Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
Require Import mathcomp.ssreflect.ssreflect. | |
From mathcomp | |
Require Import ssrbool ssrfun eqtype ssrnat seq div. | |
From mathcomp | |
Require Import fintype finfun bigop ssralg finset prime binomial. | |
From mathcomp | |
Require Import fingroup morphism automorphism perm quotient action gproduct. | |
From mathcomp | |
Require Import gfunctor commutator zmodp cyclic center pgroup gseries nilpotent. | |
From mathcomp | |
Require Import sylow abelian maximal extremal hall. | |
From mathcomp | |
Require Import matrix mxalgebra mxrepresentation mxabelem. | |
From odd_order | |
Require Import BGsection1 BGsection2. | |
(******************************************************************************) | |
(* This file covers B & G, Section 4, i.e., the proof of structure theorems *) | |
(* for solvable groups with a small (of rank at most 2) Fitting subgroup. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import GroupScope. | |
Section Section4. | |
Implicit Type gT : finGroupType. | |
Implicit Type p : nat. | |
(* B & G, Lemma 4.1 (also, Gorenstein, 1.3.4, and Aschbacher, ex. 2.4) is *) | |
(* covered by Lemma center_cyclic_abelian, in center.v. *) | |
(* B & G, Lemma 4.2 is covered by Lemmas commXg, commgX, commXXg (for 4.2(a)) *) | |
(* and expMg_Rmul (for 4.2(b)) in commutators.v. *) | |
(* This is B & G, Proposition 4.3. *) | |
Proposition exponent_odd_nil23 gT (R : {group gT}) p : | |
p.-group R -> odd #|R| -> nil_class R <= 2 + (p > 3) -> | |
[/\ (*a*) exponent 'Ohm_1(R) %| p | |
& (*b*) R^`(1) \subset 'Ohm_1(R) -> | |
{in R &, {morph expgn^~ p : x y / x * y}}]. | |
Proof. | |
move=> pR oddR classR. | |
pose f n := 'C(n, 3); pose g n := 'C(n, 3).*2 + 'C(n, 2). | |
have fS n: f n.+1 = 'C(n, 2) + f n by rewrite /f binS addnC. | |
have gS n: g n.+1 = 'C(n, 2).*2 + 'C(n, 1) + g n. | |
by rewrite /g !binS doubleD -!addnA; do 3!nat_congr. | |
have [-> | ntR] := eqsVneq R 1. | |
rewrite Ohm1 exponent1 der_sub dvd1n; split=> // _ _ _ /set1P-> /set1P->. | |
by rewrite !(mulg1, expg1n). | |
have{ntR} [p_pr p_dv_R _] := pgroup_pdiv pR ntR. | |
have pdivbin2: p %| 'C(p, 2). | |
by rewrite prime_dvd_bin //= odd_prime_gt2 // (dvdn_odd p_dv_R). | |
have p_dv_fp: p > 3 -> p %| f p by move=> pgt3; apply: prime_dvd_bin. | |
have p_dv_gp: p > 3 -> p %| g p. | |
by move=> pgt3; rewrite dvdn_add // -muln2 dvdn_mulr // p_dv_fp. | |
have exp_dv_p x m (S : {group gT}): | |
exponent S %| p -> p %| m -> x \in S -> x ^+ m = 1. | |
- move=> expSp p_dv_m Sx; apply/eqP; rewrite -order_dvdn. | |
by apply: dvdn_trans (dvdn_trans expSp p_dv_m); apply: dvdn_exponent. | |
have p3_L21: p <= 3 -> {in R & &, forall u v w, [~ u, v, w] = 1}. | |
move=> lep3 u v w Ru Rv Rw; rewrite (ltnNge 3) lep3 nil_class2 in classR. | |
by apply/eqP/commgP; red; rewrite (centerC Rw) // (subsetP classR) ?mem_commg. | |
have{fS gS} expMR_fg: {in R &, forall u v n (r := [~ v, u]), | |
(u * v) ^+ n = u ^+ n * v ^+ n * r ^+ 'C(n, 2) | |
* [~ r, u] ^+ f n * [~ r, v] ^+ g n}. | |
- move=> u v Ru Rv n r; have Rr: r \in R by apply: groupR. | |
have cRr: {in R &, forall x y, commute x [~ r, y]}. | |
move=> x y Rx Ry /=; red; rewrite (centerC Rx) //. | |
have: [~ r, y] \in 'L_3(R) by rewrite !mem_commg. | |
by apply: subsetP; rewrite -nil_class3 (leq_trans classR) // !ltnS leq_b1. | |
elim: n => [|n IHn]; first by rewrite !mulg1. | |
rewrite 3!expgSr {}IHn -!mulgA (mulgA (_ ^+ f n)); congr (_ * _). | |
rewrite -commuteM; try by apply: commuteX; red; rewrite cRr ?groupM. | |
rewrite -mulgA; do 2!rewrite (mulgA _ u) (commgC _ u) -2!mulgA. | |
congr (_ * (_ * _)); rewrite (mulgA _ v). | |
have ->: [~ v ^+ n, u] = r ^+ n * [~ r, v] ^+ 'C(n, 2). | |
elim: n => [|n IHn]; first by rewrite comm1g mulg1. | |
rewrite !expgS commMgR -/r {}IHn commgX; last exact: cRr. | |
rewrite binS bin1 addnC expgD -2!mulgA; congr (_ * _); rewrite 2!mulgA. | |
by rewrite commuteX2 // /commute cRr. | |
rewrite commXg 1?commuteX2 -?[_ * v]commuteX; try exact: cRr. | |
rewrite mulgA {1}[mulg]lock mulgA -mulgA -(mulgA v) -!expgD -fS -lock. | |
rewrite -{2}(bin1 n) addnC -binS -2!mulgA (mulgA _ v) (commgC _ v). | |
rewrite -commuteX; last by red; rewrite cRr ?(Rr, groupR, groupX, groupM). | |
rewrite -3!mulgA; congr (_ * (_ * _)); rewrite 2!mulgA. | |
rewrite commXg 1?commuteX2; try by red; rewrite cRr 1?groupR. | |
by rewrite -!mulgA -!expgD addnCA binS addnAC addnn addnC -gS. | |
have expR1p: exponent 'Ohm_1(R) %| p. | |
elim: _.+1 {-2 4}R (ltnSn #|R|) (subxx R) => // n IHn Q leQn sQR. | |
rewrite (OhmE 1 (pgroupS sQR pR)) expn1 -sub_LdivT. | |
rewrite gen_set_id ?subsetIr //. | |
apply/group_setP; rewrite !inE group1 expg1n /=. | |
split=> // x y /LdivP[Qx xp1] /LdivP[Qy yp1]; rewrite !inE groupM //=. | |
have sxQ: <[x]> \subset Q by rewrite cycle_subG. | |
have [{sxQ}defQ|[S maxS /= sxS]] := maximal_exists sxQ. | |
rewrite expgMn; first by rewrite xp1 yp1 mulg1. | |
by apply: (centsP (cycle_abelian x)); rewrite ?defQ. | |
have:= maxgroupp maxS; rewrite properEcard => /andP[sSQ ltSQ]. | |
have pQ := pgroupS sQR pR; have pS := pgroupS sSQ pQ. | |
have{ltSQ leQn} ltSn: #|S| < n by apply: leq_trans ltSQ _. | |
have expS1p := IHn _ ltSn (subset_trans sSQ sQR). | |
have defS1 := Ohm1Eexponent p_pr expS1p; move/exp_dv_p: expS1p => expS1p. | |
have nS1Q: [~: Q, 'Ohm_1(S)] \subset 'Ohm_1(S). | |
by rewrite commg_subr gFnorm_trans ?normal_norm // (p_maximal_normal pQ). | |
have S1x : x \in 'Ohm_1(S) by rewrite defS1 !inE -cycle_subG sxS xp1 /=. | |
have S1yx : [~ y, x] \in 'Ohm_1(S) by rewrite (subsetP nS1Q) ?mem_commg. | |
have S1yxx : [~ y, x, x] \in 'Ohm_1(S) by rewrite groupR. | |
have S1yxy : [~ y, x, y] \in 'Ohm_1(S). | |
by rewrite -invg_comm groupV (subsetP nS1Q) 1?mem_commg. | |
rewrite expMR_fg ?(subsetP sQR) //= xp1 yp1 expS1p ?mul1g //. | |
case: (leqP p 3) => [p_le3 | p_gt3]; last by rewrite ?expS1p ?mul1g; auto. | |
by rewrite !p3_L21 // ?(subsetP sQR) // !expg1n mulg1. | |
split=> // sR'R1 x y Rx Ry; rewrite -[x ^+ p * _]mulg1 expMR_fg // -2!mulgA //. | |
have expR'p := exp_dv_p _ _ _ (dvdn_trans (exponentS sR'R1) expR1p). | |
congr (_ * _); rewrite expR'p ?mem_commg // mul1g. | |
case: (leqP p 3) => [p_le3 | p_gt3]. | |
by rewrite !p3_L21 // ?(subsetP sQR) // !expg1n mulg1. | |
by rewrite !expR'p 1?mem_commg ?groupR ?mulg1; auto. | |
Qed. | |
(* Part (a) of B & G, Proposition 4.4 is covered in file maximal.v by lemmas *) | |
(* max_SCN and SCN_max. *) | |
(* This is B & G, Proposition 4.4(b), or Gorenstein 7.6.5. *) | |
Proposition SCN_Sylow_cent_dprod gT (R G A : {group gT}) p : | |
p.-Sylow(G) R -> A \in 'SCN(R) -> 'O_p^'('C_G(A)) \x A = 'C_G(A). | |
Proof. | |
move=> sylR scnA; have [[sRG _] [nAR CRA_A]] := (andP sylR, SCN_P scnA). | |
set C := 'C_G(A); have /maxgroupP[/andP[nAG abelA] maxA] := SCN_max scnA. | |
have CiP_eq : C :&: R = A by rewrite -CRA_A setIC setIA (setIidPl sRG). | |
have sylA: p.-Sylow(C) A. | |
rewrite -CiP_eq; apply: (Sylow_setI_normal (subcent_normal _ _)). | |
by apply: pHall_subl sylR; rewrite ?subsetIl // subsetI sRG normal_norm. | |
rewrite dprodEsd; last by rewrite centsC gFsub_trans ?subsetIr. | |
by apply: Burnside_normal_complement; rewrite // subIset ?subsetIr. | |
Qed. | |
(* This is B & G, Lemma 4.5(b), or Gorenstein, 5.4.4 and 5.5.5. *) | |
Lemma Ohm1_extremal_odd gT (R : {group gT}) p x : | |
p.-group R -> odd #|R| -> ~~ cyclic R -> x \in R -> #|R : <[x]>| = p -> | |
('Ohm_1(R))%G \in 'E_p^2(R). | |
Proof. | |
move=> pR oddR ncycR Rx ixR; rewrite -cycle_subG in Rx. | |
have ntR: R :!=: 1 by apply: contra ncycR; move/eqP->; apply: cyclic1. | |
have [p_pr _ [e oR]]:= pgroup_pdiv pR ntR. | |
case p2: (p == 2); first by rewrite oR oddX (eqP p2) in oddR. | |
have [cRR | not_cRR] := orP (orbN (abelian R)). | |
rewrite 2!inE Ohm_sub Ohm1_abelem // -p_rank_abelian //= eqn_leq. | |
rewrite -rank_pgroup // ltnNge -abelian_rank1_cyclic // ncycR andbT. | |
have maxX: maximal <[x]> R by rewrite (p_index_maximal Rx) ?ixR. | |
have nsXR: <[x]> <| R := p_maximal_normal pR maxX. | |
have [_ [y Ry notXy]] := properP (maxgroupp maxX). | |
have defR: <[x]> * <[y]> = R. | |
by apply: mulg_normal_maximal; rewrite ?cycle_subG. | |
rewrite -grank_abelian // -(genGid R) -defR genM_join joing_idl joing_idr. | |
by rewrite (leq_trans (grank_min _)) // cards2 ltnS leq_b1. | |
have{x Rx ixR} [e_gt1 isoR]: 2 < e.+1 /\ R \isog 'Mod_(p ^ e.+1). | |
have:= maximal_cycle_extremal pR not_cRR (cycle_cyclic x) Rx ixR. | |
rewrite p2 orbF /extremal_class oR pfactorKpdiv // pdiv_pfactor //. | |
by do 4!case: andP => //. | |
have [[x y] genR modR] := generators_modular_group p_pr e_gt1 isoR. | |
have [_ _ _ _] := modular_group_structure p_pr e_gt1 genR isoR modR. | |
rewrite xpair_eqE p2; case/(_ 1%N) => // _ oR1. | |
by rewrite 2!inE Ohm_sub oR1 pfactorK ?abelem_Ohm1 ?(card_p2group_abelian p_pr). | |
Qed. | |
Section OddNonCyclic. | |
Variables (gT : finGroupType) (p : nat) (R : {group gT}). | |
Hypotheses (pR : p.-group R) (oddR : odd #|R|) (ncycR : ~~ cyclic R). | |
(* This is B & G, Lemma 4.5(a), or Gorenstein 5.4.10. *) | |
Lemma ex_odd_normal_p2Elem : {S : {group gT} | S <| R & S \in 'E_p^2(R)}. | |
Proof. | |
have [M minM]: {M | [min M | M <| R & ~~ cyclic M]}. | |
by apply: ex_mingroup; exists R; rewrite normal_refl. | |
have{minM} [[nsMR ncycM] [_ minM]] := (andP (mingroupp minM), mingroupP minM). | |
have [sMR _] := andP nsMR; have pM := pgroupS sMR pR. | |
exists ('Ohm_1(M))%G; first exact: gFnormal_trans. | |
apply: (subsetP (pnElemS _ _ sMR)). | |
have [M1 | ntM] := eqsVneq M 1; first by rewrite M1 cyclic1 in ncycM. | |
have{ntM} [p_pr _ [e oM]] := pgroup_pdiv pM ntM. | |
have le_e_M: e <= logn p #|M| by rewrite ltnW // oM pfactorK. | |
have{le_e_M} [N [sNM nsNR] oN] := normal_pgroup pR nsMR le_e_M. | |
have ltNM: ~~ (#|N| >= #|M|) by rewrite -ltnNge oM oN ltn_exp2l ?prime_gt1. | |
have cycN : cyclic N by apply: contraR ltNM => ncycN; rewrite minM //= nsNR. | |
case/cyclicP: cycN => x defN; have Mx : x \in M by rewrite -cycle_subG -defN. | |
apply: Ohm1_extremal_odd Mx _; rewrite ?(oddSg sMR) //. | |
