Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
Require Import mathcomp.ssreflect.ssreflect. | |
From mathcomp | |
Require Import ssrbool ssrfun eqtype ssrnat seq div path fintype. | |
From mathcomp | |
Require Import bigop finset prime fingroup morphism perm automorphism quotient. | |
From mathcomp | |
Require Import action gproduct gfunctor pgroup cyclic center commutator. | |
From mathcomp | |
Require Import gseries nilpotent sylow abelian maximal hall frobenius. | |
From odd_order | |
Require Import BGsection1 BGsection2 BGsection3 BGsection4 BGsection5. | |
From odd_order | |
Require Import BGsection6 BGsection7 BGsection9 BGsection10 BGsection12. | |
From odd_order | |
Require Import BGsection13 BGsection14 BGsection15. | |
(******************************************************************************) | |
(* This file covers B & G, section 16; it summarises all the results of the *) | |
(* local analysis. Some of the definitions of B & G have been adapted to fit *) | |
(* in beter with Peterfalvi, section 8, dropping unused properties and adding *) | |
(* a few missing ones. This file also defines the following: *) | |
(* of_typeF M U <-> M = M`_\F ><| U is of type F, in the sense of *) | |
(* Petervalvi (8.1) rather than B & G section 14. *) | |
(* is_typeF_complement M U U0 <-> U0 is a subgroup of U with the same *) | |
(* exponent as U, such that M`_\F ><| U0 is a Frobenius *) | |
(* group; this corresponds to Peterfalvi (8.1)(c). *) | |
(* is_typeF_inertia M U U1 <-> U1 <| U is abelian and contains 'C_U[x] for *) | |
(* all x in M`_\F^#, and thus the inertia groups of all *) | |
(* nonprincipal irreducible characters of M`_\F; this *) | |
(* corresponds to Peterfalvi (8.1)(b). *) | |
(* of_typeI M U <-> M = M`_\F ><| U is of type I, in the sense of *) | |
(* Peterfalvi (8.3); this definition is almost identical *) | |
(* to B & G conditions (Ii) - (Iv), except that (Iiv) is *) | |
(* dropped, as is the condition p \in \pi* in (Iv)(c). *) | |
(* Also, the condition 'O_p^'(M) cyclic, present in both *) | |
(* B & G and Peterfalvi, is weakened to 'O_p^'(M`_\F) *) | |
(* cyclic, because B & G, Theorem 15.7 only proves the *) | |
(* weaker statement, and we did not manage to improve it. *) | |
(* This appears to be a typo in B & G that was copied *) | |
(* over to Petrfalvi (8.3). It is probably no consequence *) | |
(* because (8.3) is only used in (12.6) and (12.10) and *) | |
(* neither use the assumption that 'O_p^'(M) is cyclic. *) | |
(* For defW : W1 \x W2 = W we also define: *) | |
(* of_typeP M U defW <-> M = M`_\F ><| U ><| W1 is of type P, in the sense of *) | |
(* Peterfalvi (8.4) rather than B & G section 14, where *) | |
(* (8.4)(d,e) hold for W and W2 (i.e., W2 = C_M^(1)(W1)). *) | |
(* of_typeII_IV M U defW <-> M = M`_\F ><| U ><| W1 is of type II, III, or IV *) | |
(* in the sense of Peterfalvi (8.6)(a). This is almost *) | |
(* exactly the contents of B & G, (T1)-(T7), except that *) | |
(* (T6) is dropped, and 'C_(M`_\F)(W1) \subset M^`(2) is *) | |
