Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
Require Import mathcomp.ssreflect.ssreflect. | |
From mathcomp | |
Require Import ssrbool ssrfun eqtype ssrnat seq path div fintype. | |
From mathcomp | |
Require Import bigop prime binomial finset fingroup morphism perm automorphism. | |
From mathcomp | |
Require Import quotient action gfunctor commutator gproduct. | |
From mathcomp | |
Require Import ssralg finalg zmodp cyclic center pgroup gseries nilpotent. | |
From mathcomp | |
Require Import sylow abelian maximal hall. | |
From mathcomp | |
Require poly ssrint. | |
From mathcomp | |
Require Import matrix mxalgebra mxrepresentation mxabelem. | |
From odd_order | |
Require Import BGsection1. | |
(******************************************************************************) | |
(* This file covers the useful material in B & G, Section 2. This excludes *) | |
(* part (c) of Proposition 2.1 and part (b) of Proposition 2.2, which are not *) | |
(* actually used in the rest of the proof; also the rest of Proposition 2.1 *) | |
(* is already covered by material in file mxrepresentation.v. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Section BGsection2. | |
Import GroupScope GRing.Theory FinRing.Theory poly.UnityRootTheory ssrint.IntDist. | |
Local Open Scope ring_scope. | |
Implicit Types (F : fieldType) (gT : finGroupType) (p : nat). | |
(* File mxrepresentation.v covers B & G, Proposition 2.1 as follows: *) | |
(* - Proposition 2.1 (a) is covered by Lemmas mx_abs_irr_cent_scalar and *) | |
(* cent_mx_scalar_abs_irr. *) | |
(* - Proposition 2.2 (b) is our definition of "absolutely irreducible", and *) | |
(* is thus covered by cent_mx_scalar_abs_irr and mx_abs_irrP. *) | |
(* - Proposition 2.2 (c) is partly covered by the construction in submodule *) | |
(* MatrixGenField, which extends the base field with a single element a of *) | |
(* K = Hom_FG(M, M), rather than all of K, thus avoiding the use of the *) | |
(* Wedderburn theorem on finite division rings (by the primitive element *) | |
(* theorem this is actually equivalent). The corresponding representation *) | |
(* is built by MatrixGenField.gen_repr. In B & G, Proposition 2.1(c) is *) | |
(* only used in case II of the proof of Theorem 3.10, which we greatly *) | |
(* simplify by making use of the Wielandt fixpoint formula, following *) | |
(* Peterfalvi (Theorem 9.1). In this formalization the limited form of *) | |
(* 2.1(c) is used to streamline the proof that groups of odd order are *) | |
(* p-stable (B & G, Appendix A.5(c)). *) | |
(* This is B & G, Proposition 2.2(a), using internal isomorphims (mx_iso). *) | |
Proposition mx_irr_prime_index F gT (G H : {group gT}) n M (nsHG : H <| G) | |
(rG : mx_representation F G n) (rH := subg_repr rG (normal_sub nsHG)) : | |
group_closure_field F gT -> mx_irreducible rG -> cyclic (G / H)%g -> | |
mxsimple rH M -> {in G, forall x, mx_iso rH M (M *m rG x)} -> | |
mx_irreducible rH. | |
Proof. | |
move=> closedF irrG /cyclicP[Hx defGH] simM isoM; have [sHG nHG] := andP nsHG. | |
have [modM nzM _] := simM; pose E_H := enveloping_algebra_mx rH. | |
have absM f: (M *m f <= M)%MS -> {a | (a \in E_H)%MS & M *m a = M *m f}. | |
move=> sMf; set rM := submod_repr modM; set E_M := enveloping_algebra_mx rM. | |
pose u := mxvec (in_submod M (val_submod 1%:M *m f)) *m pinvmx E_M. | |
have EHu: (gring_mx rH u \in E_H)%MS := gring_mxP rH u. | |
exists (gring_mx rH u) => //; rewrite -(in_submodK sMf). | |
rewrite -(in_submodK (mxmodule_envelop modM EHu _)) //; congr (val_submod _). | |
transitivity (in_submod M M *m gring_mx rM u). | |
rewrite /gring_mx /= !mulmx_sum_row !linear_sum; apply: eq_bigr => i /= _. | |
by rewrite !linearZ /= !rowK !mxvecK -in_submodJ. | |
rewrite /gring_mx /= mulmxKpV ?submx_full ?mxvecK //; last first. | |
by have/andP[]: mx_absolutely_irreducible rM by apply/closedF/submod_mx_irr. | |
rewrite {1}[in_submod]lock in_submodE -mulmxA mulmxA -val_submodE -lock. | |
by rewrite mulmxA -in_submodE in_submodK. | |
have /morphimP[x nHx Gx defHx]: Hx \in (G / H)%g by rewrite defGH cycle_id. | |
have{Hx defGH defHx} defG : G :=: <[x]> <*> H. | |
rewrite -(quotientGK nsHG) defGH defHx -quotient_cycle //. | |
by rewrite joingC quotientK ?norm_joinEr // cycle_subG. | |
have [e def1]: exists e, 1%:M = \sum_(z in G) e z *m (M *m rG z). | |
apply/sub_sumsmxP; have [X sXG [<- _]] := Clifford_basis irrG simM. | |
by apply/sumsmx_subP=> z Xz; rewrite (sumsmx_sup z) ?(subsetP sXG). | |
have [phi inj_phi hom_phi defMx] := isoM x Gx. | |
have Mtau: (M *m (phi *m rG x^-1%g) <= M)%MS. | |
by rewrite mulmxA (eqmxMr _ defMx) repr_mxK. | |
have Mtau': (M *m (rG x *m invmx phi) <= M)%MS. | |
by rewrite mulmxA -(eqmxMr _ defMx) mulmxK. | |
have [[tau Htau defMtau] [tau' Htau' defMtau']] := (absM _ Mtau, absM _ Mtau'). | |
have tau'K: tau' *m tau = 1%:M. | |
rewrite -[tau']mul1mx def1 !mulmx_suml; apply: eq_bigr => z Gz. | |
have [f _ hom_f] := isoM z Gz; move/eqmxP; case/andP=> _; case/submxP=> v ->. | |
rewrite (mulmxA _ v) -2!mulmxA; congr (_ *m _). | |
rewrite -(hom_envelop_mxC hom_f) ?envelop_mxM //; congr (_ *m _). | |
rewrite mulmxA defMtau' -(mulmxKpV Mtau') -mulmxA defMtau (mulmxA _ M). | |
by rewrite mulmxKpV // !mulmxA mulmxKV // repr_mxK. | |
have cHtau_x: centgmx rH (tau *m rG x). | |
apply/centgmxP=> y Hy; have [u defMy] := submxP (mxmoduleP modM y Hy). | |
have Gy := subsetP sHG y Hy. | |
rewrite mulmxA; apply: (canRL (repr_mxKV rG Gx)). | |
rewrite -!mulmxA /= -!repr_mxM ?groupM ?groupV // (conjgC y) mulKVg. | |
rewrite -[rG y]mul1mx -{1}[tau]mul1mx def1 !mulmx_suml. | |
apply: eq_bigr => z Gz; have [f _ hom_f] := isoM z Gz. | |
move/eqmxP; case/andP=> _; case/submxP=> v ->; rewrite -!mulmxA. | |
congr (_ *m (_ *m _)); rewrite {v} !(mulmxA M). | |
rewrite -!(hom_envelop_mxC hom_f) ?envelop_mxM ?(envelop_mx_id rH) //. | |
congr (_ *m f); rewrite !mulmxA defMy -(mulmxA u) defMtau (mulmxA u) -defMy. | |
rewrite !mulmxA (hom_mxP hom_phi) // -!mulmxA; congr (M *m (_ *m _)). | |
by rewrite /= -!repr_mxM ?groupM ?groupV // -conjgC. | |
by rewrite -mem_conjg (normsP nHG). | |
have{cHtau_x} cGtau_x: centgmx rG (tau *m rG x). | |
rewrite /centgmx {1}defG join_subG cycle_subG !inE Gx /= andbC. | |
rewrite (subset_trans cHtau_x); last by rewrite rcent_subg subsetIr. | |
apply/eqP; rewrite -{2 3}[rG x]mul1mx -tau'K !mulmxA; congr (_ *m _ *m _). | |
case/envelop_mxP: Htau' => u ->. | |
rewrite !(mulmx_suml, mulmx_sumr); apply: eq_bigr => y Hy. | |
by rewrite -!(scalemxAl, scalemxAr) (centgmxP cHtau_x) ?mulmxA. | |
have{cGtau_x} [a def_tau_x]: exists a, tau *m rG x = a%:M. | |
by apply/is_scalar_mxP; apply: mx_abs_irr_cent_scalar cGtau_x; apply: closedF. | |
apply: mx_iso_simple (eqmx_iso _ _) simM; apply/eqmxP; rewrite submx1 sub1mx. | |
case/mx_irrP: (irrG) => _ -> //; rewrite /mxmodule {1}defG join_subG /=. | |
rewrite cycle_subG inE Gx andbC (subset_trans modM) ?rstabs_subg ?subsetIr //=. | |
rewrite -{1}[M]mulmx1 -tau'K mulmxA -mulmxA def_tau_x mul_mx_scalar. | |
by rewrite scalemx_sub ?(mxmodule_envelop modM Htau'). | |
Qed. | |
(* This is B & G, Lemma 2.3. Note that this is not used in the FT proof. *) | |
Lemma rank_abs_irr_dvd_solvable F gT (G : {group gT}) n rG : | |
@mx_absolutely_irreducible F _ G n rG -> solvable G -> n %| #|G|. | |
Proof. | |
move=> absG solG. | |
without loss closF: F rG absG / group_closure_field F gT. | |
move=> IH; apply: (@group_closure_field_exists gT F) => [[F' f closF']]. | |
by apply: IH (map_repr f rG) _ closF'; rewrite map_mx_abs_irr. | |
elim: {G}_.+1 {-2}G (ltnSn #|G|) => // m IHm G leGm in n rG absG solG *. | |
have [G1 | ntG] := eqsVneq G 1%g. | |
by rewrite abelian_abs_irr ?G1 ?abelian1 // in absG; rewrite (eqP absG) dvd1n. | |
have [H nsHG p_pr] := sol_prime_factor_exists solG ntG. | |
set p := #|G : H| in p_pr. | |
pose sHG := normal_sub nsHG; pose rH := subg_repr rG sHG. | |
