Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
Require Import mathcomp.ssreflect.ssreflect. | |
From mathcomp | |
Require Import ssrbool ssrfun eqtype ssrnat seq path div. | |
From mathcomp | |
Require Import fintype tuple bigop prime binomial finset ssralg fingroup finalg. | |
From mathcomp | |
Require Import morphism perm automorphism quotient action commutator gproduct. | |
From mathcomp | |
Require Import zmodp cyclic gfunctor center pgroup gseries nilpotent sylow. | |
From mathcomp | |
Require Import finmodule abelian frobenius maximal extremal hall. | |
From mathcomp | |
Require Import matrix mxalgebra mxrepresentation mxabelem. | |
From odd_order | |
Require Import wielandt_fixpoint BGsection1 BGsection2. | |
(******************************************************************************) | |
(* This file covers the material in B & G, Section 3. *) | |
(* Note that in spite of the use of Gorenstein 2.7.6, the material in all *) | |
(* of Section 3, and in all likelyhood the whole of B & G, does NOT depend on *) | |
(* the general proof of existence of Frobenius kernels, because results on *) | |
(* Frobenius groups are only used when the semidirect product decomposition *) | |
(* is already known, and (see file frobenius.v) in this case the kernel is *) | |
(* equal to the normal complement of the Frobenius complement. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Local Open Scope ring_scope. | |
Import GroupScope GRing.Theory. | |
Section BGsection3. | |
Implicit Type F : fieldType. | |
Implicit Type gT : finGroupType. | |
Implicit Type p : nat. | |
(* B & G, Lemma 3.1 is covered by frobenius.Frobenius_semiregularP. *) | |
(* This is B & G, Lemma 3.2. *) | |
Section FrobeniusQuotient. | |
Variables (gT : finGroupType) (G K R : {group gT}). | |
Implicit Type N : {group gT}. | |
(* This is a special case of B & G, Lemma 3.2 (b). *) | |
Lemma Frobenius_proper_quotient N : | |
[Frobenius G = K ><| R] -> solvable K -> N <| G -> N \proper K -> | |
[Frobenius G / N = (K / N) ><| (R / N)]. | |
Proof. | |
move=> frobG solK nsNG /andP[sNK ltNK]. | |
have [defG _ ntR _ _] := Frobenius_context frobG. | |
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG; have [sKG _]:= andP nsKG. | |
have nsNK := normalS sNK sKG nsNG. | |
apply/Frobenius_semiregularP=> [|||Nx]. | |
- rewrite sdprodE ?quotient_norms //. | |
by rewrite -quotientMl ?defKR ?normal_norm. | |
by rewrite -quotientGI // tiKR quotient1. | |
- by rewrite -subG1 quotient_sub1 ?normal_norm. | |
- rewrite -subG1 quotient_sub1; last by rewrite (subset_trans sRG) ?normal_norm. | |
apply: contra ntR => sRN. | |
by rewrite -subG1 -tiKR subsetI (subset_trans sRN) /=. | |
rewrite !inE andbC => /andP[/morphimP[x nNx Rx ->{Nx}] notNx]. | |
apply/trivgP; rewrite /= -cent_cycle -quotient_cycle //. | |
rewrite -coprime_quotient_cent ?cycle_subG //; last first. | |
by apply: coprimegS (Frobenius_coprime frobG); rewrite cycle_subG. | |
rewrite cent_cycle (Frobenius_reg_ker frobG) ?quotient1 // !inE Rx andbT. | |
by apply: contraNneq notNx => ->; rewrite morph1. | |
Qed. | |
(* This is B & G, Lemma 3.2 (a). *) | |
Lemma Frobenius_normal_proper_ker N : | |
[Frobenius G = K ><| R] -> solvable K -> N <| G -> ~~ (K \subset N) -> | |
N \proper K. | |
Proof. | |
move=> frobG solK nsNG ltNK; have [sNG nNG] := andP nsNG; pose H := N :&: K. | |
have [defG _ ntR _ _] := Frobenius_context frobG. | |
have [nsKG _ /mulG_sub[sKG _] nKR tiKR] := sdprod_context defG. | |
have nsHG: H <| G := normalI nsNG nsKG; have [_ nHG] := andP nsHG. | |
have ltHK: H \proper K by rewrite /proper subsetIr subsetI subxx andbT. | |
suffices /eqP tiNR: N :&: R == 1. | |
rewrite /proper ltNK andbT -(setIidPl sNG). | |
rewrite -(cover_partition (Frobenius_partition frobG)) big_distrr /=. | |
apply/bigcupsP=> _ /setU1P[->| /imsetP[x Kx ->]]; first exact: subsetIr. | |
rewrite conjD1g setIDA subDset -(normsP (subset_trans sKG nNG) x) //. | |
by rewrite -conjIg tiNR conjs1g subsetUl. | |
suffices: (N :&: R) / H \subset [1]. | |
by rewrite -subG1 quotient_sub1 ?normsGI // -subsetIidr setIACA tiKR setIg1. | |
have frobGq := Frobenius_proper_quotient frobG solK nsHG ltHK. | |
have [_ ntKq _ _ _] := Frobenius_context frobGq. | |
rewrite -(cent_semiregular (Frobenius_reg_compl frobGq) _ ntKq) //. | |
rewrite subsetI quotientS ?subsetIr // quotient_cents2r //. | |
by rewrite commg_subI ?setIS // subsetIidl (subset_trans sKG). | |
Qed. | |
(* This is B & G, Lemma 3.2 (b). *) | |
Lemma Frobenius_quotient N : | |
[Frobenius G = K ><| R] -> solvable K -> N <| G -> ~~ (K \subset N) -> | |
[Frobenius G / N = (K / N) ><| (R / N)]. | |
Proof. | |
move=> frobG solK nsNG ltKN; apply: Frobenius_proper_quotient => //. | |
exact: (Frobenius_normal_proper_ker frobG). | |
Qed. | |
End FrobeniusQuotient. | |
(* This is B & G, Lemma 3.3. *) | |
Lemma Frobenius_rfix_compl F gT (G K R : {group gT}) n | |
(rG : mx_representation F G n) : | |
[Frobenius G = K ><| R] -> [char F]^'.-group K -> | |
~~ (K \subset rker rG) -> rfix_mx rG R != 0. | |
Proof. | |
rewrite /pgroup charf'_nat => frobG nzK. | |
have [defG _ _ ltKG ltRG]:= Frobenius_context frobG. | |
have{ltKG ltRG} [sKG sRG]: K \subset G /\ R \subset G by rewrite !proper_sub. | |
apply: contraNneq => fixR0; rewrite rfix_mx_rstabC // -(eqmx_scale _ nzK). | |
pose gsum H := gring_op rG (gset_mx F G H). | |
have fixsum (H : {group gT}): H \subset G -> (gsum H <= rfix_mx rG H)%MS. | |
move/subsetP=> sHG; apply/rfix_mxP=> x Hx; have Gx := sHG x Hx. | |
rewrite -gring_opG // -gring_opM ?envelop_mx_id //; congr (gring_op _ _). | |
rewrite {2}/gset_mx (reindex_acts 'R _ Hx) ?astabsR //= mulmx_suml. | |
by apply: eq_bigr=> y; move/sHG=> Gy; rewrite repr_mxM. | |
have: gsum G + rG 1 *+ #|K| = gsum K + \sum_(x in K) gsum (R :^ x). | |
rewrite -gring_opG // -sumr_const -!linear_sum -!linearD; congr gring_op. | |
rewrite {1}/gset_mx (set_partition_big _ (Frobenius_partition frobG)) /=. | |
rewrite big_setU1 -?addrA /=; last first. | |
by apply: contraL (group1 K) => /imsetP[x _ ->]; rewrite conjD1g !inE eqxx. | |
congr (_ + _); rewrite big_imset /= => [|x y Kx Ky /= eqRxy]; last first. | |
have [/eqP/sdprodP[_ _ _ tiKR] _ _ _ /eqP snRG] := and5P frobG. | |
apply/eqP; rewrite eq_mulgV1 -in_set1 -set1gE -tiKR -snRG setIA. | |
by rewrite (setIidPl sKG) !inE conjsgM eqRxy actK groupM /= ?groupV. | |
rewrite -big_split; apply: eq_bigr => x Kx /=. | |
by rewrite addrC conjD1g -big_setD1 ?group1. | |
have ->: gsum G = 0. | |
apply/eqP; rewrite -submx0 -fixR0; apply: submx_trans (rfix_mxS rG sRG). | |
exact: fixsum. | |
rewrite repr_mx1 -scaler_nat add0r => ->. | |
rewrite big1 ?addr0 ?fixsum // => x Kx; have Gx := subsetP sKG x Kx. | |
apply/eqP; rewrite -submx0 (submx_trans (fixsum _ _)) ?conj_subG //. | |
by rewrite -(mul0mx _ (rG x)) -fixR0 rfix_mx_conjsg. | |
Qed. | |
(* This is Aschbacher (40.6)(3), or G. (3.14)(iii). *) | |
Lemma regular_pq_group_cyclic gT p q (H R : {group gT}) : | |
[/\ prime p, prime q & p != q] -> #|R| = (p * q)%N -> | |
H :!=: 1 -> R \subset 'N(H) -> semiregular H R -> | |
cyclic R. | |
Proof. | |
case=> pr_p pr_q q'p oR ntH nHR regHR. | |
without loss{q'p} ltpq: p q pr_p pr_q oR / p < q. | |
by move=> IH; case: ltngtP q'p => // /IH-> //; rewrite mulnC. | |
have [p_gt0 q_gt0]: 0 < p /\ 0 < q by rewrite !prime_gt0. | |
have [[P sylP] [Q sylQ]] := (Sylow_exists p R, Sylow_exists q R). | |
have [sPR sQR] := (pHall_sub sylP, pHall_sub sylQ). | |
have [oP oQ]: #|P| = p /\ #|Q| = q. | |
rewrite (card_Hall sylQ) (card_Hall sylP) oR !p_part !lognM ?logn_prime //. | |
by rewrite !eqxx eq_sym gtn_eqF. | |
have [ntP ntQ]: P :!=: 1 /\ Q :!=: 1 by rewrite -!cardG_gt1 oP oQ !prime_gt1. | |
have nQR: R \subset 'N(Q). | |
rewrite -subsetIidl -indexg_eq1 -(card_Syl_mod R pr_q) (card_Syl sylQ) /=. | |
rewrite modn_small // -divgS ?subsetIl ?ltn_divLR // mulnC oR ltn_pmul2r //. | |
by rewrite (leq_trans ltpq) // -oQ subset_leq_card // subsetI sQR normG. | |
have coQP: coprime #|Q| #|P|. | |
by rewrite oP oQ prime_coprime ?dvdn_prime2 ?gtn_eqF. | |
have defR: Q ><| P = R. | |
rewrite sdprodE ?coprime_TIg ?(subset_trans sPR) //. | |
by apply/eqP; rewrite eqEcard mul_subG //= oR coprime_cardMg // oP oQ mulnC. | |
have [cycP cycQ]: cyclic P /\ cyclic Q by rewrite !prime_cyclic ?oP ?oQ. | |
suffices cQP: P \subset 'C(Q) by rewrite (@cyclic_dprod _ Q P) ?dprodEsd. | |
without loss /is_abelemP[r pr_r abelH]: H ntH nHR regHR / is_abelem H. | |
move=> IH; have [r _ rH] := rank_witness H. | |
have solR: solvable R. | |
apply/metacyclic_sol/metacyclicP; exists Q. | |
by rewrite /(Q <| R) sQR -(isog_cyclic (sdprod_isog defR)). | |
have coHR: coprime #|H| #|R| := regular_norm_coprime nHR regHR. | |
have [H1 sylH1 nH1R] := sol_coprime_Sylow_exists r solR nHR coHR. | |
have ntH1: H1 :!=: 1 by rewrite -rank_gt0 (rank_Sylow sylH1) -rH rank_gt0. | |
have [H2 minH2 sH21] := minnormal_exists ntH1 nH1R. | |
have [sH1H rH1 _] := and3P sylH1; have sH2H := subset_trans sH21 sH1H. | |
have [nH2R ntH2 abelH2] := minnormal_solvable minH2 sH21 (pgroup_sol rH1). | |
by apply: IH abelH2 => //; apply: semiregularS regHR. | |
have: rfix_mx (abelem_repr abelH ntH nHR) P == 0. | |
rewrite -mxrank_eq0 rfix_abelem // mxrank_eq0 rowg_mx_eq0 /=. | |
by rewrite (cent_semiregular regHR) ?morphim1. | |
apply: contraLR => not_cQP; have{not_cQP} frobR: [Frobenius R = Q ><| P]. | |
by apply/prime_FrobeniusP; rewrite ?prime_TIg ?oP ?oQ // centsC. | |
apply: (Frobenius_rfix_compl frobR). | |
rewrite (eq_p'group _ (charf_eq (char_Fp pr_r))). | |
rewrite (coprime_p'group _ (abelem_pgroup abelH)) //. | |
by rewrite coprime_sym (coprimegS sQR) ?regular_norm_coprime. | |
rewrite rker_abelem subsetI sQR centsC. | |
by rewrite -subsetIidl (cent_semiregular regHR) ?subG1. | |
Qed. | |
(* This is B & G, Theorem 3.4. *) | |
Theorem odd_prime_sdprod_rfix0 F gT (G K R : {group gT}) n | |
(rG : mx_representation F G n) : | |
K ><| R = G -> solvable G -> odd #|G| -> coprime #|K| #|R| -> prime #|R| -> | |
[char F]^'.-group G -> rfix_mx rG R = 0 -> | |
[~: R, K] \subset rker rG. | |
Proof. | |
move: {2}_.+1 (ltnSn #|G|) => m; elim: m => // m IHm in gT G K R n rG *. | |
rewrite ltnS; set p := #|R| => leGm defG solG oddG coKR p_pr F'G regR. | |
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG. | |
have [sKG nKG] := andP nsKG; have solK := solvableS sKG solG. | |
have [-> | ntK] := eqsVneq K 1; first by rewrite commG1 sub1G. | |
have ker_ltK (H : {group gT}): | |
H \proper K -> R \subset 'N(H) -> [~: R, H] \subset rker rG. | |
- move=> ltKH nHR; have sHK := proper_sub ltKH; set G1 := H <*> R. | |
have sG1G: G1 \subset G by rewrite join_subG (subset_trans sHK). | |
have coHR := coprimeSg sHK coKR. | |
have defG1: H ><| R = G1 by rewrite sdprodEY // coprime_TIg. | |
apply: subset_trans (subsetIr G1 _); rewrite -(rker_subg _ sG1G). | |
apply: IHm; rewrite ?(solvableS sG1G) ?(oddSg sG1G) ?(pgroupS sG1G) //. | |
apply: leq_trans leGm; rewrite /= norm_joinEr // -defKR !coprime_cardMg //. | |
by rewrite ltn_pmul2r ?proper_card. | |
without loss [q q_pr qK]: / exists2 q, prime q & q.-group K. | |
move=> IH; set q := pdiv #|K|. | |
have q_pr: prime q by rewrite pdiv_prime ?cardG_gt1. | |
have exHall := coprime_Hall_exists _ nKR coKR solK. | |
have [Q sylQ nQR] := exHall q; have [Q' hallQ' nQ'R] := exHall q^'. | |
have [sQK qQ _] := and3P sylQ; have [sQ'K q'Q' _] := and3P hallQ'. | |
without loss{IH} ltQK: / Q \proper K. | |
by rewrite properEneq; case: eqP IH => [<- -> | _ _ ->] //; exists q. | |
have ltQ'K: Q' \proper K. | |
rewrite properEneq; case: eqP (pgroupP q'Q' q q_pr) => //= ->. | |
by rewrite !inE pdiv_dvd eqxx; apply. | |
have nkerG := subset_trans _ (rker_norm rG). | |
rewrite -quotient_cents2 ?nkerG //. | |
have <-: Q * Q' = K. | |
apply/eqP; rewrite eqEcard mulG_subG sQK sQ'K. | |
rewrite coprime_cardMg ?(pnat_coprime qQ) //=. | |
by rewrite (card_Hall sylQ) (card_Hall hallQ') partnC. | |
rewrite quotientMl ?nkerG ?(subset_trans sQK) // centM subsetI. | |
by rewrite !quotient_cents2r ?ker_ltK. | |
without loss{m IHm leGm} [ffulG cycZ]: / rker rG = 1 /\ cyclic 'Z(G). | |
move=> IH; wlog [I M /= simM sumM _]: / mxsemisimple rG 1%:M. | |
exact: (mx_reducible_semisimple (mxmodule1 _) (mx_Maschke _ F'G)). | |
pose not_cRK_M i := ~~ ([~: R, K] \subset rstab rG (M i)). | |
case: (pickP not_cRK_M) => [i | cRK_M]; last first. | |
rewrite rfix_mx_rstabC ?comm_subG // -sumM. | |
apply/sumsmx_subP=> i _; move/negbFE: (cRK_M i). | |
by rewrite rfix_mx_rstabC ?comm_subG. | |
have [modM ntM _] := simM i; pose rM := kquo_repr (submod_repr modM). | |
do [rewrite {+}/not_cRK_M -(rker_submod modM) /=; set N := rker _] in rM *. | |
have [N1 _ | ntN] := eqVneq N 1. | |
apply: IH; split. | |
by apply/trivgP; rewrite -N1 /N rker_submod rstabS ?submx1. | |
have: mx_irreducible (submod_repr modM) by apply/submod_mx_irr. | |
by apply: mx_faithful_irr_center_cyclic; apply/trivgP. | |
