherent S1 A tau -> coherent S2 A tau. | |
Proof. | |
by move=> sS21; apply: subgen_coherent => phi /sS21/mem_zchar->. | |
Qed. | |
Lemma subset_coherent_with S1 S2 A tau (tau1 : {additive 'CF(L) -> 'CF(G)}) : | |
{subset S1 <= S2} -> coherent_with S2 A tau tau1 -> | |
coherent_with S1 A tau tau1. | |
Proof. | |
move=> /zchar_subset sS12 [Itau1 Dtau1]. | |
by split=> [|xi /sS12/Dtau1//]; apply: sub_iso_to Itau1. | |
Qed. | |
Lemma perm_coherent S1 S2 A tau: | |
perm_eq S1 S2 -> coherent S1 A tau -> coherent S2 A tau. | |
Proof. | |
by move=> eqS12; apply: subset_coherent => phi; rewrite (perm_mem eqS12). | |
Qed. | |
Lemma dual_coherence S tau R nu : | |
subcoherent S tau R -> coherent_with S L^# tau nu -> (size S <= 2)%N -> | |
coherent_with S L^# tau (dual_iso nu). | |
Proof. | |
move=> [[charS nrS ccS] _ oSS _ _] [[Inu Znu] Dnu] szS2. | |
split=> [|{Inu Znu oSS} phi ZSphi]. | |
have{oSS} ccZS := cfAut_zchar ccS. | |
have vcharS: {subset S <= 'Z[irr L]} by move=> phi /charS/char_vchar. | |
split=> [phi1 phi2 Sphi1 Sphi2 | phi Sphi]. | |
rewrite cfdotNl cfdotNr opprK Inu ?ccZS // cfdot_conjC aut_Cint //. | |
by rewrite Cint_cfdot_vchar ?(zchar_sub_irr vcharS). | |
by rewrite rpredN Znu ?ccZS. | |
rewrite -{}Dnu //; move: ZSphi; rewrite zcharD1E => /andP[]. | |
case/zchar_nth_expansion=> x Zx -> {phi} /=. | |
case: S charS nrS ccS szS2 x Zx => [_ _ _ _ x _| eta S1]. | |
by rewrite big_ord0 !raddf0. | |
case/allP/andP=> Neta _ /norP[eta'c _] /allP/andP[S1_etac _]. | |
rewrite inE [_ == _](negPf eta'c) /= in S1_etac. | |
case S1E: S1 S1_etac => [|u []] // /predU1P[] //= <- _ z Zz. | |
rewrite big_ord_recl big_ord1 !raddfD !raddfZ_Cint //=. | |
rewrite !cfunE (conj_Cnat (Cnat_char1 Neta)) -mulrDl mulf_eq0. | |
rewrite addr_eq0 char1_eq0 // !scalerN /= cfConjCK addrC. | |
by case/pred2P => ->; rewrite ?raddf0 //= !scaleNr opprK. | |
Qed. | |
Lemma coherent_seqInd_conjCirr S tau R nu r : | |
subcoherent S tau R -> coherent_with S L^# tau nu -> | |
let chi := 'chi_r in let chi2 := (chi :: chi^*)%CF in | |
chi \in S -> | |
[/\ {subset map nu chi2 <= 'Z[irr G]}, orthonormal (map nu chi2), | |
chi - chi^*%CF \in 'Z[S, L^#] & (nu chi - nu chi^*)%CF 1%g == 0]. | |
Proof. | |
move=> [[charS nrS ccS] [_ Ztau] oSS _ _] [[Inu Znu] Dnu] chi chi2 Schi. | |
have sSZ: {subset S <= 'Z[S]} by apply: mem_zchar. | |
have vcharS: {subset S <= 'Z[irr L]} by move=> phi /charS/char_vchar. | |
have Schi2: {subset chi2 <= 'Z[S]} by apply/allP; rewrite /= !sSZ ?ccS. | |
have Schi_diff: chi - chi^*%CF \in 'Z[S, L^#]. | |
by rewrite sub_aut_zchar // zchar_onG sSZ ?ccS. | |
split=> // [_ /mapP[xi /Schi2/Znu ? -> //]||]. | |
apply: map_orthonormal; first by apply: sub_in2 Inu; apply: zchar_trans_on. | |
rewrite orthonormalE (conjC_pair_orthogonal ccS) //=. | |
by rewrite cfnorm_conjC !cfnorm_irr !eqxx. | |
by rewrite -raddfB -cfunD1E Dnu // irr_vchar_on ?Ztau. | |
Qed. | |
(* There is a simple, direct way of establishing that S is coherent when S *) | |
(* has a pivot character eta1 whose degree divides the degree of all other *) | |
(* eta_i in S, as then (eta_i - a_i *: eta1)_i>1 will be a basis of Z[S, L^#] *) | |
(* for some integers a_i. In that case we just need to find a virtual *) | |
(* character zeta1 of G with the same norm as eta1, and the same dot product *) | |
(* on the image of the eta_i - a_i *: eta1 under tau, for then the linear *) | |
(* extension of tau that assigns zeta1 to eta1 is an isometry. *) | |
(* This is used casually by Peterfalvi, e.g., in (5.7), but a rigorous *) | |
(* proof does require some work, which is best factored as a Lemma. *) | |
Lemma pivot_coherence S (tau : {additive 'CF(L) -> 'CF(G)}) R eta1 zeta1 : | |
subcoherent S tau R -> eta1 \in S -> zeta1 \in 'Z[irr G] -> | |
{in [predD1 S & eta1], forall eta : 'CF(L), | |
exists2 a, a \in Cnat /\ eta 1%g = a * eta1 1%g | |
& '[tau (eta - a *: eta1), zeta1] = - a * '[eta1]} -> | |
'[zeta1] = '[eta1] -> | |
coherent S L^# tau. | |
Proof. | |
case=> -[N_S _ _] [Itau Ztau] oSS _ _ Seta1 Zzeta1 isoS Izeta1. | |
have freeS := orthogonal_free oSS; have uniqS := free_uniq freeS. | |
have{oSS} [/andP[S'0 _] oSS] := pairwise_orthogonalP oSS. | |
pose d := eta1 1%g; pose a (eta : 'CF(L)) := truncC (eta 1%g / d). | |
have{S'0} nzd: d != 0 by rewrite char1_eq0 ?N_S ?(memPn S'0). | |
pose S1 := eta1 :: [seq eta - eta1 *+ a eta | eta <- rem eta1 S]. | |
have sS_ZS1: {subset S <= 'Z[S1]}; last apply: (subgen_coherent sS_ZS1). | |
have Zeta1: eta1 \in 'Z[S1] by rewrite mem_zchar ?mem_head. | |
apply/allP; rewrite (eq_all_r (perm_mem (perm_to_rem Seta1))) /= Zeta1. | |
apply/allP=> eta Seta; rewrite -(rpredBr eta (rpredMn (a eta) Zeta1)). | |
exact/mem_zchar/mem_behead/map_f. | |
have{sS_ZS1} freeS1: free S1. | |
have Sgt0: (0 < size S)%N by case: (S) Seta1. | |
rewrite /free eqn_leq dim_span /= size_map size_rem ?prednK // -(eqnP freeS). | |
by apply/dimvS/span_subvP => eta /sS_ZS1/zchar_span. | |
pose iso_eta1 zeta := zeta \in 'Z[S, L^#] /\ '[tau zeta, zeta1] = '[zeta, eta1]. | |
have{} isoS: {in behead S1, forall zeta, iso_eta1 zeta}. | |
rewrite /iso_eta1 => _ /mapP[eta Seta ->]; rewrite mem_rem_uniq // in Seta. | |
have{Seta} [/isoS[q [Nq Dq] Itau_eta1] [eta1'eta Seta]] := (Seta, andP Seta). | |
rewrite zcharD1E rpredB ?rpredMn ?mem_zchar //= -scaler_nat /a Dq mulfK //. | |
by rewrite truncCK // !cfunE Dq subrr cfdotBl cfdotZl -mulNr oSS ?add0r. | |
have isoS1: {in S1, isometry [eta tau with eta1 |-> zeta1], to 'Z[irr G]}. | |
split=> [xi eta | eta]; rewrite !in_cons /=; last first. | |
by case: eqP => [-> | _ /isoS[/Ztau/zcharW]]. | |
do 2!case: eqP => [-> _|_ /isoS[? ?]] //; last exact: Itau. | |
by apply/(can_inj (@conjCK _)); rewrite -!cfdotC. | |
have [nu Dnu IZnu] := Zisometry_of_iso freeS1 isoS1. | |
exists nu; split=> // phi; rewrite zcharD1E => /andP[]. | |
case/(zchar_expansion (free_uniq freeS1)) => b Zb {phi}-> phi1_0. | |
have{phi1_0} b_eta1_0: b eta1 = 0. | |
have:= phi1_0; rewrite sum_cfunE big_cons big_seq big1 ?addr0 => [|zeta]. | |
by rewrite !cfunE (mulIr_eq0 _ (mulIf nzd)) => /eqP. | |
by case/isoS; rewrite cfunE zcharD1E => /andP[_ /eqP->] _; rewrite mulr0. | |
rewrite !raddf_sum; apply/eq_big_seq=> xi S1xi; rewrite !raddfZ_Cint //=. | |
by rewrite Dnu //=; case: eqP => // ->; rewrite b_eta1_0 !scale0r. | |
Qed. | |
End SubsetCoherent. | |
(* This is Peterfalvi (5.3)(a). *) | |
Lemma irr_subcoherent (L G : {group gT}) S tau : | |
cfConjC_subset S (irr L) -> ~~ has cfReal S -> | |
{in 'Z[S, L^#], isometry tau, to 'Z[irr G, G^#]} -> | |
{R | subcoherent S tau R}. | |
Proof. | |
case=> uniqS irrS ccS nrS [isoL Ztau]. | |
have N_S: {subset S <= character} by move=> _ /irrS/irrP[i ->]; apply: irr_char. | |
have Z_S: {subset S <= 'Z[irr L]} by move=> chi /N_S/char_vchar. | |
have o1S: orthonormal S by apply: sub_orthonormal (irr_orthonormal L). | |
have [[_ dotSS] oS] := (orthonormalP o1S, orthonormal_orthogonal o1S). | |
pose beta chi := tau (chi - chi^*%CF); pose eqBP := _ =P beta _. | |
have Zbeta: {in S, forall chi, chi - (chi^*)%CF \in 'Z[S, L^#]}. | |
move=> chi Schi; rewrite /= zcharD1E rpredB ?mem_zchar ?ccS //= !cfunE. | |
by rewrite subr_eq0 conj_Cnat // Cnat_char1 ?N_S. | |
pose sum_beta chi R := \sum_(alpha <- R) alpha == beta chi. | |
pose Zortho R := all (mem 'Z[irr G]) R && orthonormal R. | |
have R chi: {R : 2.-tuple 'CF(G) | (chi \in S) ==> sum_beta chi R && Zortho R}. | |
apply: sigW; case Schi: (chi \in S) => /=; last by exists [tuple 0; 0]. | |
move/(_ _ Schi) in Zbeta; have /irrP[i def_chi] := irrS _ Schi. | |
have: '[beta chi] = 2%:R. | |
rewrite isoL // cfnormBd ?dotSS ?ccS ?eqxx // eq_sym -/(cfReal _). | |
by rewrite (negPf (hasPn nrS _ _)). | |
case/zchar_small_norm; rewrite ?(zcharW (Ztau _ _)) // => R [oR ZR sumR]. | |