have irrG := mx_abs_irrW absG. | |
wlog [L simL _]: / exists2 L, mxsimple rH L & (L <= 1%:M)%MS. | |
by apply: mxsimple_exists; rewrite ?mxmodule1 //; case: irrG. | |
have ltHG: H \proper G. | |
by rewrite properEcard sHG -(Lagrange sHG) ltn_Pmulr // prime_gt1. | |
have dvLH: \rank L %| #|H|. | |
have absL: mx_absolutely_irreducible (submod_repr (mxsimple_module simL)). | |
exact/closF/submod_mx_irr. | |
apply: IHm absL (solvableS (normal_sub nsHG) solG). | |
by rewrite (leq_trans (proper_card ltHG)). | |
have [_ [x Gx H'x]] := properP ltHG. | |
have prGH: prime #|G / H|%g by rewrite card_quotient ?normal_norm. | |
wlog sH: / socleType rH by apply: socle_exists. | |
pose W := PackSocle (component_socle sH simL). | |
have card_sH: #|sH| = #|G : 'C_G[W | 'Cl]|. | |
rewrite -cardsT; have ->: setT = orbit 'Cl G W. | |
apply/eqP; rewrite eqEsubset subsetT. | |
have /imsetP[W' _ defW'] := Clifford_atrans irrG sH. | |
have WW': W' \in orbit 'Cl G W by rewrite orbit_in_sym // -defW' inE. | |
by rewrite defW' andbT; apply/subsetP=> W'' /orbit_in_trans->. | |
rewrite orbit_stabilizer // card_in_imset //. | |
exact: can_in_inj (act_reprK _). | |
have sHcW: H \subset 'C_G[W | 'Cl]. | |
apply: subset_trans (subset_trans (joing_subl _ _) (Clifford_astab sH)) _. | |
by rewrite subsetI subsetIl astabS ?subsetT. | |
have [|] := prime_subgroupVti ('C_G[W | 'Cl] / H)%G prGH. | |
rewrite quotientSGK ?normal_norm // => cClG. | |
have def_sH: setT = [set W]. | |
apply/eqP; rewrite eq_sym eqEcard subsetT cards1 cardsT card_sH. | |
by rewrite -indexgI (setIidPl cClG) indexgg. | |
suffices L1: (L :=: 1%:M)%MS. | |
by rewrite L1 mxrank1 in dvLH; apply: dvdn_trans (cardSg sHG). | |
apply/eqmxP; rewrite submx1. | |
have cycH: cyclic (G / H)%g by rewrite prime_cyclic. | |
have [y Gy|_ _] := mx_irr_prime_index closF irrG cycH simL; last first. | |
by apply; rewrite ?submx1 //; case simL. | |
have simLy: mxsimple rH (L *m rG y) by apply: Clifford_simple. | |
pose Wy := PackSocle (component_socle sH simLy). | |
have: (L *m rG y <= Wy)%MS by rewrite PackSocleK component_mx_id. | |
have ->: Wy = W by apply/set1P; rewrite -def_sH inE. | |
by rewrite PackSocleK; apply: component_mx_iso. | |
rewrite (setIidPl _) ?quotientS ?subsetIl // => /trivgP. | |
rewrite quotient_sub1 //; last by rewrite subIset // normal_norm. | |
move/setIidPl; rewrite (setIidPr sHcW) /= => defH. | |
rewrite -(Lagrange sHG) -(Clifford_rank_components irrG W) card_sH -defH. | |
rewrite mulnC dvdn_pmul2r // (_ : W :=: L)%MS //; apply/eqmxP. | |
have sLW: (L <= W)%MS by rewrite PackSocleK component_mx_id. | |
rewrite andbC sLW; have [modL nzL _] := simL. | |
have [_ _] := (Clifford_rstabs_simple irrG W); apply=> //. | |
rewrite /mxmodule rstabs_subg /= -Clifford_astab1 -astabIdom -defH. | |
by rewrite -(rstabs_subg rG sHG). | |
Qed. | |
(* This section covers the many parts B & G, Proposition 2.4; only the last *) | |
(* part (k) in used in the rest of the proof, and then only for Theorem 2.5. *) | |
Section QuasiRegularCyclic. | |
Variables (F : fieldType) (q' h : nat). | |
Local Notation q := q'.+1. | |
Local Notation V := 'rV[F]_q. | |
Local Notation E := 'M[F]_q. | |
Variables (g : E) (eps : F). | |
Hypothesis gh1 : g ^+ h = 1. | |
Hypothesis prim_eps : h.-primitive_root eps. | |
Let h_gt0 := prim_order_gt0 prim_eps. | |
Let eps_h := prim_expr_order prim_eps. | |
Let eps_mod_h m := expr_mod m eps_h. | |
Let inj_eps : injective (fun i : 'I_h => eps ^+ i). | |
Proof. | |
move=> i j eq_ij; apply/eqP; move/eqP: eq_ij. | |
by rewrite (eq_prim_root_expr prim_eps) !modn_small. | |
Qed. | |
Let inhP m : m %% h < h. Proof. by rewrite ltn_mod. Qed. | |
Let inh m := Ordinal (inhP m). | |
Let V_ i := eigenspace g (eps ^+ i). | |
Let n_ i := \rank (V_ i). | |
Let E_ i := eigenspace (lin_mx (mulmx g^-1 \o mulmxr g)) (eps ^+ i). | |
Let E2_ i t := | |
(kermx (lin_mx (mulmxr (cokermx (V_ t)) \o mulmx (V_ i))) | |
:&: kermx (lin_mx (mulmx (\sum_(j < h | j != i %[mod h]) V_ j)%MS)))%MS. | |
Local Notation "''V_' i" := (V_ i) (at level 8, i at level 2, format "''V_' i"). | |
Local Notation "''n_' i" := (n_ i) (at level 8, i at level 2, format "''n_' i"). | |
Local Notation "''E_' i" := (E_ i) (at level 8, i at level 2, format "''E_' i"). | |
Local Notation "'E_ ( i )" := (E_ i) (at level 8, only parsing). | |
Local Notation "e ^g" := (g^-1 *m (e *m g)) | |
(at level 8, format "e ^g") : ring_scope. | |
Local Notation "'E_ ( i , t )" := (E2_ i t) | |
(at level 8, format "''E_' ( i , t )"). | |
Let inj_g : g \in GRing.unit. | |
Proof. by rewrite -(unitrX_pos _ h_gt0) gh1 unitr1. Qed. | |
Let Vi_mod i : 'V_(i %% h) = 'V_i. | |
Proof. by rewrite /V_ eps_mod_h. Qed. | |
Let g_mod i := expr_mod i gh1. | |
Let EiP i e : reflect (e^g = eps ^+ i *: e) (e \in 'E_i)%MS. | |
Proof. | |
rewrite (sameP eigenspaceP eqP) mul_vec_lin -linearZ /=. | |
by rewrite (can_eq mxvecK); apply: eqP. | |
Qed. | |
Let E2iP i t e : | |
reflect ('V_i *m e <= 'V_t /\ forall j, j != i %[mod h] -> 'V_j *m e = 0)%MS | |
(e \in 'E_(i, t))%MS. | |
Proof. | |
rewrite sub_capmx submxE !(sameP sub_kermxP eqP) /=. | |
rewrite !mul_vec_lin !mxvec_eq0 /= -submxE -submx0 sumsmxMr. | |
apply: (iffP andP) => [[->] | [-> Ve0]]; last first. | |
by split=> //; apply/sumsmx_subP=> j ne_ji; rewrite Ve0. | |
move/sumsmx_subP=> Ve0; split=> // j ne_ji; apply/eqP. | |
by rewrite -submx0 -Vi_mod (Ve0 (inh j)) //= modn_mod. | |
Qed. | |
Let sumV := (\sum_(i < h) 'V_i)%MS. | |
(* This is B & G, Proposition 2.4(a). *) | |
Proposition mxdirect_sum_eigenspace_cycle : (sumV :=: 1%:M)%MS /\ mxdirect sumV. | |
Proof. | |
have splitF: group_splitting_field F (Zp_group h). | |
move: prim_eps (abelianS (subsetT (Zp h)) (Zp_abelian _)). | |
by rewrite -{1}(card_Zp h_gt0); apply: primitive_root_splitting_abelian. | |
have F'Zh: [char F]^'.-group (Zp h). | |
apply/pgroupP=> p p_pr; rewrite card_Zp // => /dvdnP[d def_h]. | |
apply/negP=> /= charFp. | |
have d_gt0: d > 0 by move: h_gt0; rewrite def_h; case d. | |
have: eps ^+ d == 1. | |
rewrite -(inj_eq (fmorph_inj [rmorphism of Frobenius_aut charFp])). | |
by rewrite rmorph1 /= Frobenius_autE -exprM -def_h eps_h. | |
by rewrite -(prim_order_dvd prim_eps) gtnNdvd // def_h ltn_Pmulr // prime_gt1. | |
case: (ltngtP h 1) => [|h_gt1|h1]; last first; last by rewrite ltnNge h_gt0. | |
rewrite /sumV mxdirectE /= h1 !big_ord1; split=> //. | |
apply/eqmxP; rewrite submx1; apply/eigenspaceP. | |
by rewrite mul1mx scale1r idmxE -gh1 h1. | |
pose mxZ (i : 'Z_h) := g ^+ i. | |
have mxZ_repr: mx_repr (Zp h) mxZ. | |
by split=> // i j _ _; rewrite /mxZ /= {3}Zp_cast // expr_mod // exprD. | |
pose rZ := MxRepresentation mxZ_repr. | |
have ZhT: Zp h = setT by rewrite /Zp h_gt1. | |
have memZh: _ \in Zp h by move=> i; rewrite ZhT inE. | |
have def_g: g = rZ Zp1 by []. | |
have lin_rZ m (U : 'M_(m, q)) a: | |
U *m g = a *: U -> forall i, U *m rZ i%:R = (a ^+ i) *: U. | |
- move=> defUg i; rewrite repr_mxX //. | |
elim: i => [|i IHi]; first by rewrite mulmx1 scale1r. | |
by rewrite !exprS -scalerA mulmxA defUg -IHi scalemxAl. | |
rewrite mxdirect_sum_eigenspace => [|j k _ _]; last exact: inj_eps. | |
split=> //; apply/eqmxP; rewrite submx1. | |
wlog [I M /= simM <- _]: / mxsemisimple rZ 1. | |
exact: mx_reducible_semisimple (mxmodule1 _) (mx_Maschke rZ F'Zh) _. | |
apply/sumsmx_subP=> i _; have simMi := simM i; have [modMi _ _] := simMi. | |
set v := nz_row (M i); have nz_v: v != 0 by apply: nz_row_mxsimple simMi. | |
have rankMi: \rank (M i) = 1%N. | |
by rewrite (mxsimple_abelian_linear splitF _ simMi) //= ZhT Zp_abelian. | |
have defMi: (M i :=: v)%MS. | |
apply/eqmxP; rewrite andbC -(geq_leqif (mxrank_leqif_eq _)) ?nz_row_sub //. | |
by rewrite rankMi lt0n mxrank_eq0. | |
have [a defvg]: exists a, v *m rZ 1%R = a *: v. | |
by apply/sub_rVP; rewrite -defMi mxmodule_trans ?socle_module ?defMi. | |
have: a ^+ h - 1 == 0. | |
apply: contraR nz_v => nz_pZa; rewrite -(eqmx_eq0 (eqmx_scale _ nz_pZa)). | |