by rewrite -divgS /= -defN // oM oN expnS mulnK // expn_gt0 prime_gt0. | |
Qed. | |
(* This is B & G, Lemma 4.5(c). *) | |
Lemma Ohm1_odd_ucn2 (Z := 'Ohm_1('Z_2(R))) : ~~ cyclic Z /\ exponent Z %| p. | |
Proof. | |
have [S nsSR Ep2S] := ex_odd_normal_p2Elem; have p_pr := pnElem_prime Ep2S. | |
have [sSR abelS dimS] := pnElemP Ep2S; have [pS cSS expSp]:= and3P abelS. | |
pose SR := [~: S, R]; pose SRR := [~: SR, R]. | |
have nilR := pgroup_nil pR. | |
have ntS: S :!=: 1 by rewrite -rank_gt0 (rank_abelem abelS) dimS. | |
have sSR_S: SR \subset S by rewrite commg_subl normal_norm. | |
have sSRR_SR: SRR \subset SR by rewrite commSg. | |
have sSR_R := subset_trans sSR_S sSR. | |
have{ntS} prSR: SR \proper S. | |
by rewrite (nil_comm_properl nilR) // subsetI subxx -commg_subl. | |
have SRR1: SRR = 1. | |
have [SR1 | ntSR] := eqVneq SR 1; first by rewrite /SRR SR1 comm1G. | |
have prSRR: SRR \proper SR. | |
rewrite /proper sSRR_SR; apply: contra ntSR => sSR_SRR. | |
by rewrite (forall_inP nilR) // subsetI sSR_R. | |
have pSR := pgroupS sSR_R pR; have pSRR := pgroupS sSRR_SR pSR. | |
have [_ _ [e oSR]] := pgroup_pdiv pSR ntSR; have [f oSRR] := p_natP pSRR. | |
have e0: e = 0. | |
have:= proper_card prSR; rewrite oSR (card_pnElem Ep2S). | |
by rewrite ltn_exp2l ?prime_gt1 // !ltnS leqn0; move/eqP. | |
apply/eqP; have:= proper_card prSRR; rewrite trivg_card1 oSR oSRR e0. | |
by rewrite ltn_exp2l ?prime_gt1 // ltnS; case f. | |
have sSR_ZR: [~: S, R] \subset 'Z(R). | |
by rewrite subsetI sSR_R /=; apply/commG1P. | |
have sS_Z2R: S \subset 'Z_2(R). | |
rewrite ucnSnR; apply/subsetP=> s Ss; rewrite inE (subsetP sSR) //= ucn1. | |
by rewrite (subset_trans _ sSR_ZR) ?commSg ?sub1set. | |
have sZ2R_R := ucn_sub 2 R; have pZ2R := pgroupS sZ2R_R pR. | |
have pZ: p.-group Z by apply: pgroupS pR; apply/gFsub_trans/gFsub. | |
have sSZ: S \subset Z. | |
by rewrite /Z (OhmE 1 pZ2R) sub_gen // subsetI sS_Z2R sub_LdivT. | |
have ncycX: ~~ cyclic S by rewrite (abelem_cyclic abelS) dimS. | |
split; first by apply: contra ncycX; apply: cyclicS. | |
have nclZ2R : nil_class 'Z_2(R) <= 2 + _ := leq_trans (nil_class_ucn _ _) _. | |
by have [] := exponent_odd_nil23 pZ2R (oddSg sZ2R_R oddR) (nclZ2R _ _). | |
Qed. | |
End OddNonCyclic. | |
(* Some "obvious" consequences of the above, which are used casually and *) | |
(* pervasively throughout B & G. *) | |
Definition odd_pgroup_rank1_cyclic := odd_pgroup_rank1_cyclic. (* in extremal *) | |
Lemma odd_rank1_Zgroup gT (G : {group gT}) : | |
odd #|G| -> Zgroup G = ('r(G) <= 1). | |
Proof. | |
move=> oddG; apply/forallP/idP=> [ZgG | rG_1 P]. | |
have [p p_pr ->]:= rank_witness G; have [P sylP]:= Sylow_exists p G. | |
have [sPG pP _] := and3P sylP; have oddP := oddSg sPG oddG. | |
rewrite -(p_rank_Sylow sylP) -(odd_pgroup_rank1_cyclic pP) //. | |
by apply: (implyP (ZgG P)); apply: (p_Sylow sylP). | |
apply/implyP=> /SylowP[p p_pr /and3P[sPG pP _]]. | |
rewrite (odd_pgroup_rank1_cyclic pP (oddSg sPG oddG)). | |
by apply: leq_trans (leq_trans (p_rank_le_rank p G) rG_1); apply: p_rankS. | |
Qed. | |
(* This is B & G, Proposition 4.6 (a stronger version of Lemma 4.5(a)). *) | |
Proposition odd_normal_p2Elem_exists gT p (R S : {group gT}) : | |
p.-group R -> odd #|R| -> S <| R -> ~~ cyclic S -> | |
exists E : {group gT}, [/\ E \subset S, E <| R & E \in 'E_p^2(R)]. | |
Proof. | |
move=> pR oddR nsSR ncycS; have sSR := normal_sub nsSR. | |
have{sSR ncycS} []:= Ohm1_odd_ucn2 (pgroupS sSR pR) (oddSg sSR oddR) ncycS. | |
set Z := 'Ohm_1(_) => ncycZ expZp. | |
have chZS: Z \char S by rewrite !gFchar_trans. | |
have{nsSR} nsZR: Z <| R := char_normal_trans chZS nsSR. | |
have [sZR _] := andP nsZR; have pZ: p.-group Z := pgroupS sZR pR. | |
have geZ2: 2 <= logn p #|Z|. | |
rewrite (odd_pgroup_rank1_cyclic pZ (oddSg sZR oddR)) -ltnNge /= -/Z in ncycZ. | |
by case/p_rank_geP: ncycZ => E; case/pnElemP=> sEZ _ <-; rewrite lognSg. | |
have [E [sEZ nsER oE]] := normal_pgroup pR nsZR geZ2. | |
have [sER _] := andP nsER; have{pR} pE := pgroupS sER pR. | |
have{geZ2} p_pr: prime p by move: geZ2; rewrite lognE; case: (prime p). | |
have{oE p_pr} dimE2: logn p #|E| = 2 by rewrite oE pfactorK. | |
exists E; split; rewrite ?(subset_trans _ (char_sub chZS)) {chZS nsZR}//. | |
rewrite !inE /abelem sER pE (p2group_abelian pE) dimE2 //= andbT. | |
exact/(dvdn_trans _ expZp)/exponentS. | |
Qed. | |
(* This is B & G, Lemma 4.7, and (except for the trivial converse) Gorenstein *) | |
(* 5.4.15 and Aschbacher 23.17. *) | |
Lemma rank2_SCN3_empty gT p (R : {group gT}) : | |
p.-group R -> odd #|R| -> ('r(R) <= 2) = ('SCN_3(R) == set0). | |
Proof. | |
move=> pR oddR; apply/idP/idP=> [leR2 | SCN_3_empty]. | |
apply/set0Pn=> [[A /setIdP[/SCN_P[/andP[sAR _] _]]]]. | |
by rewrite ltnNge (leq_trans (rankS sAR)). | |
rewrite (rank_pgroup pR) leqNgt; apply/negP=> gtR2. | |
have ncycR: ~~ cyclic R by rewrite (odd_pgroup_rank1_cyclic pR) // -ltnNge ltnW. | |
have{ncycR} [Z nsZR] := ex_odd_normal_p2Elem pR oddR ncycR. | |
case/pnElemP=> sZR abelZ dimZ2; have [pZ cZZ _] := and3P abelZ. | |
have{SCN_3_empty} defZ: 'Ohm_1('C_R(Z)) = Z. | |
apply: (Ohm1_cent_max_normal_abelem _ pR). | |
by have:= oddSg sZR oddR; rewrite (card_pgroup pZ) dimZ2 oddX. | |
apply/maxgroupP; split=> [|H /andP[nsHR abelH] sZH]; first exact/andP. | |
have [pH cHH _] := and3P abelH; apply/eqP; rewrite eq_sym eqEproper sZH /=. | |
pose normal_abelian := [pred K : {group gT} | K <| R & abelian K]. | |
have [|K maxK sHK] := @maxgroup_exists _ normal_abelian H; first exact/andP. | |
apply: contraL SCN_3_empty => ltZR; apply/set0Pn; exists K. | |
rewrite inE (max_SCN pR) {maxK}//= -dimZ2 (leq_trans _ (rankS sHK)) //. | |
by rewrite (rank_abelem abelH) properG_ltn_log. | |
have{gtR2} [A] := p_rank_geP gtR2; pose H := 'C_A(Z); pose K := H <*> Z. | |
case/pnElemP=> sAR abelA dimA3; have [pA cAA _] := and3P abelA. | |
have{nsZR} nZA := subset_trans sAR (normal_norm nsZR). | |
have sHA: H \subset A := subsetIl A _; have abelH := abelemS sHA abelA. | |
have geH2: logn p #|H| >= 2. | |
rewrite -ltnS -dimA3 -(Lagrange sHA) lognM // -addn1 leq_add2l /= -/H. | |
by rewrite logn_quotient_cent_abelem ?dimZ2. | |
have{abelH} abelK : p.-abelem K. | |
by rewrite (cprod_abelem _ (cprodEY _)) 1?centsC ?subsetIr ?abelH. | |
suffices{sZR cZZ defZ}: 'r(Z) < 'r(K). | |
by rewrite ltnNge -defZ rank_Ohm1 rankS // join_subG setSI // subsetI sZR. | |
rewrite !(@rank_abelem _ p) // properG_ltn_log ?abelem_pgroup //= -/K properE. | |
rewrite joing_subr join_subG subxx andbT subEproper; apply: contraL geH2. | |
case/predU1P=> [defH | ltHZ]; last by rewrite -ltnNge -dimZ2 properG_ltn_log. | |
rewrite -defH [H](setIidPl _) ?dimA3 // in dimZ2. | |
by rewrite centsC -defH subIset // -abelianE cAA. | |
Qed. | |
(* This is B & G, Proposition 4.8(a). *) | |
Proposition rank2_exponent_p_p3group gT (R : {group gT}) p : | |
p.-group R -> rank R <= 2 -> exponent R %| p -> logn p #|R| <= 3. | |
Proof. | |
move=> pR rankR expR. | |
have [A max_na_A]: {A | [max A | A <| R & abelian A]}. | |
by apply: ex_maxgroup; exists 1%G; rewrite normal1 abelian1. | |
have {max_na_A} SCN_A := max_SCN pR max_na_A. | |
have cAA := SCN_abelian SCN_A; case/SCN_P: SCN_A => nAR cRAA. | |
have sAR := normal_sub nAR; have pA := pgroupS sAR pR. | |
have abelA : p.-abelem A. | |
by rewrite /abelem pA cAA /= (dvdn_trans (exponentS sAR) expR). | |
have cardA : logn p #|A| <= 2. | |
by rewrite -rank_abelem // (leq_trans (rankS sAR) rankR). | |
have cardRA : logn p #|R : A| <= 1. | |
by rewrite -cRAA logn_quotient_cent_abelem // (normal_norm nAR). | |
rewrite -(Lagrange sAR) lognM ?cardG_gt0 //. | |
by apply: (leq_trans (leq_add cardA cardRA)). | |
Qed. | |
(* This is B & G, Proposition 4.8(b). *) | |
Proposition exponent_Ohm1_rank2 gT p (R : {group gT}) : | |
p.-group R -> 'r(R) <= 2 -> p > 3 -> exponent 'Ohm_1(R) %| p. | |
Proof. | |
move=> pR rR p_gt3; wlog p_pr: / prime p. | |
have [-> | ntR] := eqsVneq R 1; first by rewrite Ohm1 exponent1 dvd1n. | |
by apply; have [->] := pgroup_pdiv pR ntR. | |
wlog minR: R pR rR / forall S, gval S \proper R -> exponent 'Ohm_1(S) %| p. | |
elim: {R}_.+1 {-2}R (ltnSn #|R|) => // m IHm R leRm in pR rR * => IH. | |
apply: (IH) => // S; rewrite properEcard; case/andP=> sSR ltSR. | |
exact: IHm (leq_trans ltSR _) (pgroupS sSR pR) (leq_trans (rankS sSR) rR) IH. | |
wlog not_clR_le3: / ~~ (nil_class R <= 3). | |
case: leqP => [clR_le3 _ | _ -> //]. | |
have [||-> //] := exponent_odd_nil23 pR; last by rewrite p_gt3. | |
by apply: odd_pgroup_odd pR; case/even_prime: p_pr p_gt3 => ->. | |
rewrite -sub_LdivT (OhmE 1 pR) gen_set_id ?subsetIr //. | |
apply/group_setP; rewrite !inE group1 expg1n. | |
split=> //= x y; case/LdivP=> Rx xp1; case/LdivP=> Ry yp1. | |
rewrite !inE groupM //=; apply: contraR not_clR_le3 => nt_xyp. | |
pose XY := <[x]> <*> <[y]>. | |
have [XYx XYy]: x \in XY /\ y \in XY by rewrite -!cycle_subG; apply/joing_subP. | |
have{nt_xyp} defR: XY = R. | |
have sXY_R : XY \subset R by rewrite join_subG !cycle_subG Rx Ry. | |
have pXY := pgroupS sXY_R pR; have [// | ltXY_R] := eqVproper sXY_R. | |
rewrite (exponentP (minR _ ltXY_R)) ?eqxx // in nt_xyp. | |
by rewrite (OhmE 1 pXY) groupM ?mem_gen ?inE ?XYx ?XYy /= ?xp1 ?yp1. | |
have sXR: <[x]> \subset R by rewrite cycle_subG. | |
have [<- | ltXR] := eqVproper sXR. | |
by rewrite 2?leqW // nil_class1 cycle_abelian. | |
have [S maxS sXS]: {S : {group gT} | maximal S R & <[x]> \subset S}. | |
exact: maxgroup_exists. | |
have nsSR: S <| R := p_maximal_normal pR maxS; have [sSR _] := andP nsSR. | |
have{nsSR} nsS1R: 'Ohm_1(S) <| R := gFnormal_trans _ nsSR. | |
have [sS1R nS1R] := andP nsS1R; have pS1 := pgroupS sS1R pR. | |
have expS1p: exponent 'Ohm_1(S) %| p := minR S (maxgroupp maxS). | |
have{expS1p} dimS1: logn p #|'Ohm_1(S)| <= 3. | |
exact: rank2_exponent_p_p3group pS1 (leq_trans (rankS sS1R) rR) expS1p. | |
have sXS1: <[x]> \subset 'Ohm_1(S). | |
rewrite cycle_subG /= (OhmE 1 (pgroupS sSR pR)) mem_gen //. | |
by rewrite !inE -cycle_subG sXS xp1 /=. | |
have dimS1b: logn p #|R / 'Ohm_1(S)| <= 1. | |
rewrite -quotientYidl // -defR joingA (joing_idPl sXS1). | |