(* added (PF, (8.4)(d) and B & G, Theorem C(3)). *) | |
(* of_typeII M U defW <-> M = M`_\F ><| U ><| W1 is of type II in the sense *) | |
(* of Peterfalvi (8.6); this differs from B & G by *) | |
(* dropping the rank 2 clause in IIiii and replacing IIv *) | |
(* by B(2)(3) (note that IIv is stated incorrectly: M' *) | |
(* should be M'^#). *) | |
(* of_typeIII M U defW <-> M = M`_\F ><| U ><| W1 is of type III in the sense *) | |
(* of Peterfalvi (8.6). *) | |
(* of_typeIV M U defW <-> M = M`_\F ><| U ><| W1 is of type IV in the sense *) | |
(* of Peterfalvi (8.6). *) | |
(* of_typeV M U defW <-> U = 1 and M = M`_\F ><| W1 is of type V in the *) | |
(* sense of Peterfalvi (8.7); this differs from B & G (V) *) | |
(* dropping the p \in \pi* condition in clauses (V)(b) *) | |
(* and (V)(c). *) | |
(* exists_typeP spec <-> spec U defW holds for some groups U, W, W1 and W2 *) | |
(* such that defW : W1 \x W2 = W; spec will be one of *) | |
(* (of_typeP M), (of_typeII_IV M), (of_typeII M), etc. *) | |
(* FTtype_spec i M <-> M is of type i, for 0 < i <= 5, in the sense of the *) | |
(* predicates above, for the appropriate complements to *) | |
(* M`_\F and M^`(1). *) | |
(* FTtype M == the type of M, in the sense above, when M is a maximal *) | |
(* subgroup of G (this is an integer i between 1 and 5). *) | |
(* M`_\s == an alternative, combinatorial definition of M`_\sigma *) | |
(* := M`_\F if M is of type I or II, else M^`(1) *) | |
(* 'A1(M) == the "inner Dade support" of a maximal group M, as *) | |
(* defined in Peterfalvi (8.10). *) | |
(* := (M`_\s)^# *) | |
(* 'A(M) == the "Dade support" of M as defined in Peterfalvi (8.10) *) | |
(* (this differs from B & G by excluding 1). *) | |
(* 'A0(M) == the "outer Dade support" of M as defined in Peterfalvi *) | |
(* (8.10) (this differs from B & G by excluding 1). *) | |
(* 'M^G == a transversal of the conjugacy classes of 'M. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import GroupScope. | |
Section GeneralDefinitions. | |
Variable gT : finGroupType. | |
Implicit Types V W X : {set gT}. | |
End GeneralDefinitions. | |
Section Definitions. | |
Variable gT : minSimpleOddGroupType. | |
Local Notation G := (TheMinSimpleOddGroup gT). | |
Implicit Types M U V W X : {set gT}. | |
Definition is_typeF_inertia M U (H := M`_\F) U1 := | |
[/\ U1 <| U, abelian U1 & {in H^#, forall x, 'C_U[x] \subset U1}]. | |
Definition is_typeF_complement M U (H := M`_\F) U0 := | |
[/\ U0 \subset U, exponent U0 = exponent U & [Frobenius H <*> U0 = H ><| U0]]. | |
Definition of_typeF M U (H := M`_\F) := | |
[/\ (*a*) [/\ H != 1, U :!=: 1 & H ><| U = M], | |
(*b*) exists U1 : {group gT}, is_typeF_inertia M U U1 | |
& (*c*) exists U0 : {group gT}, is_typeF_complement M U U0]. | |
Definition of_typeI M (H := M`_\F) U := | |
of_typeF M U | |
/\ [\/ (*a*) normedTI H^# G M, | |
(*b*) abelian H /\ 'r(H) = 2 | |
| (*c*) {in \pi(H), forall p, exponent U %| p.-1} | |
/\ (exists2 p, p \in \pi(H) & cyclic 'O_p^'(H))]. | |
Section Ptypes. | |
Variables M U W W1 W2 : {set gT}. | |