by exists R; apply/and3P; split; [apply/eqP | apply/allP | ]. | |
exists (fun xi => val (val (R xi))); split=> // [chi Schi | chi phi Schi Sphi]. | |
by case: (R chi) => Rc /=; rewrite Schi => /and3P[/eqBP-> /allP]. | |
case/andP => /and3P[/=/eqP-opx /eqP-opx' _] _. | |
have{opx opx'} obpx: '[beta phi, beta chi] = 0. | |
rewrite isoL ?Zbeta // cfdotBl !cfdotBr -{3}[chi]cfConjCK. | |
by rewrite !cfdot_conjC opx opx' rmorph0 !subr0. | |
case: (R phi) => [[[|a [|b []]] //= _]]. | |
rewrite Sphi => /and3P[/eqBP sum_ab Zab o_ab]. | |
case: (R chi) => [[[|c [|d []]] //= _]]. | |
rewrite Schi => /and3P[/eqBP-sum_cd Zcd o_cd]. | |
suffices: orthonormal [:: a; - b; c; d]. | |
rewrite (orthonormal_cat [:: a; _]) => /and3P[_ _]. | |
by rewrite /orthogonal /= !cfdotNl !oppr_eq0. | |
apply: vchar_pairs_orthonormal 1 (-1) _ _ _ _. | |
- by split; apply/allP; rewrite //= rpredN. | |
- by rewrite o_cd andbT /orthonormal/= cfnormN /orthogonal /= cfdotNr !oppr_eq0. | |
- by rewrite oppr_eq0 oner_eq0 rpredN rpred1. | |
rewrite !(big_seq1, big_cons) in sum_ab sum_cd. | |
rewrite scale1r scaleN1r !opprK sum_ab sum_cd obpx eqxx /=. | |
by rewrite !(cfun_on0 (zchar_on (Ztau _ _))) ?Zbeta ?inE ?eqxx. | |
Qed. | |
(* This is Peterfalvi (5.3)(b). *) | |
Lemma prDade_subcoherent (G L K H W W1 W2 : {group gT}) A A0 S | |
(defW : W1 \x W2 = W) (ddA : prime_Dade_hypothesis G L K H A A0 defW) | |
(w_ := fun i j => cyclicTIirr defW i j) (sigma := cyclicTIiso ddA) | |
(mu := primeTIred ddA) (delta := fun j => primeTIsign ddA j) | |
(tau := Dade ddA) : | |
let dsw j k := [seq delta j *: sigma (w_ i k) | i : Iirr W1] in | |
let Rmu j := dsw j j ++ map -%R (dsw j (conjC_Iirr j)) in | |
cfConjC_subset S (seqIndD K L H 1) -> ~~ has cfReal S -> | |
{R | [/\ subcoherent S tau R, | |
{in [predI S & irr L] & irr W, | |
forall phi w, orthogonal (R phi) (sigma w)} | |
& forall j, R (mu j) = Rmu j ]}. | |
Proof. | |
pose mu2 i j := primeTIirr ddA i j. | |
set S0 := seqIndD K L H 1 => dsw Rmu [uS sSS0 ccS] nrS. | |
have nsKL: K <| L by have [[/sdprod_context[]]] := prDade_prTI ddA. | |
have /subsetD1P[sAK notA1]: A \subset K^# by have [_ []] := prDade_def ddA. | |
have [_ _ defA0] := prDade_def ddA. | |
have defSA: 'Z[S, L^#] =i 'Z[S, A]. | |
have sS0A1: {subset S0 <= 'CF(L, 1%g |: A)}. | |
move=> _ /seqIndP[i /setDP[_ kerH'i] ->]; rewrite inE in kerH'i. | |
exact: (prDade_Ind_irr_on ddA) kerH'i. | |
move=> phi; have:= zcharD1_seqInd_Dade nsKL notA1 sS0A1 phi. | |
rewrite !{1}(zchar_split _ A, zchar_split _ L^#) => eq_phiAL. | |
by apply: andb_id2l => /(zchar_subset sSS0) S0phi; rewrite S0phi in eq_phiAL. | |
have Itau: {in 'Z[S, L^#], isometry tau, to 'Z[irr G, G^#]}. | |
apply: sub_iso_to sub_refl (Dade_Zisometry _) => phi; rewrite defSA => SAphi. | |
rewrite defA0; apply: zchar_onS (subsetUl _ _) _ _. | |
by apply: zchar_sub_irr SAphi => ? /sSS0/seqInd_vcharW. | |
have orthoS: pairwise_orthogonal S. | |
exact: sub_pairwise_orthogonal sSS0 uS (seqInd_orthogonal nsKL _). | |
pose S1 := filter (mem (irr L)) S. | |
have sS1S: {subset S1 <= S} by apply/mem_subseq/filter_subseq. | |
have sZS1S: {subset 'Z[S1, L^#] <= 'Z[S, L^#]}. | |
by apply: zchar_subset sS1S; apply: orthogonal_free. | |
have [||R1 cohR1] := irr_subcoherent _ _ (sub_iso_to sZS1S sub_refl Itau). | |
- split=> [|phi|phi]; rewrite ?mem_filter ?filter_uniq //; try case/andP=> //. | |
by case/irrP=> i {2}-> /=/ccS->; rewrite cfConjC_irr. | |
- by apply/hasPn=> phi /sS1S/(hasPn nrS). | |
have{cohR1} [[charS1 _ _] _ _ R1ok R1ortho] := cohR1. | |
pose R phi := oapp Rmu (R1 phi) [pick j | phi == mu j]. | |
have inS1 phi: [pred j | phi == mu j] =1 pred0 -> phi \in S -> phi \in S1. | |
move=> mu'phi Sphi; rewrite mem_filter Sphi andbT /=. | |
have{Sphi} /seqIndP[ell _ Dphi] := sSS0 _ Sphi; rewrite Dphi. | |
have [[j Dell] | [] //] := prTIres_irr_cases ddA ell. | |
by have /=/eqP[] := mu'phi j; rewrite Dphi Dell cfInd_prTIres. | |
have Smu_nz j: mu j \in S -> j != 0. | |
move/(hasPn nrS); apply: contraNneq => ->. | |
by rewrite /cfReal -(prTIred_aut ddA) aut_Iirr0. | |
have oS1sigma phi: phi \in S1 -> orthogonal (R1 phi) (map sigma (irr W)). | |
move=> S1phi; have [zR1 oR1] := R1ok _ S1phi; set psi := _ - _=> Dpsi. | |
suffices o_psi_sigma: orthogonal (tau psi) (map sigma (irr W)). | |
apply/orthogonalP=> aa sw R1aa Wsw; have:= orthoPl o_psi_sigma _ Wsw. | |
have{sw Wsw} /dirrP[bw [lw ->]]: sw \in dirr G. | |
have [_ /(cycTIirrP defW)[i [j ->]] ->] := mapP Wsw. | |
exact: cycTIiso_dirr. | |
have [|ba [la Daa]] := vchar_norm1P (zR1 _ R1aa). | |
by have [_ -> //] := orthonormalP oR1; rewrite eqxx. | |
rewrite Daa cfdotZl !cfdotZr cfdot_irr. | |
case: eqP => [<-{lw} | _ _]; last by rewrite !mulr0. | |
move/(congr1 ( *%R ((-1) ^+ (ba (+) bw))^*)); rewrite mulr0 => /eqP/idPn[]. | |
rewrite mulrA -rmorphM -signr_addb {bw}addbK -cfdotZr -{ba la}Daa. | |
rewrite Dpsi -(eq_bigr _ (fun _ _ => scale1r _)). | |
by rewrite cfproj_sum_orthonormal ?oner_eq0. | |
apply/orthoPl=> _ /mapP[_ /(cycTIirrP defW)[i [j ->]] ->]; rewrite -/w_. | |
pose w1 := #|W1|; pose w2 := #|W2|. | |
have minw_gt2: (2 < minn w1 w2)%N. | |
have [[_ ntW1 _ _] [ntW2 _ _] _] := prDade_prTI ddA. | |
rewrite -(dprod_card defW) oddM => /andP[oddW1 oddW2]. | |
by rewrite leq_min !odd_gt2 ?cardG_gt1. | |
apply: contraTeq (minw_gt2) => ntNC; rewrite -leqNgt. | |
pose NC := cyclicTI_NC ddA. | |
have /andP[/=/irrP[l Dphi] Sphi]: phi \in [predI irr L & S]. | |
by rewrite mem_filter in S1phi. | |
have Zpsi: psi \in 'Z[S, L^#]. | |
rewrite sub_aut_zchar ?mem_zchar_on ?orthogonal_free ?ccS ?cfun_onG //. | |
by move=> ? /sSS0/seqInd_vcharW. | |
have NCpsi_le2: (NC (tau psi) <= 2)%N. | |
have{Itau} [Itau Ztau] := Itau. | |
suff: '[tau psi] <= 2%:R by apply: cycTI_NC_norm; apply: zcharW (Ztau _ _). | |
rewrite Itau // cfnormBd; first by rewrite cfnorm_conjC Dphi cfnorm_irr. | |
have /pairwise_orthogonalP[_ -> //] := orthoS; first exact: ccS. | |
by rewrite eq_sym (hasPn nrS). | |
apply: leq_trans (NCpsi_le2). | |
have: (0 < NC (tau psi) < 2 * minn w1 w2)%N. | |
rewrite -(subnKC minw_gt2) (leq_ltn_trans NCpsi_le2) // andbT lt0n. | |
by apply/existsP; exists (i, j); rewrite /= topredE inE. | |
apply: cycTI_NC_minn (ddA) _ _ => x Vx. | |
rewrite Dade_id; last by rewrite defA0 inE orbC mem_class_support. | |
rewrite defSA in Zpsi; rewrite (cfun_on0 (zchar_on Zpsi)) // -in_setC. | |
by apply: subsetP (subsetP (prDade_supp_disjoint ddA) x Vx); rewrite setCS. | |
exists R; split=> [|phi w S1phi irr_w|j]; first 1 last. | |
- rewrite /R; case: pickP => [j /eqP Dphi | _ /=]. | |
by case/nandP: S1phi; right; rewrite /= Dphi (prTIred_not_irr ddA). | |
apply/orthoPr=> aa R1aa; rewrite (orthogonalP (oS1sigma phi _)) ?map_f //. | |
by rewrite mem_filter andbC. | |
- by rewrite /R; case: pickP => /= [k /eqP/(prTIred_inj ddA)-> | /(_ j)/eqP]. | |
have Zw i j: w_ i j \in 'Z[irr W] by apply: irr_vchar. | |
have{oS1sigma} oS1dsw psi j: psi \in S1 -> orthogonal (R1 psi) (dsw _ j). | |
move/oS1sigma/orthogonalP=> opsiW. | |
apply/orthogonalP=> aa _ R1aa /codomP[i ->]. | |
by rewrite cfdotZr opsiW ?map_f ?mem_irr ?mulr0. | |
have odsw j1 j2: j1 != j2 -> orthogonal (dsw _ j1) (dsw _ j2). | |
move/negPf=> j2'1; apply/orthogonalP=> _ _ /codomP[i1 ->] /codomP[i2 ->]. | |
by rewrite cfdotZl cfdotZr (cfdot_cycTIiso ddA) j2'1 andbF !mulr0. | |
split=> // [|phi Sphi|phi xi Sphi Sxi]. | |
- by split=> // phi /sSS0; apply: seqInd_char. | |
- rewrite /R; case: pickP => [j /eqP Dphi /= | /inS1/(_ Sphi)/R1ok//]. | |
have nz_j: j != 0 by rewrite Smu_nz -?Dphi. | |
have [Isig Zsig]: {in 'Z[irr W], isometry sigma, to 'Z[irr G]}. | |
exact: cycTI_Zisometry. | |
split=> [aa | |]. | |
- rewrite mem_cat -map_comp. | |