rewrite quotientYidl ?cycle_subG ?(subsetP nS1R) //. | |
rewrite (leq_trans (logn_quotient _ _ _)) // -(pfactorK 1 p_pr). | |
by rewrite dvdn_leq_log ?prime_gt0 // order_dvdn yp1. | |
rewrite (leq_trans (nil_class_pgroup pR)) // geq_max /= -subn1 leq_subLR. | |
by rewrite -(Lagrange sS1R) lognM // -card_quotient // addnC leq_add. | |
Qed. | |
(* This is B & G, Lemma 4.9. *) | |
Lemma quotient_p2_Ohm1 gT p (R : {group gT}) : | |
p.-group R -> p > 3 -> logn p #|'Ohm_1(R)| <= 2 -> | |
forall T : {group gT}, T <| R -> logn p #|'Ohm_1(R / T)| <= 2. | |
Proof. | |
move=> pR p_gt3 dimR1; move: {2}_.+1 (ltnSn #|R|) => n. | |
elim: n => // n IHn in gT R pR dimR1 *; rewrite ltnS => leRn. | |
apply/forall_inP/idPn; rewrite negb_forall_in. | |
case/existsP/ex_mingroup=> T /mingroupP[/andP[nsTR dimRb1] minT]. | |
have [sTR nTR] := andP nsTR; have pT: p.-group T := pgroupS sTR pR. | |
pose card_iso_Ohm := card_isog (gFisog [igFun of @Ohm 1] _). | |
have ntT: T :!=: 1; last have p_pr: prime p by have [] := pgroup_pdiv pT ntT. | |
apply: contraNneq dimRb1 => ->. | |
by rewrite -(card_iso_Ohm _ _ _ _ (quotient1_isog R)). | |
have{minT} dimT: logn p #|T| = 1%N. | |
have [Z EpZ]: exists Z, Z \in 'E_p^1(T :&: 'Z(R)). | |
apply/p_rank_geP; rewrite -rank_pgroup ?(pgroupS (subsetIl T _)) //. | |
by rewrite rank_gt0 (meet_center_nil (pgroup_nil pR)). | |
have [sZ_ZT _ dimZ] := pnElemP EpZ; have [sZT sZZ] := subsetIP sZ_ZT. | |
have{sZZ} nsZR: Z <| R := sub_center_normal sZZ. | |
rewrite -(minT Z) // nsZR; apply: contra dimRb1 => dimRz1. | |
rewrite -(card_iso_Ohm _ _ _ _ (third_isog sZT nsZR nsTR)) /=. | |
rewrite IHn ?quotient_pgroup ?quotient_normal ?(leq_trans _ leRn) //. | |
by rewrite ltn_quotient ?(subset_trans sZT) // (nt_pnElem EpZ). | |
have pRb: p.-group (R / T) by apply: quotient_pgroup. | |
have{IHn} minR (Ub : {group coset_of T}): | |
Ub \subset R / T -> ~~ (logn p #|'Ohm_1(Ub)| <= 2) -> R / T = Ub. | |
- case/inv_quotientS=> // U -> sTU sUR dimUb; congr (_ / T). | |
apply/eqP; rewrite eq_sym eqEcard sUR leqNgt; apply: contra dimUb => ltUR. | |
rewrite IHn ?(pgroupS sUR) ?(normalS _ sUR) ?(leq_trans ltUR) //. | |
by rewrite (leq_trans _ dimR1) ?lognSg ?OhmS. | |
have [dimRb eRb]: logn p #|R / T| = 3 /\ exponent (R / T) %| p. | |
have [Rb_gt2 | Rb_le2] := ltnP 2 'r_p(R / T). | |
have [Ub Ep3Ub] := p_rank_geP Rb_gt2. | |
have [sUbR abelUb dimUb] := pnElemP Ep3Ub; have [_ _ eUb] := and3P abelUb. | |
by rewrite (minR Ub) // (Ohm1_id abelUb) dimUb. | |
rewrite -rank_pgroup // in Rb_le2. | |
have eRb: exponent (R / T) %| p. | |
by rewrite (minR _ (Ohm_sub 1 _)) ?exponent_Ohm1_rank2 ?Ohm_id. | |
split=> //; apply/eqP; rewrite eqn_leq rank2_exponent_p_p3group // ltnNge. | |
by apply: contra (leq_trans _) dimRb1; rewrite lognSg ?Ohm_sub. | |
have ntRb: (R / T) != 1. | |
by rewrite -cardG_gt1 (card_pgroup pRb) dimRb (ltn_exp2l 0) ?prime_gt1. | |
have{dimRb} dimR: logn p #|R| = 4. | |
by rewrite -(Lagrange sTR) lognM ?cardG_gt0 // dimT -card_quotient ?dimRb. | |
have nsR1R: 'Ohm_1(R) <| R := Ohm_normal 1 R; have [sR1R nR1R] := andP nsR1R. | |
have pR1: p.-group 'Ohm_1(R) := pgroupS sR1R pR. | |
have p_odd: odd p by case/even_prime: p_pr p_gt3 => ->. | |
have{p_odd} oddR: odd #|R| := odd_pgroup_odd p_odd pR. | |
have{} dimR1: logn p #|'Ohm_1(R)| = 2. | |
apply/eqP; rewrite eqn_leq dimR1 -p_rank_abelem; last first. | |
by rewrite abelem_Ohm1 // (p2group_abelian pR1). | |
rewrite ltnNge p_rank_Ohm1 -odd_pgroup_rank1_cyclic //. | |
apply: contra dimRb1 => cycR; have cycRb := quotient_cyclic T cycR. | |
by rewrite (Ohm1_cyclic_pgroup_prime cycRb pRb ntRb) (pfactorK 1). | |
have pRs: p.-group (R / 'Ohm_1(R)) by rewrite quotient_pgroup. | |
have dimRs: logn p #|R / 'Ohm_1(R)| = 2. | |
by rewrite -divg_normal // logn_div ?cardSg // dimR1 dimR. | |
have sR'R1: R^`(1) \subset 'Ohm_1(R). | |
by rewrite der1_min // (p2group_abelian pRs) ?dimRs. | |
have [|_ phiM] := exponent_odd_nil23 pR oddR. | |
by rewrite (leq_trans (nil_class_pgroup pR)) // dimR p_gt3. | |
pose phi := Morphism (phiM sR'R1). | |
suffices: logn p #|R / 'Ohm_1(R)| <= logn p #|T| by rewrite dimT dimRs. | |
have ->: 'Ohm_1(R) = 'ker phi. | |
rewrite -['ker phi]genGid (OhmE 1 pR); congr <<_>>. | |
by apply/setP=> x; rewrite !inE. | |
rewrite (card_isog (first_isog phi)) lognSg //=. | |
apply/subsetP=> _ /morphimP[x _ Rx ->] /=. | |
apply: coset_idr; first by rewrite groupX ?(subsetP nTR). | |
by rewrite morphX ?(subsetP nTR) // (exponentP eRb) // mem_quotient. | |
Qed. | |
(* This is B & G, Lemma 4.10. *) | |
Lemma Ohm1_metacyclic_p2Elem gT p (R : {group gT}) : | |
metacyclic R -> p.-group R -> odd #|R| -> ~~ cyclic R -> | |
'Ohm_1(R)%G \in 'E_p^2(R). | |
Proof. | |
case/metacyclicP=> S [cycS nsSR cycRb] pR oddR ncycR. | |
have [[sSR nSR] [s defS]] := (andP nsSR, cyclicP cycS). | |
have [T defTb sST sTR] := inv_quotientS nsSR (Ohm_sub 1 (R / S)). | |
have [pT oddT] := (pgroupS sTR pR, oddSg sTR oddR). | |
have Ts: s \in T by rewrite -cycle_subG -defS. | |
have iTs: #|T : <[s]>| = p. | |
rewrite -defS -card_quotient ?(subset_trans sTR) // -defTb. | |
rewrite (Ohm1_cyclic_pgroup_prime cycRb (quotient_pgroup _ pR)) // -subG1. | |
by rewrite quotient_sub1 ?(contra (fun sRS => cyclicS sRS cycS)). | |
have defR1: 'Ohm_1(R) = 'Ohm_1(T). | |
apply/eqP; rewrite eqEsubset (OhmS _ sTR) andbT -Ohm_id OhmS //. | |
by rewrite -(quotientSGK _ sST) ?gFsub_trans // -defTb morphim_Ohm. | |
rewrite (subsetP (pnElemS _ _ sTR)) // (group_inj defR1). | |
apply: Ohm1_extremal_odd iTs => //; apply: contra ncycR. | |
by rewrite !(@odd_pgroup_rank1_cyclic _ p) // -p_rank_Ohm1 -defR1 p_rank_Ohm1. | |
Qed. | |
(* This is B & G, Proposition 4.11 (due to Huppert). *) | |
Proposition p2_Ohm1_metacyclic gT p (R : {group gT}) : | |
p.-group R -> p > 3 -> logn p #|'Ohm_1(R)| <= 2 -> metacyclic R. | |
Proof. | |
move=> pR p_gt3 dimR1; move: {2}_.+1 (ltnSn #|R|) => n. | |
elim: n => // n IHn in gT R pR dimR1 *; rewrite ltnS => leRn. | |
have pR1: p.-group 'Ohm_1(R) := pgroupS (Ohm_sub 1 R) pR. | |
have [cRR | not_cRR] := boolP (abelian R). | |
have [b defR typeR] := abelian_structure cRR; move: dimR1 defR. | |
rewrite -(rank_abelian_pgroup pR cRR) -(size_abelian_type cRR) -{}typeR. | |
case: b => [|a [|b []]] //= _; first by move <-; rewrite big_nil metacyclic1. | |
by rewrite big_seq1 => <-; rewrite cyclic_metacyclic ?cycle_cyclic. | |
rewrite big_cons big_seq1; case/dprodP=> _ <- cAB _. | |
apply/existsP; exists <[a]>%G; rewrite cycle_cyclic /=. | |
rewrite /normal mulG_subl mulG_subG normG cents_norm //= quotientMidl. | |
by rewrite quotient_cycle ?cycle_cyclic // -cycle_subG cents_norm. | |
pose R' := R^`(1); pose e := 'Mho^1(R') != 1. | |
have nsR'R: R' <| R := der_normal 1 R; have [sR'R nR'R] := andP nsR'R. | |
have [T EpT]: exists T, T \in 'E_p^1('Mho^e(R') :&: 'Z(R)). | |
apply/p_rank_geP; rewrite -rank_pgroup; last first. | |
by rewrite (pgroupS _ pR) //= setIC subIset ?center_sub. | |
rewrite rank_gt0 (meet_center_nil (pgroup_nil pR)) ?gFnormal_trans //. | |
by case ntR'1: e; rewrite //= Mho0 (sameP eqP derG1P). | |
have [p_gt1 p_pr] := (ltnW (ltnW p_gt3), pnElem_prime EpT). | |
have p_odd: odd p by case/even_prime: p_pr p_gt3 => ->. | |
have{p_odd} oddR: odd #|R| := odd_pgroup_odd p_odd pR. | |
have [sTR'eZ abelT oT] := pnElemPcard EpT; rewrite expn1 in oT. | |
have{sTR'eZ abelT} [[sTR'e sTZ] [pT cTT eT]] := (subsetIP sTR'eZ, and3P abelT). | |
have sTR': T \subset R' := subset_trans sTR'e (Mho_sub e _). | |
have nsTR := sub_center_normal sTZ; have [sTR cRT] := subsetIP sTZ. | |
have cTR: R \subset 'C(T) by rewrite centsC. | |
have{n IHn leRn EpT} metaRb: metacyclic (R / T). | |
have pRb: p.-group (R / T) := quotient_pgroup T pR. | |
have dimRb: logn p #|'Ohm_1(R / T)| <= 2 by apply: quotient_p2_Ohm1. | |
by rewrite IHn ?(leq_trans (ltn_quotient _ _)) ?(nt_pnElem EpT). | |
have{metaRb} [Xb [cycXb nsXbR cycRs]] := metacyclicP metaRb. | |
have{cycRs} [yb defRb]: exists yb, R / T = Xb <*> <[yb]>. | |
have [ys defRs] := cyclicP cycRs; have [yb nXyb def_ys] := cosetP ys. | |
exists yb; rewrite -quotientYK ?cycle_subG ?quotient_cycle // -def_ys -defRs. | |
by rewrite quotientGK. | |
have{sTZ} ntXb: Xb :!=: 1. | |
apply: contraNneq not_cRR => Xb1. | |
by rewrite (cyclic_factor_abelian sTZ) // defRb Xb1 joing1G cycle_cyclic. | |
have [TX defTXb sTTX nsTXR] := inv_quotientN nsTR nsXbR. | |
have{cycXb} [[sTXR nTXR] [xb defXb]] := (andP nsTXR, cyclicP cycXb). | |
have [[x nTx def_xb] [y nTy def_yb]] := (cosetP xb, cosetP yb). | |
have{defTXb} defTX: T <*> <[x]> = TX. | |
rewrite -quotientYK ?cycle_subG ?quotient_cycle // -def_xb -defXb defTXb. | |
by rewrite quotientGK // (normalS _ sTXR). | |
have{yb defRb def_yb} defR: TX <*> <[y]> = R. | |
rewrite -defTX -joingA -quotientYK ?join_subG ?quotientY ?cycle_subG ?nTx //. | |
by rewrite !quotient_cycle // -def_xb -def_yb -defXb -defRb quotientGK. | |
have sXYR: <[x]> <*> <[y]> \subset R by rewrite -defR -defTX -joingA joing_subr. | |
have [Rx Ry]: x \in R /\ y \in R by rewrite -!cycle_subG; apply/joing_subP. | |
have cTXY := subset_trans sXYR cTR; have [cTX cTY] := joing_subP cTXY. | |
have [R'1_1 {e sTR'e} | ntR'1] := eqVneq 'Mho^1(R') 1; last first. | |
have sR'TX: R' \subset TX. | |
rewrite der1_min // -defR quotientYidl ?cycle_subG ?(subsetP nTXR) //. | |
by rewrite quotient_abelian // cycle_abelian. | |
have sTX : T \subset <[x]>. | |
rewrite (subset_trans (subset_trans sTR'e (MhoS e sR'TX))) // /e ntR'1. | |
have{} defTX: T \* <[x]> = TX by rewrite cprodEY // centsC. | |
rewrite -(Mho_cprod 1 defTX) ['Mho^1(_)](trivgP _) ?cprod1g ?Mho_sub //=. | |
rewrite (MhoE 1 pT) gen_subG; apply/subsetP=> tp; case/imsetP=> t Tt ->{tp}. | |
by rewrite inE (exponentP eT). | |
apply/metacyclicP; exists TX; split=> //. | |
by rewrite -defTX (joing_idPr sTX) cycle_cyclic. | |
rewrite -defR quotientYidl ?cycle_subG ?(subsetP nTXR) //. | |
by rewrite quotient_cyclic ?cycle_cyclic. | |
have{R'1_1} eR': exponent R' %| p. | |
have <-: 'Ohm_1(R') = R' by apply/eqP; rewrite trivg_Mho ?R'1_1. | |
rewrite -sub_LdivT (OhmEabelian (pgroupS sR'R pR)) ?subsetIr //. | |