have tiRN: R :&: N = 1. | |
by apply: prime_TIg; rewrite //= rker_submod rfix_mx_rstabC // regR submx0. | |
have nsNG: N <| G := rker_normal _; have [sNG nNG] := andP nsNG. | |
have nNR := subset_trans sRG nNG. | |
have sNK: N \subset K. | |
have [pi hallK]: exists pi, pi.-Hall(G) K. | |
by apply: HallP; rewrite -(coprime_sdprod_Hall_l defG). | |
rewrite (sub_normal_Hall hallK) //=. | |
apply: pnat_dvd (pHall_pgroup hallK). | |
rewrite -(dvdn_pmul2r (prime_gt0 p_pr)) -!TI_cardMg // 1?setIC // defKR. | |
by rewrite -norm_joinEr // cardSg // join_subG sNG. | |
have defGq: (K / N) ><| (R / N) = G / N. | |
rewrite sdprodE ?quotient_norms -?quotientMr ?defKR //. | |
by rewrite -quotientGI // tiKR quotient1. | |
case/negP; rewrite -quotient_cents2 ?(subset_trans _ nNG) //= -/N. | |
rewrite (sameP commG1P trivgP). | |
apply: subset_trans (kquo_mx_faithful (submod_repr modM)). | |
rewrite IHm ?quotient_sol ?coprime_morph ?morphim_odd ?quotient_pgroup //. | |
- by apply: leq_trans leGm; apply: ltn_quotient. | |
- by rewrite card_quotient // -indexgI tiRN indexg1. | |
apply/eqP; rewrite -submx0 rfix_quo // rfix_submod //. | |
by rewrite regR capmx0 linear0 sub0mx. | |
without loss perfectK: / [~: K, R] = K. | |
move=> IH; have: [~: K, R] \subset K by rewrite commg_subl. | |
rewrite subEproper; case/predU1P=> //; move/ker_ltK. | |
by rewrite commGC commg_normr coprime_commGid // commGC => ->. | |
have primeR: {in R^#, forall x, 'C_K[x] = 'C_K(R)}. | |
move=> x; case/setD1P=> nt_x Rx; rewrite -cent_cycle ((<[x]> =P R) _) //. | |
rewrite eqEsubset cycle_subG Rx; apply: contraR nt_x; move/prime_TIg. | |
by rewrite -cycle_eq1 (setIidPr _) ?cycle_subG // => ->. | |
case cKK: (abelian K). | |
rewrite commGC perfectK; move/eqP: regR; apply: contraLR. | |
apply: Frobenius_rfix_compl => //; last exact: pgroupS F'G. | |
rewrite -{2 4}perfectK coprime_abel_cent_TI // in primeR. | |
by apply/Frobenius_semiregularP; rewrite // -cardG_gt1 prime_gt1. | |
have [spK defZK]: special K /\ 'C_K(R) = 'Z(K). | |
apply: (abelian_charsimple_special qK) => //. | |
apply/bigcupsP=> H /andP[chHK cHH]. | |
have:= char_sub chHK; rewrite subEproper. | |
case/predU1P=> [eqHK | ltHK]; first by rewrite eqHK cKK in cHH. | |
have nHR: R \subset 'N(H) := char_norm_trans chHK nKR. | |
by rewrite (sameP commG1P trivgP) /= commGC -ffulG ker_ltK. | |
have{spK} esK: extraspecial K. | |
have abelZK := center_special_abelem qK spK; have [qZK _] := andP abelZK. | |
have /(pgroup_pdiv qZK)[_ _ []]: 'Z(K) != 1. | |
by case: spK => _ <-; rewrite (sameP eqP commG1P) -abelianE cKK. | |
case=> [|e] oK; first by split; rewrite ?oK. | |
suffices: cyclic 'Z(K) by rewrite (abelem_cyclic abelZK) oK pfactorK. | |
rewrite (cyclicS _ cycZ) // subsetI subIset ?sKG //=. | |
by rewrite -defKR centM subsetI -{2}defZK !subsetIr. | |
have [e e_gt0 oKqe] := card_extraspecial qK esK. | |
have cycR: cyclic R := prime_cyclic p_pr. | |
have co_q_p: coprime q p by rewrite oKqe coprime_pexpl in coKR. | |
move/eqP: regR; case/idPn. | |
rewrite defZK in primeR. | |
case: (repr_extraspecial_prime_sdprod_cycle _ _ defG _ oKqe) => // _. | |
apply=> //; last exact/trivgP. | |
apply: contraL (oddSg sRG oddG); move/eqP->; have:= oddSg sKG oddG. | |
by rewrite oKqe addn1 /= !oddX /= orbC => ->. | |
Qed. | |
(* Internal action version of B & G, Theorem 3.4. *) | |
Theorem odd_prime_sdprod_abelem_cent1 k gT (G K R V : {group gT}) : | |
solvable G -> odd #|G| -> K ><| R = G -> coprime #|K| #|R| -> prime #|R| -> | |
k.-abelem V -> G \subset 'N(V) -> k^'.-group G -> 'C_V(R) = 1 -> | |
[~: R, K] \subset 'C_K(V). | |
Proof. | |
move=> solG oddG defG coKR prR abelV nVG k'G regR. | |
have [_ sRG _ nKR _] := sdprod_context defG; rewrite subsetI commg_subr nKR. | |
case: (eqsVneq V 1) => [-> | ntV]; first exact: cents1. | |
pose rV := abelem_repr abelV ntV nVG. | |
apply: subset_trans (_ : rker rV \subset _); last first. | |
by rewrite rker_abelem subsetIr. | |
apply: odd_prime_sdprod_rfix0 => //. | |
have k_pr: prime k by case/pgroup_pdiv: (abelem_pgroup abelV). | |
by rewrite (eq_pgroup G (eq_negn (charf_eq (char_Fp k_pr)))). | |
by apply/eqP; rewrite -submx0 rfix_abelem //= regR morphim1 rowg_mx1. | |
Qed. | |
(* This is B & G, Theorem 3.5. *) | |
Theorem Frobenius_prime_rfix1 F gT (G K R : {group gT}) n | |
(rG : mx_representation F G n) : | |
K ><| R = G -> solvable G -> prime #|R| -> 'C_K(R) = 1 -> | |
[char F]^'.-group G -> \rank (rfix_mx rG R) = 1%N -> | |
K^`(1) \subset rker rG. | |
Proof. | |
move=> defG solG p_pr regR F'G fixRlin. | |
wlog closF: F rG F'G fixRlin / group_closure_field F gT. | |
move=> IH; apply: (@group_closure_field_exists gT F) => [[Fc f closFc]]. | |
rewrite -(rker_map f) IH //; last by rewrite -map_rfix_mx mxrank_map. | |
by rewrite (eq_p'group _ (fmorph_char f)). | |
move: {2}_.+1 (ltnSn #|K|) => m. | |
elim: m => // m IHm in gT G K R rG solG p_pr regR F'G closF fixRlin defG *. | |
rewrite ltnS => leKm. | |
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG. | |
have [sKG nKG] := andP nsKG; have solK := solvableS sKG solG. | |
have cycR := prime_cyclic p_pr. | |
case: (eqsVneq K 1) => [-> | ntK]; first by rewrite derg1 commG1 sub1G. | |
have defR x: x \in R^# -> <[x]> = R. | |
case/setD1P; rewrite -cycle_subG -cycle_eq1 => ntX sXR. | |
apply/eqP; rewrite eqEsubset sXR; apply: contraR ntX => /(prime_TIg p_pr). | |
by rewrite /= (setIidPr sXR) => ->. | |
have ntR: R :!=: 1 by rewrite -cardG_gt1 prime_gt1. | |
have frobG: [Frobenius G = K ><| R]. | |
by apply/Frobenius_semiregularP=> // x Rx; rewrite -cent_cycle defR. | |
case: (eqVneq (rker rG) 1) => [ffulG | ntC]; last first. | |
set C := rker rG in ntC *; have nsCG: C <| G := rker_normal rG. | |
have [sCG nCG] := andP nsCG. | |
have nCK := subset_trans sKG nCG; have nCR := subset_trans sRG nCG. | |
case sKC: (K \subset C); first exact: gFsub_trans. | |
have sCK: C \subset K. | |
by rewrite proper_sub // (Frobenius_normal_proper_ker frobG) ?sKC. | |
have frobGq: [Frobenius G / C = (K / C) ><| (R / C)]. | |
by apply: Frobenius_quotient; rewrite ?sKC. | |
have [defGq _ ntRq _ _] := Frobenius_context frobGq. | |
rewrite -quotient_sub1 ?comm_subG ?quotient_der //= -/C. | |
apply: subset_trans (kquo_mx_faithful rG). | |
apply: IHm defGq _; rewrite 1?(quotient_sol, quotient_pgroup, rfix_quo) //. | |
- rewrite card_quotient // -indexgI /= -/C setIC. | |
by rewrite -(setIidPl sCK) -setIA tiKR (setIidPr (sub1G _)) indexg1. | |
- have: cyclic (R / C) by [rewrite quotient_cyclic]; case/cyclicP=> Cx defRq. | |
rewrite /= defRq cent_cycle (Frobenius_reg_ker frobGq) //= !inE defRq. | |
by rewrite cycle_id -cycle_eq1 -defRq ntRq. | |
- move=> Hq; rewrite -(group_inj (cosetpreK Hq)). | |
by apply: quotient_splitting_field; rewrite ?subsetIl. | |
by apply: leq_trans leKm; apply: ltn_quotient. | |
have ltK_abelian (N : {group gT}): R \subset 'N(N) -> N \proper K -> abelian N. | |
move=> nNR ltNK; have [sNK _] := andP ltNK; apply/commG1P/trivgP. | |
rewrite -(setIidPr (sub1G (N <*> R))) /= -ffulG; set G1 := N <*> R. | |
have sG1: G1 \subset G by rewrite join_subG (subset_trans sNK). | |
have defG1: N ><| R = G1. | |
by rewrite sdprodEY //; apply/trivgP; rewrite -tiKR setSI. | |
rewrite -(rker_subg _ sG1). | |
apply: IHm defG1 _; rewrite ?(solvableS sG1) ?(pgroupS sG1) //. | |
by apply/trivgP; rewrite -regR setSI. | |
by apply: leq_trans leKm; apply: proper_card. | |
have cK'K': abelian K^`(1). | |
exact: ltK_abelian (gFnorm_trans _ nKR) (sol_der1_proper solK _ ntK). | |
pose fixG := rfix_mx rG; pose NRmod N (U : 'M_n) := N <*> R \subset rstabs rG U. | |
have dx_modK_rfix (N : {group gT}) U V: | |
N \subset K -> R \subset 'N(N) -> NRmod N U -> NRmod N V -> | |
mxdirect (U + V) -> (U <= fixG N)%MS || (V <= fixG N)%MS. | |
- move=> sNK nNR nUNR nVNR dxUV. | |
have [-> | ntN] := eqsVneq N 1; first by rewrite -rfix_mx_rstabC sub1G. | |
have sNRG: N <*> R \subset G by rewrite join_subG (subset_trans sNK). | |
pose rNR := subg_repr rG sNRG. | |
have nfixU W: NRmod N W -> ~~ (W <= fixG N)%MS -> (fixG R <= W)%MS. | |
move=> nWN not_cWN; rewrite (sameP capmx_idPr eqmxP). | |
rewrite -(geq_leqif (mxrank_leqif_eq (capmxSr _ _))) fixRlin lt0n. | |
rewrite mxrank_eq0 -(in_submodK (capmxSl _ _)) val_submod_eq0. | |
have modW: mxmodule rNR W by rewrite /mxmodule rstabs_subg subsetI subxx. | |
rewrite -(eqmx_eq0 (rfix_submod modW _)) ?joing_subr //. | |
apply: Frobenius_rfix_compl (pgroupS (subset_trans sNK sKG) F'G) _. | |
apply/Frobenius_semiregularP=> // [|x Rx]. | |
by rewrite sdprodEY //; apply/trivgP; rewrite -tiKR setSI. | |
by apply/trivgP; rewrite -regR /= -cent_cycle defR ?setSI. | |
by rewrite rker_submod rfix_mx_rstabC ?joing_subl. | |
have: fixG R != 0 by rewrite -mxrank_eq0 fixRlin. | |
apply: contraR; case/norP=> not_fixU not_fixW. | |
by rewrite -submx0 -(mxdirect_addsP dxUV) sub_capmx !nfixU. | |
have redG := mx_Maschke rG F'G. | |
wlog [U simU nfixU]: / exists2 U, mxsimple rG U & ~~ (U <= fixG K)%MS. | |
move=> IH; wlog [I U /= simU sumU _]: / mxsemisimple rG 1%:M. | |
exact: (mx_reducible_semisimple (mxmodule1 _) redG). | |
have [i nfixU | fixK] := pickP (fun i => ~~ (U i <= fixG K)%MS). | |
by apply: IH; exists (U i). | |
rewrite gFsub_trans // rfix_mx_rstabC // -sumU. | |
by apply/sumsmx_subP=> i _; apply/idPn; rewrite fixK. | |
have [modU ntU minU] := simU; pose rU := submod_repr modU. | |
have irrU: mx_irreducible rU by apply/submod_mx_irr. | |
have [W modW sumUW dxUW] := redG U modU (submx1 U). | |
have cWK: (W <= fixG K)%MS. | |
have:= dx_modK_rfix _ _ _ (subxx _) nKR _ _ dxUW. | |
by rewrite /NRmod /= norm_joinEr // defKR (negPf nfixU); apply. | |
have nsK'G: K^`(1) <| G by rewrite gFnormal_trans. | |
have [sK'G nK'G] := andP nsK'G. | |
suffices nregK'U: (rfix_mx rU K^`(1))%MS != 0. | |
rewrite rfix_mx_rstabC ?normal_sub // -sumUW addsmx_sub andbC. | |
rewrite (submx_trans cWK) ?rfix_mxS ?der_sub //= (sameP capmx_idPl eqmxP). | |
rewrite minU ?capmxSl ?capmx_module ?normal_rfix_mx_module //. | |
apply: contra nregK'U => cUK'; rewrite (eqmx_eq0 (rfix_submod _ _)) //. | |
by rewrite (eqP cUK') linear0. | |
pose rK := subg_repr rU (normal_sub nsKG); set p := #|R| in p_pr. | |
wlog sK: / socleType rK by apply: socle_exists. | |
have [i _ def_sK]: exists2 i, i \in setT & [set: sK] = orbit 'Cl G i. | |
exact/imsetP/Clifford_atrans. | |
have card_sK: #|[set: sK]| = #|G : 'C[i | 'Cl]|. | |
by rewrite def_sK card_orbit_in ?indexgI. | |
have ciK: K \subset 'C[i | 'Cl]. | |
apply: subset_trans (astabS _ (subsetT _)). | |
by apply: subset_trans (Clifford_astab _); apply: joing_subl. | |
pose M := socle_base i; have simM: mxsimple rK M := socle_simple i. | |
have [sKp | sK1 {ciK card_sK}]: #|[set: sK]| = p \/ #|[set: sK]| = 1%N. | |
- apply/pred2P; rewrite orbC card_sK; case/primeP: p_pr => _; apply. | |
by rewrite (_ : p = #|G : K|) ?indexgS // -divgS // -(sdprod_card defG) mulKn. | |
- have{} def_sK: [set: sK] = orbit 'Cl R i. | |
apply/eqP; rewrite eq_sym -subTset def_sK -[G in orbit _ G i]defKR. | |
apply/subsetP=> _ /imsetP[_ /imset2P[y z /(subsetP ciK)ciy Rz ->] ->]. | |
rewrite !(inE, sub1set) in ciy; have{ciy}[Gy /eqP-ciy]:= andP ciy. | |
by rewrite actMin ?(subsetP sRG z Rz) // ciy mem_orbit. | |
have inj_i: {in R &, injective ('Cl%act i)}. | |
apply/dinjectiveP/card_uniqP; rewrite size_map -cardE -/p. | |
by rewrite -sKp def_sK /orbit [in _ @: _]unlock cardsE. | |
pose sM := (\sum_(y in R) M *m rU y)%MS. | |
have dxM: mxdirect sM. | |
apply/mxdirect_sumsP=> y Ry; have Gy := subsetP sRG y Ry. | |
pose j := 'Cl%act i y. | |
apply/eqP; rewrite -submx0 -{2}(mxdirect_sumsP (Socle_direct sK) j) //. | |
rewrite capmxS ?val_Clifford_act // ?submxMr ?component_mx_id //. | |
apply/sumsmx_subP => z; case/andP=> Rz ne_z_y; have Gz := subsetP sRG z Rz. | |
rewrite (sumsmx_sup ('Cl%act i z)) ?(inj_in_eq inj_i) //. | |
by rewrite val_Clifford_act // ?submxMr // ?component_mx_id. | |
pose inCR := \sum_(x in R) rU x. | |
have im_inCR: (inCR <= rfix_mx rU R)%MS. | |
apply/rfix_mxP=> x Rx; have Gx := subsetP sRG x Rx. | |
rewrite {2}[inCR](reindex_astabs 'R x) ?astabsR //= mulmx_suml. | |
by apply: eq_bigr => y; move/(subsetP sRG)=> Gy; rewrite repr_mxM. | |
pose inM := proj_mx M (\sum_(x in R | x != 1) M *m rU x)%MS. | |
have dxM1 := mxdirect_sumsP dxM _ (group1 R). | |
rewrite repr_mx1 mulmx1 in dxM1. | |
have inCR_K: M *m inCR *m inM = M. | |
rewrite mulmx_sumr (bigD1 1) //= repr_mx1 mulmx1 mulmxDl proj_mx_id //. | |
by rewrite proj_mx_0 ?addr0 // summx_sub_sums. | |
have [modM ntM _] := simM. | |
have linM: \rank M = 1%N. | |
apply/eqP; rewrite eqn_leq lt0n mxrank_eq0 ntM andbT. | |
rewrite -inCR_K; apply: leq_trans (mxrankM_maxl _ _) _. | |
apply: leq_trans (mxrankS (mulmx_sub _ im_inCR)) _. | |
rewrite rfix_submod //; apply: leq_trans (mxrankM_maxl _ _) _. | |
by rewrite -fixRlin mxrankS ?capmxSr. | |
apply: contra (ntM); move/eqP; rewrite -submx0 => <-. | |
by rewrite -(rfix_mx_rstabC rK) ?der_sub // -(rker_submod modM) rker_linear. | |