by case/orP=> /codomP[i ->]; rewrite ?rpredN rpredZsign Zsig. | |
- rewrite orthonormal_cat orthogonal_oppr odsw ?andbT; last first. | |
rewrite -(inj_eq (prTIred_inj ddA)) (prTIred_aut ddA) -/mu -Dphi. | |
by rewrite eq_sym (hasPn nrS). | |
suffices oNdsw k: orthonormal (dsw j k). | |
by rewrite map_orthonormal ?oNdsw //; apply: in2W; apply: opp_isometry. | |
apply/orthonormalP; split=> [|_ _ /codomP[i1 ->] /codomP[i2 ->]]. | |
rewrite map_inj_uniq ?enum_uniq // => i1 i2 /(can_inj (signrZK _))/eqP. | |
by rewrite (cycTIiso_eqE ddA) eqxx andbT => /eqP. | |
rewrite cfdotZl cfdotZr rmorph_sign signrMK (cfdot_cycTIiso ddA). | |
by rewrite -(cycTIiso_eqE ddA) (inj_eq (can_inj (signrZK _))). | |
have [Tstruct [tau1 Dtau1 [_ Dtau]]] := uniform_prTIred_coherent ddA nz_j. | |
have{Tstruct} [/orthogonal_free freeT _ ccT _ _] := Tstruct. | |
have phi1c: (phi 1%g)^* = phi 1%g := conj_Cnat (Cnat_seqInd1 (sSS0 _ Sphi)). | |
rewrite -[tau _]Dtau; last first. | |
rewrite zcharD1E !cfunE phi1c subrr Dphi eqxx andbT. | |
by rewrite rpredB ?mem_zchar ?ccT ?image_f ?inE // nz_j eqxx. | |
rewrite linearB Dphi -(prTIred_aut ddA) !Dtau1 -/w_ -/sigma -/(delta j). | |
by rewrite big_cat /= !big_map !raddf_sum. | |
rewrite /R; case: pickP => [j1 /eqP Dxi | /inS1/(_ Sxi)S1xi]; last first. | |
case: pickP => [j2 _ _ | /inS1/(_ Sphi)S1phi]; last exact: R1ortho. | |
by rewrite orthogonal_catr orthogonal_oppr !oS1dsw. | |
case: pickP => [j2 /eqP Dphi | /inS1/(_ Sphi)S1phi _]; last first. | |
by rewrite orthogonal_sym orthogonal_catr orthogonal_oppr !oS1dsw. | |
case/andP=> /and3P[/= /eqP o_xi_phi /eqP o_xi_phi'] _ _. | |
have /eqP nz_xi: '[xi] != 0 := cfnorm_seqInd_neq0 nsKL (sSS0 _ Sxi). | |
have [Dj1 | j2'1] := eqVneq j1 j2. | |
by rewrite {2}Dxi Dj1 -Dphi o_xi_phi in nz_xi. | |
have [Dj1 | j2c'1] := eqVneq j1 (conjC_Iirr j2). | |
by rewrite {2}Dxi Dj1 /mu (prTIred_aut ddA) -/mu -Dphi o_xi_phi' in nz_xi. | |
rewrite orthogonal_catl orthogonal_oppl !orthogonal_catr !orthogonal_oppr. | |
by rewrite !odsw ?(inv_eq (@conjC_IirrK _ _)) ?conjC_IirrK. | |
Qed. | |
Section SubCoherentProperties. | |
Variables (L G : {group gT}) (S : seq 'CF(L)) (R : 'CF(L) -> seq 'CF(G)). | |
Variable tau : {linear 'CF(L) -> 'CF(G)}. | |
Hypothesis cohS : subcoherent S tau R. | |
Lemma nil_coherent A : coherent [::] A tau. | |
Proof. | |
exists [additive of 'Ind[G]]; split=> [|u /zchar_span]; last first. | |
by rewrite span_nil memv0 => /eqP-> /=; rewrite !raddf0. | |
split=> [u v | u] /zchar_span; rewrite span_nil memv0 => /eqP->. | |
by rewrite raddf0 !cfdot0l. | |
by rewrite raddf0 rpred0. | |
Qed. | |
Lemma subset_subcoherent S1 : cfConjC_subset S1 S -> subcoherent S1 tau R. | |
Proof. | |
case=> uS1 sS1 ccS1; have [[N_S nrS _] Itau oS defR oR] := cohS. | |
split; last 1 [exact: sub_in1 defR | exact: sub_in2 oR]. | |
- split=> // [xi /sS1/N_S// | ]. | |
by apply/hasPn; apply: sub_in1 (hasPn nrS). | |
- by apply: sub_iso_to Itau => //; apply: zchar_subset. | |
exact: sub_pairwise_orthogonal oS. | |
Qed. | |
Lemma subset_ortho_subcoherent S1 chi : | |
{subset S1 <= S} -> chi \in S -> chi \notin S1 -> orthogonal S1 chi. | |
Proof. | |
move=> sS1S Schi S1'chi; apply/orthoPr=> phi S1phi; have Sphi := sS1S _ S1phi. | |
have [_ _ /pairwise_orthogonalP[_ -> //]] := cohS. | |
by apply: contraNneq S1'chi => <-. | |
Qed. | |
Lemma subcoherent_split chi beta : | |
chi \in S -> beta \in 'Z[irr G] -> | |
exists2 X, X \in 'Z[R chi] | |
& exists Y, [/\ beta = X - Y, '[X, Y] = 0 & orthogonal Y (R chi)]. | |
Proof. | |
move=> Schi Zbeta; have [_ _ _ /(_ _ Schi)[ZR oRR _] _] := cohS. | |
have [X RX [Y [defXY oXY oYR]]] := orthogonal_split (R chi) beta. | |
exists X; last first. | |
by exists (- Y); rewrite opprK (orthogonal_oppl Y) cfdotNr oXY oppr0. | |
have [_ -> ->] := orthonormal_span oRR RX; rewrite big_seq rpred_sum // => a Ra. | |
rewrite rpredZ_Cint ?mem_zchar // -(addrK Y X) -defXY. | |
by rewrite cfdotBl (orthoPl oYR) // subr0 Cint_cfdot_vchar // ZR. | |
Qed. | |
(* This is Peterfalvi (5.4). *) | |
(* The assumption X \in 'Z[R chi] has been weakened to '[X, Y] = 0; this *) | |
(* stronger form of the lemma is needed to strengthen the proof of (5.6.3) so *) | |
(* that it can actually be reused in (9.11.8), as the text suggests. *) | |
Lemma subcoherent_norm chi psi (tau1 : {additive 'CF(L) -> 'CF(G)}) X Y : | |
[/\ chi \in S, psi \in 'Z[irr L] & orthogonal (chi :: chi^*)%CF psi] -> | |
let S0 := chi - psi :: chi - chi^*%CF in | |
{in 'Z[S0], isometry tau1, to 'Z[irr G]} -> | |
tau1 (chi - chi^*%CF) = tau (chi - chi^*%CF) -> | |
[/\ tau1 (chi - psi) = X - Y, '[X, Y] = 0 & orthogonal Y (R chi)] -> | |
[/\ (*a*) '[chi] <= '[X] | |
& (*b*) '[psi] <= '[Y] -> | |
[/\ '[X] = '[chi], '[Y] = '[psi] | |
& exists2 E, subseq E (R chi) & X = \sum_(xi <- E) xi]]. | |
Proof. | |
case=> Schi Zpsi /and3P[/andP[/eqP-ochi_psi _] /andP[/eqP-ochic_psi _] _] S0. | |
move=> [Itau1 Ztau1] tau1dchi [defXY oXY oYR]. | |
have [[ZS nrS ccS] [tS Zt] oS /(_ _ Schi)[ZR o1R tau_dchi] _] := cohS. | |
have [/=/andP[S'0 uS] oSS] := pairwise_orthogonalP oS. | |
have [nRchi Schic] := (hasPn nrS _ Schi, ccS _ Schi). | |
have ZtauS00: tau1 S0`_0 \in 'Z[irr G] by rewrite Ztau1 ?mem_zchar ?mem_head. | |
have{ZtauS00} [X1 R_X1 [Y1 [dXY1 oXY1 oY1R]]] := subcoherent_split Schi ZtauS00. | |
have [uR _] := orthonormalP o1R; have [a Za defX1] := zchar_expansion uR R_X1. | |
have dotS00R xi: xi \in R chi -> '[tau1 S0`_0, xi] = a xi. | |
move=> Rxi; rewrite dXY1 cfdotBl (orthoPl oY1R) // subr0. | |
by rewrite defX1 cfproj_sum_orthonormal. | |
have nchi: '[chi] = \sum_(xi <- R chi) a xi. | |
transitivity '[tau1 S0`_0, tau1 S0`_1]; last first. | |
by rewrite tau1dchi tau_dchi cfdot_sumr; apply: eq_big_seq dotS00R. | |
rewrite [RHS]cfdotC Itau1 ?mem_zchar ?mem_nth // cfdotBl !cfdotBr. | |
by rewrite ochi_psi ochic_psi (oSS chi^*%CF) // !subr0 -cfdotC. | |
have normX: '[X1] <= '[X] ?= iff (X == X1). | |
rewrite -[in '[X]](subrK X1 X) -subr_eq0 cfnormDd. | |
by rewrite -leif_subLR subrr -cfnorm_eq0 eq_sym; apply/leif_eq/cfnorm_ge0. | |
rewrite defX1 cfdot_sumr big1_seq // => xi Rxi. | |
rewrite cfdotZr cfdotBl cfproj_sum_orthonormal // -{2}dotS00R // defXY. | |
by rewrite cfdotBl (orthoPl oYR) // subr0 subrr mulr0. | |
pose is01a xi := a xi == (a xi != 0)%:R. | |
have leXa xi: a xi <= `|a xi| ^+ 2 ?= iff is01a xi. | |
rewrite Cint_normK //; split; first by rewrite Cint_ler_sqr. | |
rewrite eq_sym -subr_eq0 -[lhs in _ - lhs]mulr1 -mulrBr mulf_eq0 subr_eq0. | |
by rewrite /is01a; case a_xi_0: (a xi == 0). | |
have{nchi normX} part_a: '[chi] <= '[X] ?= iff all is01a (R chi) && (X == X1). | |
apply: leif_trans normX; rewrite nchi defX1 cfnorm_sum_orthonormal //. | |
by rewrite -big_all !(big_tnth _ _ (R chi)) big_andE; apply: leif_sum. | |
split=> [|/leif_eq part_b]; first by case: part_a. | |
have [_ /esym] := leif_add part_a part_b; rewrite -!cfnormBd // -defXY. | |
rewrite Itau1 ?mem_zchar ?mem_head // eqxx => /andP[a_eq /eqP->]. | |
split=> //; first by apply/esym/eqP; rewrite part_a. | |
have{a_eq} [/allP a01 /eqP->] := andP a_eq; rewrite defX1. | |
exists [seq xi <- R chi | a xi != 0]; first exact: filter_subseq. | |
rewrite big_filter [rhs in _ = rhs]big_mkcond /=. | |
by apply: eq_big_seq => xi Rxi; rewrite -mulrb -scaler_nat -(eqP (a01 _ _)). | |
Qed. | |
(* This is Peterfalvi (5.5). *) | |
Lemma coherent_sum_subseq chi (tau1 : {additive 'CF(L) -> 'CF(G)}) : | |
chi \in S -> | |
{in 'Z[chi :: chi^*%CF], isometry tau1, to 'Z[irr G]} -> | |
tau1 (chi - chi^*%CF) = tau (chi - chi^*%CF) -> | |
exists2 E, subseq E (R chi) & tau1 chi = \sum_(a <- E) a. | |
Proof. | |
set S1 := chi :: _ => Schi [iso_t1 Zt1] t1cc'. | |
have freeS1: free S1. | |
have [[_ nrS ccS] _ oS _ _] := cohS. | |
by rewrite orthogonal_free ?(conjC_pair_orthogonal ccS). | |