by rewrite (abelianS (OhmS 1 sR'R)) // (p2group_abelian pR1). | |
pose r := [~ x, y]; have Rr: r \in R by apply: groupR. | |
have{defXb ntXb nsXbR} [i def_rb]: exists i, coset T r = (xb ^+ p) ^+ i. | |
have p_xb: p.-elt xb by rewrite def_xb morph_p_elt ?(mem_p_elt pR). | |
have pRbb: p.-group (R / T / 'Mho^1(Xb)) by rewrite !quotient_pgroup. | |
have /andP[_ nXb1R]: 'Mho^1(Xb) <| R / T by apply: gFnormal_trans. | |
apply/cycleP; rewrite -(Mho_p_cycle 1 p_xb) -defXb. | |
apply: coset_idr; first by rewrite (subsetP nXb1R) ?mem_quotient. | |
apply/eqP; rewrite !morphR ?(subsetP nXb1R) ?mem_quotient //=; apply/commgP. | |
red; rewrite -(@centerC _ (R / T / _)) ?mem_quotient // -cycle_subG. | |
rewrite -quotient_cycle ?(subsetP nXb1R) ?mem_quotient // -def_xb -defXb. | |
suffices oXbb: #|Xb / 'Mho^1(Xb)| = p. | |
apply: prime_meetG; first by rewrite oXbb. | |
rewrite (meet_center_nil (pgroup_nil pRbb)) ?quotient_normal //. | |
by rewrite -cardG_gt1 oXbb. | |
rewrite -divg_normal ?Mho_normal //= defXb. | |
rewrite -(mul_card_Ohm_Mho_abelian 1) ?cycle_abelian ?mulnK ?cardG_gt0 //. | |
by rewrite (Ohm1_cyclic_pgroup_prime _ p_xb) ?cycle_cyclic //= -defXb. | |
have{xb def_xb def_rb} [t Tt def_r]: exists2 t, t \in T & r = t * x ^+ (p * i). | |
apply/rcosetP; rewrite -val_coset ?groupX ?morphX //= -def_xb. | |
by rewrite expgM -def_rb val_coset ?groupR // rcoset_refl. | |
have{eR' def_r cTT} defR': R' = <[r]>. | |
have R'r : r \in R' by apply: mem_commg. | |
have cxt: t \in 'C[x] by apply/cent1P; apply: (centsP cRT). | |
have crx: x \in 'C[r] by rewrite cent1C def_r groupM ?groupX ?cent1id. | |
have def_xy: x ^ y = t * x ^+ (p * i).+1. | |
by rewrite conjg_mulR -/r def_r expgS !mulgA (cent1P cxt). | |
have crR : R \subset 'C[r]. | |
rewrite -defR -defTX !join_subG sub_cent1 (subsetP cTR) //= !cycle_subG. | |
rewrite crx cent1C (sameP cent1P commgP); apply/conjg_fixP. | |
rewrite def_r conjMg conjXg conjgE (centsP cRT t) // mulKg conjg_mulR -/r. | |
by rewrite (expgMn _ (cent1P crx)) (expgM r) (exponentP eR') ?expg1n ?mulg1. | |
apply/eqP; rewrite eqEsubset cycle_subG R'r andbT. | |
have nrR : R \subset 'N(<[r]>) by rewrite cents_norm ?cent_cycle. | |
rewrite der1_min // -defR -defTX -joingA. | |
rewrite norm_joinEr ?(subset_trans sXYR) ?normal_norm //. | |
rewrite quotientMl ?(subset_trans sTR) // abelianM quotient_abelian //=. | |
rewrite quotient_cents //= -der1_joing_cycles ?der_abelian //. | |
by rewrite -sub_cent1 (subset_trans sXYR). | |
have [S maxS sR'S] : {S | [max S | S \subset R & cyclic S] & R' \subset S}. | |
by apply: maxgroup_exists; rewrite sR'R /= -/R' defR' cycle_cyclic. | |
case/maxgroupP: maxS; case/andP=> sSR cycS maxS. | |
have nsSR: S <| R := sub_der1_normal sR'S sSR; have [_ nSR] := andP nsSR. | |
apply/existsP; exists S; rewrite cycS nsSR //=. | |
suffices uniqRs1 Us: Us \in 'E_p^1(R / S) -> 'Ohm_1(R) / S = Us. | |
have pRs: p.-group (R / S) := quotient_pgroup S pR. | |
rewrite abelian_rank1_cyclic ?sub_der1_abelian ?(rank_pgroup pRs) // leqNgt. | |
apply: contraFN (ltnn 1) => rRs; have [Us EpUs] := p_rank_geP (ltnW rRs). | |
have [Vs EpVs] := p_rank_geP rRs; have [sVsR abelVs <-] := pnElemP EpVs. | |
have [_ _ <-] := pnElemP EpUs; apply: lognSg; apply/subsetP=> vs Vvs. | |
apply: wlog_neg => notUvs; rewrite -cycle_subG -(uniqRs1 _ EpUs). | |
rewrite (uniqRs1 <[vs]>%G) ?p1ElemE // !inE cycle_subG (subsetP sVsR) //=. | |
by rewrite -orderE (abelem_order_p abelVs Vvs (group1_contra notUvs)). | |
case/pnElemPcard; rewrite expn1 => sUsR _ oUs. | |
have [U defUs sSU sUR] := inv_quotientS nsSR sUsR. | |
have [cycU | {maxS} ncycU] := boolP (cyclic U). | |
by rewrite -[p]oUs defUs (maxS U) ?sUR // trivg_quotient cards1 in p_gt1. | |
have EpU1: 'Ohm_1(U)%G \in 'E_p^2(U). | |
have [u defS] := cyclicP cycS; rewrite defS cycle_subG in sSU. | |
rewrite (Ohm1_extremal_odd (pgroupS sUR pR) (oddSg sUR oddR) _ sSU) //. | |
by rewrite -defS -card_quotient -?defUs // (subset_trans sUR). | |
have defU1: 'Ohm_1(U) = 'Ohm_1(R). | |
apply/eqP; rewrite eqEcard OhmS // (card_pnElem EpU1). | |
by rewrite (card_pgroup pR1) leq_exp2l. | |
apply/eqP; rewrite eqEcard oUs defUs -{1}defU1 quotientS ?Ohm_sub //. | |
rewrite dvdn_leq ?cardG_gt0 //; case/pgroup_pdiv: (quotient_pgroup S pR1) => //. | |
rewrite -subG1 quotient_sub1 ?(gFsub_trans _ nSR) //. | |
apply: contraL (cycS) => sR1S; rewrite abelian_rank1_cyclic ?cyclic_abelian //. | |
rewrite -ltnNge (rank_pgroup (pgroupS sSR pR)); apply/p_rank_geP. | |
by exists 'Ohm_1(U)%G; rewrite -(setIidPr sSU) pnElemI inE EpU1 inE /= defU1. | |
Qed. | |
(* This is B & G, Theorem 4.12 (also due to Huppert), for internal action. *) | |
Theorem coprime_metacyclic_cent_sdprod gT p (R A : {group gT}) : | |
p.-group R -> odd #|R| -> metacyclic R -> p^'.-group A -> A \subset 'N(R) -> | |
let T := [~: R, A] in let C := 'C_R(A) in | |
[/\ (*a*) abelian T, | |
(*b*) T ><| C = R | |
& (*c*) ~~ abelian R -> T != 1 -> | |
[/\ C != 1, cyclic T, cyclic C & R^`(1) \subset T]]. | |
Proof. | |
move=> pR oddR metaR p'A nRA T C. | |
suffices{C T} cTT: abelian [~: R, A]. | |
have sTR: T \subset R by rewrite commg_subl. | |
have nTR: R \subset 'N(T) by rewrite commg_norml. | |
have coRA: coprime #|R| #|A| := pnat_coprime pR p'A. | |
have solR: solvable R := pgroup_sol pR. | |
have defR: T * C = R by rewrite coprime_cent_prod. | |
have sCR: C \subset R := subsetIl _ _; have nTC := subset_trans sCR nTR. | |
have tiTC: T :&: C = 1. | |
have defTA: [~: T, A] = T by rewrite coprime_commGid. | |
have coTA: coprime #|T| #|A| := coprimeSg sTR coRA. | |
by rewrite setIA (setIidPl sTR) -defTA coprime_abel_cent_TI ?commg_normr. | |
split=> // [|not_cRR ntT]; first by rewrite sdprodE. | |
have ntC: C != 1 by apply: contraNneq not_cRR => C1; rewrite -defR C1 mulg1. | |
suffices [cycT cycC]: cyclic T /\ cyclic C. | |
split=> //; rewrite der1_min //= -/T -defR quotientMidl. | |
by rewrite cyclic_abelian ?quotient_cyclic. | |
have [pT pC]: p.-group T /\ p.-group C by rewrite !(pgroupS _ pR). | |
apply/andP; rewrite (odd_pgroup_rank1_cyclic pC (oddSg sCR oddR)). | |
rewrite abelian_rank1_cyclic // -rank_pgroup //. | |
rewrite -(geq_leqif (leqif_add (leqif_geq _) (leqif_geq _))) ?rank_gt0 //. | |
have le_rTC_dimTC1: 'r(T) + 'r(C) <= logn p #|'Ohm_1(T) * 'Ohm_1(C)|. | |
rewrite (rank_pgroup pC) -p_rank_Ohm1 (rank_abelian_pgroup pT cTT). | |
rewrite TI_cardMg; last by apply/trivgP; rewrite -tiTC setISS ?Ohm_sub. | |
by rewrite lognM ?cardG_gt0 // leq_add2l p_rank_le_logn. | |
apply: leq_trans le_rTC_dimTC1 _; rewrite add1n. | |
have ncycR: ~~ cyclic R by apply: contra not_cRR; apply: cyclic_abelian. | |
have: 'Ohm_1(R)%G \in 'E_p^2(R) by apply: Ohm1_metacyclic_p2Elem. | |
have nT1C1: 'Ohm_1(C) \subset 'N('Ohm_1(T)). | |
by rewrite gFsub_trans ?gFnorm_trans. | |
by case/pnElemP=> _ _ <-; rewrite -norm_joinEr ?lognSg // join_subG !OhmS. | |
without loss defR: R pR oddR metaR nRA / [~: R, A] = R. | |
set T := [~: R, A] => IH; have sTR: T \subset R by rewrite commg_subl. | |
have defTA: [~: T, A] = T. | |
by rewrite coprime_commGid ?(pgroup_sol pR) ?(pnat_coprime pR). | |
rewrite -defTA IH ?(pgroupS sTR) ?(oddSg sTR) ?(metacyclicS sTR) //. | |
exact: commg_normr. | |
rewrite defR; apply: wlog_neg => not_cRR. | |
have ncycR: ~~ cyclic R := contra (@cyclic_abelian _ R) not_cRR. | |
pose cycR_nA S := [&& cyclic S, S \subset R & A \subset 'N(S)]. | |
have [S maxS sR'S] : {S | [max S | cycR_nA S] & R^`(1) \subset S}. | |
apply: maxgroup_exists; rewrite {}/cycR_nA der_sub /= gFnorm_trans // andbT. | |
have [K [cycK nsKR cycKR]] := metacyclicP metaR. | |
by rewrite (cyclicS _ cycK) // der1_min ?normal_norm // cyclic_abelian. | |
have{maxS} [/and3P[cycS sSR nSA] maxS] := maxgroupP maxS. | |
have ntS: S :!=: 1 by rewrite (subG1_contra sR'S) // (sameP eqP derG1P). | |
have nSR: R \subset 'N(S) := sub_der1_norm sR'S sSR. | |
have nsSR: S <| R by apply/andP. | |
have sSZ: S \subset 'Z(R). | |
have sR_NS': R \subset 'N(S)^`(1) by rewrite -{1}defR commgSS. | |
rewrite subsetI sSR centsC (subset_trans sR_NS') // der1_min ?cent_norm //=. | |
rewrite -ker_conj_aut (isog_abelian (first_isog _)). | |
by rewrite (abelianS (Aut_conj_aut _ _)) ?Aut_cyclic_abelian. | |
have cRbRb: abelian (R / S) by rewrite sub_der1_abelian. | |
have pRb: p.-group (R / S) := quotient_pgroup S pR. | |
pose R1 := 'Ohm_1(R); pose Rb1 := 'Ohm_1(R / S). | |
have [Xb]: exists2 Xb, R1 / S \x gval Xb = Rb1 & A / S \subset 'N(Xb). | |
have MaschkeRb1 := Maschke_abelem (Ohm1_abelem pRb cRbRb). | |
pose normOhm1 := (morphim_Ohm, gFnorm_trans, quotient_norms S). | |
by apply: MaschkeRb1; rewrite ?quotient_pgroup ?normOhm1. | |
case/dprodP=> _ defRb1 _ tiR1bX nXbA. | |
have sXbR: Xb \subset R / S. | |
by apply: subset_trans (Ohm_sub 1 _); rewrite -defRb1 mulG_subr. | |
have{sXbR} [X defXb sSX sXR] := inv_quotientS nsSR sXbR. | |
have{nXbA nsSR} nXA: A \subset 'N(X). | |
rewrite (subset_trans (mulG_subr S A)) // -quotientK //. | |
by rewrite -(quotientGK (normalS sSX sXR nsSR)) -defXb morphpre_norms. | |
have{tiR1bX} cycX: cyclic X. | |
have sX1_XR1: 'Ohm_1(X) \subset X :&: R1 by rewrite subsetI Ohm_sub OhmS. | |
have cyc_sR := odd_pgroup_rank1_cyclic (pgroupS _ pR) (oddSg _ oddR). | |
have:= cycS; rewrite !{}cyc_sR //; apply: leq_trans. | |
rewrite -p_rank_Ohm1 p_rankS // (subset_trans sX1_XR1) //. | |
rewrite -quotient_sub1 ?subIset ?(subset_trans sXR) //. | |
by rewrite quotientGI // setIC -defXb tiR1bX. | |
rewrite (cyclic_factor_abelian sSZ) // abelian_rank1_cyclic //. | |
rewrite (rank_abelian_pgroup pRb cRbRb) -defRb1 defXb. | |
rewrite (maxS X) ?trivg_quotient ?mulg1 //; last exact/and3P. | |
have EpR1: 'Ohm_1(R)%G \in 'E_p^2(R) by apply: Ohm1_metacyclic_p2Elem. | |
have [sR1R _ dimR1] := pnElemP EpR1; have pR1 := pgroupS sR1R pR. | |
rewrite -(card_isog (second_isog _)) ?(subset_trans sR1R) // -ltnS -dimR1. | |
by rewrite (ltn_log_quotient pR1) ?subsetIr //= meet_Ohm1 // (setIidPl sSR). | |
Qed. | |
(* This covers B & G, Lemmas 4.13 and 4.14. *) | |
Lemma pi_Aut_rank2_pgroup gT p q (R : {group gT}) : | |
p.-group R -> odd #|R| -> 'r(R) <= 2 -> q \in \pi(Aut R) -> q != p -> | |