by rewrite scalerBl scale1r -lin_rZ // subr_eq0 char_Zp ?mulmx1. | |
rewrite subr_eq0; move/eqP; case/(prim_rootP prim_eps) => k def_a. | |
by rewrite defMi (sumsmx_sup k) // /V_ -def_a; apply/eigenspaceP. | |
Qed. | |
(* This is B & G, Proposition 2.4(b). *) | |
Proposition rank_step_eigenspace_cycle i : 'n_ (i + h) = 'n_ i. | |
Proof. by rewrite /n_ -Vi_mod modnDr Vi_mod. Qed. | |
Let sumE := (\sum_(it : 'I_h * 'I_h) 'E_(it.1, it.2))%MS. | |
(* This is B & G, Proposition 2.4(c). *) | |
Proposition mxdirect_sum_proj_eigenspace_cycle : | |
(sumE :=: 1%:M)%MS /\ mxdirect sumE. | |
Proof. | |
have [def1V] := mxdirect_sum_eigenspace_cycle; move/mxdirect_sumsP=> dxV. | |
pose p (i : 'I_h) := proj_mx 'V_i (\sum_(j | j != i) 'V_j)%MS. | |
have def1p: 1%:M = \sum_i p i. | |
rewrite -[\sum_i _]mul1mx; move/eqmxP: def1V; rewrite submx1. | |
case/sub_sumsmxP=> u ->; rewrite mulmx_sumr; apply: eq_bigr => i _. | |
rewrite (bigD1 i) //= mulmxDl proj_mx_id ?submxMl ?dxV //. | |
rewrite proj_mx_0 ?dxV ?addr0 ?summx_sub // => j ne_ji. | |
by rewrite (sumsmx_sup j) ?submxMl. | |
split; first do [apply/eqmxP; rewrite submx1]. | |
apply/(@memmx_subP F _ _ q)=> A _; apply/memmx_sumsP. | |
pose B i t := p i *m A *m p t. | |
exists (fun it => B it.1 it.2) => [|[i t] /=]. | |
rewrite -(pair_bigA _ B) /= -[A]mul1mx def1p mulmx_suml. | |
by apply: eq_bigr => i _; rewrite -mulmx_sumr -def1p mulmx1. | |
apply/E2iP; split=> [|j ne_ji]; first by rewrite mulmxA proj_mx_sub. | |
rewrite 2!mulmxA -mulmxA proj_mx_0 ?dxV ?mul0mx //. | |
rewrite (sumsmx_sup (inh j)) ?Vi_mod //. | |
by rewrite (modn_small (valP i)) in ne_ji. | |
apply/mxdirect_sumsP=> [[i t] _] /=. | |
apply/eqP; rewrite -submx0; apply/(@memmx_subP F _ _ q)=> A. | |
rewrite sub_capmx submx0 mxvec_eq0 -submx0. | |
case/andP=> /E2iP[ViA Vi'A] /memmx_sumsP[B /= defA sBE]. | |
rewrite -[A]mul1mx -(eqmxMr A def1V) sumsmxMr (bigD1 i) //=. | |
rewrite big1 ?addsmx0 => [|j ne_ij]; last by rewrite Vi'A ?modn_small. | |
rewrite -[_ *m A]mulmx1 def1p mulmx_sumr (bigD1 t) //=. | |
rewrite big1 ?addr0 => [|u ne_ut]; last first. | |
by rewrite proj_mx_0 ?dxV ?(sumsmx_sup t) // eq_sym. | |
rewrite {A ViA Vi'A}defA mulmx_sumr mulmx_suml summx_sub // => [[j u]]. | |
case/E2iP: (sBE (j, u)); rewrite eqE /=; case: eqP => [-> sBu _ ne_ut|]. | |
by rewrite proj_mx_0 ?dxV ?(sumsmx_sup u). | |
by move/eqP=> ne_ji _ ->; rewrite ?mul0mx // eq_sym !modn_small. | |
Qed. | |
(* This is B & G, Proposition 2.4(d). *) | |
Proposition rank_proj_eigenspace_cycle i t : \rank 'E_(i, t) = ('n_i * 'n_t)%N. | |
Proof. | |
have [def1V] := mxdirect_sum_eigenspace_cycle; move/mxdirect_sumsP=> dxV. | |
pose p (i : 'I_h) := proj_mx 'V_i (\sum_(j | j != i) 'V_j)%MS. | |
have def1p: 1%:M = \sum_i p i. | |
rewrite -[\sum_i _]mul1mx; move/eqmxP: def1V; rewrite submx1. | |
case/sub_sumsmxP=> u ->; rewrite mulmx_sumr; apply: eq_bigr => j _. | |
rewrite (bigD1 j) //= mulmxDl proj_mx_id ?submxMl ?dxV //. | |
rewrite proj_mx_0 ?dxV ?addr0 ?summx_sub // => k ne_kj. | |
by rewrite (sumsmx_sup k) ?submxMl. | |
move: i t => i0 t0; pose i := inh i0; pose t := inh t0. | |
transitivity (\rank 'E_(i, t)); first by rewrite /E2_ !Vi_mod modn_mod. | |
transitivity ('n_i * 'n_t)%N; last by rewrite /n_ !Vi_mod. | |
move: {i0 t0}i t => i t; pose Bi := row_base 'V_i; pose Bt := row_base 'V_t. | |
pose B := lin_mx (mulmx (p i *m pinvmx Bi) \o mulmxr Bt). | |
pose B' := lin_mx (mulmx Bi \o mulmxr (pinvmx Bt)). | |
have Bk : B *m B' = 1%:M. | |
have frVpK m (C : 'M[F]_(m, q)) : row_free C -> C *m pinvmx C = 1%:M. | |
by move/row_free_inj; apply; rewrite mul1mx mulmxKpV. | |
apply/row_matrixP=> k; rewrite row_mul mul_rV_lin /= rowE mx_rV_lin /= -row1. | |
rewrite (mulmxA _ _ Bt) -(mulmxA _ Bt) [Bt *m _]frVpK ?row_base_free //. | |
rewrite mulmx1 2!mulmxA proj_mx_id ?dxV ?eq_row_base //. | |
by rewrite frVpK ?row_base_free // mul1mx vec_mxK. | |
have <-: \rank B = ('n_i * 'n_t)%N by apply/eqP; apply/row_freeP; exists B'. | |
apply/eqP; rewrite eqn_leq !mxrankS //. | |
apply/row_subP=> k; rewrite rowE mul_rV_lin /=. | |
apply/E2iP; split=> [|j ne_ji]. | |
rewrite 3!mulmxA mulmx_sub ?eq_row_base //. | |
rewrite 2!(mulmxA 'V_j) proj_mx_0 ?dxV ?mul0mx //. | |
rewrite (sumsmx_sup (inh j)) ?Vi_mod //. | |
by rewrite (modn_small (valP i)) in ne_ji. | |
apply/(@memmx_subP F _ _ q) => A /E2iP[ViA Vi'A]. | |
apply/submxP; exists (mxvec (Bi *m A *m pinvmx Bt)); rewrite mul_vec_lin /=. | |
rewrite mulmxKpV; last by rewrite eq_row_base (eqmxMr _ (eq_row_base _)). | |
rewrite mulmxA -[p i]mul1mx mulmxKpV ?eq_row_base ?proj_mx_sub // mul1mx. | |
rewrite -{1}[A]mul1mx def1p mulmx_suml (bigD1 i) //= big1 ?addr0 // => j neji. | |
rewrite -[p j]mul1mx -(mulmxKpV (proj_mx_sub _ _ _)) -mulmxA Vi'A ?mulmx0 //. | |
by rewrite !modn_small. | |
Qed. | |
(* This is B & G, Proposition 2.4(e). *) | |
Proposition proj_eigenspace_cycle_sub_quasi_cent i j : | |
('E_(i, i + j) <= 'E_j)%MS. | |
Proof. | |
apply/(@memmx_subP F _ _ q)=> A /E2iP[ViA Vi'A]. | |
apply/EiP; apply: canLR (mulKmx inj_g) _; rewrite -{1}[A]mul1mx -{2}[g]mul1mx. | |
have: (1%:M <= sumV)%MS by have [->] := mxdirect_sum_eigenspace_cycle. | |
case/sub_sumsmxP=> p ->; rewrite -!mulmxA !mulmx_suml. | |
apply: eq_bigr=> k _; have [-> | ne_ki] := eqVneq (k : nat) (i %% h)%N. | |
rewrite Vi_mod -mulmxA (mulmxA _ A) (eigenspaceP ViA). | |
rewrite (mulmxA _ g) (eigenspaceP (submxMl _ _)). | |
by rewrite -!(scalemxAl, scalemxAr) scalerA mulmxA exprD. | |
rewrite 2!mulmxA (eigenspaceP (submxMl _ _)) -!(scalemxAr, scalemxAl). | |
by rewrite -(mulmxA _ 'V_k A) Vi'A ?linear0 ?mul0mx ?scaler0 // modn_small. | |
Qed. | |
Let diagE m := | |
(\sum_(it : 'I_h * 'I_h | it.1 + m == it.2 %[mod h]) 'E_(it.1, it.2))%MS. | |
(* This is B & G, Proposition 2.4(f). *) | |
Proposition diag_sum_proj_eigenspace_cycle m : | |
(diagE m :=: 'E_m)%MS /\ mxdirect (diagE m). | |
Proof. | |
have sub_diagE n: (diagE n <= 'E_n)%MS. | |
apply/sumsmx_subP=> [[i t] /= def_t]. | |
apply: submx_trans (proj_eigenspace_cycle_sub_quasi_cent i n). | |
by rewrite /E2_ -(Vi_mod (i + n)) (eqP def_t) Vi_mod. | |
pose sum_diagE := (\sum_(n < h) diagE n)%MS. | |
pose p (it : 'I_h * 'I_h) := inh (h - it.1 + it.2). | |
have def_diag: sum_diagE = sumE. | |
rewrite /sumE (partition_big p xpredT) //. | |
apply: eq_bigr => n _; apply: eq_bigl => [[i t]] /=. | |
rewrite /p -val_eqE /= -(eqn_modDl (h - i)). | |
by rewrite addnA subnK 1?ltnW // modnDl modn_small. | |
have [Efull dxE] := mxdirect_sum_proj_eigenspace_cycle. | |
have /mxdirect_sumsE[/= dx_diag rank_diag]: mxdirect sum_diagE. | |
apply/mxdirectP; rewrite /= -/sum_diagE def_diag (mxdirectP dxE) /=. | |
rewrite (partition_big p xpredT) //. | |
apply: eq_bigr => n _; apply: eq_bigl => [[i t]] /=. | |
symmetry; rewrite /p -val_eqE /= -(eqn_modDl (h - i)). | |
by rewrite addnA subnK 1?ltnW // modnDl modn_small. | |
have dx_sumE1: mxdirect (\sum_(i < h) 'E_i). | |
by apply: mxdirect_sum_eigenspace => i j _ _; apply: inj_eps. | |
have diag_mod n: diagE (n %% h) = diagE n. | |
by apply: eq_bigl=> it; rewrite modnDmr. | |
split; last first. | |
apply/mxdirectP; rewrite /= -/(diagE m) -diag_mod. | |
rewrite (mxdirectP (dx_diag (inh m) _)) //=. | |
by apply: eq_bigl=> it; rewrite modnDmr. | |
apply/eqmxP; rewrite sub_diagE /=. | |
rewrite -(capmx_idPl (_ : _ <= sumE))%MS ?Efull ?submx1 //. | |
rewrite -def_diag /sum_diagE (bigD1 (inh m)) //= addsmxC. | |
rewrite diag_mod -matrix_modr ?sub_diagE //. | |
rewrite ((_ :&: _ =P 0)%MS _) ?adds0mx // -submx0. | |
rewrite -{2}(mxdirect_sumsP dx_sumE1 (inh m)) ?capmxS //. | |
by rewrite /E_ eps_mod_h. | |
by apply/sumsmx_subP=> i ne_i_m; rewrite (sumsmx_sup i) ?sub_diagE. | |
Qed. | |
(* This is B & G, Proposition 2.4(g). *) | |
Proposition rank_quasi_cent_cycle m : | |
\rank 'E_m = (\sum_(i < h) 'n_i * 'n_(i + m))%N. | |
Proof. | |
have [<- dx_diag] := diag_sum_proj_eigenspace_cycle m. | |