have subS01: {subset 'Z[chi - 0 :: chi - chi^*%CF] <= 'Z[S1]}. | |
apply: zchar_trans setT _; apply/allP; rewrite subr0 /= andbT. | |
by rewrite rpredB !mem_zchar ?inE ?eqxx ?orbT. | |
have Zt1c: tau1 (chi - 0) \in 'Z[irr G]. | |
by rewrite subr0 Zt1 ?mem_zchar ?mem_head. | |
have [X R_X [Y defXY]] := subcoherent_split Schi Zt1c. | |
case/subcoherent_norm: (defXY); last 2 [by []]. | |
- by rewrite Schi rpred0 /orthogonal /= !cfdot0r eqxx. | |
- by split; [apply: sub_in2 iso_t1 | apply: sub_in1 Zt1]. | |
move=> _ [|_ /eqP]; rewrite cfdot0l ?cfnorm_ge0 // cfnorm_eq0 => /eqP Y0. | |
case=> E sER defX; exists E => //; rewrite -defX -[X]subr0 -Y0 -[chi]subr0. | |
by case: defXY. | |
Qed. | |
(* A reformulation of (5.5) that is more convenient to use. *) | |
Corollary mem_coherent_sum_subseq S1 chi (tau1 : {additive 'CF(L) -> 'CF(G)}) : | |
cfConjC_subset S1 S -> coherent_with S1 L^# tau tau1 -> chi \in S1 -> | |
exists2 E, subseq E (R chi) & tau1 chi = \sum_(a <- E) a. | |
Proof. | |
move=> uccS1 [Itau1 Dtau1] S1chi; have [uS1 sS1S ccS1] := uccS1. | |
have S1chi_s: chi^*%CF \in S1 by apply: ccS1. | |
apply: coherent_sum_subseq; first exact: sS1S. | |
by apply: sub_iso_to Itau1 => //; apply: zchar_subset; apply/allP/and3P. | |
apply: Dtau1; rewrite sub_aut_zchar ?zchar_onG ?mem_zchar // => phi /sS1S-Sphi. | |
by apply: char_vchar; have [[->]] := cohS. | |
Qed. | |
(* A frequently used consequence of (5.5). *) | |
Corollary coherent_ortho_supp S1 chi (tau1 : {additive 'CF(L) -> 'CF(G)}) : | |
cfConjC_subset S1 S -> coherent_with S1 L^# tau tau1 -> | |
chi \in S -> chi \notin S1 -> | |
orthogonal (map tau1 S1) (R chi). | |
Proof. | |
move=> uccS1 cohS1 Schi S1'chi; have [uS1 sS1S ccS1] := uccS1. | |
apply/orthogonalP=> _ mu /mapP[phi S1phi ->] Rmu; have Sphi := sS1S _ S1phi. | |
have [e /mem_subseq Re ->] := mem_coherent_sum_subseq uccS1 cohS1 S1phi. | |
rewrite cfdot_suml big1_seq // => xi {e}/Re Rxi. | |
apply: orthogonalP xi mu Rxi Rmu; have [_ _ _ _ -> //] := cohS. | |
rewrite /orthogonal /= !andbT cfdot_conjCr fmorph_eq0. | |
by rewrite !(orthoPr (subset_ortho_subcoherent sS1S _ _)) ?ccS1 ?eqxx. | |
Qed. | |
(* An even more frequently used corollary of the corollary above. *) | |
Corollary coherent_ortho S1 S2 (tau1 tau2 : {additive 'CF(L) -> 'CF(G)}) : | |
cfConjC_subset S1 S -> coherent_with S1 L^# tau tau1 -> | |
cfConjC_subset S2 S -> coherent_with S2 L^# tau tau2 -> | |
{subset S2 <= [predC S1]} -> | |
orthogonal (map tau1 S1) (map tau2 S2). | |
Proof. | |
move=> uccS1 cohS1 uccS2 cohS2 S1'2; have [_ sS2S _] := uccS2. | |
apply/orthogonalP=> mu _ S1mu /mapP[phi S2phi ->]. | |
have [e /mem_subseq Re ->] := mem_coherent_sum_subseq uccS2 cohS2 S2phi. | |
rewrite cfdot_sumr big1_seq // => xi {e}/Re; apply: orthogonalP mu xi S1mu. | |
by apply: coherent_ortho_supp; rewrite ?sS2S //; apply: S1'2. | |
Qed. | |
(* A glueing lemma exploiting the corollary above. *) | |
Lemma bridge_coherent S1 S2 (tau1 tau2 : {additive 'CF(L) -> 'CF(G)}) chi phi : | |
cfConjC_subset S1 S -> coherent_with S1 L^# tau tau1 -> | |
cfConjC_subset S2 S -> coherent_with S2 L^# tau tau2 -> | |
{subset S2 <= [predC S1]} -> | |
[/\ chi \in S1, phi \in 'Z[S2] & chi - phi \in 'CF(L, L^#)] -> | |
tau (chi - phi) = tau1 chi - tau2 phi -> | |
coherent (S1 ++ S2) L^# tau. | |
Proof. | |
move=> uccS1 cohS1 uccS2 cohS2 S1'2 [S1chi S2phi chi1_phi] tau_chi_phi. | |
do [rewrite cfunD1E !cfunE subr_eq0 => /eqP] in chi1_phi. | |
have [[uS1 sS1S _] [uS2 sS2S _]] := (uccS1, uccS2). | |
have [[[Itau1 Ztau1] Dtau1] [[Itau2 Ztau2] Dtau2]] := (cohS1, cohS2). | |
have [[N_S1 _ _] _ oS11 _ _] := subset_subcoherent uccS1. | |
have [_ _ oS22 _ _] := subset_subcoherent uccS2. | |
have nz_chi1: chi 1%g != 0; last move/mem_zchar in S1chi. | |
by rewrite char1_eq0 ?N_S1 //; have [/memPn->] := andP oS11. | |
have oS12: orthogonal S1 S2. | |
apply/orthogonalP=> xi1 xi2 Sxi1 Sxi2; apply: orthoPr xi1 Sxi1. | |
by rewrite subset_ortho_subcoherent ?sS2S //; apply: S1'2. | |
set S3 := S1 ++ S2; pose Y := map tau1 S1 ++ map tau2 S2. | |
have oS3: pairwise_orthogonal S3 by rewrite pairwise_orthogonal_cat oS11 oS22. | |
have oY: pairwise_orthogonal Y. | |
by rewrite pairwise_orthogonal_cat !map_pairwise_orthogonal ?coherent_ortho. | |
have Z_Y: {subset Y <= 'Z[irr G]}. | |
move=> psi; rewrite mem_cat. | |
by case/orP=> /mapP[xi /mem_zchar] => [/Ztau1 | /Ztau2]-Zpsi ->. | |
have normY: map cfnorm Y = map cfnorm (S1 ++ S2). | |
rewrite !map_cat -!map_comp; congr (_ ++ _). | |
by apply/eq_in_map => xi S1xi; rewrite /= Itau1 ?mem_zchar. | |
by apply/eq_in_map => xi S2xi; rewrite /= Itau2 ?mem_zchar. | |
have [tau3 defY ZItau3] := Zisometry_of_cfnorm oS3 oY normY Z_Y. | |
have{defY} [defY1 defY2]: {in S1, tau3 =1 tau1} /\ {in S2, tau3 =1 tau2}. | |
have/eqP := defY; rewrite map_cat eqseq_cat ?size_map //. | |
by case/andP; split; apply/eq_in_map/eqP. | |
exists tau3; split=> {ZItau3}// eta; rewrite zcharD1E. | |
case/andP=> /(zchar_expansion (free_uniq (orthogonal_free oS3)))[b Zb {eta}->]. | |
pose bS Si := \sum_(xi <- Si) b xi *: xi. | |
have ZbS Si: bS Si \in 'Z[Si]. | |
by rewrite /bS big_seq rpred_sum // => eta /mem_zchar/rpredZ_Cint->. | |
rewrite big_cat /= -!/(bS _) cfunE addrC addr_eq0 linearD => /eqP-bS2_1. | |
transitivity (tau1 (bS S1) + tau2 (bS S2)). | |
by rewrite !raddf_sum; congr (_ + _); apply/eq_big_seq=> xi Si_xi; | |
rewrite !raddfZ_Cint // -(defY1, defY2). | |
have Z_S1_1 psi: psi \in 'Z[S1] -> psi 1%g \in Cint. | |
by move/zchar_sub_irr=> Zpsi; apply/Cint_vchar1/Zpsi => ? /N_S1/char_vchar. | |
apply/(scalerI nz_chi1)/(addIr (- bS S1 1%g *: tau (chi - phi))). | |
rewrite [in LHS]tau_chi_phi !scalerDr -!raddfZ_Cint ?rpredN ?Z_S1_1 //=. | |
rewrite addrACA -!raddfD -raddfB !scalerDr !scaleNr scalerN !opprK. | |
rewrite Dtau2 ?Dtau1 ?zcharD1E ?cfunE; first by rewrite -raddfD addrACA. | |
by rewrite mulrC subrr rpredB ?rpredZ_Cint ?Z_S1_1 /=. | |
by rewrite mulrC bS2_1 -chi1_phi mulNr addNr rpredD ?rpredZ_Cint ?Z_S1_1 /=. | |
Qed. | |
(* This is essentially Peterfalvi (5.6.3), which gets reused in (9.11.8). *) | |
(* While the assumptions are similar to those of the pivot_coherence lemma, *) | |
(* the two results are mostly independent: here S1 need not have a pivot, and *) | |
(* extend_coherent_with does not apply to the base case (size S = 2) of *) | |
(* pivot_coherence, which is almost as hard to prove as the general case. *) | |
Lemma extend_coherent_with S1 (tau1 : {additive 'CF(L) -> 'CF(G)}) chi phi a X : | |
cfConjC_subset S1 S -> coherent_with S1 L^# tau tau1 -> | |
[/\ phi \in S1, chi \in S & chi \notin S1] -> | |
[/\ a \in Cint, chi 1%g = a * phi 1%g & '[X, a *: tau1 phi] = 0] -> | |
tau (chi - a *: phi) = X - a *: tau1 phi -> | |
coherent (chi :: chi^*%CF :: S1) L^# tau. | |
Proof. | |
set beta := _ - _ => sS10 cohS1 [S1phi Schi S1'chi] [Za chi1 oXaphi] tau_beta. | |
have [[uS1 sS1S ccS1] [[Itau1 Ztau1] _]] := (sS10, cohS1). | |
have [[N_S nrS ccS] ZItau _ R_P _] := cohS; have [Itau Ztau] := ZItau. | |
have [Sphi [ZR o1R sumR]] := (sS1S _ S1phi, R_P _ Schi). | |
have Zbeta: beta \in 'Z[S, L^#]. | |
by rewrite zcharD1E !cfunE -chi1 subrr rpredB ?scale_zchar ?mem_zchar /=. | |
have o_aphi_R: orthogonal (a *: tau1 phi) (R chi). | |
have /orthogonalP oS1R := coherent_ortho_supp sS10 cohS1 Schi S1'chi. | |
by apply/orthoPl=> xi Rxi; rewrite cfdotZl oS1R ?map_f ?mulr0. | |
have /orthoPl o_chi_S1: orthogonal chi S1. | |
by rewrite orthogonal_sym subset_ortho_subcoherent. | |
have Zdchi: chi - chi^*%CF \in 'Z[S, L^#]. | |
by rewrite sub_aut_zchar ?zchar_onG ?mem_zchar ?ccS // => xi /N_S/char_vchar. | |
have [||_] := subcoherent_norm _ _ (erefl _) (And3 tau_beta oXaphi o_aphi_R). | |