Let H := M`_\F. | |
Let M' := M^`(1). | |
Implicit Type defW : W1 \x W2 = W. | |
Definition of_typeP defW := | |
[/\ (*a*) [/\ cyclic W1, Hall M W1, W1 != 1 & M' ><| W1 = M], | |
(*b*) [/\ nilpotent U, U \subset M', W1 \subset 'N(U) & H ><| U = M'], | |
(*c*) [/\ ~~ cyclic H, M^`(2) \subset 'F(M), H * 'C_M(H) = 'F(M) | |
& 'F(M) \subset M'], | |
(*d*) [/\ cyclic W2, W2 != 1, W2 \subset H, W2 \subset M^`(2) | |
& {in W1^#, forall x, 'C_M'[x] = W2}] | |
& (*e*) normedTI (W :\: (W1 :|: W2)) G W]. | |
Definition of_typeII_IV defW := | |
[/\ of_typeP defW, U != 1, prime #|W1| & normedTI 'F(M)^# G M]. | |
Definition of_typeII defW := | |
[/\ of_typeII_IV defW, abelian U, ~~ ('N(U) \subset M), | |
of_typeF M' U & M'`_\F = H]. | |
Definition of_typeIII defW := | |
[/\ of_typeII_IV defW, abelian U & 'N(U) \subset M]. | |
Definition of_typeIV defW := | |
[/\ of_typeII_IV defW, ~~ abelian U & 'N(U) \subset M]. | |
Definition of_typeV defW := | |
[/\ of_typeP defW /\ U = 1 | |
& [\/ (*a*) normedTI H^# G M, | |
(*b*) exists2 p, p \in \pi(H) & #|W1| %| p.-1 /\ cyclic 'O_p^'(H) | |
| (*c*) exists2 p, p \in \pi(H) | |
& [/\ #|'O_p(H)| = (p ^ 3)%N, #|W1| %| p.+1 & cyclic 'O_p^'(H)]]]. | |
End Ptypes. | |
Variant exists_typeP (spec : forall U W W1 W2, W1 \x W2 = W -> Prop) : Prop | |
:= FTtypeP_Spec (U W W1 W2 : {group gT}) defW of spec U W W1 W2 defW. | |
Definition FTtype_spec i M := | |
match i with | |
| 1%N => exists U : {group gT}, of_typeI M U | |
| 2 => exists_typeP (of_typeII M) | |
| 3 => exists_typeP (of_typeIII M) | |
| 4 => exists_typeP (of_typeIV M) | |
| 5 => exists_typeP (of_typeV M) | |
| _ => False | |
end. | |
Definition FTtype M := | |
if \kappa(M)^'.-group M then 1%N else | |
if M`_\sigma != M^`(1) then 2 else | |
if M`_\F == M`_\sigma then 5 else | |
if abelian (M`_\sigma / M`_\F) then 3 else 4. | |
Lemma FTtype_range M : 0 < FTtype M <= 5. | |
Proof. by rewrite /FTtype; do 4!case: ifP => // _. Qed. | |
Definition FTcore M := if 0 < FTtype M <= 2 then M`_\F else M^`(1). | |
Fact FTcore_is_group M : group_set (FTcore M). | |
Proof. by rewrite [group_set _]fun_if !groupP if_same. Qed. | |
Canonical Structure FTcore_group M := Group (FTcore_is_group M). | |
Definition FTsupport1 M := (FTcore M)^#. | |
Let FTder M := M^`(FTtype M != 1%N). | |
Definition FTsupport M := \bigcup_(x in FTsupport1 M) 'C_(FTder M)[x]^#. | |
Definition FTsupport0 M (pi := \pi(FTder M)) := | |
FTsupport M :|: [set x in M | ~~ pi.-elt x & ~~ pi^'.-elt x]. | |
Definition mmax_transversal U := orbit_transversal 'JG U 'M. | |
End Definitions. | |
Notation "M `_ \s" := (FTcore M) (at level 3, format "M `_ \s") : group_scope. | |
Notation "M `_ \s" := (FTcore_group M) : Group_scope. | |
Notation "''A1' ( M )" := (FTsupport1 M) | |
(at level 8, format "''A1' ( M )") : group_scope. | |
Notation "''A' ( M )" := (FTsupport M) | |
(at level 8, format "''A' ( M )") : group_scope. | |
Notation "''A0' ( M )" := (FTsupport0 M) | |
(at level 8, format "''A0' ( M )") : group_scope. | |
Notation "''M^' G" := (mmax_transversal G) | |