have{sK i M simM sK1 def_sK} irrK: mx_irreducible rK. | |
have cycGq: cyclic (G / K) by rewrite -defKR quotientMidl quotient_cyclic. | |
apply: (mx_irr_prime_index closF irrU cycGq simM) => x Gx /=. | |
apply: (component_mx_iso simM); first exact: Clifford_simple. | |
have jP: component_mx rK (M *m rU x) \in socle_enum sK. | |
exact/component_socle/Clifford_simple. | |
pose j := PackSocle jP; apply: submx_trans (_ : j <= _)%MS. | |
by rewrite PackSocleK component_mx_id //; apply: Clifford_simple. | |
have def_i: [set i] == [set: sK] by rewrite eqEcard subsetT cards1 sK1. | |
by rewrite ((j =P i) _) // -in_set1 (eqP def_i) inE. | |
pose G' := K^`(1) <*> R. | |
have sG'G: G' \subset G by rewrite join_subG sK'G. | |
pose rG' := subg_repr rU sG'G. | |
wlog irrG': / mx_irreducible rG'. | |
move=> IH; wlog [M simM sM1]: / exists2 M, mxsimple rG' M & (M <= 1%:M)%MS. | |
by apply: mxsimple_exists; rewrite ?mxmodule1; case: irrK. | |
have [modM ntM _] := simM. | |
have [M' modM' sumM dxM] := mx_Maschke rG' (pgroupS sG'G F'G) modM sM1. | |
wlog{IH} ntM': / M' != 0. | |
case: eqP sumM => [-> M1 _ | _ _ -> //]; apply: IH. | |
by apply: mx_iso_simple simM; apply: eqmx_iso; rewrite addsmx0_id in M1. | |
suffices: (K^`(1) \subset rstab rG' M) || (K^`(1) \subset rstab rG' M'). | |
rewrite !rfix_mx_rstabC ?joing_subl //; rewrite -!submx0 in ntM ntM' *. | |
by case/orP; move/submx_trans=> sM; apply: (contra (sM _ _)). | |
rewrite !rstab_subg !rstab_submod !subsetI joing_subl !rfix_mx_rstabC //. | |
rewrite /mxmodule !rstabs_subg !rstabs_submod !subsetI !subxx in modM modM'. | |
do 2!rewrite orbC -genmxE. | |
rewrite dx_modK_rfix // /NRmod ?(eqmx_rstabs _ (genmxE _)) ?der_sub //. | |
exact: subset_trans sRG nK'G. | |
apply/mxdirect_addsP; apply/eqP; rewrite -genmx_cap (eqmx_eq0 (genmxE _)). | |
rewrite -(in_submodK (submx_trans (capmxSl _ _) (val_submodP _))). | |
rewrite val_submod_eq0 in_submodE -submx0 (submx_trans (capmxMr _ _ _)) //. | |
by rewrite -!in_submodE !val_submodK (mxdirect_addsP dxM). | |
have nsK'K: K^`(1) <| K by apply: der_normal. | |
pose rK'K := subg_repr rK (normal_sub nsK'K). | |
have irrK'K: mx_absolutely_irreducible rK'K. | |
wlog sK'K: / socleType rK'K by apply: socle_exists. | |
have sK'_dv_K: #|[set: sK'K]| %| #|K|. | |
exact: atrans_dvd_in (Clifford_atrans _ _). | |
have nsK'G': K^`(1) <| G' := normalS (joing_subl _ _) sG'G nsK'G. | |
pose rK'G' := subg_repr rG' (normal_sub nsK'G'). | |
wlog sK'G': / socleType rK'G' by apply: socle_exists. | |
have coKp: coprime #|K| p := Frobenius_coprime frobG. | |
have nK'R := subset_trans sRG nK'G. | |
have sK'_dv_p: #|[set: sK'G']| %| p. | |
suffices: #|G' : 'C([set: sK'G'] | 'Cl)| %| #|G' : K^`(1)|. | |
rewrite -(divgS (joing_subl _ _)) /= {2}norm_joinEr //. | |
rewrite coprime_cardMg ?(coprimeSg (normal_sub nsK'K)) //. | |
rewrite mulKn ?cardG_gt0 // -indexgI; apply: dvdn_trans. | |
exact: atrans_dvd_index_in (Clifford_atrans _ _). | |
rewrite indexgS //; apply: subset_trans (Clifford_astab sK'G'). | |
exact: joing_subl. | |
have eq_sK': #|[set: sK'K]| = #|[set: sK'G']|. | |
rewrite !cardsT !cardE -!(size_map (fun i => socle_val i)). | |
apply: perm_size. | |
rewrite uniq_perm 1?(map_inj_uniq val_inj) 1?enum_uniq // => V. | |
apply/mapP/mapP=> [] [i _ ->{V}]. | |
exists (PackSocle (component_socle sK'G' (socle_simple i))). | |
by rewrite mem_enum. | |
by rewrite PackSocleK. | |
exists (PackSocle (component_socle sK'K (socle_simple i))). | |
by rewrite mem_enum. | |
by rewrite PackSocleK. | |
have [i def_i]: exists i, [set: sK'G'] = [set i]. | |
apply/cards1P; rewrite -dvdn1 -{7}(eqnP coKp) dvdn_gcd. | |
by rewrite -{1}eq_sK' sK'_dv_K sK'_dv_p. | |
pose M := socle_base i; have simM : mxsimple rK'G' M := socle_simple i. | |
have cycGq: cyclic (G' / K^`(1)). | |
by rewrite /G' joingC quotientYidr ?quotient_cyclic. | |
apply closF; apply: (mx_irr_prime_index closF irrG' cycGq simM) => x K'x /=. | |
apply: (component_mx_iso simM); first exact: Clifford_simple. | |
have jP: component_mx rK'G' (M *m rG' x) \in socle_enum sK'G'. | |
exact/component_socle/Clifford_simple. | |
pose j := PackSocle jP; apply: submx_trans (_ : j <= _)%MS. | |
by rewrite PackSocleK component_mx_id //; apply: Clifford_simple. | |
by rewrite ((j =P i) _) // -in_set1 -def_i inE. | |
have linU: \rank U = 1%N by apply/eqP; rewrite abelian_abs_irr in irrK'K. | |
case: irrU => _ nz1 _; apply: contra nz1; move/eqP=> fix0. | |
by rewrite -submx0 -fix0 -(rfix_mx_rstabC rK) ?der_sub // rker_linear. | |
Qed. | |
(* Internal action version of B & G, Theorem 3.5. *) | |
Theorem Frobenius_prime_cent_prime k gT (G K R V : {group gT}) : | |
solvable G -> K ><| R = G -> prime #|R| -> 'C_K(R) = 1 -> | |
k.-abelem V -> G \subset 'N(V) -> k^'.-group G -> #|'C_V(R)| = k -> | |
K^`(1) \subset 'C_K(V). | |
Proof. | |
move=> solG defG prR regRK abelV nVG k'G primeRV. | |
have [_ sRG _ nKR _] := sdprod_context defG; rewrite subsetI der_sub. | |
have [-> | ntV] := eqsVneq V 1; first exact: cents1. | |
pose rV := abelem_repr abelV ntV nVG. | |
apply: subset_trans (_ : rker rV \subset _); last first. | |
by rewrite rker_abelem subsetIr. | |
have k_pr: prime k by case/pgroup_pdiv: (abelem_pgroup abelV). | |
apply: (Frobenius_prime_rfix1 defG) => //. | |
by rewrite (eq_pgroup G (eq_negn (charf_eq (char_Fp k_pr)))). | |
apply/eqP; rewrite rfix_abelem // -(eqn_exp2l _ _ (prime_gt1 k_pr)). | |
rewrite -{1}(card_Fp k_pr) -card_rowg rowg_mxK. | |
by rewrite card_injm ?abelem_rV_injm ?subsetIl ?primeRV. | |
Qed. | |
Section Theorem_3_6. | |
(* Limit the scope of the FiniteModule notations *) | |
Import FiniteModule. | |
(* This is B & G, Theorem 3.6. *) | |
Theorem odd_sdprod_Zgroup_cent_prime_plength1 p gT (G H R R0 : {group gT}) : | |
solvable G -> odd #|G| -> H ><| R = G -> coprime #|H| #|R| -> | |
R0 \subset R -> prime #|R0| -> Zgroup 'C_H(R0) -> | |
p.-length_1 [~: H, R]. | |
Proof. | |
move: {2}_.+1 (ltnSn #|G|) => n; elim: n => // n IHn in gT G H R R0 *. | |
rewrite ltnS; move oR0: #|R0| => r leGn solG oddG defG coHR sR0R r_pr ZgrCHR0. | |
have rR0: r.-group R0 by rewrite /pgroup oR0 pnat_id. | |
have [nsHG sRG mulHR nHR tiHR]:= sdprod_context defG. | |
have [sHG nHG] := andP nsHG; have solH := solvableS sHG solG. | |
have IHsub (H1 R1 : {group gT}): | |
H1 \subset H -> H1 * R1 \subset 'N(H1) -> R0 \subset R1 -> R1 \subset R -> | |
(#|H1| < #|H|) || (#|R1| < #|R|) -> p.-length_1 [~: H1, R1]. | |
- move=> sH1 nH1 sR01 sR1 ltG1; set G1 := H1 <*> R1. | |
have coHR1: coprime #|H1| #|R1| by rewrite (coprimeSg sH1) // (coprimegS sR1). | |
have defG1: H1 ><| R1 = G1. | |
by rewrite sdprodEY ?coprime_TIg ?(subset_trans (mulG_subr H1 R1)). | |
have sG1: G1 \subset G by rewrite join_subG -mulG_subG -mulHR mulgSS. | |
have{ltG1} ltG1n: #|G1| < n. | |
rewrite (leq_trans _ leGn) // -(sdprod_card defG1) -(sdprod_card defG). | |
have leqifS := leqif_geq (subset_leq_card _). | |
rewrite ltn_neqAle !(leqif_mul (leqifS _ _ _ sH1) (leqifS _ _ _ sR1)). | |
by rewrite muln_eq0 !negb_or negb_and -!ltnNge ltG1 -!lt0n !cardG_gt0. | |
apply: IHn defG1 _ sR01 _ _; rewrite ?oR0 ?(solvableS sG1) ?(oddSg sG1) //. | |
exact: ZgroupS (setSI _ sH1) ZgrCHR0. | |
without loss defHR: / [~: H, R] = H; last rewrite defHR. | |
have sHR_H: [~: H, R] \subset H by rewrite commg_subl. | |
have:= sHR_H; rewrite subEproper; case/predU1P=> [-> -> //|ltHR_H _]. | |
rewrite -coprime_commGid // IHsub 1?proper_card //. | |
by apply: subset_trans (commg_norm H R); rewrite norm_joinEr ?mulSg. | |
have{n leGn IHn tiHR} IHquo (X : {group gT}): | |
X :!=: 1 -> X \subset H -> G \subset 'N(X) -> p.-length_1 (H / X). | |
- move=> ntX sXH nXG; have nXH := subset_trans sHG nXG. | |
have nXR := subset_trans sRG nXG; have nXR0 := subset_trans sR0R nXR. | |
rewrite -defHR quotientE morphimR // -!quotientE. | |
have ltGbn: #|G / X| < n. | |
exact: leq_trans (ltn_quotient ntX (subset_trans sXH sHG)) _. | |
have defGb: (H / X) ><| (R / X) = G / X by apply: quotient_coprime_sdprod. | |
have pr_R0b: prime #|R0 / X|. | |
have tiXR0: X :&: R0 = 1 by apply/trivgP; rewrite -tiHR setISS. | |
by rewrite card_quotient // -indexgI setIC tiXR0 indexg1 oR0. | |
have solGb: solvable (G / X) by apply: quotient_sol. | |
have coHRb: coprime #|H / X| #|R / X| by apply: coprime_morph. | |
apply: IHn defGb coHRb _ pr_R0b _; rewrite ?quotientS ?quotient_odd //. | |
by rewrite -coprime_quotient_cent ?(coprimegS sR0R) // morphim_Zgroup. | |
without loss Op'H: / 'O_p^'(H) = 1. | |
have [_ -> // | ntO _] := eqVneq 'O_p^'(H) 1. | |
suffices: p.-length_1 (H / 'O_p^'(H)). | |
by rewrite p'quo_plength1 ?pcore_normal ?pcore_pgroup. | |
apply: IHquo => //; first by rewrite normal_sub ?pcore_normal. | |
by rewrite normal_norm // gFnormal_trans. | |
move defV: 'F(H)%G => V. | |
have charV: V \char H by rewrite -defV Fitting_char. | |
have /andP[sVH nVH]: V <| H := char_normal charV. | |
have nsVG: V <| G := char_normal_trans charV nsHG. | |
have [_ nVG] := andP nsVG; have nVR: R \subset 'N(V) := subset_trans sRG nVG. | |
without loss ntV: / V :!=: 1. | |
by rewrite -defV trivg_Fitting //; case: eqP => [|_] ->; rewrite ?plength1_1. | |
have scVHV: 'C_H(V) \subset V by rewrite -defV cent_sub_Fitting. | |
have{Op'H} defV: 'O_p(H) = V by rewrite -(Fitting_eq_pcore Op'H) -defV. | |
have pV: p.-group V by rewrite -defV pcore_pgroup. | |
have [p_pr p_dv_V _] := pgroup_pdiv pV ntV. | |
have p'r: r != p. | |
rewrite eq_sym -dvdn_prime2 // -prime_coprime // (coprime_dvdl p_dv_V) //. | |
by rewrite -oR0 (coprimegS sR0R) // (coprimeSg sVH). | |
without loss{charV} abelV: / p.-abelem V; last have [_ cVV eV] := and3P abelV. | |
move/implyP; rewrite implybE -trivg_Phi //; case/orP=> // ntPhi. | |
have charPhi: 'Phi(V) \char H := gFchar_trans _ charV. | |
have nsPhiH := char_normal charPhi; have [sPhiH nPhiH] := andP nsPhiH. | |
have{charPhi} nPhiG: G \subset 'N('Phi(V)):= char_norm_trans charPhi nHG. | |
rewrite -(pquo_plength1 nsPhiH) 1?IHquo ?(pgroupS (Phi_sub _)) //. | |
have [/= W defW sPhiW nsWH] := inv_quotientN nsPhiH (pcore_normal p^' _). | |
have p'Wb: p^'.-group (W / 'Phi(V)) by rewrite -defW pcore_pgroup. | |
have{p'Wb} tiWb := coprime_TIg (pnat_coprime (quotient_pgroup _ _) p'Wb). | |
suffices pW: p.-group W by rewrite -(tiWb W pW) setIid. | |
apply/pgroupP=> q q_pr; case/Cauchy=> // x Wx ox; apply: wlog_neg => q'p. | |
suffices Vx: x \in V by rewrite (pgroupP pV) // -ox order_dvdG. | |
have [sWH nWH] := andP nsWH; rewrite (subsetP scVHV) // inE (subsetP sWH) //=. | |
have coVx: coprime #|V| #[x] by rewrite ox (pnat_coprime pV) // pnatE. | |
rewrite -cycle_subG (coprime_cent_Phi pV coVx) //. | |
have: V :&: W \subset 'Phi(V); last apply: subset_trans. | |
rewrite -quotient_sub1; last by rewrite subIset ?(subset_trans sWH) ?orbT. | |
by rewrite quotientIG ?tiWb. | |
rewrite commg_subI //; first by rewrite subsetI subxx (subset_trans sVH). | |
by rewrite cycle_subG inE Wx (subsetP nVH) // (subsetP sWH). | |
have{scVHV} scVH: 'C_H(V) = V by apply/eqP; rewrite eqEsubset scVHV subsetI sVH. | |
without loss{IHquo} indecomposableV: / forall U W, | |
U \x W = V -> G \subset 'N(U) :&: 'N(W) -> U = 1 \/ U = V. | |
- pose decV UW := let: (U, W) := UW in | |
[&& U \x W == V, G \subset 'N(U) :&: 'N(W), U != 1 & W != 1]. | |
case: (pickP decV) => [[A B /=] | indecV]; last first. | |
apply=> U W defUW nUW_G; have:= indecV (U, W); rewrite /= -defUW nUW_G eqxx. | |
by rewrite -negb_or; case/pred2P=> ->; [left | right; rewrite dprodg1]. | |
rewrite subsetI -!andbA => /and5P[/eqP/dprodP[[U W -> ->{A B}]]]. | |
move=> defUW _ tiUW nUG nWG ntU ntW _. | |
have [sUH sWH]: U \subset H /\ W \subset H. | |
by apply/andP; rewrite -mulG_subG defUW. | |
have [nsUH nsWH]: U <| H /\ W <| H. | |
by rewrite /normal !(subset_trans sHG) ?andbT. | |
by rewrite -(quo2_plength1 _ nsUH nsWH) ?tiUW ?IHquo. | |
have nsFb: 'F(H / V) <| G / V by rewrite gFnormal_trans ?quotient_normal. | |
have{nsVG nsFb} [/= U defU sVU nsUG] := inv_quotientN nsVG nsFb. | |
have{nsUG} [sUG nUG] := andP nsUG. | |
have [solU nVU] := (solvableS sUG solG, subset_trans sUG nVG). | |
have sUH: U \subset H by rewrite -(quotientSGK nVU sVH) -defU Fitting_sub. | |
have [K hallK nKR]: exists2 K : {group gT}, p^'.-Hall(U) K & R \subset 'N(K). | |
by apply: coprime_Hall_exists; rewrite ?(coprimeSg sUH) ?(subset_trans sRG). | |
have [sKU p'K _] := and3P hallK; have{sUG} sKG := subset_trans sKU sUG. | |
have coVK: coprime #|V| #|K| := pnat_coprime pV p'K. | |
have [sKH nVK] := (subset_trans sKU sUH, subset_trans sKU nVU). | |
have{defV} p'Ub: p^'.-group (U / V). | |
rewrite -defU -['F(H / V)](nilpotent_pcoreC p (Fitting_nil _)) /=. | |
by rewrite p_core_Fitting -defV trivg_pcore_quotient dprod1g pcore_pgroup. | |
have{p'Ub} sylV: p.-Sylow(U) V by rewrite /pHall sVU pV -card_quotient. | |
have{sKU} mulVK: V * K = U. | |
apply/eqP; rewrite eqEcard mul_subG //= coprime_cardMg //. | |