[/\ q %| (p ^ 2).-1, q < p & q %| p.+1./2 \/ q %| p.-1./2]. | |
Proof. | |
move=> pR oddR rR q_Ar p'q; rewrite /= in q_Ar. | |
have [R1 | ntR] := eqsVneq R 1; first by rewrite R1 Aut1 cards1 in q_Ar. | |
have{ntR} [p_pr p_dv_R _] := pgroup_pdiv pR ntR. | |
have{oddR p_dv_R} [p_odd p_gt1] := (dvdn_odd p_dv_R oddR, prime_gt1 p_pr). | |
have{q_Ar} [q_pr q_dv_Ar]: prime q /\ q %| #|Aut R|. | |
by move: q_Ar; rewrite mem_primes; case/and3P. | |
suffices q_dv_p2: q %| (p ^ 2).-1. | |
have q_dv_p1: q %| p.+1./2 \/ q %| p.-1./2. | |
apply/orP; have:= q_dv_p2; rewrite -subn1 (subn_sqr p 1). | |
rewrite -[p]odd_double_half p_odd /= !doubleK addKn addn1 -doubleS -!mul2n. | |
rewrite mulnC !Euclid_dvdM // dvdn_prime2 // -orbA; case: eqP => // -> _. | |
by rewrite -Euclid_dvdM // /dvdn modn2 mulnC oddM andbN. | |
have p_gt2: p > 2 by rewrite ltn_neqAle; case: eqP p_odd => // <-. | |
have p1_ltp: p.+1./2 < p. | |
by rewrite -divn2 ltn_divLR // muln2 -addnn -addn2 leq_add2l. | |
split=> //; apply: leq_ltn_trans p1_ltp. | |
move/orP: q_dv_p1; rewrite -(subnKC p_gt2) leqNgt. | |
by apply: contraL => lt_p1q; rewrite negb_or !gtnNdvd // ltnW. | |
wlog{q_dv_Ar} [a oa nRa]: gT R pR rR / {a | #[a] = q & a \in 'N(R) :\: 'C(R)}. | |
have [a Ar_a oa] := Cauchy q_pr q_dv_Ar. | |
rewrite -(injm_rank (injm_sdpair1 [Aut R])) // in rR. | |
move=> IH; apply: IH rR _; rewrite ?morphim_pgroup ?morphim_odd //. | |
exists (sdpair2 [Aut R] a); rewrite ?(order_injm (injm_sdpair2 _)) //. | |
rewrite inE (subsetP (im_sdpair_norm _)) ?mem_morphim //= andbT. | |
apply: contraL (prime_gt1 q_pr) => cRa; rewrite -oa order_gt1 negbK. | |
apply/eqP; apply: (eq_Aut Ar_a (group1 _)) => x Rx. | |
by rewrite perm1 [a x](@astab_act _ _ _ [Aut R] R) ?astabEsd ?mem_morphpre. | |
move: {2}_.+1 (ltnSn #|R|) => n. | |
elim: n => // n IHn in gT a R pR rR nRa oa *; rewrite ltnS => leRn. | |
case recR: [exists (S : {group gT} | S \proper R), a \in 'N(S) :\: 'C(S)]. | |
have [S ltSR nSa] := exists_inP recR; rewrite properEcard in ltSR. | |
have{ltSR} [sSR ltSR] := andP ltSR; have rS := leq_trans (rankS sSR) rR. | |
by apply: IHn nSa oa _; rewrite ?(pgroupS sSR) ?(leq_trans ltSR). | |
do [rewrite inE -!cycle_subG orderE; set A := <[a]>] in nRa oa. | |
have{nRa oa} [[not_cRA nRA] oA] := (andP nRa, oa). | |
have coRA : coprime #|R| #|A| by rewrite oA (pnat_coprime pR) ?pnatE. | |
have{recR} IH: forall S, gval S \proper R -> A \subset 'N(S) -> A \subset 'C(S). | |
move=> S ltSR; rewrite !cycle_subG => nSa; apply: contraFT recR => not_cSa. | |
by apply/exists_inP; exists S; rewrite // inE not_cSa nSa. | |
have defR1: 'Ohm_1(R) = R. | |
apply: contraNeq not_cRA; rewrite eqEproper Ohm_sub negbK => ltR1R. | |
rewrite (coprime_odd_faithful_Ohm1 pR) ?IH ?(odd_pgroup_odd p_odd) //. | |
exact: gFnorm_trans. | |
have defRA: [~: R, A] = R. | |
apply: contraNeq not_cRA; rewrite eqEproper commg_subl nRA negbK => ltRAR. | |
rewrite centsC; apply/setIidPl. | |
rewrite -{2}(coprime_cent_prod nRA) ?(pgroup_sol pR) //. | |
by rewrite mulSGid // subsetI commg_subl nRA centsC IH ?commg_normr. | |
have [cRR | not_cRR] := boolP (abelian R). | |
rewrite -subn1 (subn_sqr p 1) Euclid_dvdM //. | |
have abelR: p.-abelem R by rewrite -defR1 Ohm1_abelem. | |
have ntR: R :!=: 1 by apply: contraNneq not_cRA => ->; apply: cents1. | |
pose rAR := reprGLm (abelem_repr abelR ntR nRA). | |
have:= cardSg (subsetT (rAR @* A)); rewrite card_GL ?card_Fp //. | |
rewrite card_injm ?ker_reprGLm ?rker_abelem ?prime_TIg ?oA // unlock. | |
rewrite Gauss_dvdr; last by rewrite coprimeXr ?prime_coprime ?dvdn_prime2. | |
move: rR; rewrite -ltnS -[_ < _](mem_iota 0) !inE eqn0Ngt rank_gt0 ntR. | |
rewrite (dim_abelemE abelR ntR) (rank_abelem abelR). | |
do [case/pred2P=> ->; rewrite /= muln1] => [-> // | ]. | |
by rewrite (subn_sqr p 1) mulnA !Euclid_dvdM ?orbb. | |
have [[defPhi defR'] _]: special R /\ 'C_R(A) = 'Z(R). | |
apply: (abelian_charsimple_special pR) => //. | |
apply/bigcupsP=> S /andP[charS cSS]. | |
rewrite centsC IH ?(char_norm_trans charS) // properEneq char_sub // andbT. | |
by apply: contraNneq not_cRR => <-. | |
have ntZ: 'Z(R) != 1 by rewrite -defR' (sameP eqP derG1P). | |
have ltRbR: #|R / 'Z(R)| < #|R| by rewrite ltn_quotient ?center_sub. | |
have pRb: p.-group (R / 'Z(R)) by apply: quotient_pgroup. | |
have nAZ: A \subset 'N('Z(R)) by apply: gFnorm_trans. | |
have defAb: A / 'Z(R) = <[coset _ a]> by rewrite quotient_cycle -?cycle_subG. | |
have oab: #[coset 'Z(R) a] = q. | |
rewrite orderE -defAb -(card_isog (quotient_isog _ _)) //. | |
by rewrite coprime_TIg ?(coprimeSg (center_sub R)). | |
have rRb: 'r(R / 'Z(R)) <= 2. | |
rewrite (rank_pgroup pRb) (leq_trans (p_rank_le_logn _ _)) // -ltnS. | |
apply: leq_trans (rank2_exponent_p_p3group pR rR _). | |
by rewrite -(ltn_exp2l _ _ p_gt1) -!card_pgroup. | |
by rewrite -defR1 (exponent_Ohm1_class2 p_odd) // nil_class2 defR'. | |
apply: IHn oab (leq_trans ltRbR leRn) => //. | |
rewrite inE -!cycle_subG -defAb quotient_norms ?andbT //. | |
apply: contra not_cRA => cRAb; rewrite (coprime_cent_Phi pR coRA) // defPhi. | |
by rewrite commGC -quotient_cents2 ?gFnorm. | |
Qed. | |
(* B & G, Lemma 4.15 is covered by maximal/critical_extraspecial. *) | |
(* This is B & G, Theorem 4.16 (due to Blackburn). *) | |
Theorem rank2_coprime_comm_cprod gT p (R A : {group gT}) : | |
p.-group R -> odd #|R| -> R :!=: 1 -> 'r(R) <= 2 -> | |
[~: R, A] = R -> p^'.-group A -> odd #|A| -> | |
[/\ p > 3 | |
& [\/ abelian R | |
| exists2 S : {group gT}, | |
[/\ ~~ abelian S, logn p #|S| = 3 & exponent S %| p] | |
& exists C : {group gT}, | |
[/\ S \* C = R, cyclic C & 'Ohm_1(C) = S^`(1)]]]. | |
Proof. | |
move=> pR oddR ntR rR defRA p'A oddA. | |
have [p_pr _ _] := pgroup_pdiv pR ntR; have p_gt1 := prime_gt1 p_pr. | |
have nilR: nilpotent R := pgroup_nil pR. | |
have nRA: A \subset 'N(R) by rewrite -commg_subl defRA. | |
have p_gt3: p > 3; last split => //. | |
have [Ab1 | [q q_pr q_dv_Ab]] := trivgVpdiv (A / 'C_A(R)). | |
case/eqP: ntR; rewrite -defRA commGC; apply/commG1P. | |
by rewrite -subsetIidl -quotient_sub1 ?Ab1 ?normsI ?norms_cent ?normG. | |
have odd_q := dvdn_odd q_dv_Ab (quotient_odd _ oddA). | |
have p'q := pgroupP (quotient_pgroup _ p'A) q q_pr q_dv_Ab. | |
have q_gt1: q > 1 := prime_gt1 q_pr. | |
have q_gt2: q > 2 by rewrite ltn_neqAle; case: eqP odd_q => // <-. | |
apply: leq_ltn_trans q_gt2 _. | |
rewrite /= -ker_conj_aut (card_isog (first_isog_loc _ _)) // in q_dv_Ab. | |
have q_dv_A := dvdn_trans q_dv_Ab (cardSg (Aut_conj_aut _ _)). | |
by case/(pi_Aut_rank2_pgroup pR): (pgroupP (pgroup_pi _) q q_pr q_dv_A). | |
pose S := 'Ohm_1(R); pose S' := S^`(1); pose C := 'C_R(S). | |
have pS: p.-group S := pgroupS (Ohm_sub 1 _) pR. | |
have nsSR: S <| R := gFnormal _ R. | |
have nsS'R: S' <| R := gFnormal_trans _ nsSR. | |
have [sSR nSR] := andP nsSR; have [_ nS'R] := andP nsS'R. | |
have [Sle2 | Sgt2] := leqP (logn p #|S|) 2. | |
have metaR: metacyclic R := p2_Ohm1_metacyclic pR p_gt3 Sle2. | |
have [cRR _ _] := coprime_metacyclic_cent_sdprod pR oddR metaR p'A nRA. | |
by left; rewrite -defRA. | |
have{p_gt3} eS: exponent S %| p by apply: exponent_Ohm1_rank2. | |
have{rR} rS: 'r(S) <= 2 by rewrite rank_Ohm1. | |
have{Sgt2} dimS: logn p #|S| = 3. | |
by apply/eqP; rewrite eqn_leq rank2_exponent_p_p3group. | |
have{rS} not_cSS: ~~ abelian S. | |
by apply: contraL rS => cSS; rewrite -ltnNge -dimS -rank_abelem ?abelem_Ohm1. | |
have esS: extraspecial S by apply: (p3group_extraspecial pS); rewrite ?dimS. | |
have defS': S' = 'Z(S) by case: esS; case. | |
have oS': #|S'| = p by rewrite defS' (card_center_extraspecial pS esS). | |
have dimS': logn p #|S'| = 1%N by rewrite oS' (pfactorK 1). | |
have nsCR: C <| R := normalGI nSR (cent_normal _); have [sCR nCR] := andP nsCR. | |
have [pC oddC]: p.-group C * odd #|C| := (pgroupS sCR pR, oddSg sCR oddR). | |
have defC1: 'Ohm_1(C) = S'. | |
apply/eqP; rewrite eqEsubset defS' subsetI OhmS ?(OhmE 1 pC) //= -/C. | |
by rewrite gen_subG setIAC subsetIr sub_gen ?setSI // subsetI sSR sub_LdivT. | |
have{pC oddC} cycC: cyclic C. | |
rewrite (odd_pgroup_rank1_cyclic pC) //. | |
by rewrite -p_rank_Ohm1 defC1 -dimS' p_rank_le_logn. | |
pose T := [~: S, R]; have nsTR: T <| R by rewrite /normal commg_normr comm_subG. | |
have [sTR nTR] := andP nsTR; have pT: p.-group T := pgroupS sTR pR. | |
have [sTS' | not_sTS' {esS}] := boolP (T \subset S'). | |
right; exists [group of S] => //; exists [group of C]. | |
by rewrite (critical_extraspecial pR sSR esS sTS'). | |
have ltTS: T \proper S by rewrite (nil_comm_properl nilR) ?Ohm1_eq1 ?subsetIidl. | |
have sTS: T \subset S := proper_sub ltTS. | |
have [sS'T ltS'T]: S' \subset T /\ S' \proper T by rewrite /proper commgS. | |
have{ltS'T ltTS} dimT: logn p #|T| = 2. | |
by apply/eqP; rewrite eqn_leq -ltnS -dimS -dimS' !properG_ltn_log. | |
have{eS} eT: exponent T %| p := dvdn_trans (exponentS sTS) eS. | |
have cTT: abelian T by rewrite (p2group_abelian pT) ?dimT. | |
have abelT: p.-abelem T by apply/and3P. | |
pose B := 'C_R(T); have sTB: T \subset B by rewrite subsetI sTR. | |
have nsBR: B <| R := normalGI nTR (cent_normal _); have [sBR nBR] := andP nsBR. | |
have not_sSB: ~~ (S \subset B). | |
by rewrite defS' !subsetI sTS sSR centsC in not_sTS' *. | |
have maxB: maximal B R. | |
rewrite p_index_maximal // (_ : #|R : B| = p) //; apply/prime_nt_dvdP=> //. | |
by apply: contra not_sSB; rewrite indexg_eq1; apply: subset_trans. | |
rewrite -(part_pnat_id (pnat_dvd (dvdn_indexg _ _) pR)) p_part. | |
by rewrite (@dvdn_exp2l _ _ 1) // logn_quotient_cent_abelem ?dimT //. | |
have{maxB nsBR} defR: B * S = R := mulg_normal_maximal nsBR maxB sSR not_sSB. | |
have cBbBb: abelian (B / C). | |
rewrite sub_der1_abelian // subsetI comm_subG ?subsetIl //=; apply/commG1P. | |
suff cB_SB: [~: S, B, B] = 1 by rewrite three_subgroup // [[~: _, S]]commGC. | |
by apply/commG1P; rewrite centsC subIset // centS ?orbT // commgS. | |
have{cBbBb} abelBb: p.-abelem (B / C). | |
apply/abelemP=> //; split=> // Cg; case/morphimP=> x Nx Bx /= ->. | |
have [Rx cTx] := setIP Bx; rewrite -morphX //= coset_id // inE groupX //=. | |