(at level 3, format "''M^' G") : group_scope. | |
Section Section16. | |
Variable gT : minSimpleOddGroupType. | |
Local Notation G := (TheMinSimpleOddGroup gT). | |
Implicit Types p q q_star r : nat. | |
Implicit Types x y z : gT. | |
Implicit Types A E H K L M Mstar N P Q Qstar R S T U V W X Y Z : {group gT}. | |
(* Structural properties of the M`_\s definition. *) | |
Lemma FTcore_char M : M`_\s \char M. | |
Proof. by rewrite /FTcore; case: ifP; rewrite gFchar. Qed. | |
Lemma FTcore_normal M : M`_\s <| M. | |
Proof. by rewrite char_normal ?FTcore_char. Qed. | |
Lemma FTcore_norm M : M \subset 'N(M`_\s). | |
Proof. by rewrite char_norm ?FTcore_char. Qed. | |
Lemma FTcore_sub M : M`_\s \subset M. | |
Proof. by rewrite char_sub ?FTcore_char. Qed. | |
Lemma FTcore_type1 M : FTtype M == 1%N -> M`_\s = M`_\F. | |
Proof. by rewrite /M`_\s => /eqP->. Qed. | |
Lemma FTcore_type2 M : FTtype M == 2 -> M`_\s = M`_\F. | |
Proof. by rewrite /M`_\s => /eqP->. Qed. | |
Lemma FTcore_type_gt2 M : FTtype M > 2 -> M`_\s = M^`(1). | |
Proof. by rewrite /M`_\s => /subnKC <-. Qed. | |
Lemma FTsupp1_type1 M : FTtype M == 1%N -> 'A1(M) = M`_\F^#. | |
Proof. by move/FTcore_type1 <-. Qed. | |
Lemma FTsupp1_type2 M : FTtype M == 2 -> 'A1(M) = M`_\F^#. | |
Proof. by move/FTcore_type2 <-. Qed. | |
Lemma FTsupp1_type_gt2 M : FTtype M > 2 -> 'A1(M) = M^`(1)^#. | |
Proof. by move/FTcore_type_gt2 <-. Qed. | |
(* This section covers the characterization of the F, P, P1 and P2 types of *) | |
(* maximal subgroups summarized at the top of p. 125. in B & G. *) | |
Section KappaClassification. | |
Variables M U K : {group gT}. | |
Hypotheses (maxM : M \in 'M) (complU : kappa_complement M U K). | |
Remark trivgFmax : (M \in 'M_'F) = (K :==: 1). | |
Proof. by rewrite (trivg_kappa maxM); case: complU. Qed. | |
Remark trivgPmax : (M \in 'M_'P) = (K :!=: 1). | |
Proof. by rewrite inE trivgFmax maxM andbT. Qed. | |
Remark FmaxP : reflect (K :==: 1 /\ U :!=: 1) (M \in 'M_'F). | |
Proof. | |
rewrite (trivg_kappa_compl maxM complU) 2!inE. | |
have [_ hallK _] := complU; rewrite (trivg_kappa maxM hallK). | |
by apply: (iffP idP) => [-> | []]. | |
Qed. | |
Remark P1maxP : reflect (K :!=: 1 /\ U :==: 1) (M \in 'M_'P1). | |
Proof. | |
rewrite (trivg_kappa_compl maxM complU) inE -trivgPmax. | |
by apply: (iffP idP) => [|[] //]; case/andP=> ->. | |
Qed. | |
Remark P2maxP : reflect (K :!=: 1 /\ U :!=: 1) (M \in 'M_'P2). | |
Proof. | |
rewrite (trivg_kappa_compl maxM complU) -trivgPmax. | |
by apply: (iffP setDP) => [] []. | |
Qed. | |
End KappaClassification. | |
(* This section covers the combinatorial statements of B & G, Lemma 16.1. It *) | |
(* needs to appear before summary theorems A-E because we are following *) | |
(* Peterfalvi in anticipating the classification in the definition of the *) | |
(* kernel sets A1(M), A(M) and A0(M). The actual correspondence between the *) | |
(* combinatorial classification and the mathematical description, i.e., the *) | |
(* of_typeXX predicates, will be given later. *) | |