by rewrite (card_Hall sylV) (card_Hall hallK) partnC. | |
have [sKN sNH]: K \subset 'N_H(K) /\ 'N_H(K) \subset H. | |
by rewrite subsetIl subsetI sKH normG. | |
have [solN nVN] := (solvableS sNH solH, subset_trans sNH nVH). | |
have{solU hallK sUH nUG} defH: V * 'N_H(K) = H. | |
have nsUH: U <| H by apply/andP; rewrite (subset_trans sHG). | |
by rewrite -(mulSGid sKN) mulgA mulVK (Hall_Frattini_arg solU nsUH hallK). | |
have [P sylP nPR]: exists2 P : {group _}, p.-Sylow('N_H(K)) P & R \subset 'N(P). | |
apply: coprime_Hall_exists (coprimeSg sNH coHR) solN. | |
by rewrite normsI ?norms_norm. | |
have [sPN pP _]: [/\ P \subset 'N_H(K), p.-group P & _] := and3P sylP. | |
have [sPH nKP]: P \subset H /\ P \subset 'N(K) by apply/andP; rewrite -subsetI. | |
have nVP := subset_trans sPH nVH. | |
have coKP: coprime #|K| #|P| by rewrite coprime_sym (pnat_coprime pP). | |
have{sylP} sylVP: p.-Sylow(H) (V <*> P). | |
rewrite pHallE /= norm_joinEr ?mul_subG //= -defH -!LagrangeMl. | |
rewrite partnM // part_pnat_id // -!card_quotient //. | |
by apply/eqP; congr (_ * _)%N; apply: card_Hall; apply: quotient_pHall. | |
have [trKP | {sylV sVU nVU}ntKP] := eqVneq [~: K, P] 1. | |
suffices sylVH: p.-Sylow(H) V. | |
rewrite p_elt_gen_length1 // (_ : p_elt_gen p H = V). | |
rewrite /pHall pcore_sub pcore_pgroup /= pnatNK. | |
by apply: pnat_dvd pV; apply: dvdn_indexg. | |
rewrite -(genGid V) -(setIidPr sVH); congr <<_>>; apply/setP=> x. | |
rewrite !inE; apply: andb_id2l => Hx. | |
by rewrite (mem_normal_Hall sylVH) /normal ?sVH. | |
suffices sPV: P \subset V by rewrite -(joing_idPl sPV). | |
suffices sPU: P \subset U by rewrite (sub_normal_Hall sylV) //; apply/andP. | |
have cUPb: P / V \subset 'C_(H / V)(U / V). | |
rewrite subsetI morphimS // -mulVK quotientMidl quotient_cents2r //. | |
by rewrite commGC trKP sub1G. | |
rewrite -(quotientSGK nVP sVU) (subset_trans cUPb) //. | |
by rewrite -defU cent_sub_Fitting ?quotient_sol. | |
have{sylVP} dxV: [~: V, K] \x 'C_V(K) = V by apply: coprime_abelian_cent_dprod. | |
have tiVsub_VcK: 'C_V(K) = 1 \/ 'C_V(K) = V. | |
apply: (indecomposableV _ [~: V, K]); first by rewrite dprodC. | |
rewrite -mulHR -defH -mulgA mul_subG // subsetI. | |
by rewrite commg_norml cents_norm // centsC subIset // -abelianE cVV. | |
have nK_NR: 'N_H(K) * R \subset 'N(K) by rewrite mul_subG ?subsetIr. | |
have nV_NR: 'N_H(K) * R \subset 'N(V) by rewrite mul_subG. | |
by rewrite normsR // normsI ?norms_cent. | |
have{tiVsub_VcK dxV} [defVK tiVcK]: [~: V, K] = V /\ 'C_V(K) = 1. | |
have [tiVcK | eqC] := tiVsub_VcK; first by rewrite -{2}dxV // tiVcK dprodg1. | |
rewrite (card1_trivg (pnat_1 (pgroupS _ pV) p'K)) ?comm1G ?eqxx // in ntKP. | |
by rewrite -scVH subsetI sKH centsC -eqC subsetIr. | |
have eqVncK: 'N_V(K) = 'C_V(K) := coprime_norm_cent nVK (pnat_coprime pV p'K). | |
have{eqVncK} tiVN: V :&: 'N_H(K) = 1 by rewrite setIA (setIidPl sVH) eqVncK. | |
have{sPN} tiVP: V :&: P = 1 by apply/trivgP; rewrite -tiVN setIS. | |
have{U defU mulVK} defK: 'F('N_H(K)) = K. | |
have [injV imV] := isomP (quotient_isom nVN tiVN). | |
rewrite -(im_invm injV) -injm_Fitting ?injm_invm //= {2}imV /=. | |
rewrite -quotientMidl defH defU -mulVK quotientMidl morphim_invmE. | |
by rewrite morphpre_restrm quotientK // -group_modr // setIC tiVN mul1g. | |
have scKH: 'C_H(K) \subset K. | |
rewrite -{2}defK; apply: subset_trans (cent_sub_Fitting _) => //. | |
by rewrite defK subsetI subsetIr setIS // cent_sub. | |
have{nVN} ntKR0: [~: K, R0] != 1. | |
rewrite (sameP eqP commG1P); apply: contra ntKP => cR0K. | |
have ZgrK: Zgroup K by apply: ZgroupS ZgrCHR0; rewrite subsetI sKH. | |
have{ZgrK} cycK: cyclic K by rewrite nil_Zgroup_cyclic // -defK Fitting_nil. | |
have{cycK} sNR_K: [~: 'N_H(K), R] \subset K. | |
apply: subset_trans scKH; rewrite subsetI; apply/andP; split. | |
by rewrite (subset_trans (commSg R sNH)) // commGC commg_subr. | |
suffices: 'N(K)^`(1) \subset 'C(K). | |
by apply: subset_trans; rewrite commgSS ?subsetIr. | |
rewrite der1_min ?cent_norm //= -ker_conj_aut (isog_abelian (first_isog _)). | |
exact: abelianS (Aut_conj_aut K 'N(K)) (Aut_cyclic_abelian cycK). | |
suffices sPV: P \subset V by rewrite -(setIidPr sPV) tiVP commG1. | |
have pPV: p.-group (P / V) := quotient_pgroup V pP. | |
rewrite -quotient_sub1 // subG1 (card1_trivg (pnat_1 pPV _)) //. | |
apply: pgroupS (quotient_pgroup V p'K). | |
apply: subset_trans (quotientS V sNR_K). | |
by rewrite quotientR // -quotientMidl defH -quotientR ?defHR ?quotientS. | |
have nKR0: R0 \subset 'N(K) := subset_trans sR0R nKR. | |
have mulKR0: K * R0 = K <*> R0 by rewrite norm_joinEr. | |
have sKR0_G : K <*> R0 \subset G by rewrite -mulKR0 -mulHR mulgSS. | |
have nV_KR0: K <*> R0 \subset 'N(V) := subset_trans sKR0_G nVG. | |
have solKR0: solvable (K <*> R0) by apply: solvableS solG. | |
have coKR0: coprime #|K| #|R0| by rewrite (coprimeSg sKH) ?(coprimegS sR0R). | |
have r'K: r^'.-group K. | |
by rewrite /pgroup p'natE -?prime_coprime // coprime_sym -oR0. | |
have tiKcV: 'C_K(V) = 1. | |
by apply/trivgP; rewrite -tiVN -{2}scVH -setIIr setICA setIC setSI. | |
have tiKR0cV: 'C_(K <*> R0)(V) = 1. | |
set C := 'C_(K <*> R0)(V); apply/eqP; apply: contraR ntKR0 => ntC. | |
have nC_KR0: K <*> R0 \subset 'N(C) by rewrite normsI ?normG ?norms_cent. | |
rewrite -subG1 -(coprime_TIg coKR0) commg_subI ?subsetI ?subxx //=. | |
suff defC: C == R0 by rewrite -(eqP defC) (subset_trans (joing_subl K R0)). | |
have sC_R0: C \subset R0. | |
rewrite -[C](coprime_mulG_setI_norm mulKR0) ?norms_cent //= tiKcV mul1g. | |
apply: subsetIl. | |
rewrite eqEsubset sC_R0; apply: contraR ntC => not_sR0C. | |
by rewrite -(setIidPr sC_R0) prime_TIg ?oR0. | |
have{nKR0 mulKR0 sKR0_G solKR0 nV_KR0} oCVR0: #|'C_V(R0)| = p. | |
case: (eqVneq 'C_V(R0) 1) => [tiVcR0 | ntCVR0]. | |
case/negP: ntKR0; rewrite -subG1/= commGC -tiKcV. | |
have defKR0: K ><| R0 = K <*> R0 by rewrite sdprodE ?coprime_TIg. | |
have odd_KR0: odd #|K <*> R0| := oddSg sKR0_G oddG. | |
apply: odd_prime_sdprod_abelem_cent1 abelV nV_KR0 _ _; rewrite // ?oR0 //=. | |
by rewrite -mulKR0 pgroupM p'K /pgroup oR0 pnatE. | |
have [x defC]: exists x, 'C_V(R0) = <[x]>. | |
have ZgrC: Zgroup 'C_V(R0) by apply: ZgroupS ZgrCHR0; apply: setSI. | |
apply/cyclicP; apply: (forall_inP ZgrC); apply/SylowP; exists p => //. | |
by rewrite /pHall subxx indexgg (pgroupS (subsetIl V _)). | |
rewrite defC; apply: nt_prime_order => //; last by rewrite -cycle_eq1 -defC. | |
by rewrite (exponentP eV) // -cycle_subG -defC subsetIl. | |
have tiPcR0: 'C_P(R0) = 1. | |
rewrite -(setIidPl (joing_subl P V)) setIIl TI_Ohm1 //=. | |
set C := 'C_(P <*> V)(R0); suffices <-: 'C_V(R0) = 'Ohm_1(C). | |
by rewrite setIC -setIIl tiVP (setIidPl (sub1G _)). | |
have pPV: p.-group (P <*> V) by rewrite norm_joinEl // pgroupM pP. | |
have pC: p.-group C := pgroupS (subsetIl _ _) pPV. | |
have abelCVR0: p.-abelem 'C_V(R0) by rewrite prime_abelem ?oCVR0. | |
have sCV_C: 'C_V(R0) \subset C by rewrite setSI ?joing_subr. | |
apply/eqP; rewrite eqEcard -(Ohm1_id abelCVR0) OhmS //=. | |
have [-> | ntC] := eqVneq C 1; first by rewrite subset_leq_card ?OhmS ?sub1G. | |
rewrite (Ohm1_id abelCVR0) oCVR0 (Ohm1_cyclic_pgroup_prime _ pC) //=. | |
have ZgrC: Zgroup C by rewrite (ZgroupS _ ZgrCHR0) ?setSI // join_subG sPH. | |
apply: (forall_inP ZgrC); apply/SylowP; exists p => //. | |
by apply/pHallP; rewrite part_pnat_id. | |
have defP: [~: P, R0] = P. | |
have solvP := pgroup_sol pP; have nPR0 := subset_trans sR0R nPR. | |
have coPR0: coprime #|P| #|R0| by rewrite (coprimeSg sPH) ?(coprimegS sR0R). | |
by rewrite -{2}(coprime_cent_prod nPR0) // tiPcR0 mulg1. | |
have{nVH} IHsub: forall X : {group gT}, | |
P <*> R0 \subset 'N(X) -> X \subset K -> | |
(#|V <*> X <*> P| < #|H|) || (#|R0| < #|R|) -> [~: X, P] = 1. | |
- move=> X; rewrite join_subG; case/andP=> nXP nXR0 sXK. | |
set H0 := V <*> X <*> P => ltG0G; have sXH := subset_trans sXK sKH. | |
have sXH0: X \subset H0 by rewrite /H0 joingC joingA joing_subr. | |
have sH0H: H0 \subset H by rewrite !join_subG sVH sXH. | |
have nH0R0: R0 \subset 'N(H0). | |
by rewrite 2?normsY ?nXR0 ?(subset_trans sR0R) // (subset_trans sRG). | |
have Op'H0: 'O_p^'(H0) = 1. | |
have [sOp' nOp'] := andP (pcore_normal _ _ : 'O_p^'(H0) <| H0). | |
have p'Op': p^'.-group 'O_p^'(H0) by apply: pcore_pgroup. | |
apply: card1_trivg (pnat_1 (pgroupS _ pV) p'Op'). | |
rewrite -scVH subsetI (subset_trans sOp') //= centsC; apply/setIidPl. | |
rewrite -coprime_norm_cent ?(pnat_coprime pV p'Op') //. | |
by rewrite (setIidPl (subset_trans _ nOp')) // /H0 -joingA joing_subl. | |
exact: subset_trans (subset_trans sH0H nVH). | |
have Op'HR0: 'O_p^'([~: H0, R0]) = 1. | |
apply/trivgP; rewrite -Op'H0 pcore_max ?pcore_pgroup // gFnormal_trans //. | |
by rewrite /(_ <| _) commg_norml andbT commg_subl. | |
have{ltG0G IHsub} p1_HR0: p.-length_1 [~: H0, R0]. | |
by apply: IHsub ltG0G => //=; rewrite mul_subG ?normG. | |
have{p1_HR0} sPOpHR0: P \subset 'O_p([~: H0, R0]). | |
rewrite sub_Hall_pcore //; last by rewrite -defP commSg ?joing_subr. | |
rewrite /pHall pcore_sub pcore_pgroup /= -(pseries_pop2 _ Op'HR0). | |
rewrite -card_quotient ?normal_norm ?pseries_normal // -/(pgroup _ _). | |
by rewrite -{1}((_ :=P: _) p1_HR0) (quotient_pseries [::_; _]) pcore_pgroup. | |
apply/trivgP; have <-: K :&: 'O_p([~: H0, R0]) = 1. | |
by rewrite setIC coprime_TIg // (pnat_coprime (pcore_pgroup p _)). | |
by rewrite commg_subI // subsetI ?sPOpHR0 ?sXK //= gFnorm_trans // normsRl. | |
have{defH sR0R} [defH defR0]: V * K * P = H /\ R0 :=: R. | |
suffices: (V * K * P == H) && (R0 :==: R) by do 2!case: eqP => // ->. | |
apply: contraR ntKP; rewrite -subG1 !eqEcard sR0R ?mul_subG //= negb_and. | |
rewrite -!ltnNge -!norm_joinEr // 1?normsY //; move/IHsub=> -> //. | |
by rewrite join_subG nKP (subset_trans sR0R). | |
move: IHsub defP oR0 rR0 ZgrCHR0 coKR0 ntKR0 tiKR0cV oCVR0 tiPcR0. | |
rewrite {R0}defR0 ltnn => IHsub defP oR rR ZgrCHR coKR ntKR tiKRcV oCVR tiPcR. | |
have mulVK: V * K = V <*> K by rewrite norm_joinEr. | |
have oVK: #|V <*> K| = (#|V| * #|K|)%N by rewrite -mulVK coprime_cardMg. | |
have tiVK_P: V <*> K :&: P = 1. | |
have sylV: p.-Sylow(V <*> K) V. | |
by rewrite /pHall pV -divgS joing_subl //= oVK mulKn. | |
apply/trivgP; rewrite -tiVP subsetI subsetIr. | |
rewrite (sub_normal_Hall sylV) ?subsetIl ?(pgroupS (subsetIr _ P)) //=. | |
by rewrite /normal joing_subl join_subG normG. | |
have{mulVK oVK} oH: (#|H| = #|V| * #|K| * #|P|)%N. | |
by rewrite -defH mulVK -oVK (TI_cardMg tiVK_P). | |
have{oH tiVK_P} IHsub: forall X : {group gT}, | |
P <*> R \subset 'N(X) -> X \subset K -> X :=: K \/ X \subset 'C(P). | |
- move=> X nX_PR sXK; have p'X: p^'.-group X := pgroupS sXK p'K. | |
have nXP: P \subset 'N(X) := subset_trans (joing_subl P R) nX_PR. | |
apply/predU1P; rewrite eqEcard sXK; case: leqP => //= ltXK. | |
apply/commG1P; rewrite {}IHsub // orbF (norm_joinEr (normsY _ _)) //=. | |
rewrite TI_cardMg /=; last first. | |
by apply/trivgP; rewrite -tiVK_P setSI ?genS ?setUS. | |
rewrite oH ltn_pmul2r ?cardG_gt0 // norm_joinEr ?(subset_trans sXK) //. | |
by rewrite coprime_cardMg ?ltn_pmul2l ?(pnat_coprime pV). | |
have defKP: [~: K, P] = K. | |
have sKP_K: [~: K, P] \subset K by rewrite commg_subl. | |
have{sKP_K} [|//|cP_KP] := IHsub _ _ sKP_K. | |
by rewrite join_subG /= commg_normr normsR. | |
by case/eqP: ntKP; rewrite -coprime_commGid ?(commG1P cP_KP) ?(solvableS sKH). | |
have nKPR: P <*> R \subset 'N(K) by rewrite join_subG nKP. | |
have coPR: coprime #|P| #|R| by rewrite (coprimeSg sPH). | |
have{scKH} tiPRcK: 'C_(P <*> R)(K) = 1. | |
have tiPK: P :&: K = 1 by rewrite setIC coprime_TIg. | |
have tiPcK: 'C_P(K) = 1. | |
by apply/trivgP; rewrite /= -{1}(setIidPl sPH) -setIA -tiPK setIS. | |
have tiRcK: 'C_R(K) = 1. | |
by rewrite prime_TIg ?oR // centsC (sameP commG1P eqP). | |
have mulPR: P * R = P <*> R by rewrite norm_joinEr. | |
by rewrite -(coprime_mulG_setI_norm mulPR) ?tiPcK ?mul1g ?norms_cent. | |
have [K1 | ntK]:= eqsVneq K 1; first by rewrite K1 comm1G eqxx in ntKR. | |
have [K1 | [q q_pr q_dv_K]] := trivgVpdiv K; first by case/eqP: ntK. | |
have q_gt1 := prime_gt1 q_pr. | |
have p'q: q != p by apply: (pgroupP p'K). | |
have{r'K} q'r: r != q by rewrite eq_sym; apply: (pgroupP r'K). | |
have{defK} qK: q.-group K. | |
have{defK} nilK: nilpotent K by rewrite -defK Fitting_nil. | |
have{nilK} [_ defK _ _] := dprodP (nilpotent_pcoreC q nilK). | |
have{IHsub} IHpi: forall pi, 'O_pi(K) = K \/ 'O_pi(K) \subset 'C(P). | |
move=> pi; apply: IHsub (pcore_sub _ _). | |
by rewrite gFnorm_trans // join_subG nKP. | |
case: (IHpi q) => [<-| cPKq]; first exact: pcore_pgroup. | |
case/eqP: ntKP; apply/commG1P; rewrite -{}defK mul_subG //. | |
case: (IHpi q^') => // defK; case/idPn: q_dv_K. | |
by rewrite -p'natE // -defK; apply: pcore_pgroup. | |
pose K' := K^`(1); have charK': K' \char K := der_char 1 K. | |
have nsK'K: K' <| K := der_normal 1 K; have [sK'K nK'K] := andP nsK'K. | |