apply/centP=> y Sy; symmetry; have Tyx : [~ y, x] \in T by apply: mem_commg. | |
by apply/commgP; rewrite commgX ?(exponentP eT) //; apply: (centP cTx). | |
have nsCB: C <| B by rewrite (normalS _ _ nsCR) ?setIS ?subsetIl // centS. | |
have p'Ab: p^'.-group (A / C) by apply: quotient_pgroup. | |
have sTbB: T / C \subset B / C by rewrite quotientS. | |
have nSA: A \subset 'N(S) := gFnorm_trans _ nRA. | |
have nTA: A \subset 'N(T) := normsR nSA nRA. | |
have nTbA: A / C \subset 'N(T / C) := quotient_norms _ nTA. | |
have nBbA: A / C \subset 'N(B / C). | |
by rewrite quotient_norms ?normsI ?norms_cent. | |
have{p'Ab sTbB nBbA abelBb nTbA} | |
[Xb defBb nXbA] := Maschke_abelem abelBb p'Ab sTbB nBbA nTbA. | |
have{defBb} [_] := dprodP defBb; rewrite /= -/T -/B => defBb _ tiTbX. | |
have sXbB: Xb \subset B / C by rewrite -defBb mulG_subr. | |
have{sXbB} [X] := inv_quotientS nsCB sXbB; rewrite /= -/C -/B => defXb sCX sXB. | |
have sXR: X \subset R := subset_trans sXB sBR; have pX := pgroupS sXR pR. | |
have nsCX: C <| X := normalS sCX sXR nsCR. | |
have{tiTbX} ziTX: T :&: X \subset C. | |
rewrite -quotient_sub1 ?subIset ?(subset_trans sTR) ?normal_norm //= -/C. | |
by rewrite quotientIG -?defXb ?tiTbX. | |
have{nXbA} nXA: A \subset 'N(X). | |
have nCA: A \subset 'N(C) by rewrite normsI ?norms_cent. | |
by rewrite -(quotientSGK nCA) ?normsG // quotient_normG -?defXb. | |
have{abelT} defB1: 'Ohm_1(B) = T. | |
apply/eqP; rewrite eq_sym eqEcard -{1}[T](Ohm1_id abelT) OhmS //. | |
have pB1: p.-group 'Ohm_1(B) by apply: pgroupS pR; apply: gFsub_trans. | |
rewrite (card_pgroup pT) (card_pgroup pB1) leq_exp2l //= -/T -/B. | |
rewrite dimT -ltnS -dimS properG_ltn_log // properEneq OhmS ?subsetIl //= -/S. | |
by case: eqP not_sSB => // <-; rewrite Ohm_sub. | |
have{ziTX defB1} cycX: cyclic X; last have [x defX]:= cyclicP cycX. | |
rewrite (odd_pgroup_rank1_cyclic pX (oddSg sXR oddR)) -p_rank_Ohm1. | |
have:= cycC; rewrite abelian_rank1_cyclic ?cyclic_abelian //= -/C. | |
apply: leq_trans (leq_trans (p_rank_le_rank p _) (rankS _)). | |
by apply: subset_trans ziTX; rewrite subsetI Ohm_sub -defB1 OhmS. | |
have{Xb defXb defBb nsCX} mulSX: S * X = R. | |
have nCT: T \subset 'N(C) := subset_trans sTR nCR. | |
rewrite -defR -(normC (subset_trans sSR nBR)) -[B](quotientGK nsCB) -defBb. | |
rewrite cosetpreM quotientK // defXb quotientGK // -(normC nCT). | |
by rewrite -mulgA (mulSGid sCX) mulgA (mulGSid sTS). | |
have{mulSX} not_sXS_S': ~~ ([~: X, S] \subset S'). | |
apply: contra not_sTS' => sXS_S'; rewrite /T -mulSX. | |
by rewrite commGC commMG ?(subset_trans sXR) // mul_subG. | |
have [oSb oTb] : #|S / T| = p /\ #|T / S'| = p. | |
rewrite (card_pgroup (quotient_pgroup _ pS)) -divg_normal ?(normalS _ sSR) //. | |
rewrite (card_pgroup (quotient_pgroup _ pT)) -divg_normal ?(normalS _ sTR) //. | |
by rewrite !logn_div ?cardSg // dimS dimT dimS'. | |
have [Ty defSb]: exists Ty, S / T = <[Ty]>. | |
by apply/cyclicP; rewrite prime_cyclic ?oSb. | |
have SbTy: Ty \in S / T by rewrite defSb cycle_id. | |
have{SbTy} [y nTy Sy defTy] := morphimP SbTy. | |
have [S'z defTb]: exists S'z, T / S' = <[S'z]>. | |
apply/cyclicP; rewrite prime_cyclic ?oTb //. | |
have TbS'z: S'z \in T / S' by rewrite defTb cycle_id. | |
have{TbS'z} [z nS'z Tz defS'z] := morphimP TbS'z. | |
have [Ta AbTa not_cSbTa]: exists2 Ta, Ta \in A / T & Ta \notin 'C(S / T). | |
apply: subsetPn; rewrite quotient_cents2 ?commg_norml //= -/T commGC. | |
apply: contra not_sSB => sSA_T; rewrite (subset_trans sSR) // -defRA -defR. | |
rewrite -(normC (subset_trans sSR nBR)) commMG /= -/S -/B; last first. | |
by rewrite cents_norm ?subIset ?centS ?orbT. | |
by rewrite mul_subG ?commg_subl ?normsI ?norms_cent // (subset_trans sSA_T). | |
have [a nTa Aa defTa] := morphimP AbTa. | |
have nS'a: a \in 'N(S') := subsetP (gFnorm_trans _ nSA) a Aa. | |
have [i xa]: exists i, x ^ a = x ^+ i. | |
by apply/cycleP; rewrite -cycle_subG cycleJ /= -defX (normsP nXA). | |
have [j Tya]: exists j, Ty ^ Ta = Ty ^+ j. | |
apply/cycleP; rewrite -cycle_subG cycleJ /= -defSb. | |
by rewrite (normsP (quotient_norms _ nSA)). | |
suffices {oSb oddA not_cSbTa} j2_1: j ^ 2 == 1 %[mod p]. | |
have Tya2: Ty ^ coset T (a ^+ 2) = Ty ^+ (j ^ 2). | |
by rewrite morphX // conjgM -defTa Tya conjXg Tya expgM. | |
have coA2: coprime #|A| 2 by rewrite coprime_sym prime_coprime // dvdn2 oddA. | |
case/negP: not_cSbTa; rewrite defTa -(expgK coA2 Aa) morphX groupX //=. | |
rewrite defSb cent_cycle inE conjg_set1 Tya2 sub1set inE. | |
by rewrite (eq_expg_mod_order _ _ 1) orderE -defSb oSb. | |
have {Tya Ta defTa AbTa} [u Tu yj]: exists2 u, u \in T & y ^+ j = u * y ^ a. | |
apply: rcosetP; apply/rcoset_kercosetP; rewrite ?groupX ?groupJ //. | |
by rewrite morphX ?morphJ -?defTy // -defTa. | |
have{Ty defTy defSb} defS: T * <[y]> = S. | |
rewrite -quotientK ?cycle_subG ?quotient_cycle // -defTy -defSb /= -/T. | |
by rewrite quotientGK // /normal sTS /= commg_norml. | |
have{nTA} [k S'zk]: exists k, S'z ^ coset S' a = S'z ^+ k. | |
apply/cycleP; rewrite -cycle_subG cycleJ /= -defTb. | |
by rewrite (normsP (quotient_norms _ nTA)) ?mem_quotient. | |
have S'yz: [~ y, z] \in S' by rewrite mem_commg // (subsetP sTS). | |
have [v Zv zk]: exists2 v, v \in 'Z(S) & z ^+ k = v * z ^ a. | |
apply: rcosetP; rewrite -defS'. | |
by apply/rcoset_kercosetP; rewrite ?groupX ?groupJ ?morphX ?morphJ -?defS'z. | |
have defT: S' * <[z]> = T. | |
rewrite -quotientK ?cycle_subG ?quotient_cycle // -defS'z -defTb /= -/S'. | |
by rewrite quotientGK // (normalS _ sTR) // proper_sub. | |
have nt_yz: [~ y, z] != 1. | |
apply: contra not_cSS; rewrite (sameP commgP cent1P) => cyz. | |
rewrite -defS abelianM cTT cycle_abelian /= -/T -defT centM /= -/S' defS'. | |
by rewrite cent_cycle subsetI centsC subIset ?centS ?cycle_subG ?orbT. | |
have sS'X1: S' \subset 'Ohm_1(X) by rewrite -defC1 OhmS. | |
have i_neq0: i != 0 %[mod p]. | |
have: 'Ohm_1(X) != 1 by rewrite (subG1_contra sS'X1) //= -cardG_gt1 oS'. | |
rewrite defX in pX *; rewrite (Ohm_p_cycle 1 pX) subn1 trivg_card1 -orderE. | |
rewrite -(orderJ _ a) conjXg xa order_eq1 -expgM -order_dvdn mod0n. | |
apply: contra; case/dvdnP=> m ->; rewrite -mulnA -expnS dvdn_mull //. | |
by rewrite {1}[#[x]](card_pgroup pX) dvdn_exp2l ?leqSpred. | |
have Txy: [~ x, y] \in T by rewrite [T]commGC mem_commg // -cycle_subG -defX. | |
have [Rx Ry]: x \in R /\ y \in R by rewrite -cycle_subG -defX (subsetP sSR). | |
have [nS'x nS'y] := (subsetP nS'R x Rx, subsetP nS'R y Ry). | |
have{not_sXS_S'} not_S'xy: [~ x, y] \notin S'. | |
apply: contra not_sXS_S' => S'xy. | |
rewrite -quotient_cents2 ?(subset_trans _ nS'R) //= -/S'. | |
rewrite -defS quotientMl ?(subset_trans _ nS'R) // centM /= -/S' -/T. | |
rewrite subsetI quotient_cents; last by rewrite (subset_trans sXB) ?subsetIr. | |
rewrite defX !quotient_cycle // cent_cycle cycle_subG /= -/S'. | |
by rewrite (sameP cent1P commgP) -morphR /= ?coset_id. | |
have jk_eq_i: j * k = i %[mod p]. | |
have Zyz: [~ y, z] \in 'Z(S) by rewrite -defS'. | |
have Sz: z \in S := subsetP sTS z Tz. | |
have yz_p: [~ y, z] ^+ p == 1 by rewrite -order_dvdn -oS' order_dvdG. | |
have <-: #[[~ y, z]] = p by apply: nt_prime_order => //; apply: eqP. | |
apply: eqP; rewrite -eq_expg_mod_order -commXXg; try exact: centerC Zyz. | |
have cyv: [~ y ^+ j, v] = 1 by apply/eqP/commgP/(centerC (groupX j Sy) Zv). | |
have cuz: [~ u, z ^ a] = 1. | |
by apply/eqP/commgP/(centsP cTT); rewrite ?memJ_norm. | |
rewrite zk commgMJ cyv yj commMgJ cuz !conj1g mulg1 mul1g -conjRg. | |
suffices [m ->]: exists m, [~ y, z] = x ^+ m by rewrite conjXg xa expgAC. | |
by apply/cycleP; rewrite -defX (subsetP (Ohm_sub 1 X)) ?(subsetP sS'X1). | |
have ij_eq_k: i * j = k %[mod p]. | |
have <-: #[coset S' [~ x, y]] = p. | |
apply: nt_prime_order => //. | |
by apply: eqP; rewrite -order_dvdn -oTb order_dvdG 1?mem_quotient. | |
by apply: contraNneq not_S'xy; apply: coset_idr; rewrite groupR. | |
have sTbZ: T / S' \subset 'Z(R / S'). | |
rewrite prime_meetG ?oTb // (meet_center_nil (quotient_nil _ nilR)) //. | |
by rewrite quotient_normal //; apply/andP. | |
by rewrite -cardG_gt1 oTb. | |
have ZRxyb: [~ coset S' x, coset S' y] \in 'Z(R / S'). | |
by rewrite -morphR // (subsetP sTbZ) ?mem_quotient. | |
apply: eqP; rewrite -eq_expg_mod_order {1}morphR //. | |
rewrite -commXXg; try by apply: centerC ZRxyb; apply: mem_quotient. | |
have [Ru nRa] := (subsetP sTR u Tu, subsetP nRA a Aa). | |
rewrite -2?morphX // yj morphM ?(subsetP nS'R) ?memJ_norm //. | |
have cxu_b: [~ coset S' (x ^+ i), coset S' u] = 1. | |
apply: eqP; apply/commgP. | |
by apply: centerC (subsetP sTbZ _ _); rewrite mem_quotient ?groupX. | |
rewrite commgMJ cxu_b conj1g mulg1 -xa !morphJ // -conjRg -morphR //=. | |
have: coset S' [~ x, y] \in <[S'z]> by rewrite -defTb mem_quotient. | |
by case/cycleP=> m ->; rewrite conjXg S'zk expgAC. | |
have j2_gt0: j ^ 2 > 0. | |
rewrite expn_gt0 orbF lt0n; apply: contraNneq i_neq0 => j0. | |
by rewrite -jk_eq_i j0. | |
have{i_neq0} co_p_i: coprime p i by rewrite mod0n prime_coprime in i_neq0 *. | |
rewrite eqn_mod_dvd // -(Gauss_dvdr _ co_p_i) mulnBr -eqn_mod_dvd ?leq_mul //. | |
by rewrite muln1 mulnCA -modnMmr ij_eq_k modnMmr jk_eq_i. | |
Qed. | |
(* This is B & G, Theorem 4.17. *) | |
Theorem der1_Aut_rank2_pgroup gT p (R : {group gT}) (A : {group {perm gT}}) : | |
p.-group R -> odd #|R| -> 'r(R) <= 2 -> | |
A \subset Aut R -> solvable A -> odd #|A| -> | |
p.-group A^`(1). | |
Proof. | |
move=> pR oddR rR AutA solA oddA. | |
without loss ntR: / R :!=: 1. | |
case: eqP AutA => [-> | ntR _ -> //]; rewrite Aut1. | |
by move/trivgP=> ->; rewrite derg1 commG1 pgroup1. | |
have [p_pr _ _] := pgroup_pdiv pR ntR; have p_gt1 := prime_gt1 p_pr. | |
have{ntR oddR} [H [charH _] _ eH pCH] := critical_odd pR oddR ntR. | |
have sHR := char_sub charH; have pH := pgroupS sHR pR. | |
have{rR} rH: 'r(H) <= 2 := leq_trans (rankS (char_sub charH)) rR. | |
have dimH: logn p #|H| <= 3 by rewrite rank2_exponent_p_p3group ?eH. | |
have{eH} ntH: H :!=: 1 by rewrite trivg_exponent eH gtnNdvd. | |
have charP := Phi_char H; have [sPH nPH] := andP (Phi_normal H : 'Phi(H) <| H). | |