- rewrite Schi rpredZ_Cint ?char_vchar ?N_S /orthogonal //= !cfdotZr. | |
by rewrite cfdot_conjCl !o_chi_S1 ?ccS1 // conjC0 !mulr0 !eqxx. | |
- apply: sub_iso_to ZItau; [apply: zchar_trans_on; apply/allP | exact: zcharW]. | |
by rewrite /= Zbeta Zdchi. | |
case=> [|nX _ [e Re defX]]; first by rewrite !cfnormZ Itau1 ?mem_zchar. | |
have uR: uniq (R chi) by have [] := orthonormalP o1R. | |
have{uR} De: e = filter (mem e) (R chi) by apply/subseq_uniqP. | |
pose ec := filter [predC e] (R chi); pose Xc := - \sum_(xi <- ec) xi. | |
have defR: perm_eq (e ++ ec) (R chi) by rewrite De perm_filterC. | |
pose S2 := chi :: chi^*%CF; pose X2 := X :: Xc. | |
have{nrS} uS2: uniq S2 by rewrite /= andbT inE eq_sym (hasPn nrS). | |
have sS20: cfConjC_subset S2 S. | |
by split=> //; apply/allP; rewrite /= ?cfConjCK ?inE ?eqxx ?orbT // ccS Schi. | |
have oS2: pairwise_orthogonal S2 by have [] := subset_subcoherent sS20. | |
have nz_chi: chi != 0 by rewrite eq_sym; have [/norP[]] := andP oS2. | |
have o_chi_chic: '[chi, chi^*] = 0 by have [_ /andP[/andP[/eqP]]] := and3P oS2. | |
have def_XXc: X - Xc = tau (chi - chi^*%CF). | |
by rewrite opprK defX -big_cat sumR; apply: perm_big. | |
have oXXc: '[X, Xc] = 0. | |
have /span_orthogonal o_e_ec: orthogonal e ec. | |
by move: o1R; rewrite -(eq_orthonormal defR) orthonormal_cat => /and3P[]. | |
by rewrite defX /Xc !big_seq o_e_ec ?rpredN ?rpred_sum // => xi /memv_span. | |
have{o_chi_chic} nXc: '[Xc] = '[chi^*]. | |
by apply: (addrI '[X]); rewrite -cfnormBd // nX def_XXc Itau // cfnormBd. | |
have{oXXc} oX2: pairwise_orthogonal X2. | |
rewrite /pairwise_orthogonal /= oXXc eqxx !inE !(eq_sym 0) -!cfnorm_eq0. | |
by rewrite nX nXc cfnorm_conjC cfnorm_eq0 orbb nz_chi. | |
have{nX nXc} nX2: map cfnorm X2 = map cfnorm S2 by congr [:: _; _]. | |
have [|tau2 [tau2X tau2Xc] Itau2] := Zisometry_of_cfnorm oS2 oX2 nX2. | |
apply/allP; rewrite /= defX De rpredN !big_seq. | |
by rewrite !rpred_sum // => xi; rewrite mem_filter => /andP[_ /ZR]. | |
have{Itau2} cohS2: coherent_with S2 L^# tau tau2. | |
split=> // psi; rewrite zcharD1E => /andP[/zchar_expansion[//|z Zz ->]]. | |
rewrite big_cons big_seq1 !cfunE conj_Cnat ?Cnat_char1 ?N_S // addrC addr_eq0. | |
rewrite -mulNr (inj_eq (mulIf _)) ?char1_eq0 ?N_S // => /eqP->. | |
by rewrite scaleNr -scalerBr !raddfZ_Cint // raddfB /= tau2X tau2Xc -def_XXc. | |
have: tau beta = tau2 chi - tau1 (a *: phi) by rewrite tau2X raddfZ_Cint. | |
apply: (bridge_coherent sS20 cohS2 sS10 cohS1) => //. | |
by apply/hasPn; rewrite has_sym !negb_or S1'chi (contra (ccS1 _)) ?cfConjCK. | |
by rewrite mem_head (zchar_on Zbeta) rpredZ_Cint ?mem_zchar. | |
Qed. | |
(* This is Peterfalvi (5.6): Feit's result that a coherent set can always be *) | |
(* extended by a character whose degree is below a certain threshold. *) | |
Lemma extend_coherent S1 xi1 chi : | |
cfConjC_subset S1 S -> xi1 \in S1 -> chi \in S -> chi \notin S1 -> | |
[/\ (*a*) coherent S1 L^# tau, | |
(*b*) (xi1 1%g %| chi 1%g)%C | |
& (*c*) 2%:R * chi 1%g * xi1 1%g < \sum_(xi <- S1) xi 1%g ^+ 2 / '[xi]] -> | |
coherent (chi :: chi^*%CF :: S1) L^# tau. | |
Proof. | |
move=> ccsS1S S1xi1 Schi notS1chi [[tau1 cohS1] xi1_dv_chi1 ub_chi1]. | |
have [[uS1 sS1S ccS1] [[Itau1 Ztau1] Dtau1]] := (ccsS1S, cohS1). | |
have{xi1_dv_chi1} [a Za chi1] := dvdCP _ _ xi1_dv_chi1. | |
have [[N_S nrS ccS] ZItau oS R_P oR] := cohS; have [Itau Ztau] := ZItau. | |
have [Sxi1 [ZRchi o1Rchi sumRchi]] := (sS1S _ S1xi1, R_P _ Schi). | |
have ocS1 xi: xi \in S1 -> '[chi, xi] = 0. | |
by apply: orthoPl; rewrite orthogonal_sym subset_ortho_subcoherent. | |
have /andP[/memPn/=nzS _] := oS; have [Nchi nz_chi] := (N_S _ Schi, nzS _ Schi). | |
have oS1: pairwise_orthogonal S1 by apply: sub_pairwise_orthogonal oS. | |
have [freeS freeS1] := (orthogonal_free oS, orthogonal_free oS1). | |
have nz_nS1 xi: xi \in S1 -> '[xi] != 0 by rewrite cfnorm_eq0 => /sS1S/nzS. | |
have nz_xi11: xi1 1%g != 0 by rewrite char1_eq0 ?N_S ?nzS. | |
have inj_tau1: {in 'Z[S1] &, injective tau1} := Zisometry_inj Itau1. | |
have Z_S1: {subset S1 <= 'Z[S1]} by move=> xi /mem_zchar->. | |
have inj_tau1_S1: {in S1 &, injective tau1} := sub_in2 Z_S1 inj_tau1. | |
pose a_ t1xi := S1`_(index t1xi (map tau1 S1)) 1%g / xi1 1%g / '[t1xi]. | |
have a_E xi: xi \in S1 -> a_ (tau1 xi) = xi 1%g / xi1 1%g / '[xi]. | |
by move=> S1xi; rewrite /a_ nth_index_map // Itau1 ?Z_S1. | |
have a_xi1 : a_ (tau1 xi1) = '[xi1]^-1 by rewrite a_E // -mulrA mulVKf //. | |
have Zachi: chi - a *: xi1 \in 'Z[S, L^#]. | |
by rewrite zcharD1E !cfunE -chi1 subrr rpredB ?scale_zchar ?mem_zchar /=. | |
have Ztau_achi := zcharW (Ztau _ Zachi). | |
have [X R_X [Y defXY]] := subcoherent_split Schi Ztau_achi. | |
have [eqXY oXY oYRchi] := defXY; pose X1 := map tau1 (in_tuple S1). | |
suffices defY: Y = a *: tau1 xi1. | |
by move: eqXY; rewrite defY; apply: extend_coherent_with; rewrite -?defY. | |
have oX1: pairwise_orthogonal X1 by apply: map_pairwise_orthogonal. | |
have N_S1_1 xi: xi \in S1 -> xi 1%g \in Cnat by move/sS1S/N_S/Cnat_char1. | |
have oRchiX1 psi: psi \in 'Z[R chi] -> orthogonal psi X1. | |
move/zchar_span=> Rpsi; apply/orthoPl=> chi2 /memv_span. | |
by apply: span_orthogonal Rpsi; rewrite orthogonal_sym coherent_ortho_supp. | |
have [lam Zlam [Z oZS1 defY]]: | |
exists2 lam, lam \in Cint & exists2 Z : 'CF(G), orthogonal Z (map tau1 S1) & | |
Y = a *: tau1 xi1 - lam *: (\sum_(xi <- X1) a_ xi *: xi) + Z. | |
- pose lam := a * '[xi1] - '[Y, tau1 xi1]; exists lam. | |
rewrite rpredD ?mulr_natl ?rpredN //. | |
by rewrite rpredM // CintE Cnat_cfdot_char ?N_S. | |
rewrite Cint_cfdot_vchar ?Ztau1 ?Z_S1 // -(subrK X Y) -opprB -eqXY addrC. | |
by rewrite rpredB // (zchar_trans ZRchi). | |
set Z' := _ - _; exists (Y - Z'); last by rewrite addrC subrK. | |
have oXtau1 xi: xi \in S1 -> '[Y, tau1 xi] = - '[X - Y, tau1 xi]. | |
move=> S1xi; rewrite cfdotBl opprB. | |
by rewrite (orthogonalP (oRchiX1 X R_X) X) ?subr0 ?mem_head ?map_f. | |
apply/orthogonalP=> _ _ /predU1P[-> | //] /mapP[xi S1xi ->]. | |
rewrite !cfdotBl !cfdotZl Itau1 ?mem_zchar //. | |
rewrite cfproj_sum_orthogonal ?map_f // a_E // Itau1 ?Z_S1 //. | |
apply: (mulIf nz_xi11); rewrite divfK ?nz_nS1 // 2!mulrBl mulrA divfK //. | |
rewrite mul0r mulrBl opprB -addrA addrCA addrC !addrA !oXtau1 // !mulNr. | |
rewrite -(conj_Cnat (N_S1_1 _ S1xi)) -(conj_Cnat (N_S1_1 _ S1xi1)). | |
rewrite opprK [- _ + _]addrC -!(mulrC _^*) -!cfdotZr -cfdotBr. | |
rewrite -!raddfZ_Cnat ?N_S1_1 // -raddfB; set beta : 'CF(L) := _ - _. | |
have Zbeta: beta \in 'Z[S1, L^#]. | |
rewrite zcharD1E !cfunE mulrC subrr eqxx. | |
by rewrite rpredB ?rpredZ_Cint ?Z_S1 // CintE N_S1_1. | |
rewrite -eqXY Dtau1 // Itau // ?(zchar_subset sS1S) //. | |
rewrite cfdotBl !cfdotBr !cfdotZr !ocS1 // !mulr0 subrr add0r !cfdotZl. | |
by rewrite opprB addrAC subrK subrr. | |
have [||leXchi _] := subcoherent_norm _ _ (erefl _) defXY. | |
- rewrite Schi scale_zchar ?char_vchar ?N_S /orthogonal //= !cfdotZr ocS1 //. | |
by rewrite -[xi1]cfConjCK cfdot_conjC ocS1 ?ccS1 // conjC0 mulr0 eqxx. | |
- apply: sub_iso_to ZItau; [apply: zchar_trans_on; apply/allP | exact: zcharW]. | |
rewrite /= Zachi sub_aut_zchar ?zchar_onG ?mem_zchar ?ccS //. | |
by move=> xi /N_S/char_vchar. | |
have normXY: '[X] + '[Y] = '[chi] + '[a *: xi1]. | |
by rewrite -!cfnormBd // ?cfdotZr ?ocS1 ?mulr0 // -eqXY Itau. | |
have{leXchi normXY}: '[Y] <= a ^+ 2 * '[xi1]. | |
by rewrite -(ler_add2l '[X]) normXY cfnormZ Cint_normK // ler_add2r. | |
rewrite {}defY cfnormDd; last first. | |
rewrite cfdotC (span_orthogonal oZS1) ?rmorph0 ?memv_span1 //. | |
rewrite big_seq memvB ?memvZ ?memv_suml ?memv_span ?map_f //. | |
by move=> theta S1theta; rewrite memvZ ?memv_span. | |
rewrite -cfnormN opprB cfnormB !cfnormZ !Cint_normK // addrAC ler_subl_addl. | |