rewrite (mxdirectP dx_diag) /= (reindex (fun i : 'I_h => (i, inh (i + m)))) /=. | |
apply: eq_big => [i | i _]; first by rewrite modn_mod eqxx. | |
by rewrite rank_proj_eigenspace_cycle /n_ Vi_mod. | |
exists (@fst _ _) => // [] [i t] /=. | |
by rewrite !inE /= (modn_small (valP t)) => def_t; apply/eqP/andP. | |
Qed. | |
(* This is B & G, Proposition 2.4(h). *) | |
Proposition diff_rank_quasi_cent_cycle m : | |
(2 * \rank 'E_0 = 2 * \rank 'E_m + \sum_(i < h) `|'n_i - 'n_(i + m)| ^ 2)%N. | |
Proof. | |
rewrite !rank_quasi_cent_cycle !{1}mul2n -addnn. | |
rewrite {1}(reindex (fun i : 'I_h => inh (i + m))) /=; last first. | |
exists (fun i : 'I_h => inh (i + (h - m %% h))%N) => i _. | |
apply: val_inj; rewrite /= modnDml -addnA addnCA -modnDml addnCA. | |
by rewrite subnKC 1?ltnW ?ltn_mod // modnDr modn_small. | |
apply: val_inj; rewrite /= modnDml -modnDmr -addnA. | |
by rewrite subnK 1?ltnW ?ltn_mod // modnDr modn_small. | |
rewrite -mul2n big_distrr -!big_split /=; apply: eq_bigr => i _. | |
by rewrite !addn0 (addnC (2 * _)%N) sqrn_dist addnC /n_ Vi_mod. | |
Qed. | |
Hypothesis rankEm : forall m, m != 0 %[mod h] -> \rank 'E_0 = (\rank 'E_m).+1. | |
(* This is B & G, Proposition 2.4(j). *) | |
Proposition rank_eigenspaces_quasi_homocyclic : | |
exists2 n, `|q - h * n| = 1%N & | |
exists i : 'I_h, [/\ `|'n_i - n| = 1%N, (q < h * n) = ('n_i < n) | |
& forall j, j != i -> 'n_j = n]. | |
Proof. | |
have [defV dxV] := mxdirect_sum_eigenspace_cycle. | |
have sum_n: (\sum_(i < h) 'n_i)%N = q by rewrite -(mxdirectP dxV) defV mxrank1. | |
suffices [n [i]]: exists n : nat, exists2 i : 'I_h, | |
`|'n_i - n| == 1%N & forall i', i' != i -> 'n_i' = n. | |
- move/eqP=> n_i n_i'; rewrite -{1 5}(prednK h_gt0). | |
rewrite -sum_n (bigD1 i) //= (eq_bigr _ n_i') sum_nat_const cardC1 card_ord. | |
by exists n; last exists i; rewrite ?distnDr ?ltn_add2r. | |
case: (leqP h 1) sum_n {defV dxV} => [|h_gt1 _]. | |
rewrite leq_eqVlt ltnNge h_gt0 orbF; move/eqP->; rewrite big_ord1 => n_0. | |
by exists q', 0 => [|i']; rewrite ?(ord1 i') // n_0 distSn. | |
pose dn1 i := `|'n_i - 'n_(i + 1)|. | |
have sum_dn1: (\sum_(0 <= i < h) dn1 i ^ 2 == 2)%N. | |
rewrite big_mkord -(eqn_add2l (2 * \rank 'E_1)) -diff_rank_quasi_cent_cycle. | |
by rewrite -mulnSr -rankEm ?modn_small. | |
pose diff_n := [seq i <- index_iota 0 h | dn1 i != 0%N]. | |
have diff_n_1: all (fun i => dn1 i == 1%N) diff_n. | |
apply: contraLR sum_dn1; case/allPn=> i; rewrite mem_filter. | |
case def_i: (dn1 i) => [|[|ni]] //=; case/splitPr=> e e' _. | |
by rewrite big_cat big_cons /= addnCA def_i -add2n sqrnD. | |
have: sorted ltn diff_n. | |
by rewrite (sorted_filter ltn_trans) // /index_iota subn0 iota_ltn_sorted. | |
have: all (ltn^~ h) diff_n. | |
by apply/allP=> i; rewrite mem_filter mem_index_iota; case/andP. | |
have: size diff_n = 2%N. | |
move: diff_n_1; rewrite size_filter -(eqnP sum_dn1) /diff_n. | |
elim: (index_iota 0 h) => [|i e IHe]; rewrite (big_nil, big_cons) //=. | |
by case def_i: (dn1 i) => [|[]] //=; rewrite def_i //; move/IHe->. | |
case def_jk: diff_n diff_n_1 => [|j [|k []]] //=; case/and3P=> dn1j dn1k _ _. | |
case/and3P=> lt_jh lt_kh _ /andP[lt_jk _]. | |
have def_n i: | |
i <= h -> 'n_i = if i <= j then 'n_0 else if i <= k then 'n_j.+1 else 'n_k.+1. | |
- elim: i => // i IHi lt_ik; have:= IHi (ltnW lt_ik); rewrite !(leq_eqVlt i). | |
have:= erefl (i \in diff_n); rewrite {2}def_jk !inE mem_filter mem_index_iota. | |
case: (i =P j) => [-> _ _ | _]; first by rewrite ltnn lt_jk. | |
case: (i =P k) => [-> _ _ | _]; first by rewrite ltnNge ltnW // ltnn. | |
by rewrite distn_eq0 lt_ik addn1; case: eqP => [->|]. | |
have n_j1: 'n_j.+1 = 'n_k by rewrite (def_n k (ltnW lt_kh)) leqnn leqNgt lt_jk. | |
have n_k1: 'n_k.+1 = 'n_0. | |
rewrite -(rank_step_eigenspace_cycle 0) (def_n h (leqnn h)). | |
by rewrite leqNgt lt_jh leqNgt lt_kh; split. | |
case: (leqP k j.+1) => [ | lt_j1_k]. | |
rewrite leq_eqVlt ltnNge lt_jk orbF; move/eqP=> def_k. | |
exists 'n_(k + 1); exists (Ordinal lt_kh) => [|i' ne_i'k]; first exact: dn1k. | |
rewrite addn1 {1}(def_n _ (ltnW (valP i'))) n_k1. | |
by rewrite -ltnS -def_k ltn_neqAle ne_i'k /=; case: leqP; split. | |
case: (leqP h.-1 (k - j)) => [le_h1_kj | lt_kj_h1]. | |
have k_h1: k = h.-1. | |
apply/eqP; rewrite eqn_leq -ltnS (prednK h_gt0) lt_kh. | |
exact: leq_trans (leq_subr j k). | |
have j0: j = 0%N. | |
apply/eqP; rewrite -leqn0 -(leq_add2l k) -{2}(subnK (ltnW lt_jk)). | |
by rewrite addn0 leq_add2r {1}k_h1. | |
exists 'n_(j + 1); exists (Ordinal lt_jh) => [|i' ne_i'j]; first exact: dn1j. | |
rewrite addn1 {1}(def_n _ (ltnW (valP i'))) j0 leqNgt lt0n -j0. | |
by rewrite ne_i'j -ltnS k_h1 (prednK h_gt0) (valP i'); split. | |
suffices: \sum_(i < h) `|'n_i - 'n_(i + 2)| ^ 2 > 2. | |
rewrite -(ltn_add2l (2 * \rank 'E_2)) -diff_rank_quasi_cent_cycle. | |
rewrite -mulnSr -rankEm ?ltnn ?modn_small //. | |
by rewrite -(prednK h_gt0) ltnS (leq_trans _ lt_kj_h1) // ltnS subn_gt0. | |
have lt_k1h: k.-1 < h by rewrite ltnW // (ltn_predK lt_jk). | |
rewrite (bigD1 (Ordinal lt_jh)) // (bigD1 (Ordinal lt_k1h)) /=; last first. | |
by rewrite -val_eqE neq_ltn /= orbC -subn1 ltn_subRL lt_j1_k. | |
rewrite (bigD1 (Ordinal lt_kh)) /=; last first. | |
by rewrite -!val_eqE !neq_ltn /= lt_jk (ltn_predK lt_jk) leqnn !orbT. | |
rewrite !addnA ltn_addr // !addn2 (ltn_predK lt_jk) n_k1. | |
rewrite (def_n j (ltnW lt_jh)) leqnn (def_n _ (ltn_trans lt_j1_k lt_kh)). | |
rewrite lt_j1_k -if_neg -leqNgt leqnSn n_j1. | |
rewrite (def_n _ (ltnW lt_k1h)) leq_pred -if_neg -ltnNge. | |
rewrite -subn1 ltn_subRL lt_j1_k n_j1. | |
suffices ->: 'n_k.+2 = 'n_k.+1. | |
by rewrite distnC -n_k1 -(addn1 k) -/(dn1 k) (eqP dn1k). | |
case: (leqP k.+2 h) => [le_k2h | ]. | |
by rewrite (def_n _ le_k2h) (leqNgt _ k) leqnSn n_k1 if_same. | |
rewrite ltnS leq_eqVlt ltnNge lt_kh orbF; move/eqP=> def_h. | |
rewrite -{1}def_h -add1n rank_step_eigenspace_cycle (def_n _ h_gt0). | |
rewrite -(subSn (ltnW lt_jk)) def_h leq_subLR in lt_kj_h1. | |
by rewrite -(leq_add2r k) lt_kj_h1 n_k1. | |
Qed. | |
(* This is B & G, Proposition 2.4(k). *) | |
Proposition rank_eigenspaces_free_quasi_homocyclic : | |
q > 1 -> 'n_0 = 0%N -> h = q.+1 /\ (forall j, j != 0 %[mod h] -> 'n_j = 1%N). | |
Proof. | |
move=> q_gt1 n_0; rewrite mod0n. | |
have [n d_q_hn [i [n_i lt_q_hn n_i']]] := rank_eigenspaces_quasi_homocyclic. | |
move/eqP: d_q_hn; rewrite distn_eq1 {}lt_q_hn. | |
case: (eqVneq (Ordinal h_gt0) i) n_i n_i' => [<- | ne0i _ n_i']; last first. | |
by rewrite -(n_i' _ ne0i) n_0 /= muln0 -(subnKC q_gt1). | |
rewrite n_0 dist0n => -> n_i'; rewrite muln1 => /eqP->; split=> // i'. | |
by move/(n_i' (inh i')); rewrite /n_ Vi_mod. | |
Qed. | |
End QuasiRegularCyclic. | |
(* This is B & G, Theorem 2.5, used for Theorems 3.4 and 15.7. *) | |
Theorem repr_extraspecial_prime_sdprod_cycle p n gT (G P H : {group gT}) : | |
p.-group P -> extraspecial P -> P ><| H = G -> cyclic H -> | |
let h := #|H| in #|P| = (p ^ n.*2.+1)%N -> coprime p h -> | |
{in H^#, forall x, 'C_P[x] = 'Z(P)} -> | |
(h %| p ^ n + 1) || (h %| p ^ n - 1) | |
/\ ((h != p ^ n + 1)%N -> forall F q (rG : mx_representation F G q), | |
[char F]^'.-group G -> mx_faithful rG -> rfix_mx rG H != 0). | |
Proof. | |
move=> pP esP sdPH_G cycH h oPpn co_p_h primeHP. | |
set dvd_h_pn := _ || _; set neq_h_pn := h != _. | |
suffices IH F q (rG : mx_representation F G q): | |
[char F]^'.-group G -> mx_faithful rG -> | |
dvd_h_pn && (neq_h_pn ==> (rfix_mx rG H != 0)). | |
- split=> [|ne_h F q rG F'G ffulG]; last first. | |
by case/andP: (IH F q rG F'G ffulG) => _; rewrite ne_h. | |
pose r := pdiv #|G|.+1. | |
have r_pr: prime r by rewrite pdiv_prime // ltnS cardG_gt0. | |
have F'G: [char 'F_r]^'.-group G. | |
rewrite /pgroup (eq_pnat _ (eq_negn (charf_eq (char_Fp r_pr)))). | |
rewrite p'natE // -prime_coprime // (coprime_dvdl (pdiv_dvd _)) //. | |