have nK'PR: P <*> R \subset 'N(K') := char_norm_trans charK' nKPR. | |
have iK'K: 'C_(P <*> R / K')(K / K') = 1 -> #|K / K'| > q ^ 2. | |
have qKb: q.-group (K / K') by apply: morphim_pgroup qK. | |
rewrite ltnNge => trCK'; apply: contra ntKP => Kq_le_q2. | |
suffices sPR_K': [~: P, R] \subset K'. | |
rewrite -defP -(setIidPl sPR_K') coprime_TIg ?commG1 //. | |
by rewrite (pnat_coprime (pgroupS _ pP) (pgroupS sK'K p'K)) ?commg_subl. | |
rewrite -quotient_cents2 ?(char_norm_trans charK') //. | |
suffices cPRbPrb: abelian (P <*> R / K'). | |
by rewrite (sub_abelian_cent2 cPRbPrb) ?quotientS ?joing_subl ?joing_subr. | |
have nKbPR: P <*> R / K' \subset 'N(K / K') by apply: quotient_norms. | |
case cycK: (cyclic (K / K')). | |
rewrite (isog_abelian (quotient1_isog _)) -trCK' -ker_conj_aut. | |
rewrite (isog_abelian (first_isog_loc _ _)) //. | |
by rewrite (abelianS (Aut_conj_aut _ _)) ?Aut_cyclic_abelian. | |
have{cycK} [oKb abelKb]: #|K / K'| = (q ^ 2)%N /\ q.-abelem (K / K'). | |
have sKb1: 'Ohm_1(K / K') \subset K / K' by apply: Ohm_sub. | |
have cKbKb: abelian (K / K') by rewrite sub_der1_abelian. | |
have: #|'Ohm_1(K / K')| >= q ^ 2. | |
rewrite (card_pgroup (pgroupS sKb1 qKb)) leq_exp2l // ltnNge. | |
by rewrite -p_rank_abelian -?rank_pgroup // -abelian_rank1_cyclic ?cycK. | |
rewrite (geq_leqif (leqif_trans (subset_leqif_card sKb1) (leqif_eq _))) //. | |
by case/andP=> sKbKb1; move/eqP->; rewrite (abelemS sKbKb1) ?Ohm1_abelem. | |
have ntKb: K / K' != 1 by rewrite -cardG_gt1 oKb (ltn_exp2l 0). | |
pose rPR := abelem_repr abelKb ntKb nKbPR. | |
have: mx_faithful rPR by rewrite abelem_mx_faithful. | |
move: rPR; rewrite (dim_abelemE abelKb ntKb) oKb pfactorK // => rPR ffPR. | |
apply: charf'_GL2_abelian ffPR _. | |
by rewrite quotient_odd ?(oddSg _ oddG) // join_subG (subset_trans sPH). | |
rewrite (eq_pgroup _ (eq_negn (charf_eq (char_Fp q_pr)))). | |
rewrite quotient_pgroup //= norm_joinEr // pgroupM. | |
by rewrite /pgroup (pi_pnat rR) // (pi_pnat pP) // !inE eq_sym. | |
case cKK: (abelian K); last first. | |
have [|[dPhiK dK'] dCKP] := abelian_charsimple_special qK coKP defKP. | |
apply/bigcupsP=> L /andP[charL]; have sLK := char_sub charL. | |
by case/IHsub: sLK cKK => // [|-> -> //]; apply: char_norm_trans charL _. | |
have eK: exponent K %| q. | |
have oddK: odd #|K| := oddSg sKG oddG. | |
have [Q [charQ _ _ eQ qCKQ]] := critical_odd qK oddK ntK; rewrite -eQ. | |
have sQK: Q \subset K := char_sub charQ. | |
have [<- // | cQP] := IHsub Q (char_norm_trans charQ nKPR) sQK. | |
case/negP: ntKP; rewrite (sameP eqP commG1P) centsC. | |
rewrite -ker_conj_aut -sub_morphim_pre // subG1 trivg_card1. | |
rewrite (pnat_1 (morphim_pgroup _ pP) (pi_pnat (pgroupS _ qCKQ) _)) //. | |
apply/subsetP=> a; case/morphimP=> x nKx Px ->{a}. | |
rewrite /= astab_ract inE /= Aut_aut; apply/astabP=> y Qy. | |
rewrite [_ y _]norm_conj_autE ?(subsetP sQK) //. | |
by rewrite /conjg (centsP cQP y) ?mulKg. | |
have tiPRcKb: 'C_(P <*> R / K')(K / K') = 1. | |
rewrite -quotient_astabQ -quotientIG /=; last first. | |
by rewrite sub_astabQ normG trivg_quotient sub1G. | |
apply/trivgP; rewrite -quotient1 quotientS // -tiPRcK subsetI subsetIl /=. | |
rewrite (coprime_cent_Phi qK) ?(coprimegS (subsetIl _ _)) //=. | |
by rewrite norm_joinEr // coprime_cardMg // coprimeMr coKP. | |
rewrite dPhiK -dK' -/K' (subset_trans (commgS _ (subsetIr _ _))) //. | |
by rewrite astabQ -quotient_cents2 ?subsetIl // cosetpreK centsC /=. | |
have [nK'P nK'R] := (char_norm_trans charK' nKP, char_norm_trans charK' nKR). | |
have solK: solvable K := pgroup_sol qK. | |
have dCKRb: 'C_K(R) / K' = 'C_(K / K')(R / K'). | |
by rewrite coprime_quotient_cent. | |
have abelKb: q.-abelem (K / K') by rewrite [K']dK' -dPhiK Phi_quotient_abelem. | |
have [qKb cKbKb _] := and3P abelKb. | |
have [tiKcRb | ntCKRb]:= eqVneq 'C_(K / K')(R / K') 1. | |
have coK'P: coprime #|K'| #|P| by rewrite (coprimeSg sK'K). | |
suffices sPK': P \subset K'. | |
by case/negP: ntKP; rewrite -(setIidPr sPK') coprime_TIg ?commG1. | |
rewrite -quotient_sub1 // -defP commGC quotientR //= -/K'. | |
have <-: 'C_(P / K')(K / K') = 1. | |
by apply/trivgP; rewrite -tiPRcKb setSI ?morphimS ?joing_subl. | |
have q'P: q^'.-group P by rewrite /pgroup (pi_pnat pP) // !inE eq_sym. | |
move: tiKcRb; have: q^'.-group (P <*> R / K'). | |
rewrite quotient_pgroup //= norm_joinEr //. | |
by rewrite pgroupM q'P /pgroup oR pnatE. | |
have sPRG: P <*> R \subset G by rewrite join_subG sRG (subset_trans sPH). | |
have coPRb: coprime #|P / K'| #|R / K'| by rewrite coprime_morph. | |
apply: odd_prime_sdprod_abelem_cent1 abelKb _; rewrite ?quotient_norms //. | |
- by rewrite quotient_sol // (solvableS sPRG). | |
- by rewrite quotient_odd // (oddSg sPRG). | |
- by rewrite /= quotientY // sdprodEY ?quotient_norms ?coprime_TIg. | |
rewrite -(card_isog (quotient_isog nK'R _)) ?oR //. | |
by rewrite coprime_TIg // (coprimeSg sK'K). | |
have{ntCKRb} not_sCKR_K': ~~ ('C_K(R) \subset K'). | |
by rewrite -quotient_sub1 ?subIset ?nK'K // dCKRb subG1. | |
have oCKR: #|'C_K(R)| = q. | |
have [x defCKR]: exists x, 'C_K(R) = <[x]>. | |
have ZgrCKR: Zgroup 'C_K(R) := ZgroupS (setSI _ sKH) ZgrCHR. | |
have qCKR: q.-group 'C_K(R) by rewrite (pgroupS (subsetIl K _)). | |
by apply/cyclicP; apply: nil_Zgroup_cyclic (pgroup_nil qCKR). | |
have Kx: x \in K by rewrite -cycle_subG -defCKR subsetIl. | |
rewrite defCKR cycle_subG in not_sCKR_K' *. | |
exact: nt_prime_order (exponentP eK x Kx) (group1_contra not_sCKR_K'). | |
have tiCKR_K': 'C_K(R) :&: K' = 1 by rewrite prime_TIg ?oCKR. | |
have sKR_K: [~: K, R] \subset K by rewrite commg_subl nKR. | |
have ziKRcR: 'C_K(R) :&: [~: K, R] \subset K'. | |
rewrite -quotient_sub1 ?subIset ?nK'K // setIC. | |
rewrite (subset_trans (quotientI _ _ _)) // dCKRb setIA. | |
rewrite (setIidPl (quotientS _ sKR_K)) // ?quotientR //= -/K'. | |
by rewrite coprime_abel_cent_TI ?quotient_norms ?coprime_morph. | |
have not_sK_KR: ~~ (K \subset [~: K, R]). | |
by apply: contra not_sCKR_K' => sK_KR; rewrite -{1}(setIidPl sK_KR) setIAC. | |
have tiKRcR: 'C_[~: K, R](R) = 1. | |
rewrite -(setIidPr sKR_K) setIAC -(setIidPl ziKRcR) setIAC tiCKR_K'. | |
by rewrite (setIidPl (sub1G _)). | |
have cKR_KR: abelian [~: K, R]. | |
have: 'C_[~: K, R](V) \subset [1]. | |
rewrite -tiVN -{2}scVH -setIIr setICA setIC setIS //. | |
exact: subset_trans sKR_K sKN. | |
rewrite /abelian (sameP commG1P trivgP) /= -derg1; apply: subset_trans. | |
have nKR_R: R \subset 'N([~: K, R]) by rewrite commg_normr. | |
have sKRR_G: [~: K, R] <*> R \subset G by rewrite join_subG comm_subG. | |
move: oCVR; have: p^'.-group ([~: K, R] <*> R). | |
by rewrite norm_joinEr // pgroupM (pgroupS sKR_K p'K) /pgroup oR pnatE. | |
have solKR_R := solvableS sKRR_G solG. | |
apply: Frobenius_prime_cent_prime; rewrite ?oR ?(subset_trans _ nVG) //. | |
by rewrite sdprodEY // coprime_TIg // (coprimeSg sKR_K). | |
case nKR_P: (P \subset 'N([~: K, R])). | |
have{nKR_P} nKR_PR: P <*> R \subset 'N([~: K, R]). | |
by rewrite join_subG nKR_P commg_normr. | |
have{nKR_PR} [dKR | cP_KR] := IHsub _ nKR_PR sKR_K. | |
by rewrite dKR subxx in not_sK_KR. | |
have{cP_KR} cKRb: R / K' \subset 'C(K / K'). | |
by rewrite quotient_cents2r //= dK' -dCKP commGC subsetI sKR_K. | |
case/negP: ntKR; rewrite (sameP eqP commG1P) centsC. | |
by rewrite (coprime_cent_Phi qK) // dPhiK -dK' commGC -quotient_cents2. | |
have{nKR_P} [x Px not_nKRx] := subsetPn (negbT nKR_P). | |
have iKR: #|K : [~: K, R]| = q. | |
rewrite -divgS // -{1}(coprime_cent_prod nKR) // TI_cardMg ?mulKn //. | |
by rewrite setIA (setIidPl sKR_K). | |
have sKRx_K: [~: K, R] :^ x \subset K by rewrite -{2}(normsP nKP x Px) conjSg. | |
have nKR_K: K \subset 'N([~: K, R]) by apply: commg_norml. | |
have mulKR_Krx: [~: K, R] * [~: K, R] :^ x = K. | |
have maxKR: maximal [~: K, R] K by rewrite p_index_maximal ?iKR. | |
apply: mulg_normal_maximal; rewrite ?(p_maximal_normal qK) //. | |
by rewrite inE in not_nKRx. | |
have ziKR_KRx: [~: K, R] :&: [~: K, R] :^ x \subset K'. | |
rewrite /K' dK' subsetI subIset ?sKR_K // -{3}mulKR_Krx centM centJ. | |
by rewrite setISS ?conjSg. | |
suffices: q ^ 2 >= #|K / K'| by rewrite leqNgt iK'K. | |
rewrite -divg_normal // leq_divLR ?cardSg //. | |
rewrite -(@leq_pmul2l (#|[~: K, R]| ^ 2)) ?expn_gt0 ?cardG_gt0 // mulnA. | |
rewrite -expnMn -iKR Lagrange // -mulnn -{2}(cardJg _ x) mul_cardG. | |
by rewrite mulKR_Krx mulnAC leq_pmul2l ?muln_gt0 ?cardG_gt0 ?subset_leq_card. | |
have tiKcP: 'C_K(P) = 1 by rewrite -defKP coprime_abel_cent_TI. | |
have{IHsub} abelK: q.-abelem K. | |
have [/abelem_Ohm1P->//|cPK1] := IHsub _ (gFnorm_trans _ nKPR) (Ohm_sub 1 K). | |
rewrite -(setIid K) TI_Ohm1 ?eqxx // in ntK. | |
by apply/eqP; rewrite -subG1 -tiKcP setIS. | |
have{K' iK'K charK' nsK'K sK'K nK'K nK'PR} oKq2: q ^ 2 < #|K|. | |
have K'1: K' :=: 1 by apply/commG1P. | |
rewrite -indexg1 -K'1 -card_quotient ?normal_norm // iK'K // K'1. | |
by rewrite -injm_subcent ?coset1_injm ?norms1 //= tiPRcK morphim1. | |
pose S := [set Vi : {group gT} | 'C_V('C_K(Vi)) == Vi & maximal 'C_K(Vi) K]. | |
have defSV Vi: Vi \in S -> 'C_V('C_K(Vi)) = Vi by rewrite inE; case: eqP. | |
have maxSK Vi: Vi \in S -> maximal 'C_K(Vi) K by case/setIdP. | |
have sSV Vi: Vi \in S -> Vi \subset V by move/defSV <-; rewrite subsetIl. | |
have ntSV Vi: Vi \in S -> Vi :!=: 1. | |
move=> Si; apply: contraTneq (maxgroupp (maxSK _ Si)) => ->. | |
by rewrite /= cent1T setIT proper_irrefl. | |
have nSK Vi: Vi \in S -> K \subset 'N(Vi). | |
by move/defSV <-; rewrite normsI ?norms_cent // sub_abelian_norm ?subsetIl. | |
have defV: <<\bigcup_(Vi in S) Vi>> = V. | |
apply/eqP; rewrite eqEsubset gen_subG. | |
apply/andP; split; first by apply/bigcupsP; apply: sSV. | |
rewrite -(coprime_abelian_gen_cent cKK nVK) ?(pnat_coprime pV) // gen_subG. | |
apply/bigcupsP=> Kj /= /and3P[cycKbj sKjK nKjK]. | |
have [xb defKbj] := cyclicP cycKbj. | |
have Kxb: xb \in K / Kj by rewrite defKbj cycle_id. | |
set Vj := 'C_V(Kj); have [-> | ntVj] := eqsVneq Vj 1; first exact: sub1G. | |
have nt_xb: xb != 1. | |
apply: contra ntVj; rewrite -cycle_eq1 -defKbj -!subG1 -tiVcK. | |
by rewrite quotient_sub1 // => sKKj; rewrite setIS ?centS. | |
have maxKj: maximal Kj K. | |
rewrite p_index_maximal // -card_quotient // defKbj -orderE. | |
by rewrite (abelem_order_p (quotient_abelem Kj abelK) Kxb nt_xb). | |
suffices defKj: 'C_K(Vj) = Kj. | |
by rewrite sub_gen // (bigcup_max 'C_V(Kj))%G // inE defKj eqxx. | |
have{maxKj} [_ maxKj] := maxgroupP maxKj. | |
rewrite ['C_K(Vj)]maxKj //; last by rewrite subsetI sKjK centsC subsetIr. | |
rewrite properEneq subsetIl andbT (sameP eqP setIidPl) centsC. | |
by apply: contra ntVj; rewrite -subG1 -tiVcK subsetI subsetIl. | |
pose dxp := [fun D : {set {group gT}} => \big[dprod/1]_(Vi in D) Vi]. | |
have{} defV: \big[dprod/1]_(Vi in S) Vi = V. | |
have [D maxD]: {D | maxset [pred E | group_set (dxp E) & E \subset S] D}. | |
by apply: ex_maxset; exists set0; rewrite /= sub0set big_set0 groupP. | |
have [gW sDS] := andP (maxsetp maxD); have{maxD} [_ maxD] := maxsetP maxD. | |
have{gW} [W /= defW]: {W : {group gT} | dxp D = W} by exists (Group gW). | |
have [eqDS | ltDS] := eqVproper sDS. | |
by rewrite eqDS in defW; rewrite defW -(bigdprodWY defW). | |
have{ltDS} [_ [Vi Si notDi]] := properP ltDS. | |
have sWV: W \subset V. | |
rewrite -(bigdprodWY defW) gen_subG. | |
by apply/bigcupsP=> Vj Dj; rewrite sSV ?(subsetP sDS). | |
suffices{maxD sWV defV} tiWcKi: 'C_W('C_K(Vi)) = 1. | |
have:= notDi; rewrite -(maxD (Vi |: D)) ?setU11 ?subsetUr //= subUset sDS. | |
rewrite sub1set Si big_setU1 //= defW dprodEY ?groupP //. | |
by rewrite (sub_abelian_cent2 cVV) // sSV. | |
by rewrite -(defSV Vi Si) setIAC (setIidPr sWV). | |
apply/trivgP/subsetP=> w /setIP[Ww cKi_w]. | |
have [v [Vv def_w v_uniq]] := mem_bigdprod defW Ww. | |
rewrite def_w big1 ?inE // => Vj Dj; have Sj := subsetP sDS Vj Dj. | |
have cKi_vj: v Vj \in 'C('C_K(Vi)). | |
apply/centP=> x Ki_x; apply/commgP/conjg_fixP. | |
apply: (v_uniq (fun Vk => v Vk ^ x)) => // [Vk Dk|]. | |
have [[Kx _] Sk]:= (setIP Ki_x, subsetP sDS Vk Dk). | |
by rewrite memJ_norm ?Vv // (subsetP (nSK Vk Sk)). | |
rewrite -(mulKg x w) -(centP cKi_w) // -conjgE def_w. | |
by apply: (big_morph (conjg^~ x)) => [y z|]; rewrite ?conj1g ?conjMg. | |
suffices mulKji: 'C_K(Vj) * 'C_K(Vi) = K. | |
by apply/set1gP; rewrite -tiVcK -mulKji centM setIA defSV // inE Vv. | |
have maxKj := maxSK Vj Sj; have [_ maxKi] := maxgroupP (maxSK Vi Si). | |
rewrite (mulg_normal_maximal _ maxKj) -?sub_abelian_normal ?subsetIl //. | |
have [eqVji|] := eqVneq Vj Vi; first by rewrite -eqVji Dj in notDi. | |
apply: contra => /= sKiKj; rewrite -val_eqE /= -(defSV Vj Sj). | |
by rewrite (maxKi _ (maxgroupp maxKj) sKiKj) defSV. | |
have nVPR: P <*> R \subset 'N(V) by rewrite join_subG nVP. | |
have actsPR: [acts P <*> R, on S | 'JG]. | |