Section FTtypeClassification. | |
Variable M : {group gT}. | |
Hypothesis maxM : M \in 'M. | |
Lemma kappa_witness : | |
exists UK : {group gT} * {group gT}, kappa_complement M UK.1 UK.2. | |
Proof. | |
have [K hallK] := Hall_exists \kappa(M) (mmax_sol maxM). | |
by have [U complU] := ex_kappa_compl maxM hallK; exists (U, K). | |
Qed. | |
(* This is B & G, Lemma 16.1(a). *) | |
Lemma FTtype_Fmax : (M \in 'M_'F) = (FTtype M == 1%N). | |
Proof. | |
by rewrite inE maxM /FTtype; case: (_.-group M) => //; do 3!case: ifP => // _. | |
Qed. | |
Lemma FTtype_Pmax : (M \in 'M_'P) = (FTtype M != 1%N). | |
Proof. by rewrite inE maxM andbT FTtype_Fmax. Qed. | |
(* This is B & G, Lemma 16.1(b). *) | |
Lemma FTtype_P2max : (M \in 'M_'P2) = (FTtype M == 2). | |
Proof. | |
have [[U K] /= complU] := kappa_witness. | |
rewrite (sameP (P2maxP maxM complU) andP) -(trivgFmax maxM complU) FTtype_Fmax. | |
have [-> // | notMtype1] := altP eqP. | |
have ntK: K :!=: 1 by rewrite -(trivgFmax maxM complU) FTtype_Fmax. | |
have [_ [//|defM' _] _ _ _] := kappa_structure maxM complU. | |
do [rewrite /FTtype; case: ifP => // _] in notMtype1 *. | |
rewrite -cardG_gt1 eqEcard Msigma_der1 //= -(sdprod_card defM') -ltnNge. | |
rewrite -(@ltn_pmul2l #|M`_\sigma|) ?cardG_gt0 //= muln1. | |
by case: leqP => // _; do 2!case: ifP=> //. | |
Qed. | |
(* This covers the P1 part of B & G, Lemma 16.1 (c) and (d). *) | |
Lemma FTtype_P1max : (M \in 'M_'P1) = (2 < FTtype M <= 5). | |
Proof. | |
rewrite 2!ltn_neqAle -!andbA FTtype_range andbT eq_sym -FTtype_P2max. | |
rewrite eq_sym -FTtype_Pmax in_setD inE. | |
by case: (M \in _); rewrite ?andbT ?andbF ?negbK. | |
Qed. | |
Lemma Msigma_eq_der1 : M \in 'M_'P1 -> M`_\sigma = M^`(1). | |
Proof. | |
have [[U K] /= complU] := kappa_witness. | |
case/(P1maxP maxM complU)=> ntK; move/eqP=> U1. | |
by have [_ [//|<- _] _ _ _] := kappa_structure maxM complU; rewrite U1 sdprodg1. | |
Qed. | |
Lemma def_FTcore : M`_\s = M`_\sigma. | |
Proof. | |
rewrite /FTcore -mem_iota 2!inE -FTtype_Fmax -FTtype_P2max. | |
have [notP1maxM |] := ifPn. | |
by apply/Fcore_eq_Msigma; rewrite ?notP1type_Msigma_nil. | |
case/norP=> notFmaxM; rewrite inE andbC inE maxM notFmaxM negbK => P1maxM. | |
by rewrite Msigma_eq_der1. | |
Qed. | |
(* Other relations between the 'core' groups. *) | |
Lemma FTcore_sub_der1 : M`_\s \subset M^`(1)%g. | |
Proof. by rewrite def_FTcore Msigma_der1. Qed. | |
Lemma Fcore_sub_FTcore : M`_\F \subset M`_\s. | |
Proof. by rewrite def_FTcore Fcore_sub_Msigma. Qed. | |
Lemma mmax_Fcore_neq1 : M`_\F != 1. | |
Proof. by have [[]] := Fcore_structure maxM. Qed. | |
Lemma mmax_Fitting_neq1 : 'F(M) != 1. | |
Proof. exact: subG1_contra (Fcore_sub_Fitting M) mmax_Fcore_neq1. Qed. | |
Lemma FTcore_neq1 : M`_\s != 1. | |
Proof. exact: subG1_contra Fcore_sub_FTcore mmax_Fcore_neq1. Qed. | |
Lemma norm_mmax_Fcore : 'N(M`_\F) = M. | |
Proof. exact: mmax_normal (gFnormal _ _) mmax_Fcore_neq1. Qed. | |
Lemma norm_FTcore : 'N(M`_\s) = M. | |
Proof. exact: mmax_normal (FTcore_normal _) FTcore_neq1. Qed. | |