by rewrite /coprime -addn1 gcdnC gcdnDl gcdn1. | |
by case/andP: (IH _ _ _ F'G (regular_mx_faithful _ _)). | |
move=> F'G ffulG. | |
without loss closF: F rG F'G ffulG / group_closure_field F gT. | |
move=> IH; apply: (@group_closure_field_exists gT F) => [[Fs f clFs]]. | |
rewrite -(map_mx_eq0 f) map_rfix_mx {}IH ?map_mx_faithful //. | |
by rewrite (eq_p'group _ (fmorph_char f)). | |
have p_pr := extraspecial_prime pP esP; have p_gt1 := prime_gt1 p_pr. | |
have oZp := card_center_extraspecial pP esP; have[_ prZ] := esP. | |
have{sdPH_G} [nsPG sHG defG nPH tiPH] := sdprod_context sdPH_G. | |
have sPG := normal_sub nsPG. | |
have coPH: coprime #|P| #|H| by rewrite oPpn coprime_pexpl. | |
have nsZG: 'Z(P) <| G := gFnormal_trans _ nsPG. | |
have defCP: 'C_G(P) = 'Z(P). | |
apply/eqP; rewrite eqEsubset andbC setSI //=. | |
rewrite -(coprime_mulG_setI_norm defG) ?norms_cent ?normal_norm //=. | |
rewrite mul_subG // -(setD1K (group1 H)). | |
apply/subsetP=> x; case/setIP; case/setU1P=> [-> // | H'x]. | |
rewrite -sub_cent1; move/setIidPl; rewrite primeHP // => defP. | |
by have:= min_card_extraspecial pP esP; rewrite -defP oZp (leq_exp2l 3 1). | |
have F'P: [char F]^'.-group P by apply: pgroupS sPG F'G. | |
have F'H: [char F]^'.-group H by apply: pgroupS sHG F'G. | |
wlog{ffulG F'G} [irrG regZ]: q rG / mx_irreducible rG /\ rfix_mx rG 'Z(P) = 0. | |
move=> IH; wlog [I W /= simW defV _]: / mxsemisimple rG 1%:M. | |
exact: (mx_reducible_semisimple (mxmodule1 _) (mx_Maschke rG F'G)). | |
have [z Zz ntz]: exists2 z, z \in 'Z(P) & z != 1%g. | |
by apply/trivgPn; rewrite -cardG_gt1 oZp prime_gt1. | |
have Gz := subsetP sPG z (subsetP (center_sub P) z Zz). | |
case: (pickP (fun i => z \notin rstab rG (W i))) => [i ffZ | z1]; last first. | |
case/negP: ntz; rewrite -in_set1 (subsetP ffulG) // inE Gz /=. | |
apply/eqP; move/eqmxP: defV; case/andP=> _; case/sub_sumsmxP=> w ->. | |
rewrite mulmx_suml; apply: eq_bigr => i _. | |
by move/negbFE: (z1 i) => /rstab_act-> //; rewrite submxMl. | |
have [modW _ _] := simW i; pose rW := submod_repr modW. | |
rewrite -(eqmx_rstab _ (val_submod1 (W i))) -(rstab_submod modW) in ffZ. | |
have irrW: mx_irreducible rW by apply/submod_mx_irr. | |
have regZ: rfix_mx rW 'Z(P)%g = 0. | |
apply/eqP; apply: contraR ffZ; case/mx_irrP: irrW => _ minW /minW. | |
by rewrite normal_rfix_mx_module // -sub1mx inE Gz /= => /implyP/rfix_mxP->. | |
have ffulP: P :&: rker rW = 1%g. | |
apply: (TI_center_nil (pgroup_nil pP)). | |
by rewrite /normal subsetIl normsI ?normG ?(subset_trans _ (rker_norm _)). | |
rewrite /= setIC setIA (setIidPl (center_sub _)); apply: prime_TIg=> //. | |
by apply: contra ffZ => /subsetP->. | |
have cPker: rker rW \subset 'C_G(P). | |
rewrite subsetI rstab_sub (sameP commG1P trivgP) /= -ffulP subsetI. | |
rewrite commg_subl commg_subr (subset_trans sPG) ?rker_norm //. | |
by rewrite (subset_trans (rstab_sub _ _)) ?normal_norm. | |
have [->] := andP (IH _ _ (conj irrW regZ)); case: (neq_h_pn) => //. | |
apply: contra; rewrite (eqmx_eq0 (rfix_submod modW sHG)) => /eqP->. | |
by rewrite capmx0 linear0. | |
pose rP := subg_repr rG sPG; pose rH := subg_repr rG sHG. | |
wlog [M simM _]: / exists2 M, mxsimple rP M & (M <= 1%:M)%MS. | |
by apply: (mxsimple_exists (mxmodule1 _)); last case irrG. | |
have{M simM irrG regZ F'P} [irrP def_q]: mx_irreducible rP /\ q = (p ^ n)%N. | |
have [modM nzM _]:= simM. | |
have [] := faithful_repr_extraspecial _ _ oPpn _ _ simM => // [|<- isoM]. | |
apply/eqP; apply: (TI_center_nil (pgroup_nil pP)). | |
rewrite /= -(eqmx_rstab _ (val_submod1 M)) -(rstab_submod modM). | |
exact: rker_normal. | |
rewrite setIC prime_TIg //=; apply: contra nzM => cMZ. | |
rewrite -submx0 -regZ; apply/rfix_mxP=> z; move/(subsetP cMZ)=> cMz. | |
by rewrite (rstab_act cMz). | |
suffices irrP: mx_irreducible rP. | |
by split=> //; apply/eqP; rewrite eq_sym; case/mx_irrP: irrP => _; apply. | |
apply: (@mx_irr_prime_index F _ G P _ M nsPG) => // [|x Gx]. | |
by rewrite -defG quotientMidl quotient_cyclic. | |
rewrite (bool_irrelevance (normal_sub nsPG) sPG). | |
apply: isoM; first exact: (@Clifford_simple _ _ _ _ nsPG). | |
have cZx: x \in 'C_G('Z(P)). | |
rewrite (setIidPl _) // -defG mulG_subG centsC subsetIr. | |
rewrite -(setD1K (group1 H)) subUset sub1G /=. | |
by apply/subsetP=> y H'y; rewrite -sub_cent1 -(primeHP y H'y) subsetIr. | |
by have [f] := Clifford_iso nsZG rG M cZx; exists f. | |
pose E_P := enveloping_algebra_mx rP; have{irrP} absP := closF P _ _ irrP. | |
have [q_gt0 EPfull]: q > 0 /\ (1%:M <= E_P)%MS by apply/andP; rewrite sub1mx. | |
pose Z := 'Z(P); have [sZP nZP] := andP (center_normal P : Z <| P). | |
have nHZ: H \subset 'N(Z) := subset_trans sHG (normal_norm nsZG). | |
pose clPqH := [set Zx ^: (H / Z) | Zx in P / Z]%g. | |
pose b (ZxH : {set coset_of Z}) := repr (repr ZxH). | |
have Pb ZxH: ZxH \in clPqH -> b ZxH \in P. | |
case/imsetP=> Zx P_Zx ->{ZxH}. | |
rewrite -(quotientGK (center_normal P)) /= -/Z inE repr_coset_norm /=. | |
rewrite inE coset_reprK; apply: subsetP (mem_repr _ (class_refl _ _)). | |
rewrite -class_support_set1l class_support_sub_norm ?sub1set //. | |
by rewrite quotient_norms. | |
have{primeHP coPH} card_clPqH ZxH: ZxH \in clPqH^# -> #|ZxH| = #|H|. | |
case/setD1P=> ntZxH P_ZxH. | |
case/imsetP: P_ZxH ntZxH => Zx P_Zx ->{ZxH}; rewrite classG_eq1 => ntZx. | |
rewrite -index_cent1 ['C__[_]](trivgP _). | |
rewrite indexg1 card_quotient // -indexgI setICA setIA tiPH. | |
by rewrite (setIidPl (sub1G _)) indexg1. | |
apply/subsetP=> Zy => /setIP[/morphimP[y Ny]]; rewrite -(setD1K (group1 H)). | |
case/setU1P=> [-> | Hy] ->{Zy} cZxy; first by rewrite morph1 set11. | |
have: Zx \in 'C_(P / Z)(<[y]> / Z). | |
by rewrite inE P_Zx quotient_cycle // cent_cycle cent1C. | |
case/idPn; rewrite -coprime_quotient_cent ?cycle_subG ?(pgroup_sol pP) //. | |
by rewrite /= cent_cycle primeHP // trivg_quotient inE. | |
by apply: coprimegS coPH; rewrite cycle_subG; case/setD1P: Hy. | |
pose B x := \matrix_(i < #|H|) mxvec (rP (x ^ enum_val i)%g). | |
have{E_P EPfull absP} sumB: (\sum_(ZxH in clPqH) <<B (b ZxH)>> :=: 1%:M)%MS. | |
apply/eqmxP; rewrite submx1 (submx_trans EPfull) //. | |
apply/row_subP=> ix; set x := enum_val ix; pose ZxH := coset Z x ^: (H / Z)%g. | |
have Px: x \in P by [rewrite enum_valP]; have nZx := subsetP nZP _ Px. | |
have P_ZxH: ZxH \in clPqH by apply: imset_f; rewrite mem_quotient. | |
have Pbx := Pb _ P_ZxH; have nZbx := subsetP nZP _ Pbx. | |
rewrite rowK (sumsmx_sup ZxH) {P_ZxH}// genmxE -/x. | |
have: coset Z x \in coset Z (b ZxH) ^: (H / Z)%g. | |
by rewrite class_sym coset_reprK (mem_repr _ (class_refl _ _)). | |
case/imsetP=> _ /morphimP[y Ny Hy ->]. | |
rewrite -morphJ //; case/kercoset_rcoset; rewrite ?groupJ // => z Zz ->. | |
have [Pz cPz] := setIP Zz; rewrite repr_mxM ?memJ_norm ?(subsetP nPH) //. | |
have [a ->]: exists a, rP z = a%:M. | |
apply/is_scalar_mxP; apply: (mx_abs_irr_cent_scalar absP). | |
by apply/centgmxP=> t Pt; rewrite -!repr_mxM ?(centP cPz). | |
rewrite mul_scalar_mx linearZ scalemx_sub //. | |
by rewrite (eq_row_sub (gring_index H y)) // rowK gring_indexK. | |
have{card_clPqH} Bfree_if ZxH: | |
ZxH \in clPqH^# -> \rank <<B (b ZxH)>> <= #|ZxH| ?= iff row_free (B (b ZxH)). | |
- by move=> P_ZxH; rewrite genmxE card_clPqH // /leqif rank_leq_row. | |
have B1_if: \rank <<B (b 1%g)>> <= 1 ?= iff (<<B (b 1%g)>> == mxvec 1%:M)%MS. | |
have r1: \rank (mxvec 1%:M : 'rV[F]_(q ^ 2)) = 1%N. | |
by rewrite rank_rV mxvec_eq0 -mxrank_eq0 mxrank1 -lt0n q_gt0. | |
rewrite -{1}r1; apply: mxrank_leqif_eq; rewrite genmxE. | |
have ->: b 1%g = 1%g by rewrite /b repr_set1 repr_coset1. | |
by apply/row_subP=> i; rewrite rowK conj1g repr_mx1. | |
have rankEP: \rank (1%:M : 'A[F]_q) = (\sum_(ZxH in clPqH) #|ZxH|)%N. | |
rewrite acts_sum_card_orbit ?astabsJ ?quotient_norms // card_quotient //. | |
rewrite mxrank1 -divgS // -mulnn oPpn oZp expnS -muln2 expnM -def_q. | |