apply/subsetP=> x PRx; rewrite !inE; apply/subsetP=> Vi. | |
rewrite !inE /= => Si; rewrite -(normsP nKPR x PRx) !centJ -!conjIg centJ . | |
by rewrite -(normsP nVPR x PRx) -conjIg (inj_eq (@conjsg_inj _ _)) maximalJ. | |
have transPR: [transitive P <*> R, on S | 'JG]. | |
pose ndxp D (U A B : {group gT}) := dxp (S :&: D) = U -> A * B \subset 'N(U). | |
have nV_VK D U: ndxp D U V K. | |
move/bigdprodWY <-; rewrite norms_gen ?norms_bigcup //. | |
apply/bigcapsP=> Vi /setIP[Si _]. | |
by rewrite mulG_subG nSK // sub_abelian_norm // sSV. | |
have nV_PR D U: [acts P <*> R, on S :&: D | 'JG] -> ndxp D U P R. | |
move=> actsU /bigdprodWY<-; rewrite -norm_joinEr ?norms_gen //. | |
apply/subsetP=> x PRx; rewrite inE sub_conjg; apply/bigcupsP=> Vi Di. | |
by rewrite -sub_conjg (bigcup_max (Vi :^ x)%G) //= (acts_act actsU). | |
have [S0 | [V1 S1]] := set_0Vmem S. | |
by case/eqP: ntV; rewrite -defV S0 big_set0. | |
apply/imsetP; exists V1 => //; set D := orbit _ _ _. | |
rewrite (big_setID D) /= setDE in defV. | |
have [[U W defU defW] _ _ tiUW] := dprodP defV. | |
rewrite defU defW in defV tiUW. | |
have [|U1|eqUV]:= indecomposableV _ _ defV. | |
- rewrite -mulHR -defH -mulgA mul_subG //. | |
by rewrite subsetI (nV_VK _ _ defU) (nV_VK _ _ defW). | |
rewrite subsetI (nV_PR _ _ _ defU) ?actsI ?acts_orbit ?subsetT //=. | |
by rewrite (nV_PR _ _ _ defW) // actsI ?astabsC ?acts_orbit ?subsetT /=. | |
- case/negP: (ntSV V1 S1); rewrite -subG1 -U1 -(bigdprodWY defU) sub_gen //. | |
by rewrite (bigcup_max V1) // inE S1 orbit_refl. | |
apply/eqP; rewrite eqEsubset (acts_sub_orbit _ actsPR) S1 andbT. | |
apply/subsetP=> Vi Si; apply: contraR (ntSV Vi Si) => D'i; rewrite -subG1. | |
rewrite -tiUW eqUV subsetI sSV // -(bigdprodWY defW). | |
by rewrite (bigD1 Vi) ?joing_subl // inE Si inE. | |
have [cSR | not_cSR] := boolP (R \subset 'C(S | 'JG)). | |
have{cSR} sRnSV: R \subset \bigcap_(Vi in S) 'N(Vi). | |
apply/bigcapsP=> Vi Si. | |
by rewrite -astab1JG (subset_trans cSR) ?astabS ?sub1set. | |
have sPRnSV: P <*> R \subset 'N(\bigcap_(Vi in S) 'N(Vi)). | |
apply/subsetP=> x PRx; rewrite inE; apply/bigcapsP=> Vi Si. | |
by rewrite sub_conjg -normJ bigcap_inf ?(acts_act actsPR) ?groupV. | |
have [V1 S1] := imsetP transPR. | |
have: P <*> R \subset 'N(V1). | |
rewrite join_subG (subset_trans sRnSV) /= ?bigcap_inf // andbT -defP. | |
apply: (subset_trans (commgS P sRnSV)). | |
have:= subset_trans (joing_subl P R) sPRnSV; rewrite -commg_subr /=. | |
by move/subset_trans; apply; apply: bigcap_inf. | |
rewrite -afixJG; move/orbit1P => -> allV1. | |
have defV1: V1 = V by apply: group_inj; rewrite /= -defV allV1 big_set1. | |
case/idPn: oKq2; rewrite -(Lagrange (subsetIl K 'C(V1))). | |
rewrite (p_maximal_index qK (maxSK V1 S1)) defV1 /= tiKcV cards1 mul1n. | |
by rewrite (ltn_exp2l 2 1). | |
have actsR: [acts R, on S | 'JG] := subset_trans (joing_subr P R) actsPR. | |
have ntSRcR Vi: | |
Vi \in S -> ~~ (R \subset 'N(Vi)) -> | |
#|Vi| = p /\ 'C_V(R) \subset <<class_support Vi R>>. | |
- move=> Si not_nViR; have [sVi nV] := (subsetP (sSV Vi Si), subsetP nVR). | |
pose f v := fmval (\sum_(x in R) fmod cVV v ^@ x). | |
have fM: {in Vi &, {morph f: u v / u * v}}. | |
move=> u v /sVi Vu /sVi Vv; rewrite -fmvalA -big_split. | |
by congr (fmval _); apply: eq_bigr => x Rx; rewrite /= -actAr fmodM. | |
have injf: 'injm (Morphism fM). | |
apply/subsetP=> v /morphpreP[Vi_v]; have Vv := sVi v Vi_v. | |
rewrite (bigD1 Vi) //= in defV; have [[_ W _ dW] _ _ _] := dprodP defV. | |
have [u [w [_ _ uw Uuw]]] := mem_dprod defV (group1 V). | |
case: (Uuw 1 1) => // [||u1 w1]; rewrite ?dW ?mulg1 // !inE eq_sym /f /=. | |
move/eqP; rewrite (big_setD1 1) // actr1 ?fmodK // fmvalA //= fmval_sum. | |
do [case/Uuw; rewrite ?dW ?fmodK -?u1 ?group_prod //] => [x R'x | ->] //. | |
rewrite (nt_gen_prime _ R'x) ?cycle_subG ?oR // inE in not_nViR nVR actsR. | |
rewrite fmvalJ ?fmodK // -(bigdprodWY dW) ?mem_gen //; apply/bigcupP. | |
exists (Vi :^ x)%G; rewrite ?memJ_conjg // (astabs_act _ actsR) Si. | |
by apply: contraNneq not_nViR => /congr_group->. | |
have im_f: Morphism fM @* Vi \subset 'C_V(R). | |
apply/subsetP=> _ /morphimP[v _ Vi_v ->]; rewrite inE fmodP. | |
apply/centP=> x Rx; red; rewrite conjgC -fmvalJ ?nV //; congr (x * fmval _). | |
rewrite {2}(reindex_acts 'R _ Rx) ?astabsR //= actr_sum. | |
by apply: eq_bigr => y Ry; rewrite actrM ?nV. | |
have defCVR: Morphism fM @* Vi = 'C_V(R). | |
apply/eqP; rewrite eqEcard im_f (prime_nt_dvdP _ _ (cardSg im_f)) ?oCVR //=. | |
by rewrite -trivg_card1 morphim_injm_eq1 ?ntSV. | |
rewrite -oCVR -defCVR; split; first by rewrite card_injm. | |
apply/subsetP=> _ /morphimP[v _ Vi_v ->] /=; rewrite /f fmval_sum. | |
have Vv := sVi v Vi_v; apply: group_prod => x Rx. | |
by rewrite fmvalJ ?fmodK ?nV // mem_gen // imset2_f. | |
have{not_cSR} [V1 S1 not_nV1R]: exists2 V1, V1 \in S & ~~ (R \subset 'N(V1)). | |
by move: not_cSR; rewrite astabC; case/subsetPn=> v; rewrite afixJG; exists v. | |
set D := orbit 'JG%act R V1. | |
have oD: #|D| = r by rewrite card_orbit astab1JG prime_TIg ?indexg1 ?oR. | |
have oSV Vi: Vi \in S -> #|Vi| = p. | |
move=> Si; have [z _ ->]:= atransP2 transPR S1 Si. | |
by rewrite cardJg; case/ntSRcR: not_nV1R. | |
have cSnS' Vi: Vi \in S -> 'N(Vi)^`(1) \subset 'C(Vi). | |
move=> Si; rewrite der1_min ?cent_norm //= -ker_conj_aut. | |
rewrite (isog_abelian (first_isog _)) (abelianS (Aut_conj_aut _ _)) //. | |
by rewrite Aut_cyclic_abelian // prime_cyclic // oSV. | |
have nVjR Vj: Vj \in S :\: D -> 'C_K(Vj) = [~: K, R]. | |
case/setDP=> Sj notDj; set Kj := 'C_K(Vj). | |
have [nVjR|] := boolP (R \subset 'N(Vj)). | |
have{nVjR} sKRVj: [~: K, R] \subset Kj. | |
rewrite subsetI {1}commGC commg_subr nKR. | |
by rewrite (subset_trans _ (cSnS' Vj Sj)) // commgSS ?nSK. | |
have iKj: #|K : Kj| = q by rewrite (p_maximal_index qK (maxSK Vj Sj)). | |
have dxKR: [~: K, R] \x 'C_K(R) = K by rewrite coprime_abelian_cent_dprod. | |
have{dxKR} [_ defKR _ tiKRcR] := dprodP dxKR. | |
have Z_CK: Zgroup 'C_K(R) by apply: ZgroupS ZgrCHR; apply: setSI. | |
have abelCKR: q.-abelem 'C_K(R) := abelemS (subsetIl _ _) abelK. | |
have [qCKR _] := andP abelCKR. | |
apply/eqP; rewrite eq_sym eqEcard sKRVj -(leq_pmul2r (ltnW q_gt1)). | |
rewrite -{1}iKj Lagrange ?subsetIl // -{1}defKR (TI_cardMg tiKRcR). | |
rewrite leq_pmul2l ?cardG_gt0 //= (card_pgroup qCKR). | |
rewrite (leq_exp2l _ 1) // -abelem_cyclic // (forall_inP Z_CK) //. | |
by rewrite (@p_Sylow _ q) // /pHall subxx indexgg qCKR. | |
case/ntSRcR=> // _ sCVj; case/ntSRcR: not_nV1R => // _ sCV1. | |
suffices trCVR: 'C_V(R) = 1 by rewrite -oCVR trCVR cards1 in p_pr. | |
apply/trivgP; rewrite (big_setID D) in defV. | |
have{defV} [[W U /= defW defU] _ _ <-] := dprodP defV. | |
rewrite defW defU subsetI (subset_trans sCV1) /=; last first. | |
rewrite class_supportEr -(bigdprodWY defW) genS //. | |
apply/bigcupsP=> x Rx; rewrite (bigcup_max (V1 :^ x)%G) // inE. | |
by rewrite (actsP actsR) //= S1 imset_f. | |
rewrite (subset_trans sCVj) // class_supportEr -(bigdprodWY defU) genS //. | |
apply/bigcupsP=> x Rx; rewrite (bigcup_max (Vj :^ x)%G) // inE. | |
by rewrite (actsP actsR) // Sj andbT (orbit_transl _ (mem_orbit 'JG Vj Rx)). | |
have sDS: D \subset S. | |
by rewrite acts_sub_orbit //; apply: subset_trans actsPR; apply: joing_subr. | |
have [eqDS | ltDS] := eqVproper sDS. | |
have [fix0 | [Vj cVjP]] := set_0Vmem 'Fix_(S | 'JG)(P). | |
case/negP: p'r; rewrite eq_sym -dvdn_prime2 // -oD eqDS /dvdn. | |
rewrite (pgroup_fix_mod pP (subset_trans (joing_subl P R) actsPR)). | |
by rewrite fix0 cards0 mod0n. | |
have{cVjP} [Sj nVjP] := setIP cVjP; rewrite afixJG in nVjP. | |
case/negP: (ntSV Vj Sj); rewrite -subG1 -tiVcK subsetI sSV // centsC -defKP. | |
by rewrite (subset_trans _ (cSnS' Vj Sj)) // commgSS ?nSK. | |
have [_ [Vj Sj notDj]] := properP ltDS. | |
have defS: S = Vj |: D. | |
apply/eqP; rewrite eqEsubset andbC subUset sub1set Sj sDS. | |
apply/subsetP=> Vi Si; rewrite !inE orbC /= -val_eqE /= -(defSV Vi Si). | |
have [//|notDi] := boolP (Vi \in _); rewrite -(defSV Vj Sj) /=. | |
by rewrite !nVjR // inE ?notDi ?notDj. | |
suffices: odd #|S| by rewrite defS cardsU1 (negPf notDj) /= oD -oR (oddSg sRG). | |
rewrite (dvdn_odd (atrans_dvd transPR)) // (oddSg _ oddG) //. | |
by rewrite join_subG (subset_trans sPH). | |
Qed. | |
End Theorem_3_6. | |
(* This is B & G, Theorem 3.7. *) | |
Theorem prime_Frobenius_sol_kernel_nil gT (G K R : {group gT}) : | |
K ><| R = G -> solvable G -> prime #|R| -> 'C_K(R) = 1 -> nilpotent K. | |
Proof. | |
move=> defG solG R_pr regR. | |
elim: {K}_.+1 {-2}K (ltnSn #|K|) => // m IHm K leKm in G defG solG regR *. | |
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG. | |
have [sKG nKG] := andP nsKG. | |
wlog ntK: / K :!=: 1 by case: eqP => [-> _ | _ ->] //; apply: nilpotent1. | |
have [L maxL _]: {L : {group gT} | maxnormal L K G & [1] \subset L}. | |
by apply: maxgroup_exists; rewrite proper1G ntK norms1. | |
have [ltLK nLG]:= andP (maxgroupp maxL); have [sLK not_sKL]:= andP ltLK. | |
have{m leKm IHm}nilL: nilpotent L. | |
pose G1 := L <*> R; have nLR := subset_trans sRG nLG. | |
have sG1G: G1 \subset G by rewrite join_subG (subset_trans sLK). | |
have defG1: L ><| R = G1. | |
by rewrite sdprodEY //; apply/eqP; rewrite -subG1 -tiKR setSI. | |
apply: (IHm _ _ _ defG1); rewrite ?(solvableS sG1G) ?(oddSg sG1G) //. | |
exact: leq_trans (proper_card ltLK) _. | |
by apply/eqP; rewrite -subG1 -regR setSI. | |
have sLG := subset_trans sLK sKG; have nsLG: L <| G by apply/andP. | |
have sLF: L \subset 'F(G) by apply: Fitting_max. | |
have frobG: [Frobenius G = K ><| R] by apply/prime_FrobeniusP. | |
have solK := solvableS sKG solG. | |
have frobGq := Frobenius_quotient frobG solK nsLG not_sKL. | |
suffices sKF: K \subset 'F(K) by apply: nilpotentS sKF (Fitting_nil K). | |
apply: subset_trans (chief_stab_sub_Fitting solG nsKG). | |
rewrite subsetI subxx; apply/bigcapsP=> [[X Y] /= /andP[chiefXY sXF]]. | |
set V := X / Y; have [maxY nsXG] := andP chiefXY. | |
have [ltYX nYG] := andP (maxgroupp maxY); have [sYX _]:= andP ltYX. | |
have [sXG nXG] := andP nsXG; have sXK := subset_trans sXF (Fitting_sub K). | |
have minV := chief_factor_minnormal chiefXY. | |
have cVL: L \subset 'C(V | 'Q). | |
apply: subset_trans (subset_trans sLF (Fitting_stab_chief solG _)) _ => //. | |
exact: (bigcap_inf (X, Y)). | |
have nVG: {acts G, on group V | 'Q}. | |
by split; rewrite ?quotientS ?subsetT // actsQ // normal_norm. | |
pose V1 := sdpair1 <[nVG]> @* V. | |
have [p p_pr abelV]: exists2 p, prime p & p.-abelem V. | |
apply/is_abelemP; apply: charsimple_solvable (quotient_sol _ _). | |
exact: minnormal_charsimple minV. | |
exact: nilpotent_sol (nilpotentS sXF (Fitting_nil _)). | |
have abelV1: p.-abelem V1 by rewrite morphim_abelem. | |
have injV1 := injm_sdpair1 <[nVG]>. | |
have ntV1: V1 :!=: 1. | |
by rewrite -cardG_gt1 card_injm // cardG_gt1; case/andP: (mingroupp minV). | |
have nV1_G1 := im_sdpair_norm <[nVG]>. | |
pose rV := morphim_repr (abelem_repr abelV1 ntV1 nV1_G1) (subxx G). | |
have def_kerV: rker rV = 'C_G(V | 'Q). | |
rewrite rker_morphim rker_abelem morphpreIdom morphpreIim -astabEsd //. | |
by rewrite astab_actby setIid. | |
have kerL: L \subset rker rV by rewrite def_kerV subsetI sLG. | |
pose rVq := quo_repr kerL nLG. | |
suffices: K / L \subset rker rVq. | |
rewrite rker_quo def_kerV quotientSGK //= 1?subsetI 1?(subset_trans sKG) //. | |
by rewrite sLG. | |
have irrVq: mx_irreducible rVq. | |
apply/quo_mx_irr; apply/morphim_mx_irr; apply/abelem_mx_irrP. | |
apply/mingroupP; rewrite ntV1; split=> // U1; case/andP=> ntU1 nU1G sU1V. | |
rewrite -(morphpreK sU1V); congr (_ @* _). | |
case/mingroupP: minV => _; apply; last by rewrite sub_morphpre_injm. | |
rewrite -subG1 sub_morphpre_injm ?sub1G // morphim1 subG1 ntU1 /=. | |
set U := _ @*^-1 U1; rewrite -(cosetpreK U) quotient_norms //. | |
have: [acts G, on U | <[nVG]>] by rewrite actsEsd ?subsetIl // morphpreK. | |
rewrite astabs_actby subsetI subxx (setIidPr _) ?subsetIl //=. | |
by rewrite -{1}(cosetpreK U) astabsQ ?normal_cosetpre //= -/U subsetI nYG. | |
have [q q_pr abelKq]: exists2 q, prime q & q.-abelem (K / L). | |
apply/is_abelemP; apply: charsimple_solvable (quotient_sol _ solK). | |
exact: maxnormal_charsimple maxL. | |
case (eqVneq q p) => [def_q | neq_qp]. | |
have sKGq: K / L \subset G / L by apply: quotientS. | |
rewrite rfix_mx_rstabC //; have [_ _]:= irrVq; apply; rewrite ?submx1 //. | |
by rewrite normal_rfix_mx_module ?quotient_normal. | |
rewrite -(rfix_subg _ sKGq) (@rfix_pgroup_char _ p) ?char_Fp -?def_q //. | |
exact: (abelem_pgroup abelKq). | |
suffices: rfix_mx rVq (R / L) == 0. | |
apply: contraLR; apply: (Frobenius_rfix_compl frobGq). | |
apply: pi_pnat (abelem_pgroup abelKq) _. | |
by rewrite inE /= (charf_eq (char_Fp p_pr)). | |
rewrite -mxrank_eq0 (rfix_quo _ _ sRG) (rfix_morphim _ _ sRG). | |
rewrite (rfix_abelem _ _ _ (morphimS _ sRG)) mxrank_eq0 rowg_mx_eq0 -subG1. | |