rewrite cfdotZl cfdotZr cfnorm_sum_orthogonal ?cfproj_sum_orthogonal ?map_f //. | |
rewrite a_xi1 Itau1 ?Z_S1 // addrAC ler_add2r !(divfK, mulrA) ?nz_nS1 //. | |
rewrite !conj_Cint ?rpredM // => /le_gtF-lb_2_lam_a. | |
suffices lam0: lam = 0; last apply: contraFeq lb_2_lam_a => nz_lam. | |
suffices ->: Z = 0 by rewrite lam0 scale0r subrK. | |
by apply: contraFeq lb_2_lam_a; rewrite -cfnorm_gt0 lam0 expr0n !mul0r !add0r. | |
rewrite ltr_paddr ?cfnorm_ge0 // -mulr2n -mulr_natl mulrCA. | |
have xi11_gt0: xi1 1%g > 0 by rewrite char1_gt0 ?N_S ?sS1S -?cfnorm_eq0 ?nz_nS1. | |
have a_gt0: a > 0 by rewrite -(ltr_pmul2r xi11_gt0) mul0r -chi1 char1_gt0. | |
apply: le_lt_trans (_ : lam ^+ 2 * (2%:R * a) < _). | |
by rewrite ler_pmul2r ?mulr_gt0 ?ltr0n ?Cint_ler_sqr. | |
rewrite ltr_pmul2l ?(lt_le_trans ltr01) ?sqr_Cint_ge1 {lam Zlam nz_lam}//. | |
rewrite -(ltr_pmul2r xi11_gt0) -mulrA -chi1 -(ltr_pmul2r xi11_gt0). | |
congr (_ < _): ub_chi1; rewrite -mulrA -expr2 mulr_suml big_map. | |
apply/eq_big_seq=> xi S1xi; rewrite a_E // Itau1 ?mem_zchar //. | |
rewrite ger0_norm ?divr_ge0 ?cfnorm_ge0 ?char1_ge0 ?N_S ?sS1S //. | |
rewrite [_ / _ / _]mulrAC [RHS]mulrAC -exprMn divfK //. | |
by rewrite [RHS]mulrAC divfK ?nz_nS1 // mulrA. | |
Qed. | |
(* This is Peterfalvi (5.7). *) | |
(* This is almost a superset of (1.4): we could use it to get a coherent *) | |
(* isometry, which would necessarily map irreducibles to signed irreducibles. *) | |
(* It would then only remain to show that the signs are chosen consistently, *) | |
(* by considering the degrees of the differences. *) | |
(* This result is complementary to (5.6): it follow from it when S has 4 or *) | |
(* fewer characters, or reducible characters. On the contrary, (5.7) can be *) | |
(* used to provide an initial set of characters with a threshold high enough *) | |
(* to enable (repeated) application of (5.6), as in seqIndD_irr_coherence. *) | |
Lemma uniform_degree_coherence : | |
constant [seq chi 1%g | chi : 'CF(L) <- S] -> coherent S L^# tau. | |
Proof. | |
case defS: {1}S => /= [|chi1 S1] szS; first by rewrite defS; apply nil_coherent. | |
have{szS} unifS xi: xi \in S -> xi 1%g = chi1 1%g. | |
by rewrite defS => /predU1P[-> // | S'xi]; apply/eqP/(allP szS)/map_f. | |
have{S1 defS} Schi1: chi1 \in S by rewrite defS mem_head. | |
have [[N_S nrS ccS] IZtau oS R_P oR] := cohS; have [Itau Ztau] := IZtau. | |
have Zd: {in S &, forall xi1 xi2, xi1 - xi2 \in 'Z[S, L^#]}. | |
move=> xi1 xi2 Sxi1 Sxi2 /=. | |
by rewrite zcharD1E rpredB ?mem_zchar //= !cfunE !unifS ?subrr. | |
pose chi2 := chi1^*%CF; have Schi2: chi2 \in S by rewrite ccS. | |
have ch1'2: chi2 != chi1 by apply/(hasPn nrS). | |
have [_ oSS] := pairwise_orthogonalP oS. | |
pose S1 xi := [predD1 S & xi]; pose S2 xi := [predD1 (S1 xi) & xi^*%CF]. | |
have{} oR xi1 xi2: xi1 \in S -> xi2 \in S2 xi1 -> orthogonal (R xi1) (R xi2). | |
move=> Sxi1 /and3P[/= xi1J'2 xi1'2 Sxi2]. | |
by rewrite orthogonal_sym oR // /orthogonal /= !oSS ?eqxx // ccS. | |
have oSc xi: xi \in S -> '[xi, xi^*] = 0. | |
by move=> Sxi; rewrite oSS ?ccS // eq_sym (hasPn nrS). | |
pose D xi := tau (chi1 - xi). | |
have Z_D xi: xi \in S -> D xi \in 'Z[irr G] by move/(Zd _ _ Schi1)/Ztau/zcharW. | |
have /CnatP[N defN]: '[chi1] \in Cnat by rewrite Cnat_cfdot_char ?N_S. | |
have dotD: {in S1 chi1 &, forall xi1 xi2, '[D xi1, D xi2] = N%:R + '[xi1, xi2]}. | |
move=> xi1 xi2 /andP[ch1'xi1 Sxi1] /andP[chi1'xi2 Sxi2]. | |
rewrite Itau ?Zd // cfdotBl !cfdotBr defN. | |
by rewrite 2?oSS // 1?eq_sym // opprB !subr0. | |
have /R_P[ZRchi oRchi defRchi] := Schi1. | |
have szRchi: size (R chi1) = (N + N)%N. | |
apply: (can_inj natCK); rewrite -cfnorm_orthonormal // -defRchi. | |
by rewrite dotD ?inE ?ccS ?(hasPn nrS) // cfnorm_conjC defN -natrD. | |
pose subRchi1 X := exists2 E, subseq E (R chi1) & X = \sum_(a <- E) a. | |
pose Xspec X := [/\ X \in 'Z[R chi1], '[X] = N%:R & subRchi1 X]. | |
pose Xi_spec (X : 'CF(G)) xi := X - D xi \in 'Z[R xi] /\ '[X, D xi] = N%:R. | |
have haveX xi: xi \in S2 chi1 -> exists2 X, Xspec X & Xi_spec X xi. | |
move=> S2xi; have /and3P[/= chi2'xi ch1'xi Sxi] := S2xi. | |
have [neq_xi' Sxi'] := (hasPn nrS xi Sxi, ccS xi Sxi). | |
have [X RchiX [Y1 defXY1]] := subcoherent_split Schi1 (Z_D _ Sxi). | |
have [[eqXY1 oXY1 oY1chi] sRchiX] := (defXY1, zchar_span RchiX). | |
have Z_Y1: Y1 \in 'Z[irr G]. | |
by rewrite -rpredN -(rpredDl _ (zchar_trans ZRchi RchiX)) -eqXY1 Z_D. | |
have [X1 RxiX1 [Y defX1Y]] := subcoherent_split Sxi Z_Y1. | |
have [[eqX1Y oX1Y oYxi] sRxiX1] := (defX1Y, zchar_span RxiX1). | |
pose Y2 : 'CF(G) := X + Y; pose D2 : 'CF(G) := tau (xi - chi1). | |
have oY2Rxi: orthogonal Y2 (R xi). | |
apply/orthoPl=> phi Rxi_phi; rewrite cfdotDl (orthoPl oYxi) // addr0. | |
by rewrite (span_orthogonal (oR chi1 xi _ _)) // memv_span. | |
have{oY2Rxi} defX1Y2: [/\ D2 = X1 - Y2, '[X1, Y2] = 0 & orthogonal Y2 (R xi)]. | |
rewrite -opprB -addrA -opprB -eqX1Y -eqXY1 -linearN opprB cfdotC. | |
by rewrite (span_orthogonal oY2Rxi) ?conjC0 ?memv_span1 ?(zchar_span RxiX1). | |
have [||minX eqX1] := subcoherent_norm _ _ (erefl _) defXY1. | |
- by rewrite char_vchar ?N_S /orthogonal //= !oSS ?eqxx // eq_sym. | |
- apply: sub_iso_to IZtau; last exact: zcharW. | |
by apply: zchar_trans_on; apply/allP; rewrite /= !Zd. | |
have [||minX1 _]:= subcoherent_norm _ _ (erefl _) defX1Y2. | |
- rewrite char_vchar ?N_S /orthogonal //= !oSS ?eqxx // inv_eq //. | |
exact: cfConjCK. | |
- apply: sub_iso_to IZtau; last exact: zcharW. | |
by apply: zchar_trans_on; apply/allP; rewrite /= !Zd. | |
rewrite eqX1Y cfnormBd // defN in eqX1. | |
have{eqX1} [|nX n_xi defX] := eqX1; first by rewrite ler_paddr ?cfnorm_ge0. | |
exists X => //; split; last by rewrite eqXY1 cfdotBr oXY1 subr0. | |
suffices Y0: Y = 0 by rewrite eqXY1 eqX1Y Y0 subr0 opprB addrC subrK. | |
apply/eqP; rewrite -cfnorm_eq0 leif_le ?cfnorm_ge0 //. | |
by rewrite -(ler_add2l '[X1]) addr0 n_xi. | |
pose XDspec X := {in S2 chi1, forall xi, '[X, D xi] = N%:R}. | |
have [X [RchiX nX defX] XD_N]: exists2 X, Xspec X & XDspec X. | |
have [sSchi | /allPn[xi1 Sxi1]] := altP (@allP _ (pred2 chi1 chi2) S). | |
pose E := take N (R chi1). | |
exists (\sum_(a <- E) a) => [|xi]; last by case/and3P=> ? ? /sSchi/norP[]. | |
have defE: E ++ drop N (R chi1) = R chi1 by rewrite cat_take_drop. | |
have sER: subseq E (R chi1) by rewrite -defE prefix_subseq. | |
split; last by [exists E]; move/mem_subseq in sER. | |
by rewrite big_seq rpred_sum // => a Ea; rewrite mem_zchar ?sER. | |
rewrite cfnorm_orthonormal ?size_takel ?szRchi ?leq_addl //. | |
by have:= oRchi; rewrite -defE orthonormal_cat => /andP[]. | |
case/norP=> chi1'xi1 chi2'xi1'; have S2xi1: xi1 \in S2 chi1 by apply/and3P. | |
pose xi2 := xi1^*%CF; have /haveX[X [RchiX nX defX] [Rxi1X1 XD_N]] := S2xi1. | |
exists X => // xi S2xi; have [chi1'xi chi2'xi /= Sxi] := and3P S2xi. | |
have /R_P[_ _ defRxi1] := Sxi1; have [-> // | xi1'xi] := eqVneq xi xi1. | |
have [sRchiX sRxi1X1] := (zchar_span RchiX, zchar_span Rxi1X1). | |
have [-> | xi2'xi] := eqVneq xi xi2. | |
rewrite /D -[chi1](subrK xi1) -addrA linearD cfdotDr XD_N defRxi1 big_seq. | |
rewrite (span_orthogonal (oR chi1 xi1 _ _)) ?addr0 ?rpred_sum //. | |
exact/memv_span. | |
have /haveX[X' [RchiX' nX' _] [Rxi3X' X'D_N]] := S2xi. | |
have [sRchiX' sRxi1X'] := (zchar_span RchiX', zchar_span Rxi3X'). | |
suffices: '[X - X'] == 0 by rewrite cfnorm_eq0 subr_eq0 => /eqP->. | |
have ZXX': '[X, X'] \in Cint by rewrite Cint_cfdot_vchar ?(zchar_trans ZRchi). | |
rewrite cfnormB subr_eq0 nX nX' aut_Cint {ZXX'}//; apply/eqP/esym. | |
congr (_ *+ 2); rewrite -(addNKr (X - D xi1) X) cfdotDl cfdotC. | |
rewrite (span_orthogonal (oR chi1 xi1 _ _)) // conjC0. | |