by rewrite mulKn // ltnW. | |
have cl1: 1%g \in clPqH by apply/imsetP; exists 1%g; rewrite ?group1 ?class1G. | |
have{B1_if Bfree_if}:= leqif_add B1_if (leqif_sum Bfree_if). | |
case/(leqif_trans (mxrank_sum_leqif _)) => _ /=. | |
rewrite -{1}(big_setD1 _ cl1) sumB {}rankEP (big_setD1 1%g) // cards1 eqxx. | |
case/esym/and3P=> dxB /eqmxP defB1 /forall_inP/= Bfree. | |
have [yg defH] := cyclicP cycH; pose g := rG yg. | |
have Hxg: yg \in H by [rewrite defH cycle_id]; have Gyg := subsetP sHG _ Hxg. | |
pose gE : 'A_q := lin_mx (mulmx (invmx g) \o mulmxr g). | |
pose yr := regular_repr F H yg. | |
have mulBg x: x \in P -> B x *m gE = yr *m B x. | |
move/(subsetP sPG)=> Gx. | |
apply/row_matrixP=> i; have Hi := enum_valP i; have Gi := subsetP sHG _ Hi. | |
rewrite 2!row_mul !rowK mul_vec_lin /= -rowE rowK gring_indexK ?groupM //. | |
by rewrite conjgM -repr_mxV // -!repr_mxM // ?(groupJ, groupM, groupV). | |
wlog sH: / irrType F H by apply: socle_exists. | |
have{cycH} linH: irr_degree (_ : sH) = 1%N. | |
exact: irr_degree_abelian (cyclic_abelian cycH). | |
have baseH := linear_irr_comp F'H (closF H) (linH _). | |
have{} linH (W : sH): \rank W = 1%N by rewrite baseH; apply: linH. | |
have [w] := cycle_repr_structure sH defH F'H (closF H). | |
rewrite -/h => prim_w [Wi [bijWi _ _ Wi_yg]]. | |
have{Wi_yg baseH} Wi_yr i: Wi i *m yr = w ^+ i *: (Wi i : 'M_h). | |
have /submxP[u ->]: (Wi i <= val_submod (irr_repr (Wi i) 1%g))%MS. | |
by rewrite repr_mx1 val_submod1 -baseH. | |
rewrite repr_mx1 -mulmxA -2!linearZ; congr (u *m _). | |
by rewrite -mul_mx_scalar -Wi_yg /= val_submodJ. | |
pose E_ m := eigenspace gE (w ^+ m). | |
have dxE: mxdirect (\sum_(m < h) E_ m)%MS. | |
apply: mxdirect_sum_eigenspace => m1 m2 _ _ eq_m12; apply/eqP. | |
by move/eqP: eq_m12; rewrite (eq_prim_root_expr prim_w) !modn_small. | |
pose B2 ZxH i : 'A_q := <<Wi i *m B (b ZxH)>>%MS. | |
pose B1 i : 'A_q := (\sum_(ZxH in clPqH^#) B2 ZxH i)%MS. | |
pose SB := (<<B (b 1%g)>> + \sum_i B1 i)%MS. | |
have{yr Wi_yr Pb mulBg} sB1E i: (B1 i <= E_ i)%MS. | |
apply/sumsmx_subP=> ZxH /setIdP[_]; rewrite genmxE => P_ZxH. | |
by apply/eigenspaceP; rewrite -mulmxA mulBg ?Pb // mulmxA Wi_yr scalemxAl. | |
have{bijWi sumB cl1 F'H} defSB: (SB :=: 1%:M)%MS. | |
apply/eqmxP; rewrite submx1 -sumB (big_setD1 _ cl1) addsmxS //=. | |
rewrite exchange_big sumsmxS // => ZxH _; rewrite genmxE /= -sumsmxMr_gen. | |
rewrite -((reindex Wi) xpredT val) /=; last by apply: onW_bij. | |
by rewrite -/(Socle _) (reducible_Socle1 sH (mx_Maschke _ F'H)) mul1mx. | |
rewrite mxdirect_addsE /= in dxB; case/and3P: dxB => _ dxB dxB1. | |
have{linH Bfree dxB} rankB1 i: \rank (B1 i) = #|clPqH^#|. | |
rewrite -sum1_card (mxdirectP _) /=. | |
by apply: eq_bigr => ZxH P_ZxH; rewrite genmxE mxrankMfree ?Bfree. | |
apply/mxdirect_sumsP=> ZxH P_ZxH. | |
apply/eqP; rewrite -submx0 -{2}(mxdirect_sumsP dxB _ P_ZxH) capmxS //. | |
by rewrite !genmxE submxMl. | |
by rewrite sumsmxS // => ZyH _; rewrite !genmxE submxMl. | |
have rankEi (i : 'I_h) : i != 0%N :> nat -> \rank (E_ i) = #|clPqH^#|. | |
move=> i_gt0; apply/eqP; rewrite -(rankB1 i) (mxrank_leqif_sup _) ?sB1E //. | |
rewrite -[E_ i]cap1mx -(cap_eqmx defSB (eqmx_refl _)) /SB. | |
rewrite (bigD1 i) //= (addsmxC (B1 i)) addsmxA addsmxC -matrix_modl //. | |
rewrite -(addsmx0 (q ^ 2) (B1 i)) addsmxS //. | |
rewrite capmxC -{2}(mxdirect_sumsP dxE i) // capmxS // addsmx_sub // . | |
rewrite (sumsmx_sup (Ordinal (cardG_gt0 H))) ?sumsmxS 1?eq_sym //. | |
rewrite defB1; apply/eigenspaceP; rewrite mul_vec_lin scale1r /=. | |
by rewrite mul1mx mulVmx ?repr_mx_unit. | |
have{b B defB1 rP rH sH Wi rankB1 dxB1 defSB sB1E B1 B2 dxE SB} rankE0 i: | |
(i : 'I_h) == 0%N :> nat -> \rank (E_ i) = #|clPqH^#|.+1. | |
- move=> i_eq0; rewrite -[E_ i]cap1mx -(cap_eqmx defSB (eqmx_refl _)) /SB. | |
rewrite (bigD1 i) // addsmxA -matrix_modl; last first. | |
rewrite addsmx_sub // sB1E andbT defB1; apply/eigenspaceP. | |
by rewrite mul_vec_lin (eqP i_eq0) scale1r /= mul1mx mulVmx ?repr_mx_unit. | |
rewrite (((_ :&: _)%MS =P 0) _). | |
rewrite addsmx0 mxrank_disjoint_sum /=. | |
by rewrite defB1 rank_rV rankB1 mxvec_eq0 -mxrank_eq0 mxrank1 -lt0n q_gt0. | |
apply/eqP; rewrite -submx0 -(eqP dxB1) capmxS // sumsmxS // => ZxH _. | |
by rewrite !genmxE ?submxMl. | |
by rewrite -submx0 capmxC /= -{2}(mxdirect_sumsP dxE i) // capmxS ?sumsmxS. | |
have{clPqH rankE0 rankEi} (m): | |
m != 0 %[mod h] -> \rank (E_ 0%N) = (\rank (E_ m)).+1. | |
- move=> nz_m; rewrite (rankE0 (Ordinal (cardG_gt0 H))) //. | |
rewrite /E_ -(prim_expr_mod prim_w); rewrite mod0n in nz_m. | |
have lt_m: m %% h < h by rewrite ltn_mod ?cardG_gt0. | |
by rewrite (rankEi (Ordinal lt_m)). | |
have: q > 1. | |
rewrite def_q (ltn_exp2l 0) // lt0n. | |
apply: contraL (min_card_extraspecial pP esP). | |
by rewrite oPpn; move/eqP->; rewrite leq_exp2l. | |
rewrite {}/E_ {}/gE {}/dvd_h_pn {}/neq_h_pn -{n oPpn}def_q subn1 addn1 /=. | |
case: q q_gt0 => // q' _ in rG g * => q_gt1 rankE. | |
have gh1: g ^+ h = 1 by rewrite -repr_mxX // /h defH expg_order repr_mx1. | |
apply/andP; split. | |
have [n' def_q _]:= rank_eigenspaces_quasi_homocyclic gh1 prim_w rankE. | |
move/eqP: def_q; rewrite distn_eq1 eqSS. | |
by case: ifP => _ /eqP->; rewrite dvdn_mulr ?orbT. | |
apply/implyP; apply: contra => regH. | |
have [|-> //]:= rank_eigenspaces_free_quasi_homocyclic gh1 prim_w rankE q_gt1. | |
apply/eqP; rewrite mxrank_eq0 -submx0 -(eqP regH). | |
apply/rV_subP=> v /eigenspaceP; rewrite scale1r => cvg. | |
apply/rfix_mxP=> y Hy; apply: rstab_act (submx_refl v); apply: subsetP y Hy. | |
by rewrite defH cycle_subG !inE Gyg /= cvg. | |
Qed. | |
(* This is the main part of B & G, Theorem 2.6; it implies 2.6(a) and most of *) | |
(* 2.6(b). *) | |
Theorem der1_odd_GL2_charf F gT (G : {group gT}) | |
(rG : mx_representation F G 2) : | |
odd #|G| -> mx_faithful rG -> [char F].-group G^`(1)%g. | |
Proof. | |
move=> oddG ffulG. | |
without loss closF: F rG ffulG / group_closure_field F gT. | |
move=> IH; apply: (@group_closure_field_exists gT F) => [[Fc f closFc]]. | |
rewrite -(eq_pgroup _ (fmorph_char f)). | |
by rewrite -(map_mx_faithful f) in ffulG; apply: IH ffulG closFc. | |
elim: {G}_.+1 {-2}G (ltnSn #|G|) => // m IHm G le_g_m in rG oddG ffulG *. | |
apply/pgroupP=> p p_pr pG'; rewrite !inE p_pr /=; apply: wlog_neg => p_nz. | |
have [P sylP] := Sylow_exists p G. | |
have nPG: G \subset 'N(P). | |
apply/idPn=> ltNG; pose N := 'N_G(P); have sNG: N \subset G := subsetIl _ _. | |
have{IHm ltNG} p'N': [char F].-group N^`(1)%g. | |
apply: IHm (subg_mx_faithful sNG ffulG); last exact: oddSg oddG. | |
rewrite -ltnS (leq_trans _ le_g_m) // ltnS proper_card //. | |
by rewrite /proper sNG subsetI subxx. | |
have{p'N'} tiPN': P :&: N^`(1)%g = 1%g. | |
rewrite coprime_TIg ?(pnat_coprime (pHall_pgroup sylP)) //= -/N. | |
apply: sub_in_pnat p'N' => q _; apply: contraL; move/eqnP->. | |
by rewrite !inE p_pr. | |
have sPN: P \subset N by rewrite subsetI normG (pHall_sub sylP). | |
have{tiPN'} cPN: N \subset 'C(P). | |
rewrite (sameP commG1P trivgP) -tiPN' subsetI commgS //. | |
by rewrite commg_subr subsetIr. | |
have /sdprodP[_ /= defG nKP _] := Burnside_normal_complement sylP cPN. | |
set K := 'O_p^'(G) in defG nKP; have nKG: G \subset 'N(K) by apply: gFnorm. | |
suffices p'G': p^'.-group G^`(1)%g by case/eqnP: (pgroupP p'G' p p_pr pG'). | |
apply: pgroupS (pcore_pgroup p^' G); rewrite -quotient_cents2 //= -/K. | |
by rewrite -defG quotientMidl /= -/K quotient_cents ?(subset_trans sPN). | |
pose Q := G^`(1)%g :&: P; have sQG: Q \subset G by rewrite subIset ?der_subS. | |
have nQG: G \subset 'N(Q) by rewrite normsI // normal_norm ?der_normalS. | |
have pQ: (p %| #|Q|)%N. | |
have sylQ: p.-Sylow(G^`(1)%g) Q. | |
by apply: Sylow_setI_normal (der_normalS _ _) _. | |
apply: contraLR pG'; rewrite -!p'natE // (card_Hall sylQ) -!partn_eq1 //. | |
by rewrite part_pnat_id ?part_pnat. | |