have nHA: {acts A, on group H | [Aut R]} := gacts_char _ AutA charH. | |
pose B := 'C(H | <[nHA]>); pose V := H / 'Phi(H); pose C := 'C(V | <[nHA]> / _). | |
have{pCH} pB: p.-group B. | |
by rewrite (pgroupS _ pCH) //= astab_actby setIid subsetIr. | |
have s_p'C_B X: gval X \subset C -> p^'.-group X -> X \subset B. | |
move=> sXC p'X; have [sDX _] := subsetIP sXC; have [sXA _] := subsetIP sDX. | |
rewrite -gacentC //; apply/setIidPl; rewrite -[H :&: _]genGid //. | |
apply: Phi_nongen; apply/eqP; rewrite eqEsubset join_subG sPH subsetIl. | |
rewrite -quotientYK 1?subIset ?nPH //= -sub_quotient_pre //= -/V gacentIim. | |
have pP := pgroupS sPH pH; have coPX := pnat_coprime pP p'X. | |
rewrite -(setIid X) -(gacent_ract _ sXA). | |
rewrite ext_coprime_quotient_cent ?(pgroup_sol pP) ?acts_char //. | |
have domXb: X \subset qact_dom (<[nHA]> \ sXA) 'Phi(H). | |
by rewrite qact_domE ?acts_char. | |
rewrite gacentE // subsetIidl -/V; apply/subsetP=> v Vv; apply/afixP=> a Xa. | |
have [cVa dom_a] := (subsetP sXC a Xa, subsetP domXb a Xa). | |
have [x Nx Hx def_v] := morphimP Vv; rewrite {1}def_v qactE //=. | |
by rewrite -qactE ?(astab_dom cVa) ?(astab_act cVa) -?def_v. | |
have{B pB s_p'C_B} pC : p.-group C. | |
apply/pgroupP=> q q_pr /Cauchy[] // a Ca oa; apply: wlog_neg => p'q. | |
apply: (pgroupP pB) => //; rewrite -oa cardSg // s_p'C_B ?cycle_subG //. | |
by rewrite /pgroup -orderE oa pnatE. | |
have nVA: A \subset qact_dom <[nHA]> 'Phi(H) by rewrite qact_domE // acts_char. | |
have nCA: A \subset 'N(C). | |
by rewrite (subset_trans _ (astab_norm _ _)) // astabs_range. | |
suffices{pC nCA}: p.-group (A / C)^`(1). | |
by rewrite -quotient_der ?pquotient_pgroup // gFsub_trans. | |
pose toAV := ((<[nHA]> / 'Phi(H)) \ nVA)%gact. | |
have defC: C = 'C(V | toAV). | |
by symmetry; rewrite astab_ract; apply/setIidPr; rewrite subIset ?subsetIl. | |
have abelV: p.-abelem V := Phi_quotient_abelem pH. | |
have ntV: V != 1 by rewrite -subG1 quotient_sub1 // proper_subn ?Phi_proper. | |
have: 'r(V) \in iota 1 2. | |
rewrite mem_iota rank_gt0 ntV (rank_abelem abelV). | |
have [abelH | not_abelH] := boolP (p.-abelem H). | |
by rewrite ltnS (leq_trans _ rH) // (rank_abelem abelH) logn_quotient. | |
by rewrite (leq_trans _ dimH) // ltn_log_quotient // (trivg_Phi pH). | |
rewrite !inE; case/pred2P=> dimV. | |
have isoAb: A / C \isog actperm toAV @* A. | |
by rewrite defC astab_range -ker_actperm first_isog. | |
rewrite (derG1P _) ?pgroup1 // (isog_abelian isoAb). | |
apply: abelianS (im_actperm_Aut _) (Aut_cyclic_abelian _). | |
by rewrite (abelem_cyclic abelV) -rank_abelem ?dimV. | |
pose Vb := sdpair1 toAV @* V; pose Ab := sdpair2 toAV @* A. | |
have [injV injA] := (injm_sdpair1 toAV, injm_sdpair2 toAV). | |
have abelVb: p.-abelem Vb := morphim_abelem _ abelV. | |
have ntVb: Vb != 1 by rewrite morphim_injm_eq1. | |
have nVbA: Ab \subset 'N(Vb) := im_sdpair_norm toAV. | |
pose rV := morphim_repr (abelem_repr abelVb ntVb nVbA) (subxx A). | |
have{defC} <-: rker rV = C; last move: rV. | |
rewrite rker_morphim rker_abelem morphpreI morphimK //=. | |
by rewrite (trivgP injA) mul1g -astabEsd // defC astab_ract 2!setIA !setIid. | |
have ->: 'dim Vb = 2 by rewrite (dim_abelemE abelVb) // card_injm -?rank_abelem. | |
move=> rV; rewrite -(eq_pgroup _ (GRing.charf_eq (char_Fp p_pr))). | |
by apply: der1_odd_GL2_charf (kquo_mx_faithful rV); rewrite !morphim_odd. | |
Qed. | |
(* This is B & G, Theorem 4.18(a). *) | |
Theorem rank2_max_pdiv gT p q (G : {group gT}) : | |
solvable G -> odd #|G| -> 'r_p(G) <= 2 -> q \in \pi(G / 'O_p^'(G)) -> q <= p. | |
Proof. | |
rewrite mem_primes => solG oddG rG /and3P[pr_q _ /= q_dv_G]. | |
without loss Gp'1: gT G solG oddG rG q_dv_G / 'O_p^'(G) = 1. | |
move/(_ _ (G / 'O_p^'(G))%G); rewrite quotient_odd ?quotient_sol //. | |
rewrite trivg_pcore_quotient -(card_isog (quotient1_isog _)). | |
by rewrite p_rank_p'quotient ?pcore_pgroup ?gFnorm //; apply. | |
set R := 'O_p(G); have pR: p.-group R := pcore_pgroup p G. | |
have [sRG nRG] := andP (pcore_normal p G : R <| G). | |
have oddR: odd #|R| := oddSg sRG oddG. | |
have rR: 'r(R) <= 2 by rewrite (rank_pgroup pR) (leq_trans _ rG) ?p_rankS. | |
rewrite leq_eqVlt -implyNb; apply/implyP=> p'q. | |
have [|//] := pi_Aut_rank2_pgroup pR oddR rR _ p'q; rewrite eq_sym in p'q. | |
apply: (piSg (Aut_conj_aut _ G)); apply: contraLR q_dv_G. | |
rewrite -p'groupEpi -p'natE // Gp'1 -(card_isog (quotient1_isog _)) /pgroup. | |
rewrite -(card_isog (first_isog_loc _ _)) // -!pgroupE ker_conj_aut /= -/R. | |
set C := 'C_G(R); rewrite pquotient_pgroup ?normsI ?norms_cent ?normG //= -/C. | |
suffices sCR: C \subset R by rewrite (pgroupS sCR (pi_pnat pR _)). | |
by rewrite /C /R -(Fitting_eq_pcore _) ?cent_sub_Fitting. | |
Qed. | |
(* This is B & G, Theorem 4.18(c,e) *) | |
Theorem rank2_der1_complement gT p (G : {group gT}) : | |
solvable G -> odd #|G| -> 'r_p(G) <= 2 -> | |
[/\ (*c*) p^'.-Hall(G^`(1)) 'O_p^'(G^`(1)), | |
(*e1*) abelian (G / 'O_{p^',p}(G)) | |
& (*e2*) p^'.-group (G / 'O_{p^',p}(G))]. | |
Proof. | |
move=> solG oddG rG; rewrite /pHall pcore_sub pcore_pgroup /= pnatNK. | |
rewrite -(pcore_setI_normal _ (der_normal 1 G)) // setIC indexgI /=. | |
without loss Gp'1: gT G solG oddG rG / 'O_p^'(G) = 1. | |
have nsGp': 'O_p^'(G) <| G := pcore_normal p^' G; have [_ nGp'] := andP nsGp'. | |
move/(_ _ (G / 'O_p^'(G))%G); rewrite quotient_sol // quotient_odd //=. | |
have Gp'1 := trivg_pcore_quotient p^' G. | |
rewrite p_rank_p'quotient ?pcore_pgroup // Gp'1 indexg1 => -[] //=. | |
rewrite -quotient_der // card_quotient ?gFsub_trans // => ->. | |
rewrite (pseries_pop2 _ Gp'1) /= -pseries1 -quotient_pseries /= /pgroup. | |
pose isos := (isog_abelian (third_isog _ _ _), card_isog (third_isog _ _ _)). | |
by rewrite !{}isos ?pseries_normal ?pseries_sub_catl. | |
rewrite pseries_pop2 // Gp'1 indexg1 -pgroupE /=. | |
set R := 'O_p(G); pose C := 'C_G(R). | |
have /andP[sRG nRG]: R <| G by apply: gFnormal. | |
have sCR: C \subset R by rewrite /C /R -(Fitting_eq_pcore _) ?cent_sub_Fitting. | |
have pR: p.-group R := pcore_pgroup p G; have pC: p.-group C := pgroupS sCR pR. | |
have nCG: G \subset 'N(C) by rewrite normsI ?normG ?norms_cent. | |
have nsG'G: G^`(1) <| G := der_normal 1 G; have [sG'G nG'G] := andP nsG'G. | |
suffices sG'R: G^`(1) \subset R. | |
have cGbGb: abelian (G / R) := sub_der1_abelian sG'R. | |
rewrite -{2}(nilpotent_pcoreC p (abelian_nil cGbGb)) trivg_pcore_quotient. | |
by rewrite dprod1g pcore_pgroup (pgroupS sG'R pR). | |
rewrite pcore_max // -(pquotient_pgroup pC (subset_trans sG'G nCG)) /= -/C. | |
pose A := conj_aut 'O_p(G) @* G; have AutA: A \subset Aut R := Aut_conj_aut _ G. | |
have isoGbA: G / C \isog A by rewrite /C -ker_conj_aut first_isog_loc. | |
have{isoGbA} [f injf defA] := isogP isoGbA; rewrite /= -/A in defA. | |
rewrite quotient_der // /pgroup -(card_injm injf) ?der_sub ?morphim_der //. | |
have [? ?]: odd #|A| /\ solvable A by rewrite -defA !morphim_odd ?morphim_sol. | |
have rR: 'r(R) <= 2 by rewrite (rank_pgroup pR) (leq_trans (p_rankS p sRG)). | |
by rewrite defA -pgroupE (der1_Aut_rank2_pgroup pR) ?(oddSg sRG). | |
Qed. | |
(* This is B & G, Theorem 4.18(b) *) | |
Theorem rank2_min_p_complement gT (G : {group gT}) (p := pdiv #|G|) : | |
solvable G -> odd #|G| -> 'r_p(G) <= 2 -> p^'.-Hall(G) 'O_p^'(G). | |
Proof. | |
move=> solG oddG rG; rewrite /pHall pcore_pgroup pcore_sub pnatNK /=. | |
rewrite -card_quotient ?gFnorm //; apply/pgroupP=> q q_pr q_dv_Gb. | |
rewrite inE /= eqn_leq (rank2_max_pdiv _ _ rG) ?mem_primes ?q_pr ?cardG_gt0 //. | |
by rewrite pdiv_min_dvd ?prime_gt1 ?(dvdn_trans q_dv_Gb) ?dvdn_quotient. | |
Qed. | |
(* This is B & G, Theorem 4.18(d) *) | |
Theorem rank2_sub_p'core_der1 gT (G A : {group gT}) p : | |
solvable G -> odd #|G| -> 'r_p(G) <= 2 -> p^'.-subgroup(G^`(1)) A -> | |
A \subset 'O_p^'(G^`(1)). | |
Proof. | |
move=> solG oddG rG /andP[sAG' p'A]; rewrite sub_Hall_pcore //. | |
by have [-> _ _] := rank2_der1_complement solG oddG rG. | |
Qed. | |
(* This is B & G, Corollary 4.19 *) | |
Corollary rank2_der1_cent_chief gT p (G Gs U V : {group gT}) : | |
odd #|G| -> solvable G -> Gs <| G -> 'r_p(Gs) <= 2 -> | |
chief_factor G V U -> p.-group (U / V) -> U \subset Gs -> | |
G^`(1) \subset 'C(U / V | 'Q). | |
Proof. | |
move=> oddG solG nsGsG rGs chiefUf pUf sUGs. | |
wlog Gs_p'_1: gT G Gs U V oddG solG nsGsG rGs chiefUf pUf sUGs / 'O_p^'(Gs) = 1. | |
pose K := 'O_p^'(Gs)%G; move/(_ _ (G / K) (Gs / K) (U / K) (V / K))%G. | |
rewrite trivg_pcore_quotient quotient_odd ?quotient_sol ?quotientS //. | |
have p'K: p^'.-group K := pcore_pgroup p^' Gs. | |
have tiUfK := coprime_TIg (pnat_coprime pUf (quotient_pgroup V p'K)). | |
have nsKG: K <| G by apply: gFnormal_trans. | |
have [[sG'G sGsG] nKG] := (der_sub 1 G, normal_sub nsGsG, normal_norm nsKG). | |
have{sGsG} [nKG' nKGs] := (subset_trans sG'G nKG, subset_trans sGsG nKG). | |
case/andP: chiefUf; case/maxgroupP; case/andP=> ltVU nVG maxV nsUG. | |
have [sUG nUG] := andP nsUG; have [sVU not_sUV] := andP ltVU. | |
have [nUG' nVG'] := (subset_trans sG'G nUG, subset_trans sG'G nVG). | |
have [sVG nVU] := (subset_trans sVU sUG, subset_trans sUG nVG). | |
have [nKU nKV] := (subset_trans sUG nKG, subset_trans sVG nKG). | |
have nsVU: V <| U by apply/andP. | |
rewrite p_rank_p'quotient // /chief_factor -quotient_der ?quotient_normal //. | |
rewrite andbT !sub_astabQR ?quotient_norms // -quotientR // => IH. | |
rewrite -quotient_sub1 ?comm_subG // -tiUfK subsetI quotientS ?commg_subr //. | |
rewrite quotientSK ?(comm_subG nVG') // (normC nKV) -quotientSK ?comm_subG //. | |
apply: IH => //=; last first. | |
rewrite -(setIid U) -(setIidPr sVU) -![_ / K](morphim_restrm nKU). | |
by rewrite -(morphim_quotm _ nsVU) morphim_pgroup. | |
apply/maxgroupP; rewrite /proper quotientS ?quotient_norms //= andbT. | |
rewrite quotientSK // -(normC nKV) -quotientSK // -subsetIidl tiUfK. | |
split=> [|Wb]; first by rewrite quotient_sub1. | |
do 2![case/andP]=> sWbU not_sUWb nWbG sVWb; apply/eqP; rewrite eqEsubset sVWb. | |
have nsWbG: Wb <| G / K by rewrite /normal (subset_trans sWbU) ?quotientS. | |