rewrite (sub_abelem_rV_im _ _ _ (subsetIl _ _)) -(morphpreSK _ (subsetIl _ _)). | |
rewrite morphpreIim -gacentEsd gacent_actby gacentQ (setIidPr sRG) /=. | |
rewrite -coprime_quotient_cent ?(solvableS sXG) ?(subset_trans sRG) //. | |
by rewrite {1}['C_X(R)](trivgP _) ?quotient1 ?sub1G // -regR setSI. | |
by apply: coprimeSg sXK _; apply: Frobenius_coprime frobG. | |
Qed. | |
Corollary Frobenius_sol_kernel_nil gT (G K H : {group gT}) : | |
[Frobenius G = K ><| H] -> solvable G -> nilpotent K. | |
Proof. | |
move=> frobG solG; have [defG ntK ntH _ _] := Frobenius_context frobG. | |
have{defG} /sdprodP[_ defG nKH tiKH] := defG. | |
have[H1 | [p p_pr]] := trivgVpdiv H; first by case/eqP: ntH. | |
case/Cauchy=> // x Hx ox; rewrite -ox in p_pr. | |
have nKx: <[x]> \subset 'N(K) by rewrite cycle_subG (subsetP nKH). | |
have tiKx: K :&: <[x]> = 1 by apply/trivgP; rewrite -tiKH setIS ?cycle_subG. | |
apply: (prime_Frobenius_sol_kernel_nil (sdprodEY nKx tiKx)) => //. | |
by rewrite (solvableS _ solG) // join_subG -mulG_subG -defG mulgS ?cycle_subG. | |
by rewrite cent_cycle (Frobenius_reg_ker frobG) // !inE -order_gt1 prime_gt1. | |
Qed. | |
(* This is B & G, Theorem 3.8. *) | |
Theorem odd_sdprod_primact_commg_sub_Fitting gT (G K R : {group gT}) : | |
K ><| R = G -> odd #|G| -> solvable G -> | |
(*1*) coprime #|K| #|R| -> | |
(*2*) semiprime K R -> | |
(*3*) 'C_('F(K))(R) = 1 -> | |
[~: K, R] \subset 'F(K). | |
Proof. | |
elim: {G}_.+1 {-2}G (ltnSn #|G|) K R => // n IHn G. | |
rewrite ltnS => leGn K R defG oddG solG coKR primR regR_F. | |
have [nsKG sRG defKR nKR tiKR] := sdprod_context defG. | |
have [sKG nKG] := andP nsKG. | |
have chF: 'F(K) \char K := Fitting_char K; have nFR := char_norm_trans chF nKR. | |
have nsFK := char_normal chF; have [sFK nFK] := andP nsFK. | |
pose KqF := K / 'F(K); have solK := solvableS sKG solG. | |
without loss [p p_pr pKqF]: / exists2 p, prime p & p.-group KqF. | |
move=> IHp; apply: wlog_neg => IH_KR; rewrite -quotient_cents2 //= -/KqF. | |
set Rq := R / 'F(K); have nKRq: Rq \subset 'N(KqF) by apply: quotient_norms. | |
rewrite centsC. | |
apply: subset_trans (coprime_cent_Fitting nKRq _ _); last first. | |
- exact: quotient_sol. | |
- exact: coprime_morph. | |
rewrite subsetI subxx centsC -['F(KqF)]Sylow_gen gen_subG. | |
apply/bigcupsP=> Pq /SylowP[p p_pr /= sylPq]; rewrite -/KqF in sylPq. | |
have chPq: Pq \char KqF. | |
apply: char_trans (Fitting_char _); rewrite /= -/KqF. | |
by rewrite (nilpotent_Hall_pcore (Fitting_nil _) sylPq) ?pcore_char. | |
have [P defPq sFP sPK] := inv_quotientS nsFK (char_sub chPq). | |
have nsFP: 'F(K) <| P by rewrite /normal sFP (subset_trans sPK). | |
have{chPq} chP: P \char K. | |
by apply: char_from_quotient nsFP (Fitting_char _) _; rewrite -defPq. | |
have defFP: 'F(P) = 'F(K). | |
apply/eqP; rewrite eqEsubset !Fitting_max ?Fitting_nil //. | |
by rewrite char_normal ?gFchar_trans. | |
have coPR := coprimeSg sPK coKR. | |
have nPR: R \subset 'N(P) := char_norm_trans chP nKR. | |
pose G1 := P <*> R. | |
have sG1G: G1 \subset G by rewrite /G1 -defKR norm_joinEr ?mulSg. | |
have defG1: P ><| R = G1 by rewrite sdprodEY ?coprime_TIg. | |
rewrite defPq quotient_cents2r //= -defFP. | |
have:= sPK; rewrite subEproper; case/predU1P=> [defP | ltPK]. | |
rewrite IHp // in IH_KR; exists p => //. | |
by rewrite /KqF -{2}defP -defPq (pHall_pgroup sylPq). | |
move/IHn: defG1 => ->; rewrite ?(oddSg sG1G) ?(solvableS sG1G) ?defFP //. | |
apply: leq_trans leGn; rewrite /= norm_joinEr //. | |
by rewrite -defKR !coprime_cardMg // ltn_pmul2r ?proper_card. | |
by move=> x Rx; rewrite -(setIidPl sPK) -!setIA primR. | |
without loss r_pr: / prime #|R|; last set r := #|R| in r_pr. | |
have [-> _ | [r r_pr]] := trivgVpdiv R; first by rewrite commG1 sub1G. | |
case/Cauchy=> // x; rewrite -cycle_subG subEproper orderE; set X := <[x]>. | |
case/predU1P=> [-> -> -> // | ltXR rX _]; have sXR := proper_sub ltXR. | |
have defCX: 'C_K(X) = 'C_K(R). | |
rewrite cent_cycle primR // !inE -order_gt1 orderE rX prime_gt1 //=. | |
by rewrite -cycle_subG. | |
have primX: semiprime K X. | |
by move=> y; case/setD1P=> nty Xy; rewrite primR // !inE nty (subsetP sXR). | |
have nKX := subset_trans sXR nKR; have coKX := coprimegS sXR coKR. | |
pose H := K <*> X; have defH: K ><| X = H by rewrite sdprodEY ?coprime_TIg. | |
have sHG: H \subset G by rewrite /H -defKR norm_joinEr ?mulgSS. | |
have ltHn: #|H| < n. | |
rewrite (leq_trans _ leGn) /H ?norm_joinEr // -defKR !coprime_cardMg //. | |
by rewrite ltn_pmul2l ?proper_card. | |
have oddH := oddSg sHG oddG; have solH := solvableS sHG solG. | |
have regX_F: 'C_('F(K))(X) = 1. | |
by rewrite -regR_F -(setIidPl sFK) -!setIA defCX. | |
have:= IHn _ ltHn _ _ defH oddH solH coKX primX regX_F. | |
rewrite -!quotient_cents2 ?(subset_trans sXR) //; move/setIidPl <-. | |
rewrite -coprime_quotient_cent ?(subset_trans sXR) // defCX. | |
by rewrite coprime_quotient_cent ?subsetIr. | |
apply: subset_trans (chief_stab_sub_Fitting solG nsKG) => //. | |
rewrite subsetI commg_subl nKR; apply/bigcapsP => [[U V]] /=. | |
case/andP=> chiefUV sUF; set W := U / V. | |
have minW := chief_factor_minnormal chiefUV. | |
have [ntW nWG] := andP (mingroupp minW). | |
have /andP[/maxgroupp/andP[/andP[sVU _] nVG] nsUG] := chiefUV. | |
have sUK := subset_trans sUF sFK; have sVK := subset_trans sVU sUK. | |
have nVK := subset_trans sKG nVG; have nVR := subset_trans sRG nVG. | |
have [q q_pr abelW]: exists2 q, prime q & q.-abelem W. | |
apply/is_abelemP; apply: charsimple_solvable (minnormal_charsimple minW) _. | |
by rewrite quotient_sol // (solvableS sUK). | |
have regR_W: 'C_(W)(R / V) = 1. | |
rewrite -coprime_quotient_cent ?(coprimeSg sUK) ?(solvableS sUK) //. | |
by rewrite -(setIidPl sUF) -setIA regR_F (setIidPr _) ?quotient1 ?sub1G. | |
rewrite sub_astabQ comm_subG ?quotientR //=. | |
have defGv: (K / V) * (R / V) = G / V by rewrite -defKR quotientMl. | |
have oRv: #|R / V| = r. | |
rewrite card_quotient // -indexgI -(setIidPr sVK) setICA setIA tiKR. | |
by rewrite (setIidPl (sub1G _)) indexg1. | |
have defCW: 'C_(G / V)(W) = 'C_(K / V)(W). | |
apply/eqP; rewrite eqEsubset andbC setSI ?quotientS //=. | |
rewrite subsetI subsetIr /= andbT. | |
rewrite -(coprime_mulG_setI_norm defGv) ?coprime_morph ?norms_cent //=. | |
suffices ->: 'C_(R / V)(W) = 1 by rewrite mulg1 subsetIl. | |
apply/trivgP; apply/subsetP=> x; case/setIP=> Rx cWx. | |
apply: contraR ntW => ntx; rewrite -subG1 -regR_W subsetI subxx centsC /= -/W. | |
by apply: contraR ntx; move/prime_TIg <-; rewrite ?oRv // inE Rx. | |
have [P sylP nPR] := coprime_Hall_exists p nKR coKR solK. | |
have [sPK pP _] := and3P sylP. | |
have nVP := subset_trans sPK nVK; have nFP := subset_trans sPK nFK. | |
have sylPv: p.-Sylow(K / V) (P / V) by rewrite quotient_pHall. | |
have defKv: (P / V) * 'C_(G / V)(W) = (K / V). | |
rewrite defCW; apply/eqP; rewrite eqEsubset mulG_subG subsetIl quotientS //=. | |
have sK_PF: K \subset P * 'F(K). | |
rewrite (normC nFP) -quotientSK // subEproper eq_sym eqEcard quotientS //=. | |
by rewrite (card_Hall (quotient_pHall nFP sylP)) part_pnat_id ?leqnn. | |
rewrite (subset_trans (quotientS _ sK_PF)) // quotientMl // mulgS //. | |
rewrite subsetI -quotient_astabQ !quotientS //. | |
by rewrite (subset_trans (Fitting_stab_chief solG nsKG)) ?(bigcap_inf (U, V)). | |
have nW_ := subset_trans (quotientS _ _) nWG; have nWK := nW_ _ sKG. | |
rewrite -quotient_cents2 ?norms_cent ?(nW_ _ sRG) //. | |
have [eq_qp | p'q] := eqVneq q p. | |
apply: subset_trans (sub1G _); rewrite -trivg_quotient quotientS // centsC. | |
apply/setIidPl; case/mingroupP: minW => _; apply; last exact: subsetIl. | |
rewrite andbC normsI ?norms_cent // ?quotient_norms //=. | |
have nsWK: W <| K / V by rewrite /normal quotientS. | |
have sWP: W \subset P / V. | |
by rewrite (normal_sub_max_pgroup (Hall_max sylPv)) -?eq_qp ?abelem_pgroup. | |
rewrite -defKv centM setIA setIAC /=. | |
rewrite ['C_W(_)](setIidPl _); last by rewrite centsC subsetIr. | |
have nilPv: nilpotent (P / V) := pgroup_nil (pHall_pgroup sylPv). | |
rewrite -/W -(setIidPl sWP) -setIA meet_center_nil //. | |
exact: normalS (quotientS V sPK) nsWK. | |
rewrite -defKv -quotientMidr -mulgA mulSGid ?subsetIr // quotientMidr. | |
have sPG := subset_trans sPK sKG. | |
rewrite quotient_cents2 ?norms_cent ?nW_ //= commGC. | |
pose Hv := (P / V) <*> (R / V). | |
have sHGv: Hv \subset G / V by rewrite join_subG !quotientS. | |
have solHv: solvable Hv := solvableS sHGv (quotient_sol V solG). | |
have sPHv: P / V \subset Hv by apply: joing_subl. | |
have nPRv: R / V \subset 'N(P / V) := quotient_norms _ nPR. | |
have coPRv: coprime #|P / V| #|R / V| := coprime_morph _ (coprimeSg sPK coKR). | |
apply: subset_trans (subsetIr (P / V) _). | |
have oHv: #|Hv| = (#|P / V| * #|R / V|)%N. | |
by rewrite /Hv norm_joinEr // coprime_cardMg // oRv. | |
move/(odd_prime_sdprod_abelem_cent1 solHv): (abelW); apply=> //. | |
- exact: oddSg sHGv (quotient_odd _ _). | |
- by rewrite sdprodEY ?quotient_norms // coprime_TIg. | |
- by rewrite oRv. | |
- by rewrite (subset_trans _ nWG) ?join_subG ?quotientS. | |
rewrite /= norm_joinEr // pgroupM /pgroup. | |
rewrite (pi_pnat (quotient_pgroup _ pP)) ?inE 1?eq_sym //=. | |
apply: coprime_p'group (abelem_pgroup abelW) ntW. | |
by rewrite coprime_sym coprime_morph // (coprimeSg sUK). | |
Qed. | |
(* This is B & G, Proposition 3.9 (for external action), with the incorrectly *) | |
(* omitted nontriviality assumption reinstated. *) | |
Proposition ext_odd_regular_pgroup_cyclic (aT rT : finGroupType) p | |
(D R : {group aT}) (K H : {group rT}) (to : groupAction D K) : | |
p.-group R -> odd #|R| -> H :!=: 1 -> | |
{acts R, on group H | to} -> {in R^#, forall x, 'C_(H | to)[x] = 1} -> | |
cyclic R. | |
Proof. | |
move: R H => R0 H0 pR0 oddR0 ntH0 actsR0 regR0. | |
pose gT := sdprod_groupType <[actsR0]>. | |
pose H : {group gT} := (sdpair1 <[actsR0]> @* H0)%G. | |
pose R : {group gT} := (sdpair2 <[actsR0]> @* R0)%G. | |
pose G : {group gT} := [set: gT]%G. | |
have{pR0} pR: p.-group R by rewrite morphim_pgroup. | |
have{oddR0} oddR: odd #|R| by rewrite morphim_odd. | |
have [R1 | ntR] := eqsVneq R 1. | |
by rewrite -(im_invm (injm_sdpair2 <[actsR0]>)) {2}R1 morphim1 cyclic1. | |
have{ntH0} ntH: H :!=: 1. | |
apply: contraNneq ntH0 => H1. | |
by rewrite -(im_invm (injm_sdpair1 <[actsR0]>)) {2}H1 morphim1. | |
have{regR0 ntR} frobG: [Frobenius G = H ><| R]. | |
apply/Frobenius_semiregularP => // [|x]; first exact: sdprod_sdpair. | |
case/setD1P=> nt_x; case/morphimP=> x2 _ Rx2 def_x. | |
apply/trivgP; rewrite -(morphpreSK _ (subsetIl _ _)) morphpreI. | |
rewrite /= -cent_cycle def_x -morphim_cycle // -gacentEsd. | |
rewrite injmK ?injm_sdpair1 // (trivgP (injm_sdpair1 _)). | |
rewrite -(regR0 x2) ?inE ?Rx2 ?andbT; last first. | |
by apply: contra nt_x; rewrite def_x; move/eqP->; rewrite morph1. | |
have [sRD sHK]: R0 \subset D /\ H0 \subset K by case actsR0; move/acts_dom. | |
have sx2R: <[x2]> \subset R0 by rewrite cycle_subG. | |
rewrite gacent_actby setIA setIid (setIidPr sx2R). | |
rewrite !gacentE ?cycle_subG ?sub1set ?(subsetP sRD) //. | |
by rewrite !setIS ?afixS ?sub_gen. | |
suffices: cyclic R by rewrite (injm_cyclic (injm_sdpair2 _)). | |
move: gT H R G => {aT rT to D K H0 R0 actsR0} gT H R G in ntH pR oddR frobG *. | |
have [defG _ _ _ _] := Frobenius_context frobG; case/sdprodP: defG => _ _ nHR _. | |
have coHR := Frobenius_coprime frobG. | |
rewrite (odd_pgroup_rank1_cyclic pR oddR) leqNgt. | |
apply: contra ntH => /p_rank_geP[E /pnElemP[sER abelE dimE2]]. | |
have ncycE: ~~ cyclic E by rewrite (abelem_cyclic abelE) dimE2. | |
have nHE := subset_trans sER nHR; have coHE := coprimegS sER coHR. | |
rewrite -subG1 -(coprime_abelian_gen_cent1 _ _ nHE) ?(abelem_abelian abelE) //. | |
rewrite -bigprodGE big1 // => x /setD1P[nt_x Ex]; apply: val_inj => /=. | |
by apply: (Frobenius_reg_ker frobG); rewrite !inE nt_x (subsetP sER). | |
Qed. | |
(* Internal action version of B & G, Proposition 3.9 (possibly, the only one *) | |
(* we should keep). *) | |
Proposition odd_regular_pgroup_cyclic gT p (H R : {group gT}) : | |
p.-group R -> odd #|R| -> H :!=: 1 -> R \subset 'N(H) -> semiregular H R -> | |
cyclic R. | |
Proof. | |
move=> pR oddR ntH nHR regR. | |
have actsR: {acts R, on group H | 'J} by split; rewrite ?subsetT ?astabsJ. | |
apply: ext_odd_regular_pgroup_cyclic pR oddR ntH actsR _ => // x Rx. | |
by rewrite gacentJ cent_set1 regR. | |
Qed. | |
(* Another proof of Proposition 3.9, which avoids Frobenius groups entirely. *) | |
Proposition simple_odd_regular_pgroup_cyclic gT p (H R : {group gT}) : | |
p.-group R -> odd #|R| -> H :!=: 1 -> R \subset 'N(H) -> semiregular H R -> | |
cyclic R. | |
Proof. | |
move=> pR oddR ntH nHR regR; rewrite (odd_pgroup_rank1_cyclic pR oddR) leqNgt. | |
apply: contra ntH => /p_rank_geP[E /pnElemP[sER abelE dimE2]]. | |