have{IHm} abelQ: abelian Q. | |
apply/commG1P/eqP/idPn => ntQ'. | |
have{IHm} p'Q': [char F].-group Q^`(1)%g. | |
apply: IHm (subg_mx_faithful sQG ffulG); last exact: oddSg oddG. | |
rewrite -ltnS (leq_trans _ le_g_m) // ltnS proper_card //. | |
rewrite /proper sQG subsetI //= andbC subEproper. | |
case: eqP => [-> /= | _]; last by rewrite /proper (pHall_sub sylP) andbF. | |
have: nilpotent P by rewrite (pgroup_nil (pHall_pgroup sylP)). | |
move/forallP/(_ P); apply: contraL; rewrite subsetI subxx => -> /=. | |
apply: contra ntQ'; rewrite /Q => /eqP->. | |
by rewrite (setIidPr _) ?sub1G // commG1. | |
case/eqP: ntQ'; have{p'Q'}: P :&: Q^`(1)%g = 1%g. | |
rewrite coprime_TIg ?(pnat_coprime (pHall_pgroup sylP)) //= -/Q. | |
by rewrite (pi_p'nat p'Q') // !inE p_pr. | |
by rewrite (setIidPr _) // comm_subG ?subsetIr. | |
pose rQ := subg_repr rG sQG. | |
wlog [U simU sU1]: / exists2 U, mxsimple rQ U & (U <= 1%:M)%MS. | |
by apply: mxsimple_exists; rewrite ?mxmodule1 ?oner_eq0. | |
have Uscal: \rank U = 1%N by apply: (mxsimple_abelian_linear (closF _)) simU. | |
have{simU} [Umod _ _] := simU. | |
have{sU1} [|V Vmod sumUV dxUV] := mx_Maschke _ _ Umod sU1. | |
have: p.-group Q by apply: pgroupS (pHall_pgroup sylP); rewrite subsetIr. | |
by apply: sub_in_pnat=> q _; move/eqnP->; rewrite !inE p_pr. | |
have [u defU]: exists u : 'rV_2, (u :=: U)%MS. | |
by move: (row_base U) (eq_row_base U); rewrite Uscal => u; exists u. | |
have{dxUV Uscal} [v defV]: exists v : 'rV_2, (v :=: V)%MS. | |
move/mxdirectP: dxUV; rewrite /= Uscal sumUV mxrank1 => [[Vscal]]. | |
by move: (row_base V) (eq_row_base V); rewrite -Vscal => v; exists v. | |
pose B : 'M_(1 + 1) := col_mx u v; have{sumUV} uB: B \in unitmx. | |
rewrite -row_full_unit /row_full eqn_leq rank_leq_row {1}addn1. | |
by rewrite -addsmxE -(mxrank1 F 2) -sumUV mxrankS // addsmxS ?defU ?defV. | |
pose Qfix (w : 'rV_2) := {in Q, forall y, w *m rG y <= w}%MS. | |
have{U defU Umod} u_fix: Qfix u. | |
by move=> y Qy; rewrite /= (eqmxMr _ defU) defU (mxmoduleP Umod). | |
have{V defV Vmod} v_fix: Qfix v. | |
by move=> y Qy; rewrite /= (eqmxMr _ defV) defV (mxmoduleP Vmod). | |
case/Cauchy: pQ => // x Qx oxp; have Gx := subsetP sQG x Qx. | |
case/submxP: (u_fix x Qx) => a def_ux. | |
case/submxP: (v_fix x Qx) => b def_vx. | |
have def_x: rG x = B^-1 *m block_mx a 0 0 b *m B. | |
rewrite -mulmxA -[2%N]/(1 + 1)%N mul_block_col !mul0mx addr0 add0r. | |
by rewrite -def_ux -def_vx -mul_col_mx mulKmx. | |
have ap1: a ^+ p = 1. | |
suff: B^-1 *m block_mx (a ^+ p) 0 0 (b ^+ p) *m B = 1. | |
move/(canRL (mulmxK uB))/(canRL (mulKVmx uB)); rewrite mul1mx. | |
by rewrite mulmxV // scalar_mx_block; case/eq_block_mx. | |
transitivity (rG x ^+ p); last first. | |
by rewrite -(repr_mxX (subg_repr rG sQG)) // -oxp expg_order repr_mx1. | |
elim: (p) => [|k IHk]; first by rewrite -scalar_mx_block mulmx1 mulVmx. | |
rewrite !exprS -IHk def_x -!mulmxE !mulmxA mulmxK // -2!(mulmxA B^-1). | |
by rewrite -[2%N]/(1 + 1)%N mulmx_block !mulmx0 !mul0mx !addr0 mulmxA add0r. | |
have ab1: a * b = 1. | |
have: Q \subset <<[set y in G | \det (rG y) == 1]>>. | |
rewrite subIset // genS //; apply/subsetP=> yz; case/imset2P=> y z Gy Gz ->. | |
rewrite inE !repr_mxM ?groupM ?groupV //= !detM (mulrCA _ (\det (rG y))). | |
rewrite -!det_mulmx -!repr_mxM ?groupM ?groupV //. | |
by rewrite mulKg mulVg repr_mx1 det1. | |
rewrite gen_set_id; last first. | |
apply/group_setP; split=> [|y z /setIdP[Gy /eqP y1] /setIdP[Gz /eqP z1]]. | |
by rewrite inE group1 /= repr_mx1 det1. | |
by rewrite inE groupM ?repr_mxM //= detM y1 z1 mulr1. | |
case/subsetP/(_ x Qx)/setIdP=> _. | |
rewrite def_x !detM mulrAC -!detM -mulrA mulKr // -!mulmxE. | |
rewrite -[2%N]/(1 + 1)%N det_lblock // [a]mx11_scalar [b]mx11_scalar. | |
by rewrite !det_scalar1 -scalar_mxM => /eqP->. | |
have{ab1 ap1 def_x} ne_ab: a != b. | |
apply/eqP=> defa; have defb: b = 1. | |
rewrite -ap1 (divn_eq p 2) modn2. | |
have ->: odd p by rewrite -oxp (oddSg _ oddG) // cycle_subG. | |
by rewrite addn1 exprS mulnC exprM exprS {1 3}defa ab1 expr1n mulr1. | |
suff x1: x \in [1] by rewrite -oxp (set1P x1) order1 in p_pr. | |
rewrite (subsetP ffulG) // inE Gx def_x defa defb -scalar_mx_block mulmx1. | |
by rewrite mul1mx mulVmx ?eqxx. | |
have{a b ne_ab def_ux def_vx} nx_uv (w : 'rV_2): | |
(w *m rG x <= w -> w <= u \/ w <= v)%MS. | |
- case/submxP=> c; have:= mulmxKV uB w. | |
rewrite -[_ *m invmx B]hsubmxK [lsubmx _]mx11_scalar [rsubmx _]mx11_scalar. | |
move: (_ 0) (_ 0) => dv du; rewrite mul_row_col !mul_scalar_mx => <-{w}. | |
rewrite mulmxDl -!scalemxAl def_ux def_vx mulmxDr -!scalemxAr. | |
rewrite !scalemxAl -!mul_row_col; move/(can_inj (mulmxK uB)). | |
case/eq_row_mx => eqac eqbc; apply/orP. | |
have [-> | nz_dv] := eqVneq dv 0; first by rewrite scale0r addr0 scalemx_sub. | |
have [-> | nz_du] := eqVneq du 0. | |
by rewrite orbC scale0r add0r scalemx_sub. | |
case/eqP: ne_ab; rewrite -[b]scale1r -(mulVf nz_dv) -[a]scale1r. | |
by rewrite -(mulVf nz_du) -!scalerA eqac eqbc !scalerA !mulVf. | |
have{x Gx Qx oxp nx_uv} redG y (A := rG y): | |
y \in G -> (u *m A <= u /\ v *m A <= v)%MS. | |
- move=> Gy; have uA: row_free A by rewrite row_free_unit repr_mx_unit. | |
have Ainj (w t : 'rV_2): (w *m A <= w -> t *m A <= w -> t *m A <= t)%MS. | |
case/sub_rVP=> [c ryww] /sub_rVP[d rytw]. | |
rewrite -(submxMfree _ _ uA) rytw -scalemxAl ryww scalerA mulrC. | |
by rewrite -scalerA scalemx_sub. | |
have{Qx nx_uv} nAx w: Qfix w -> (w *m A <= u \/ w *m A <= v)%MS. | |
move=> nwQ; apply: nx_uv; rewrite -mulmxA -repr_mxM // conjgCV. | |
rewrite repr_mxM ?groupJ ?groupV // mulmxA submxMr // nwQ // -mem_conjg. | |
by rewrite (normsP nQG). | |
have [uAu | uAv] := nAx _ u_fix; have [vAu | vAv] := nAx _ v_fix; eauto. | |
have [k ->]: exists k, A = A ^+ k.*2. | |
exists #[y].+1./2; rewrite -mul2n -divn2 mulnC divnK. | |
by rewrite -repr_mxX // expgS expg_order mulg1. | |
by rewrite dvdn2 negbK; apply: oddSg oddG; rewrite cycle_subG. | |
elim: k => [|k [IHu IHv]]; first by rewrite !mulmx1. | |
case/sub_rVP: uAv => c uAc; case/sub_rVP: vAu => d vAd. | |
rewrite doubleS !exprS !mulmxA; do 2!rewrite uAc vAd -!scalemxAl. | |
by rewrite !scalemx_sub. | |
suffices trivG': G^`(1)%g = 1%g. | |
by rewrite /= trivG' cards1 gtnNdvd ?prime_gt1 in pG'. | |
apply/trivgP; apply: subset_trans ffulG; rewrite gen_subG. | |
apply/subsetP=> _ /imset2P[y z Gy Gz ->]; rewrite inE groupR //=. | |
rewrite -(inj_eq (can_inj (mulKmx (repr_mx_unit rG (groupM Gz Gy))))). | |
rewrite mul1mx mulmx1 -repr_mxM ?(groupR, groupM) // -commgC !repr_mxM //. | |
rewrite -(inj_eq (can_inj (mulKmx uB))) !mulmxA !mul_col_mx. | |
case/redG: Gy => /sub_rVP[a uya] /sub_rVP[b vyb]. | |
case/redG: Gz => /sub_rVP[c uzc] /sub_rVP[d vzd]. | |
by do 2!rewrite uya vyb uzc vzd -?scalemxAl; rewrite !scalerA mulrC (mulrC d). | |
Qed. | |
(* This is B & G, Theorem 2.6(a) *) | |
Theorem charf'_GL2_abelian F gT (G : {group gT}) | |
(rG : mx_representation F G 2) : | |
odd #|G| -> mx_faithful rG -> [char F]^'.-group G -> abelian G. | |
Proof. | |
move=> oddG ffG char'G; apply/commG1P/eqP. | |
rewrite trivg_card1 (pnat_1 _ (pgroupS _ char'G)) ?comm_subG //=. | |
exact: der1_odd_GL2_charf ffG. | |
Qed. | |
(* This is B & G, Theorem 2.6(b) *) | |
Theorem charf_GL2_der_subS_abelian_Sylow p F gT (G : {group gT}) | |
(rG : mx_representation F G 2) : | |
odd #|G| -> mx_faithful rG -> p \in [char F] -> | |
exists P : {group gT}, [/\ p.-Sylow(G) P, abelian P & G^`(1)%g \subset P]. | |
Proof. | |
move=> oddG ffG charFp. | |
have{oddG} pG': p.-group G^`(1)%g. | |
rewrite /pgroup -(eq_pnat _ (charf_eq charFp)). | |
exact: der1_odd_GL2_charf ffG. | |
have{pG'} [P SylP sG'P]:= Sylow_superset (der_sub _ _) pG'. | |
exists P; split=> {sG'P}//; case/and3P: SylP => sPG pP _. | |
apply/commG1P/trivgP; apply: subset_trans ffG; rewrite gen_subG. | |