have [W defWb sKW] := inv_quotientN nsKG nsWbG; case/andP=> sWG nWG. | |
rewrite -(setIidPl sWbU) defWb -quotientGI // quotientS //. | |
rewrite (maxV (W :&: U))%G ?normsI //; last first. | |
by rewrite subsetI sVU andbT -(quotientSGK nKV sKW) -defWb. | |
by rewrite andbT /proper subsetIr subsetIidr -(quotientSGK nKU sKW) -defWb. | |
pose R := 'O_p(Gs); have pR: p.-group R := pcore_pgroup p Gs. | |
have nsRG: R <| G by apply: gFnormal_trans. | |
have [[sGsG nGsG] [sRG nRG]] := (andP nsGsG, andP nsRG). | |
have nsRGs: R <| Gs := pcore_normal p Gs; have [sRGs nRGs] := andP nsRGs. | |
have sylR: p.-Sylow(Gs) R. | |
have [solGs oddGs] := (solvableS sGsG solG, oddSg sGsG oddG). | |
have [_ _ p'Gsb] := rank2_der1_complement solGs oddGs rGs. | |
by rewrite /pHall pcore_sub pR -card_quotient //= -(pseries_pop2 p Gs_p'_1). | |
case/andP: (chiefUf); case/maxgroupP; case/andP=> ltVU nVG maxV nsUG. | |
have [sUG nUG] := andP nsUG; have [sVU not_sUV] := andP ltVU. | |
have [sVG nVU] := (subset_trans sVU sUG, subset_trans sUG nVG). | |
have nsVU: V <| U by apply/andP. | |
have nVGs := subset_trans sGsG nVG; have nVR := subset_trans sRGs nVGs. | |
have{sylR} sUfR: U / V \subset R / V. | |
have sylRb: p.-Sylow(Gs / V) (R / V) by rewrite quotient_pHall. | |
by rewrite (sub_normal_Hall sylRb) ?quotientS ?quotient_normal. | |
have pGb: p.-group((G / 'C_G(R))^`(1)). | |
pose A := conj_aut 'O_p(Gs) @* G. | |
have AA: A \subset Aut R := Aut_conj_aut _ G. | |
have isoGbA: G / 'C_G(R) \isog A by rewrite -ker_conj_aut first_isog_loc. | |
have{isoGbA} [f injf defA] := isogP isoGbA; rewrite /= -/A in defA. | |
rewrite /pgroup -(card_injm injf) ?der_sub ?morphim_der //. | |
have [? ?]: odd #|A| /\ solvable A by rewrite -defA !morphim_odd ?morphim_sol. | |
have rR: 'r(R) <= 2 by rewrite (rank_pgroup pR) (leq_trans (p_rankS p sRGs)). | |
by rewrite defA -pgroupE (der1_Aut_rank2_pgroup pR) ?(oddSg sRG). | |
set C := 'C_G(U / V | 'Q). | |
have nUfG: [acts G, on U / V | 'Q] by rewrite actsQ. | |
have nCG: G \subset 'N(C) by rewrite -(setIidPl nUfG) normsGI ?astab_norm. | |
have{pGb sUfR} pGa': p.-group (G / C)^`(1). | |
have nCRG : G \subset 'N('C_G(R)) by rewrite normsI ?normG ?norms_cent. | |
have sCR_C: 'C_G(R) \subset C. | |
rewrite subsetI subsetIl sub_astabQ ?subIset ?nVG ?(centsS sUfR) //=. | |
by rewrite quotient_cents ?subsetIr. | |
have [f /= <-]:= homgP (homg_quotientS nCRG nCG sCR_C). | |
by rewrite -morphim_der //= morphim_pgroup. | |
have irrG: acts_irreducibly (G / C) (U / V) ('Q %% _). | |
by rewrite acts_irr_mod_astab // acts_irrQ // chief_factor_minnormal. | |
have Ga_p_1: 'O_p(G / C) = 1. | |
rewrite (pcore_faithful_irr_act pUf _ irrG) ?modact_faithful //. | |
by rewrite gacentC ?quotientS ?subsetT ?subsetIr //= setICA subsetIl. | |
have sG'G := der_sub 1 G; have nCG' := subset_trans sG'G nCG. | |
rewrite -subsetIidl -{2}(setIidPl sG'G) -setIA subsetIidl -/C. | |
by rewrite -quotient_sub1 /= ?quotient_der //= -Ga_p_1 pcore_max ?der_normal. | |
Qed. | |
(* This is B & G, Theorem 4.20(a) *) | |
Theorem rank2_der1_sub_Fitting gT (G : {group gT}) : | |
odd #|G| -> solvable G -> 'r('F(G)) <= 2 -> G^`(1) \subset 'F(G). | |
Proof. | |
move=> oddG solG Fle2; have nsFG := Fitting_normal G. | |
apply: subset_trans (chief_stab_sub_Fitting solG _) => //. | |
rewrite subsetI der_sub; apply/bigcapsP=> [[U V] /= /andP[chiefUV sUF]]. | |
have [p p_pr /andP[pUV _]] := is_abelemP (sol_chief_abelem solG chiefUV). | |
apply: rank2_der1_cent_chief nsFG _ _ pUV sUF => //. | |
exact: leq_trans (p_rank_le_rank p _) Fle2. | |
Qed. | |
(* This is B & G, Theorem 4.20(b) *) | |
Theorem rank2_char_Sylow_normal gT (G S T : {group gT}) : | |
odd #|G| -> solvable G -> 'r('F(G)) <= 2 -> | |
Sylow G S -> T \char S -> T \subset S^`(1) -> T <| G. | |
Proof. | |
set F := 'F(G) => oddG solG Fle2 /SylowP[p p_pr sylS] charT sTS'. | |
have [sSG pS _] := and3P sylS. | |
have nsFG: F <| G := Fitting_normal G; have [sFG nFG] := andP nsFG. | |
have nFS := subset_trans sSG nFG; have nilF: nilpotent F := Fitting_nil _. | |
have cGGq: abelian (G / F). | |
by rewrite sub_der1_abelian ?rank2_der1_sub_Fitting. | |
have nsFS_G: F <*> S <| G. | |
rewrite -(quotientGK nsFG) norm_joinEr // -(quotientK nFS) cosetpre_normal. | |
by rewrite -sub_abelian_normal ?quotientS. | |
have sylSF: p.-Sylow(F <*> S) S. | |
by rewrite (pHall_subl _ _ sylS) ?joing_subr // join_subG sFG. | |
have defG: G :=: F * 'N_G(S). | |
rewrite -{1}(Frattini_arg nsFS_G sylSF) /= norm_joinEr // -mulgA. | |
by congr (_ * _); rewrite mulSGid // subsetI sSG normG. | |
rewrite /normal (subset_trans (char_sub charT)) //= defG mulG_subG /= -/F. | |
rewrite setIC andbC subIset /=; last by rewrite (char_norm_trans charT). | |
case/dprodP: (nilpotent_pcoreC p nilF); rewrite /= -/F => _ defF cFpFp' _. | |
have defFp: 'O_p(F) = F :&: S. | |
rewrite -{2}defF -group_modl ?coprime_TIg ?mulg1 //. | |
by rewrite coprime_sym (pnat_coprime pS (pcore_pgroup _ _)). | |
by rewrite p_core_Fitting pcore_sub_Hall. | |
rewrite -defF mulG_subG /= -/F defFp setIC subIset ?(char_norm charT) //=. | |
rewrite cents_norm // (subset_trans cFpFp') // defFp centS // subsetI. | |
rewrite (char_sub charT) (subset_trans (subset_trans sTS' (dergS 1 sSG))) //. | |
exact: rank2_der1_sub_Fitting. | |
Qed. | |
(* This is B & G, Theorem 4.20(c), for the last factor of the series. *) | |
Theorem rank2_min_p'core_Hall gT (G : {group gT}) (p := pdiv #|G|) : | |
odd #|G| -> solvable G -> 'r('F(G)) <= 2 -> p^'.-Hall(G) 'O_p^'(G). | |
Proof. | |
set F := 'F(G) => oddG solG Fle2. | |
have nsFG: F <| G := Fitting_normal G; have [sFG nFG] := andP nsFG. | |
have [H] := inv_quotientN nsFG (pcore_normal p^' _). | |
rewrite /= -/F => defH sFH nsHG; have [sHG nHG] := andP nsHG. | |
have [P sylP] := Sylow_exists p H; have [sPH pP _] := and3P sylP. | |
have sPF: P \subset F. | |
rewrite -quotient_sub1 ?(subset_trans (subset_trans sPH sHG)) //. | |
rewrite -(setIidPl (quotientS _ sPH)) -defH coprime_TIg //. | |
by rewrite coprime_morphl // (pnat_coprime pP (pcore_pgroup _ _)). | |
have nilGq: nilpotent (G / F). | |
by rewrite abelian_nil ?sub_der1_abelian ?rank2_der1_sub_Fitting. | |
have pGq: p.-group (G / H). | |
rewrite /pgroup -(card_isog (third_isog sFH nsFG nsHG)) /= -/F -/(pgroup _ _). | |
rewrite -(dprodW (nilpotent_pcoreC p nilGq)) defH quotientMidr. | |
by rewrite quotient_pgroup ?pcore_pgroup. | |
rewrite pHallE pcore_sub -(Lagrange sHG) partnM // -card_quotient //=. | |
have hallHp': p^'.-Hall(H) 'O_p^'(H). | |
case p'H: (p^'.-group H). | |
by rewrite pHallE /= pcore_pgroup_id ?subxx //= part_pnat_id. | |
have def_p: p = pdiv #|H|. | |
have [p_pr pH]: prime p /\ p %| #|H|. | |
apply/andP; apply: contraFT p'H => p'H; apply/pgroupP=> q q_pr qH. | |
by apply: contraNneq p'H => <-; rewrite q_pr qH. | |
apply/eqP; rewrite eqn_leq ?pdiv_min_dvd ?prime_gt1 //. | |
rewrite pdiv_prime // cardG_gt1. | |
by case: eqP p'H => // ->; rewrite pgroup1. | |
exact: dvdn_trans (pdiv_dvd _) (cardSg (normal_sub nsHG)). | |
rewrite def_p rank2_min_p_complement ?(oddSg sHG) ?(solvableS sHG) -?def_p //. | |
rewrite -(p_rank_Sylow sylP) (leq_trans (p_rank_le_rank _ _)) //. | |
exact: leq_trans (rankS sPF) Fle2. | |
rewrite -(card_Hall hallHp') part_p'nat ?pnatNK ?muln1 // subset_leqif_card. | |
by rewrite pcore_max ?pcore_pgroup ?gFnormal_trans. | |
rewrite pcore_max ?pcore_pgroup // (normalS _ _ (pcore_normal _ _)) //. | |
rewrite -quotient_sub1 ?gFsub_trans //. | |
rewrite -(setIidPr (quotientS _ (pcore_sub _ _))) coprime_TIg //. | |
by rewrite coprime_morphr // (pnat_coprime pGq (pcore_pgroup _ _)). | |
Qed. | |
(* This is B & G, Theorem 4.20(c), for intermediate factors. *) | |
Theorem rank2_ge_pcore_Hall gT m (G : {group gT}) (pi := [pred p | p >= m]) : | |
odd #|G| -> solvable G -> 'r('F(G)) <= 2 -> pi.-Hall(G) 'O_pi(G). | |
Proof. | |
elim: {G}_.+1 {-2}G (ltnSn #|G|) => // n IHn G. | |
rewrite ltnS => leGn oddG solG Fle2; pose p := pdiv #|G|. | |
have [defGpi | not_pi_G] := eqVneq 'O_pi(G) G. | |
by rewrite /pHall pcore_sub pcore_pgroup defGpi indexgg. | |
have pi'_p: (p \in pi^'). | |
apply: contra not_pi_G => pi_p; rewrite eqEsubset pcore_sub pcore_max //. | |
apply/pgroupP=> q q_pr qG; apply: leq_trans pi_p _. | |
by rewrite pdiv_min_dvd ?prime_gt1. | |
pose Gp' := 'O_p^'(G); have sGp'G: Gp' \subset G := pcore_sub _ _. | |
have hallGp'pi: pi.-Hall(Gp') 'O_pi(Gp'). | |
apply: IHn; rewrite ?(oddSg sGp'G) ?(solvableS sGp'G) //; last first. | |
by apply: leq_trans (rankS _) Fle2; rewrite /= Fitting_pcore pcore_sub. | |
apply: leq_trans (proper_card _) leGn. | |
rewrite properEneq pcore_sub andbT; apply/eqP=> defG. | |
suff: p \in p^' by case/eqnP. | |
have p'G: p^'.-group G by rewrite -defG pcore_pgroup. | |
rewrite (pgroupP p'G) ?pdiv_dvd ?pdiv_prime // cardG_gt1. | |
by apply: contra not_pi_G; move/eqP->; rewrite (trivgP (pcore_sub _ _)). | |
have defGp'pi: 'O_pi(Gp') = 'O_pi(G). | |
rewrite -pcoreI; apply: eq_pcore => q; apply: andb_idr. | |
by apply: contraL => /=; move/eqnP->. | |
have hallGp': p^'.-Hall(G) Gp' by rewrite rank2_min_p'core_Hall. | |
rewrite pHallE pcore_sub /= -defGp'pi (card_Hall hallGp'pi) (card_Hall hallGp'). | |
by rewrite partn_part // => q; apply: contraL => /=; move/eqnP->. | |
Qed. | |
(* This is B & G, Theorem 4.20(c), for the first factor of the series. *) | |
Theorem rank2_max_pcore_Sylow gT (G : {group gT}) (p := max_pdiv #|G|) : | |
odd #|G| -> solvable G -> 'r('F(G)) <= 2 -> p.-Sylow(G) 'O_p(G). | |
Proof. | |
move=> oddG solG Fle2; pose pi := [pred q | p <= q]. | |
rewrite pHallE pcore_sub eqn_leq -{1}(part_pnat_id (pcore_pgroup _ _)). | |
rewrite dvdn_leq ?partn_dvd ?cardSg ?pcore_sub // /=. | |
rewrite (@eq_in_partn _ pi) => [|q piGq]; last first. | |
by rewrite !inE eqn_leq; apply: andb_idl => le_q_p; apply: max_pdiv_max. | |
rewrite -(card_Hall (rank2_ge_pcore_Hall p oddG solG Fle2)) -/pi. | |
rewrite subset_leq_card // pcore_max ?pcore_normal //. | |
apply: sub_in_pnat (pcore_pgroup _ _) => q /(piSg (pcore_sub _ _))-piGq. | |
by rewrite !inE eqn_leq max_pdiv_max. | |
Qed. | |
End Section4. | |