have ncycE: ~~ cyclic E by rewrite (abelem_cyclic abelE) dimE2. | |
have nHE := subset_trans sER nHR. | |
have coHE := coprimegS sER (regular_norm_coprime nHR regR). | |
rewrite -subG1 -(coprime_abelian_gen_cent1 _ _ nHE) ?(abelem_abelian abelE) //. | |
rewrite -bigprodGE big1 // => x; case/setD1P=> nt_x Ex; apply: val_inj => /=. | |
by rewrite regR // !inE nt_x (subsetP sER). | |
Qed. | |
(* This is Aschbacher (40.6)(4). *) | |
Lemma odd_regular_metacyclic gT (H R : {group gT}) : | |
odd #|R| -> H :!=: 1 -> R \subset 'N(H) -> semiregular H R -> | |
metacyclic R. | |
Proof. | |
move=> oddR ntH nHR regHR. | |
apply/Zgroup_metacyclic/forall_inP=> P /SylowP[p pr_p /and3P[sPR pP _]]. | |
have [oddP nHP] := (oddSg sPR oddR, subset_trans sPR nHR). | |
exact: odd_regular_pgroup_cyclic pP oddP ntH nHP (semiregularS _ sPR regHR). | |
Qed. | |
(* This is Huppert, Kapitel V, Satz 18.8 b (used in Peterfalvi, Section 13). *) | |
Lemma prime_odd_regular_normal gT (H R P : {group gT}) : | |
prime #|P| -> odd #|R| -> P \subset R -> | |
H :!=: 1 -> R \subset 'N(H) -> semiregular H R -> | |
P <| R. | |
Proof. | |
set p := #|P| => pr_p oddR sPR ntH nHR regHR. | |
have pP: p.-group P := pnat_id pr_p. | |
have cycQ (q : nat) (Q : {group gT}) : q.-group Q -> Q \subset R -> cyclic Q. | |
move=> qQ sQR; have [oddQ nHQ] := (oddSg sQR oddR, subset_trans sQR nHR). | |
exact: odd_regular_pgroup_cyclic qQ oddQ ntH nHQ (semiregularS _ sQR regHR). | |
have cycRq (q : nat): cyclic 'O_q(R) by rewrite (cycQ q) ?pcore_pgroup ?gFsub. | |
suffices cFP: P \subset 'C('F(R)). | |
have nilF: nilpotent 'F(R) := Fitting_nil R. | |
have hallRp: p.-Hall('F(R)) 'O_p('F(R)) := nilpotent_pcore_Hall p nilF. | |
apply: char_normal_trans (pcore_normal p R); rewrite sub_cyclic_char //=. | |
rewrite -p_core_Fitting (sub_normal_Hall hallRp) ?gFnormal //. | |
have solR: solvable R. | |
by apply: metacyclic_sol; apply: odd_regular_metacyclic regHR. | |
by apply: subset_trans (cent_sub_Fitting solR); rewrite subsetI sPR. | |
rewrite centsC -(bigdprodWY (erefl 'F(R))) gen_subG big_tnth. | |
apply/bigcupsP=> i _; move: {i}(tuple.tnth _ i) => q. | |
have [<- | q'p] := eqVneq p q. | |
have [Q sylQ sPQ] := Sylow_superset sPR pP; have [sQR pQ _] := and3P sylQ. | |
rewrite (sub_abelian_cent2 (cyclic_abelian (cycQ _ _ pQ sQR))) //. | |
by rewrite pcore_sub_Hall. | |
have [-> | ntRq] := eqVneq 'O_q(R) 1%g; first exact: sub1G. | |
have /andP[sRqR qRq]: q.-subgroup(R) 'O_q(R) by apply: pcore_psubgroup. | |
have [pr_q _ _] := pgroup_pdiv qRq ntRq. | |
have coRqP: coprime #|'O_q(R)| p by rewrite (pnat_coprime qRq) // pnatE. | |
have nRqP: P \subset 'N('O_q(R)) by rewrite (subset_trans sPR) ?gFnorm. | |
rewrite centsC (coprime_odd_faithful_Ohm1 qRq) ?(oddSg sRqR) //. | |
apply: sub_abelian_cent2 (joing_subl _ _) (joing_subr _ _) => /=. | |
set PQ := P <*> _; have oPQ: #|PQ| = (p * q)%N. | |
rewrite /PQ norm_joinEl 1?gFnorm_trans //. | |
rewrite coprime_cardMg 1?coprime_sym ?(coprimeSg (Ohm_sub 1 _)) // -/p. | |
by congr (p * _)%N; apply: Ohm1_cyclic_pgroup_prime => /=. | |
have sPQ_R: PQ \subset R by rewrite join_subG sPR (subset_trans (Ohm_sub 1 _)). | |
have nH_PQ := subset_trans sPQ_R nHR. | |
apply: cyclic_abelian; apply: regular_pq_group_cyclic oPQ ntH nH_PQ _ => //. | |
exact: semiregularS regHR. | |
Qed. | |
Section Wielandt_Frobenius. | |
Variables (gT : finGroupType) (G K R : {group gT}). | |
Implicit Type A : {group gT}. | |
(* This is Peterfalvi (9.1). *) | |
Lemma Frobenius_Wielandt_fixpoint (M : {group gT}) : | |
[Frobenius G = K ><| R] -> | |
G \subset 'N(M) -> coprime #|M| #|G| -> solvable M -> | |
[/\ (#|'C_M(G)| ^ #|R| * #|M| = #|'C_M(R)| ^ #|R| * #|'C_M(K)|)%N, | |
'C_M(R) = 1 -> K \subset 'C(M) | |
& 'C_M(K) = 1 -> (#|M| = #|'C_M(R)| ^ #|R|)%N]. | |
Proof. | |
move=> frobG nMG coMG solM; have [defG _ ntR _ _] := Frobenius_context frobG. | |
have [_ _ _ _ /eqP snRG] := and5P frobG. | |
have [nsKG sRG _ _ tiKR] := sdprod_context defG; have [sKG _] := andP nsKG. | |
pose m0 (_ : {group gT}) := 0%N. | |
pose Dm := [set 1%G; G]; pose Dn := K |: orbit 'JG K R. | |
pose m := [fun A => 0%N with 1%G |-> #|K|, G |-> 1%N]. | |
pose n A : nat := A \in Dn. | |
have out_m: {in [predC Dm], m =1 m0}. | |
by move=> A; rewrite !inE /=; case/norP; do 2!move/negbTE->. | |
have out_n: {in [predC Dn], n =1 m0}. | |
by rewrite /n => A /=; move/negbTE=> /= ->. | |
have ntG: G != 1%G by case: eqP sRG => // -> <-; rewrite subG1. | |
have neqKR: K \notin orbit 'JG K R. | |
apply/imsetP=> [[x _ defK]]; have:= Frobenius_dvd_ker1 frobG. | |
by rewrite defK cardJg gtnNdvd // ?prednK // -subn1 subn_gt0 cardG_gt1. | |
have Gmn A: m A + n A > 0 -> A \subset G. | |
rewrite /=; case: eqP => [-> | ] _; first by rewrite sub1G. | |
rewrite /n 2!inE; do 2!case: eqP => [-> // | ] _. | |
case R_A: (A \in _) => // _; case/imsetP: R_A => x Kx ->{A}. | |
by rewrite conj_subG ?(subsetP sKG). | |
have partG: {in G, forall a, | |
\sum_(A | a \in gval A) m A = \sum_(A | a \in gval A) n A}%N. | |
- move=> a Ga; have [-> | nt_a] := eqVneq a 1. | |
rewrite (bigD1 1%G) ?inE ?eqxx //= (bigD1 G) ?inE ?group1 //=. | |
rewrite (negbTE ntG) !eqxx big1 ?addn1 => [|A]; last first. | |
by rewrite group1 -negb_or -in_set2; apply: out_m. | |
rewrite (bigID (mem Dn)) /= addnC big1 => [|A]; last first. | |
by rewrite group1; apply: out_n. | |
transitivity #|Dn|. | |
rewrite cardsU1 neqKR card_orbit astab1JG. | |
by rewrite -{3}(setIidPl sKG) -setIA -normD1 snRG tiKR indexg1. | |
by rewrite -sum1_card /n; apply: eq_big => [A | A ->]; rewrite ?group1. | |
rewrite (bigD1 G) //= (negbTE ntG) eqxx big1 => [|A]; last first. | |
case/andP=> Aa neAG; apply: out_m; rewrite !inE; case: eqP => // A1. | |
by rewrite A1 inE (negbTE nt_a) in Aa. | |
have [partG tiG _] := and3P (Frobenius_partition frobG). | |
do [rewrite -(eqP partG); set pG := _ |: _] in Ga tiG. | |
rewrite (bigD1 <<pblock pG a>>%G) /=; last by rewrite mem_gen // mem_pblock. | |
rewrite big1 => [|B]; last first. | |
case/andP=> Ba neqBA; rewrite -/(false : nat); congr (nat_of_bool _). | |
apply: contraTF neqBA; rewrite negbK -val_eqE /=. | |
case/setU1P=> [BK | /imsetP[x Kx defB]]. | |
by rewrite (def_pblock tiG _ Ba) BK ?setU11 ?genGid. | |
have Rxa: a \in R^# :^ x by rewrite conjD1g !inE nt_a -(congr_group defB). | |
rewrite (def_pblock tiG _ Rxa) ?setU1r ?imset_f // conjD1g. | |
by rewrite genD1 ?group1 // genGid defB. | |
rewrite /n !inE -val_eqE /= -/(true : nat); congr ((_ : bool) + _)%N. | |
case/setU1P: (pblock_mem Ga) => [-> |]; first by rewrite genGid eqxx. | |
case/imsetP=> x Kx ->; symmetry; apply/orP; right. | |
apply/imsetP; exists x => //. | |
by apply: val_inj; rewrite conjD1g /= genD1 ?group1 // genGid. | |
move/eqP: (solvable_Wielandt_fixpoint Gmn nMG coMG solM partG). | |
rewrite (bigD1 1%G) // (bigD1 G) //= eqxx (setIidPl (cents1 _)) cards1 muln1. | |
rewrite (negbTE ntG) eqxx mul1n -(sdprod_card defG) (mulnC #|K|) expnM. | |
rewrite mulnA -expnMn big1 ?muln1 => [|A]; last first. | |
by rewrite -negb_or -in_set2; move/out_m; rewrite /m => /= ->. | |
rewrite mulnC eq_sym (bigID (mem Dn)) /= mulnC. | |
rewrite big1 ?mul1n => [|A]; last by move/out_n->. | |
rewrite big_setU1 //= /n setU11 mul1n. | |
rewrite (eq_bigr (fun _ => #|'C_M(R)| ^ #|R|)%N) => [|A R_A]; last first. | |
rewrite inE R_A orbT mul1n; case/imsetP: R_A => x Kx ->. | |
suffices nMx: x \in 'N(M) by rewrite -{1}(normP nMx) centJ -conjIg !cardJg. | |
exact: subsetP (subsetP sKG x Kx). | |
rewrite mulnC prod_nat_const card_orbit astab1JG. | |
have ->: 'N_K(R) = 1 by rewrite -(setIidPl sKG) -setIA -normD1 snRG tiKR. | |
rewrite indexg1 -expnMn eq_sym eqn_exp2r ?cardG_gt0 //; move/eqP=> eq_fix. | |
split=> // [regR | regK]. | |
rewrite centsC (sameP setIidPl eqP) eqEcard subsetIl /=. | |
move: eq_fix; rewrite regR cards1 exp1n mul1n => <-. | |
suffices ->: 'C_M(G) = 1 by rewrite cards1 exp1n mul1n. | |
by apply/trivgP; rewrite -regR setIS ?centS //; case/sdprod_context: defG. | |
move: eq_fix; rewrite regK cards1 muln1 => <-. | |
suffices ->: 'C_M(G) = 1 by rewrite cards1 exp1n mul1n. | |
by apply/trivgP; rewrite -regK setIS ?centS. | |
Qed. | |
End Wielandt_Frobenius. | |
(* This is B & G, Theorem 3.10. *) | |
Theorem Frobenius_primact gT (G K R M : {group gT}) : | |
[Frobenius G = K ><| R] -> solvable G -> | |
G \subset 'N(M) -> solvable M -> M :!=: 1 -> | |
(*1*) coprime #|M| #|G| -> | |
(*2*) semiprime M R -> | |
(*3*) 'C_M(K) = 1 -> | |
[/\ prime #|R|, | |
#|M| = (#|'C_M(R)| ^ #|R|)%N | |
& cyclic 'C_M(R) -> K^`(1) \subset 'C_K(M)]. | |
Proof. | |
move: {2}_.+1 (ltnSn #|M|) => n; elim: n => // n IHn in gT G K R M *. | |
rewrite ltnS => leMn frobG solG nMG solM ntM coMG primRM tcKM. | |
case: (Frobenius_Wielandt_fixpoint frobG nMG) => // _ _ /(_ tcKM) oM. | |
have [defG ntK ntR ltKG _]:= Frobenius_context frobG. | |
have Rpr: prime #|R|. | |
have [R1 | [r r_pr]] := trivgVpdiv R; first by case/eqP: ntR. | |
case/Cauchy=> // x Rx ox; pose R0 := <[x]>; pose G0 := K <*> R0. | |
have [_ defKR nKR tiKR] := sdprodP defG. | |
have sR0R: R0 \subset R by rewrite cycle_subG. | |
have sG0G: G0 \subset G by rewrite /G0 -genM_join gen_subG -defKR mulgS. | |
have nKR0 := subset_trans sR0R nKR; have nMG0 := subset_trans sG0G nMG. | |
have ntx: <[x]> != 1 by rewrite cycle_eq1 -order_gt1 ox prime_gt1. | |
have [tcRM | ntcRM] := eqVneq 'C_M(R) 1. | |
by rewrite -cardG_gt1 oM tcRM cards1 exp1n in ntM. | |
have frobG0: [Frobenius G0 = K ><| R0]. | |
apply/Frobenius_semiregularP=> // [|y /setD1P[nty x_y]]. | |
by apply: sdprodEY nKR0 (trivgP _); rewrite -tiKR setIS. | |
by apply: (Frobenius_reg_ker frobG); rewrite !inE nty (subsetP sR0R). | |
case: (Frobenius_Wielandt_fixpoint frobG0 nMG0 (coprimegS _ coMG)) => // _ _. | |
move/(_ tcKM)/eqP; rewrite oM cent_cycle. | |
rewrite primRM; last by rewrite !inE Rx andbT -cycle_eq1. | |
by rewrite eqn_exp2l ?cardG_gt1 // -orderE ox => /eqP->. | |
split=> // cyc_cMR. | |
have nM_MG: M <*> G \subset 'N(M) by rewrite join_subG normG. | |
have [V minV sVM] := minnormal_exists ntM nM_MG. | |
have [] := minnormal_solvable minV sVM solM. | |
rewrite join_subG; case/andP=> nVM nVG ntV; case/is_abelemP=> [q q_pr abelV]. | |
have coVG := coprimeSg sVM coMG; have solV := solvableS sVM solM. | |
have cVK': K^`(1) \subset 'C_K(V). | |
case: (eqVneq 'C_V(R) 1) => [tcVR | ntcRV]. | |
case: (Frobenius_Wielandt_fixpoint frobG nVG) => // _. | |
by move/(_ tcVR)=> cVK _; rewrite (setIidPl cVK) der_sub. | |
have ocVR: #|'C_V(R)| = q. | |
have [u def_u]: exists u, 'C_V(R) = <[u]>. | |
by apply/cyclicP; apply: cyclicS (setSI _ sVM) cyc_cMR. | |
rewrite def_u -orderE (abelem_order_p abelV) -?cycle_eq1 -?def_u //. | |
by rewrite -cycle_subG -def_u subsetIl. | |
apply: (Frobenius_prime_cent_prime _ defG _ _ abelV) => //. | |
by case/prime_FrobeniusP: frobG. | |
by rewrite (coprime_p'group _ (abelem_pgroup abelV) ntV) // coprime_sym. | |
have cMK': K^`(1) / V \subset 'C_(K / V)(M / V). | |
have [-> | ntMV] := eqVneq (M / V) 1. | |
by rewrite subsetI cents1 quotientS ?der_sub. | |
have coKR := Frobenius_coprime frobG. | |
case/prime_FrobeniusP: frobG => //. | |
case/sdprod_context=> nsKG sRG defKR nKR tiKR regR; have [sKG _] := andP nsKG. | |
have nVK := subset_trans sKG nVG; have nVR := subset_trans sRG nVG. | |
have RVpr: prime #|R / V|. | |
rewrite card_quotient // -indexgI setIC coprime_TIg ?(coprimegS sRG) //. | |
by rewrite indexg1. | |
have frobGV: [Frobenius G / V = (K / V) ><| (R / V)]. | |
apply/prime_FrobeniusP; rewrite // -?cardG_gt1 ?card_quotient //. | |
rewrite -indexgI setIC coprime_TIg ?(coprimegS sKG) //. | |
by rewrite indexg1 cardG_gt1. | |
rewrite -coprime_norm_quotient_cent ?(coprimegS sRG) //= regR quotient1. | |
rewrite -defKR quotientMl // sdprodE ?quotient_norms //. | |
by rewrite coprime_TIg ?coprime_morph. | |
have ltMVn: #|M / V| < n by apply: leq_trans leMn; rewrite ltn_quotient. | |
rewrite quotient_der //; move/IHn: frobGV. | |
case/(_ _ ltMVn); rewrite ?quotient_sol ?quotient_norms ?coprime_morph //. | |
- move=> Vx; case/setD1P=> ntVx; case/morphimP=> x nVx Rx defVx. | |
rewrite defVx /= -cent_cycle -quotient_cycle //; congr 'C__(_ / V). | |
apply/eqP; rewrite eqEsubset cycle_subG Rx /=. | |
apply: contraR ntVx => /(prime_TIg Rpr)/trivgP. | |
by rewrite defVx /= (setIidPr _) cycle_subG // => /set1P->; rewrite morph1. | |
- rewrite -coprime_norm_quotient_cent ?(coprimegS sKG) ?(subset_trans sKG) //. | |
by rewrite tcKM quotient1. | |
move=> _ _ -> //; rewrite -coprime_quotient_cent ?quotient_cyclic //. | |
by rewrite (coprimegS sRG). | |
have{cVK' cMK'} [[sK'K cVK'] [_ cMVK']] := (subsetIP cVK', subsetIP cMK'). | |
have sK'G: K^`(1) \subset G by rewrite (subset_trans sK'K) ?proper_sub. | |
have coMK': coprime #|M| #|K^`(1)| := coprimegS sK'G coMG. | |
rewrite subsetI sK'K (stable_factor_cent cVK') //; apply/and3P; split=> //. | |
by rewrite commGC -quotient_cents2 // (subset_trans sK'G). | |
Qed. | |
End BGsection3. | |