apply/subsetP=> _ /imset2P[y z Py Pz ->]; rewrite inE (subsetP sPG) ?groupR //=. | |
pose rP := subg_repr rG sPG; pose U := rfix_mx rP P. | |
rewrite -(inj_eq (can_inj (mulKmx (repr_mx_unit rP (groupM Pz Py))))). | |
rewrite mul1mx mulmx1 -repr_mxM ?(groupR, groupM) // -commgC !repr_mxM //. | |
have: U != 0 by apply: (rfix_pgroup_char charFp). | |
rewrite -mxrank_eq0 -lt0n 2!leq_eqVlt ltnNge rank_leq_row orbF orbC eq_sym. | |
case/orP=> [Ufull | Uscal]. | |
suffices{y z Py Pz} rP1 y: y \in P -> rP y = 1%:M by rewrite !rP1 ?mulmx1. | |
move=> Py; apply/row_matrixP=> i. | |
by rewrite rowE -row1 (rfix_mxP P _) ?submx_full. | |
have [u defU]: exists u : 'rV_2, (u :=: U)%MS. | |
by move: (row_base U) (eq_row_base U); rewrite -(eqP Uscal) => u; exists u. | |
have fix_u: {in P, forall x, u *m rP x = u}. | |
by move/eqmxP: defU; case/andP; move/rfix_mxP. | |
have [v defUc]: exists u : 'rV_2, (u :=: U^C)%MS. | |
have UCscal: \rank U^C = 1%N by rewrite mxrank_compl -(eqP Uscal). | |
by move: (row_base _)%MS (eq_row_base U^C)%MS; rewrite UCscal => v; exists v. | |
pose B := col_mx u v; have uB: B \in unitmx. | |
rewrite -row_full_unit -sub1mx -(eqmxMfull _ (addsmx_compl_full U)). | |
by rewrite mulmx1 -addsmxE addsmxS ?defU ?defUc. | |
have Umod: mxmodule rP U by apply: rfix_mx_module. | |
pose W := rfix_mx (factmod_repr Umod) P. | |
have ntW: W != 0. | |
apply: (rfix_pgroup_char charFp) => //. | |
rewrite eqmxMfull ?row_full_unit ?unitmx_inv ?row_ebase_unit //. | |
by rewrite rank_copid_mx -(eqP Uscal). | |
have{ntW} Wfull: row_full W. | |
by rewrite -col_leq_rank {1}mxrank_coker -(eqP Uscal) lt0n mxrank_eq0. | |
have svW: (in_factmod U v <= W)%MS by rewrite submx_full. | |
have fix_v: {in P, forall x, v *m rG x - v <= u}%MS. | |
move=> x Px /=; rewrite -[v *m _](add_sub_fact_mod U) (in_factmodJ Umod) //. | |
move/rfix_mxP: svW => -> //; rewrite in_factmodK ?defUc // addrK. | |
by rewrite defU val_submodP. | |
have fixB: {in P, forall x, exists2 a, u *m rG x = u & v *m rG x = v + a *: u}. | |
move=> x Px; case/submxP: (fix_v x Px) => a def_vx. | |
exists (a 0 0); first exact: fix_u. | |
by rewrite addrC -mul_scalar_mx -mx11_scalar -def_vx subrK. | |
rewrite -(inj_eq (can_inj (mulKmx uB))) // !mulmxA !mul_col_mx. | |
case/fixB: Py => a uy vy; case/fixB: Pz => b uz vz. | |
by rewrite uy uz vy vz !mulmxDl -!scalemxAl uy uz vy vz addrAC. | |
Qed. | |
(* This is B & G, Lemma 2.7. *) | |
Lemma regular_abelem2_on_abelem2 p q gT (P Q : {group gT}) : | |
p.-abelem P -> q.-abelem Q -> 'r_p(P) = 2%N ->'r_q(Q) = 2%N -> | |
Q \subset 'N(P) -> 'C_Q(P) = 1%g -> | |
(q %| p.-1)%N | |
/\ (exists2 a, a \in Q^# & exists r, | |
[/\ {in P, forall x, x ^ a = x ^+ r}%g, | |
r ^ q = 1 %[mod p] & r != 1 %[mod p]]). | |
Proof. | |
move=> abelP abelQ; rewrite !p_rank_abelem // => logP logQ nPQ regQ. | |
have ntP: P :!=: 1%g by case: eqP logP => // ->; rewrite cards1 logn1. | |
have [p_pr _ _]:= pgroup_pdiv (abelem_pgroup abelP) ntP. | |
have ntQ: Q :!=: 1%g by case: eqP logQ => // ->; rewrite cards1 logn1. | |
have [q_pr _ _]:= pgroup_pdiv (abelem_pgroup abelQ) ntQ. | |
pose rQ := abelem_repr abelP ntP nPQ. | |
have [|P1 simP1 _] := dec_mxsimple_exists (mxmodule1 rQ). | |
by rewrite oner_eq0. | |
have [modP1 nzP1 _] := simP1. | |
have ffulQ: mx_faithful rQ by apply: abelem_mx_faithful. | |
have linP1: \rank P1 = 1%N. | |
apply/eqP; have:= abelem_cyclic abelQ; rewrite logQ; apply: contraFT. | |
rewrite neq_ltn ltnNge lt0n mxrank_eq0 nzP1 => P1full. | |
have irrQ: mx_irreducible rQ. | |
apply: mx_iso_simple simP1; apply: eqmx_iso; apply/eqmxP. | |
by rewrite submx1 sub1mx -col_leq_rank {1}(dim_abelemE abelP ntP) logP. | |
exact: mx_faithful_irr_abelian_cyclic irrQ (abelem_abelian abelQ). | |
have ne_qp: q != p. | |
move/implyP: (logn_quotient_cent_abelem nPQ abelP). | |
by rewrite logP regQ indexg1 /=; case: eqP => // <-; rewrite logQ. | |
have redQ: mx_completely_reducible rQ 1%:M. | |
apply: mx_Maschke; apply: pi_pnat (abelem_pgroup abelQ) _. | |
by rewrite inE /= (charf_eq (char_Fp p_pr)). | |
have [P2 modP2 sumP12 dxP12] := redQ _ modP1 (submx1 _). | |
have{dxP12} linP2: \rank P2 = 1%N. | |
apply: (@addnI 1%N); rewrite -{1}linP1 -(mxdirectP dxP12) /= sumP12. | |
by rewrite mxrank1 (dim_abelemE abelP ntP) logP. | |
have{sumP12} [u def1]: exists u, 1%:M = u.1 *m P1 + u.2 *m P2. | |
by apply/sub_addsmxP; rewrite sumP12. | |
pose lam (Pi : 'M(P)) b := (nz_row Pi *m rQ b *m pinvmx (nz_row Pi)) 0 0. | |
have rQ_lam Pi b: | |
mxmodule rQ Pi -> \rank Pi = 1%N -> b \in Q -> Pi *m rQ b = lam Pi b *: Pi. | |
- rewrite /lam => modPi linPi Qb; set v := nz_row Pi; set a := _ 0. | |
have nz_v: v != 0 by rewrite nz_row_eq0 -mxrank_eq0 linPi. | |
have sPi_v: (Pi <= v)%MS. | |
by rewrite -mxrank_leqif_sup ?nz_row_sub // rank_rV nz_v linPi. | |
have [v' defPi] := submxP sPi_v; rewrite {2}defPi scalemxAr -mul_scalar_mx. | |
rewrite -mx11_scalar !(mulmxA v') -defPi mulmxKpV ?(submx_trans _ sPi_v) //. | |
exact: (mxmoduleP modPi). | |
have lam_q Pi b: | |
mxmodule rQ Pi -> \rank Pi = 1%N -> b \in Q -> lam Pi b ^+ q = 1. | |
- move=> modPi linPi Qb; apply/eqP; rewrite eq_sym -subr_eq0. | |
have: \rank Pi != 0%N by rewrite linPi. | |
apply: contraR; move/eqmx_scale=> <-. | |
rewrite mxrank_eq0 scalerBl subr_eq0 -mul_mx_scalar -(repr_mx1 rQ). | |
have <-: (b ^+ q = 1)%g by case/and3P: abelQ => _ _; move/exponentP->. | |
apply/eqP; rewrite repr_mxX //. | |
elim: (q) => [|k IHk]; first by rewrite scale1r mulmx1. | |
by rewrite !exprS mulmxA rQ_lam // -scalemxAl IHk scalerA. | |
pose f b := (lam P1 b, lam P2 b). | |
have inj_f: {in Q &, injective f}. | |
move=> b c Qb Qc /= [eq_bc1 eq_bc2]; apply: (mx_faithful_inj ffulQ) => //. | |
rewrite -[rQ b]mul1mx -[rQ c]mul1mx {}def1 !mulmxDl -!mulmxA. | |
by rewrite !{1}rQ_lam ?eq_bc1 ?eq_bc2. | |
pose rs := [set x : 'F_p | x ^+ q == 1]. | |
have s_fQ_rs: f @: Q \subset setX rs rs. | |
apply/subsetP=> _ /imsetP[b Qb ->]. | |
by rewrite !{1}inE /= !{1}lam_q ?eqxx. | |
have le_rs_q: #|rs| <= q ?= iff (#|rs| == q). | |
split; rewrite // cardE max_unity_roots ?enum_uniq ?prime_gt0 //. | |
by apply/allP=> x; rewrite mem_enum inE unity_rootE. | |
have:= subset_leqif_card s_fQ_rs. | |
rewrite card_in_imset // (card_pgroup (abelem_pgroup abelQ)) logQ. | |
case/(leqif_trans (leqif_mul le_rs_q le_rs_q))=> _; move/esym. | |
rewrite cardsX eqxx andbb muln_eq0 orbb eqn0Ngt prime_gt0 //= => /andP[rs_q]. | |
rewrite subEproper /proper {}s_fQ_rs andbF orbF => /eqP rs2_Q. | |
have: ~~ (rs \subset [set 1 : 'F_p]). | |
apply: contraL (prime_gt1 q_pr); move/subset_leq_card. | |
by rewrite cards1 (eqnP rs_q) leqNgt. | |
case/subsetPn => r rs_r; rewrite inE => ne_r_1. | |
have rq1: r ^+ q = 1 by apply/eqP; rewrite inE in rs_r. | |
split. | |
have Ur: r \in GRing.unit. | |
by rewrite -(unitrX_pos _ (prime_gt0 q_pr)) rq1 unitr1. | |
pose u_r : {unit 'F_p} := Sub r Ur; have:= order_dvdG (in_setT u_r). | |
rewrite card_units_Zp ?pdiv_gt0 // {2}/pdiv primes_prime //=. | |
rewrite (@totient_pfactor p 1) // muln1; apply: dvdn_trans. | |
have: (u_r ^+ q == 1)%g. | |
by rewrite -val_eqE unit_Zp_expg -Zp_nat natrX natr_Zp rq1. | |
case/primeP: q_pr => _ q_min; rewrite -order_dvdn; move/q_min. | |
by rewrite order_eq1 -val_eqE (negPf ne_r_1) /=; move/eqnP->. | |
have /imsetP[a Qa [def_a1 def_a2]]: (r, r) \in f @: Q. | |
by rewrite -rs2_Q inE andbb. | |
have rQa: rQ a = r%:M. | |
rewrite -[rQ a]mul1mx def1 mulmxDl -!mulmxA !rQ_lam //. | |
by rewrite -def_a1 -def_a2 !linearZ -scalerDr -def1 /= scalemx1. | |
exists a. | |
rewrite !inE Qa andbT; apply: contra ne_r_1 => a1. | |
by rewrite (eqP a1) repr_mx1 in rQa; rewrite (fmorph_inj _ rQa). | |
exists r; rewrite -!val_Fp_nat // natrX natr_Zp rq1. | |
split=> // x Px; apply: (@abelem_rV_inj _ _ _ abelP ntP); rewrite ?groupX //. | |
by rewrite memJ_norm ?(subsetP nPQ). | |
by rewrite abelem_rV_X // -mul_mx_scalar natr_Zp -rQa -abelem_rV_J. | |
Qed. | |
End BGsection2. | |