rewrite -(subrK (D xi) X') cfdotDr cfdotDl cfdotNl opprB subrK. | |
rewrite (span_orthogonal (oR xi1 xi _ _)) //; last exact/and3P. | |
rewrite (span_orthogonal (oR chi1 xi _ _)) // oppr0 !add0r. | |
by rewrite dotD ?oSS ?addr0 1?eq_sym //; apply/andP. | |
have{RchiX} ZX: X \in 'Z[irr G] := zchar_trans ZRchi RchiX. | |
apply: (pivot_coherence cohS Schi1 ZX); rewrite defN //. | |
move=> xi /andP[chi1'xi Sxi]; exists 1; first by rewrite rpred1 mul1r unifS. | |
rewrite scale1r mulN1r -conjC_nat -opprB raddfN cfdotNl cfdotC; congr (- _^*). | |
have [-> /= | chi2'xi] := eqVneq xi chi2; last exact/XD_N/and3P. | |
have{defX}[E ssER defX] := defX; pose Ec := filter [predC E] (R chi1). | |
have eqRchi: perm_eq (R chi1) (E ++ Ec). | |
rewrite -(perm_filterC (mem E)) -(subseq_uniqP _ _) //. | |
exact/free_uniq/orthonormal_free. | |
have /and3P[oE _ oEEc]: [&& orthonormal E, orthonormal Ec & orthogonal E Ec]. | |
by rewrite (eq_orthonormal eqRchi) orthonormal_cat in oRchi. | |
rewrite defRchi (perm_big _ eqRchi) big_cat -defX cfdotDr nX defX !big_seq. | |
by rewrite (span_orthogonal oEEc) ?addr0 ?rpred_sum //; apply: memv_span. | |
Qed. | |
End SubCoherentProperties. | |
(* A corollary of Peterfalvi (5.7) used (sometimes implicitly!) in the proof *) | |
(* of lemmas (11.9), (12.4) and (12.5). *) | |
Lemma pair_degree_coherence L G S (tau : {linear _ -> 'CF(gval G)}) R : | |
subcoherent S tau R -> | |
{in S &, forall phi1 phi2 : 'CF(gval L), phi1 1%g == phi2 1%g -> | |
exists S1 : seq 'CF(L), | |
[/\ phi1 \in S1, phi2 \in S1, cfConjC_subset S1 S & coherent S1 L^# tau]}. | |
Proof. | |
move=> scohS phi1 phi2 Sphi1 Sphi2 /= eq_phi12_1. | |
have [[N_S _ ccS] _ _ _ _] := scohS. | |
pose S1 := undup (phi1 :: phi1^* :: phi2 :: phi2^*)%CF. | |
have sS1S: cfConjC_subset S1 S. | |
split=> [|chi|chi]; rewrite ?undup_uniq //= !mem_undup; move: chi; apply/allP. | |
by rewrite /= !ccS ?Sphi1 ?Sphi2. | |
by rewrite /= !inE !cfConjCK !eqxx !orbT. | |
exists S1; rewrite !mem_undup !inE !eqxx !orbT; split=> //. | |
apply: uniform_degree_coherence (subset_subcoherent scohS sS1S) _. | |
apply/(@all_pred1_constant _ (phi2 1%g))/allP=> _ /mapP[chi S1chi ->] /=. | |
rewrite mem_undup in S1chi; move: chi S1chi; apply/allP. | |
by rewrite /= !cfAut_char1 ?N_S // eqxx eq_phi12_1. | |
Qed. | |
(* This is Peterfalvi (5.8). *) | |
Lemma coherent_prDade_TIred (G H L K W W1 W2 : {group gT}) S A A0 | |
k (tau1 : {additive 'CF(L) -> 'CF(G)}) | |
(defW : W1 \x W2 = W) (ddA : prime_Dade_hypothesis G L K H A A0 defW) | |
(sigma := cyclicTIiso ddA) | |
(eta_ := fun i j => sigma (cyclicTIirr defW i j)) | |
(mu := primeTIred ddA) (dk := primeTIsign ddA k) (tau := Dade ddA) : | |
cfConjC_subset S (seqIndD K L H 1) -> | |
[/\ ~~ has cfReal S, has (mem (irr L)) S & mu k \in S] -> | |
coherent_with S L^# tau tau1 -> | |
let j := conjC_Iirr k in | |
tau1 (mu k) = dk *: (\sum_i eta_ i k) | |
\/ tau1 (mu k) = - dk *: (\sum_i eta_ i j) | |
/\ (forall ell, mu ell \in S -> mu ell 1%g = mu k 1%g -> ell = k \/ ell = j). | |
Proof. | |
set phi := tau1 (mu k) => uccS [nrS /hasP[zeta Szeta irr_zeta] Sk] cohS j. | |
pose sum_eta a ell := \sum_i a i ell *: eta_ i ell. | |
have [R [subcohS oS1sig defR]] := prDade_subcoherent ddA uccS nrS. | |
have [[charS _ ccS] _ /orthogonal_free freeS Rok _] := subcohS. | |
have [[Itau1 _] Dtau1] := cohS. | |
have natS1 xi: xi \in S -> xi 1%g \in Cnat by move/charS/Cnat_char1. | |
have k'j: j != k by rewrite -(inj_eq (prTIred_inj ddA)) prTIred_aut (hasPn nrS). | |
have nzSmu l (Sl : mu l \in S): l != 0. | |
apply: contraNneq (hasPn nrS _ Sl) => ->. | |
by rewrite /cfReal -prTIred_aut aut_Iirr0. | |
have [nzk nzj]: k != 0 /\ j != 0 by rewrite !nzSmu // /mu (prTIred_aut ddA) ccS. | |
have sSS: cfConjC_subset S S by have:= free_uniq freeS; split. | |
have{sSS} Dtau1S:= mem_coherent_sum_subseq subcohS sSS cohS. | |
have o_sum_eta a j1 i j2: j1 != j2 -> '[sum_eta a j1, eta_ i j2] = 0. | |
move/negPf=> neq_j; rewrite cfdot_suml big1 // => i1 _. | |
by rewrite cfdotZl cfdot_cycTIiso neq_j andbF mulr0. | |
have proj_sum_eta a i j1: '[sum_eta a j1, eta_ i j1] = a i j1. | |
rewrite cfdot_suml (bigD1 i) //= cfdotZl cfdot_cycTIiso !eqxx mulr1. | |
rewrite big1 ?addr0 // => i1 /negPf i'i1. | |
by rewrite cfdotZl cfdot_cycTIiso i'i1 mulr0. | |
have [a Dphi Da0]: exists2 a, phi = sum_eta a k + sum_eta a j | |
& pred2 0 dk (a 0 k) /\ pred2 0 (- dk) (a 0 j). | |
- have uRk: uniq (R (mu k)) by have [_ /orthonormal_free/free_uniq] := Rok _ Sk. | |
have [E sER Dphi] := Dtau1S _ Sk; rewrite /phi Dphi (subseq_uniqP uRk sER). | |
pose a i ell (alpha := dk *: eta_ i ell) := | |
if alpha \in E then dk else if - alpha \in E then - dk else 0. | |
have sign_eq := inj_eq (can_inj (signrZK _)). | |
have E'Nsk i: (- (dk *: eta_ i k) \in E) = false. | |
apply/idP=> /(mem_subseq sER); rewrite defR -/dk -/sigma mem_cat -map_comp. | |
case/orP=> /codomP[i1 /esym/eqP/idPn[]]. | |
by rewrite -scalerN sign_eq cycTIiso_neqN. | |
by rewrite (inj_eq oppr_inj) sign_eq cycTIiso_eqE (negPf k'j) andbF. | |
have E'sj i: (dk *: eta_ i j \in E) = false. | |
apply/idP=> /(mem_subseq sER); rewrite defR -/dk -/sigma mem_cat -map_comp. | |
case/orP=> /codomP[i1 /eqP/idPn[]]. | |
by rewrite sign_eq cycTIiso_eqE (negPf k'j) andbF. | |
by rewrite /= -scalerN sign_eq cycTIiso_neqN. | |
exists a; last first. | |
by rewrite !(fun_if (pred2 _ _)) /= !eqxx !orbT E'Nsk !(if_same, E'sj). | |
rewrite big_filter big_mkcond defR big_cat !big_map -/dk -/sigma /=. | |
congr (_ + _); apply: eq_bigr => i _; rewrite /a -/(eta_ i _). | |
by rewrite E'Nsk; case: ifP => // _; rewrite scale0r. | |
by rewrite E'sj; case: ifP => _; rewrite (scaleNr, scale0r). | |
pose V := cyclicTIset defW; have zetaV0: {in V, tau1 zeta =1 \0}. | |
apply: (ortho_cycTIiso_vanish ddA); apply/orthoPl=> _ /mapP[ww Www ->]. | |
rewrite (span_orthogonal (oS1sig zeta ww _ _)) ?memv_span1 ?inE ?Szeta //. | |
have [E sER ->] := Dtau1S _ Szeta; rewrite big_seq rpred_sum // => aa Raa. | |
by rewrite memv_span ?(mem_subseq sER). | |
pose zeta1 := zeta 1%g *: mu k - mu k 1%g *: zeta. | |
have Zzeta1: zeta1 \in 'Z[S, L^#]. | |
rewrite zcharD1E !cfunE mulrC subrr eqxx andbT. | |
by rewrite rpredB ?scale_zchar ?mem_zchar // CintE ?natS1. | |
have /cfun_onP A1zeta1: zeta1 \in 'CF(L, 1%g |: A). | |
rewrite memvB ?memvZ ?prDade_TIred_on //; have [_ sSS0 _] := uccS. | |
have /seqIndP[kz /setIdP[kerH'kz _] Dzeta] := sSS0 _ Szeta. | |
by rewrite Dzeta (prDade_Ind_irr_on ddA) //; rewrite inE in kerH'kz. | |
have{A1zeta1} zeta1V0: {in V, zeta1 =1 \0}. | |
move=> x Vx; rewrite /= A1zeta1 // -in_setC. | |
apply: subsetP (subsetP (prDade_supp_disjoint ddA) x Vx); rewrite setCS. | |
by rewrite subUset sub1G; have [/= _ _ _ [_ [_ _ /subsetD1P[->]]]] := ddA. | |
have o_phi_0 i: '[phi, eta_ i 0] = 0 by rewrite Dphi cfdotDl !o_sum_eta ?addr0. | |
have{o_phi_0 zeta1V0} proj_phi0 i ell: '[phi, eta_ i ell] = '[phi, eta_ 0 ell]. | |
rewrite -[LHS]add0r -(o_phi_0 0) -[RHS]addr0 -(o_phi_0 i). | |
apply: (cycTIiso_cfdot_exchange ddA); rewrite -/V => x Vx. | |
have: tau zeta1 x == 0. | |
have [_ _ defA0] := prDade_def ddA; rewrite Dade_id ?zeta1V0 //. | |
by rewrite defA0 inE orbC mem_class_support. | |
rewrite -Dtau1 // raddfB !raddfZ_Cnat ?natS1 // !cfunE zetaV0 //. | |
rewrite oppr0 mulr0 addr0 mulf_eq0 => /orP[/idPn[] | /eqP->//]. | |
by have /irrP[iz ->] := irr_zeta; apply: irr1_neq0. | |
have Dphi_j i: '[phi, eta_ i j] = a i j. | |
by rewrite Dphi cfdotDl proj_sum_eta o_sum_eta 1?eq_sym ?add0r. | |
have Dphi_k i: '[phi, eta_ i k] = a i k. | |
by rewrite Dphi cfdotDl proj_sum_eta o_sum_eta ?addr0. | |
have Da_j i: a i j = a 0 j by rewrite -!Dphi_j. | |
have{proj_phi0} Da_k i: a i k = a 0 k by rewrite -!Dphi_k. | |
have oW1: #|W1| = #|Iirr W1|. | |
by rewrite card_Iirr_cyclic //; have [[]] := prDade_prTI ddA. | |
have{oW1}: `|a 0 j| ^+ 2 + `|a 0 k| ^+ 2 == 1. | |
apply/eqP/(mulfI (neq0CG W1)); rewrite mulr1 {}[in LHS]oW1. | |
transitivity '[phi]; last by rewrite Itau1 ?mem_zchar ?cfnorm_prTIred. | |
rewrite {2}Dphi cfdotDr !cfdot_sumr mulrDr addrC !mulr_natl -!sumr_const. | |
congr (_ + _); apply: eq_bigr => i _; rewrite cfdotZr mulrC normCK. | |
by rewrite Dphi_k (Da_k i). | |
by rewrite Dphi_j (Da_j i). | |
have{Da0}[/pred2P[]Da0k /pred2P[]Da0j] := Da0; rewrite Da0k Da0j; last 2 first. | |
- left; rewrite Dphi [sum_eta a j]big1 ?addr0 => [|i _]; last first. | |
by rewrite Da_j Da0j scale0r. | |
by rewrite scaler_sumr; apply: eq_bigr => i _; rewrite Da_k Da0k. | |
- by rewrite normrN normr_sign expr1n (eqr_nat _ 2 1). | |
- by rewrite normr0 expr0n add0r (eqr_nat _ 0 1). | |
have{} Dphi: phi = - dk *: (\sum_i eta_ i j). | |
rewrite Dphi [sum_eta a k]big1 ?add0r => [|i _]; last first. | |
by rewrite Da_k Da0k scale0r. | |
by rewrite raddf_sum; apply: eq_bigr => i _; rewrite Da_j Da0j. | |
clear 1; right; split=> // l Sl deg_l; apply/pred2P. | |
have [_ [tau2 Dtau2 [_ Dtau]]] := uniform_prTIred_coherent ddA nzk. | |
have nz_l: l != 0 := nzSmu l Sl. | |
have Tmukl: mu k - mu l \in 'Z[uniform_prTIred_seq ddA k, L^#]. | |
rewrite zcharD1E !cfunE deg_l subrr eqxx andbT. | |
by rewrite rpredB ?mem_zchar ?image_f // !inE ?nzk ?nz_l ?deg_l eqxx. | |
pose ak (_ : Iirr W1) (_ : Iirr W2) := dk. | |
have: phi - tau1 (mu l) = sum_eta ak k - sum_eta ak l. | |
rewrite -raddfB Dtau1; last first. | |
by rewrite zcharD1E rpredB ?mem_zchar //= !cfunE deg_l subrr. | |
by rewrite -[tau _]Dtau // raddfB /= !Dtau2 2!raddf_sum. | |
have [E /mem_subseq sER ->] := Dtau1S _ Sl. | |
move/esym/(congr1 (cfdotr (eta_ 0 k))); apply: contra_eqT => /norP[k'l j'l] /=. | |
rewrite !cfdotBl Dphi_k Da0k proj_sum_eta o_sum_eta // cfdot_suml. | |
rewrite big_seq big1 ?subr0 ?signr_eq0 // => aa /sER; rewrite defR -map_comp. | |
rewrite mem_cat => /orP[]/codomP[/= i ->]; rewrite -/(eta_ i _). | |
by rewrite cfdotZl cfdot_cycTIiso (negPf k'l) andbF mulr0. | |
rewrite cfdotNl cfdotZl cfdot_cycTIiso (inv_eq (@conjC_IirrK _ _)) -/j. | |
by rewrite (negPf j'l) andbF mulr0 oppr0. | |
Qed. | |
Section DadeAut. | |
Variables (L G : {group gT}) (A : {set gT}). | |
Implicit Types K H M : {group gT}. | |
Hypothesis ddA : Dade_hypothesis G L A. | |
Local Notation tau := (Dade ddA). | |
Local Notation "alpha ^\tau" := (tau alpha). | |
Section DadeAutIrr. | |
Variable u : {rmorphism algC -> algC}. | |
Local Notation "alpha ^u" := (cfAut u alpha). | |
(* This is Peterfalvi (5.9)(a), slightly reformulated to allow calS to also *) | |
(* contain non-irreducible characters; for groups of odd order, the second *) | |
(* assumption holds uniformly for all calS of the form seqIndD. *) | |
(* We have stated the coherence assumption directly over L^#; this lets us *) | |
(* drop the Z[S, A] = Z[S, L^#] assumption, and is more consistent with the *) | |
(* rest of the proof. *) | |
Lemma cfAut_Dade_coherent calS tau1 chi : | |
coherent_with calS L^# tau tau1 -> | |
(1 < #|[set i | 'chi_i \in calS]|)%N /\ cfAut_closed u calS -> | |
chi \in irr L -> chi \in calS -> | |
(tau1 chi)^u = tau1 (chi^u). | |
Proof. | |
case=> [[Itau1 Ztau1] tau1_tau] [irrS_gt1 sSuS] /irrP[i {chi}->] Schi. | |
have sSZS: {subset calS <= 'Z[calS]} by move=> phi Sphi; apply: mem_zchar. | |
pose mu j := 'chi_j 1%g *: 'chi_i - 'chi_i 1%g *: 'chi_j. | |
have ZAmu j: 'chi_j \in calS -> mu j \in 'Z[calS, L^#]. | |
move=> Sxj; rewrite zcharD1E !cfunE mulrC subrr. | |
by rewrite rpredB //= scale_zchar ?sSZS // ?Cint_Cnat ?Cnat_irr1. | |
have Npsi j: 'chi_j \in calS -> '[tau1 'chi_j] = 1%:R. | |
by move=> Sxj; rewrite Itau1 ?sSZS ?cfnorm_irr. | |
have{Npsi} Dtau1 Sxj := vchar_norm1P (Ztau1 _ (sSZS _ Sxj)) (Npsi _ Sxj). | |
have [e [r tau1_chi]] := Dtau1 _ Schi; set eps := (-1) ^+ e in tau1_chi. | |
have{} Dtau1 j: 'chi_j \in calS -> exists t, tau1 'chi_j = eps *: 'chi_t. | |
move=> Sxj; suffices: 0 <= (eps *: tau1 'chi_j) 1%g. | |
have [f [t ->]] := Dtau1 j Sxj. | |
have [-> | neq_f_eps] := eqVneq f e; first by exists t. | |
rewrite scalerA -signr_addb scaler_sign addbC -negb_eqb neq_f_eps. | |
by rewrite cfunE oppr_ge0 lt_geF ?irr1_gt0. | |
rewrite -(pmulr_rge0 _ (irr1_gt0 i)) cfunE mulrCA. | |
have: tau1 (mu j) 1%g == 0 by rewrite tau1_tau ?ZAmu ?Dade1. | |
rewrite raddfB 2?raddfZ_Cnat ?Cnat_irr1 // !cfunE subr_eq0 => /eqP <-. | |
by rewrite tau1_chi cfunE mulrCA signrMK mulr_ge0 ?Cnat_ge0 ?Cnat_irr1. | |
have SuSirr j: 'chi_j \in calS -> 'chi_(aut_Iirr u j) \in calS. | |
by rewrite aut_IirrE => /sSuS. | |
have [j Sxj neq_ij]: exists2 j, 'chi_j \in calS & 'chi_i != 'chi_j. | |
move: irrS_gt1; rewrite (cardsD1 i) inE Schi ltnS card_gt0 => /set0Pn[j]. | |
by rewrite !inE -(inj_eq irr_inj) eq_sym => /andP[]; exists j. | |
have: (tau1 (mu j))^u == tau1 (mu j)^u. | |
by rewrite !tau1_tau ?cfAut_zchar ?ZAmu ?Dade_aut. | |
rewrite !raddfB [-%R]lock !raddfZ_Cnat ?Cnat_irr1 //= -lock -!aut_IirrE. | |
have [/Dtau1[ru ->] /Dtau1[tu ->]] := (SuSirr i Schi, SuSirr j Sxj). | |
have: (tau1 'chi_i)^u != (tau1 'chi_j)^u. | |
apply: contraNneq neq_ij => /cfAut_inj/(isometry_raddf_inj Itau1)/eqP. | |
by apply; rewrite ?sSZS //; apply: rpredB. | |
have /Dtau1[t ->] := Sxj; rewrite tau1_chi !cfAutZ_Cint ?rpred_sign //. | |
rewrite !scalerA -!(mulrC eps) -!scalerA -!scalerBr -!aut_IirrE. | |
rewrite !(inj_eq (scalerI _)) ?signr_eq0 // (inj_eq irr_inj) => /negPf neq_urt. | |
have [/CnatP[a ->] /CnatP[b xj1]] := (Cnat_irr1 i, Cnat_irr1 j). | |
rewrite xj1 eq_subZnat_irr neq_urt orbF andbC => /andP[_]. | |
by rewrite eqn0Ngt -ltC_nat -xj1 irr1_gt0 /= => /eqP->. | |
Qed. | |
End DadeAutIrr. | |
(* This covers all the uses of (5.9)(a) in the rest of Peterfalvi, except *) | |
(* one instance in (6.8.2.1). *) | |
Lemma cfConjC_Dade_coherent K H M (calS := seqIndD K L H M) tau1 chi : | |
coherent_with calS L^# (Dade ddA) tau1 -> | |
[/\ odd #|G|, K <| L & H \subset K] -> chi \in irr L -> chi \in calS -> | |
(tau1 chi)^*%CF = tau1 chi^*%CF. | |
Proof. | |
move=> cohS [oddG nsKL sHK] irr_chi Schi. | |
apply: (cfAut_Dade_coherent cohS) => //; split; last exact: cfAut_seqInd. | |
have oddL: odd #|L| by apply: oddSg oddG; have [_] := ddA. | |
exact: seqInd_nontrivial_irr Schi. | |
Qed. | |
(* This is Peterfalvi (5.9)(b). *) | |
Lemma Dade_irr_sub_conjC chi (phi := chi - chi^*%CF) : | |
chi \in irr L -> chi \in 'CF(L, 1%g |: A) -> | |
exists t, phi^\tau = 'chi_t - ('chi_t)^*%CF. | |
Proof. | |
case/irrP=> i Dchi Achi; rewrite {chi}Dchi in phi Achi *. | |
have [Rchi | notRchi] := eqVneq (conjC_Iirr i) i. | |
by exists 0; rewrite irr0 cfConjC_cfun1 /phi -conjC_IirrE Rchi !subrr linear0. | |
have Zphi: phi \in 'Z[irr L, A]. | |
have notA1: 1%g \notin A by have [] := ddA. | |
by rewrite -(setU1K notA1) sub_conjC_vchar // zchar_split irr_vchar. | |
have Zphi_tau: phi^\tau \in 'Z[irr G, G^#]. | |
by rewrite zchar_split Dade_cfun Dade_vchar ?Zphi. | |
have norm_phi_tau : '[phi^\tau] = 2%:R. | |
rewrite Dade_isometry ?(zchar_on Zphi) // cfnormB -conjC_IirrE. | |
by rewrite !cfdot_irr !eqxx eq_sym (negPf notRchi) rmorph0 addr0 subr0. | |
have [j [k ne_kj phi_tau]] := vchar_norm2 Zphi_tau norm_phi_tau. | |
suffices def_k: conjC_Iirr j = k by exists j; rewrite -conjC_IirrE def_k. | |
have/esym:= eq_subZnat_irr 1 1 k j (conjC_Iirr j) (conjC_Iirr k). | |
rewrite (negPf ne_kj) orbF /= !scale1r !conjC_IirrE -rmorphB. | |
rewrite -opprB -phi_tau /= -Dade_conjC // rmorphB /= cfConjCK. | |
by rewrite -linearN opprB eqxx => /andP[/eqP->]. | |
Qed. | |
End DadeAut. | |
End Five. | |
Arguments coherent_prDade_TIred | |
[gT G H L K W W1 W2 S0 A A0 k tau1 defW] : rename. | |