Lemma norm_mmax_Fitting : 'N('F(M)) = M. | |
Proof. exact: mmax_normal (gFnormal _ _) mmax_Fitting_neq1. Qed. | |
(* This is B & G, Lemma 16.1(f). *) | |
Lemma Fcore_eq_FTcore : reflect (M`_\F = M`_\s) (FTtype M \in pred3 1%N 2 5). | |
Proof. | |
rewrite /FTcore -mem_iota 3!inE orbA; case type12M: (_ || _); first by left. | |
move: type12M FTtype_P1max; rewrite /FTtype; do 2![case: ifP => // _] => _. | |
rewrite !(fun_if (leq^~ 5)) !(fun_if (leq 3)) !if_same /= => P1maxM. | |
rewrite Msigma_eq_der1 // !(fun_if (eq_op^~ 5)) if_same. | |
by rewrite [if _ then _ else _]andbT; apply: eqP. | |
Qed. | |
(* This is the second part of B & G, Lemma 16.1(c). *) | |
Lemma Fcore_neq_FTcore : (M`_\F != M`_\s) = (FTtype M \in pred2 3 4). | |
Proof. | |
have:= FTtype_range M; rewrite -mem_iota (sameP eqP Fcore_eq_FTcore). | |
by do 5!case/predU1P=> [-> //|]. | |
Qed. | |
Lemma FTcore_eq_der1 : FTtype M > 2 -> M`_\s = M^`(1). | |
Proof. | |
move=> FTtype_gt2; rewrite def_FTcore Msigma_eq_der1 // FTtype_P1max. | |
by rewrite FTtype_gt2; case/andP: (FTtype_range M). | |
Qed. | |
End FTtypeClassification. | |
(* Internal automorphism. *) | |
Lemma FTtypeJ M x : FTtype (M :^ x) = FTtype M. | |
Proof. | |
rewrite /FTtype (eq_p'group _ (kappaJ _ _)) pgroupJ MsigmaJ FcoreJ derJ. | |
rewrite !(can_eq (conjsgK x)); do 4!congr (if _ then _ else _). | |
rewrite -quotientInorm normJ -conjIg /= setIC -{1 3}(setIidPr (normG M`_\F)). | |
rewrite -!morphim_conj -morphim_quotm ?normalG //= => nsMFN. | |
by rewrite injm_abelian /= ?im_quotient // injm_quotm ?injm_conj. | |
Qed. | |
Lemma FTcoreJ M x : (M :^ x)`_\s = M`_\s :^ x. | |
Proof. by rewrite /FTcore FTtypeJ FcoreJ derJ; case: ifP. Qed. | |
Lemma FTsupp1J M x : 'A1(M :^ x) = 'A1(M) :^ x. | |
Proof. by rewrite conjD1g -FTcoreJ. Qed. | |
Lemma FTsuppJ M x : 'A(M :^ x) = 'A(M) :^ x. | |
Proof. | |
rewrite -bigcupJ /'A(_) FTsupp1J big_imset /=; last exact: in2W (conjg_inj x). | |
by apply: eq_bigr => y _; rewrite FTtypeJ derJ cent1J -conjIg conjD1g. | |
Qed. | |
Lemma FTsupp0J M x : 'A0(M :^ x) = 'A0(M) :^ x. | |
Proof. | |
apply/setP=> y; rewrite mem_conjg !inE FTsuppJ !mem_conjg; congr (_ || _ && _). | |
by rewrite FTtypeJ !p_eltJ derJ /= cardJg. | |
Qed. | |
(* Inclusion/normality of class function supports. *) | |
Lemma FTsupp_sub0 M : 'A(M) \subset 'A0(M). | |
Proof. exact: subsetUl. Qed. | |
Lemma FTsupp0_sub M : 'A0(M) \subset M^#. | |
Proof. | |
rewrite subUset andbC subsetD1 setIdE subsetIl !inE p_elt1 andbF /=. | |
by apply/bigcupsP=> x _; rewrite setSD ?subIset ?der_sub. | |
Qed. | |
Lemma FTsupp_sub M : 'A(M) \subset M^#. | |
Proof. exact: subset_trans (FTsupp_sub0 M) (FTsupp0_sub M). Qed. | |
Lemma FTsupp1_norm M : M \subset 'N('A1(M)). | |
Proof. by rewrite normD1 (normal_norm (FTcore_normal M)). Qed. | |
Lemma FTsupp_norm M : M \subset 'N('A(M)). | |
Proof. | |
apply/subsetP=> y My; rewrite inE -bigcupJ; apply/bigcupsP=> x A1x. | |
rewrite (bigcup_max (x ^ y)) ?memJ_norm ?(subsetP (FTsupp1_norm M)) //. | |
by rewrite conjD1g conjIg cent1J (normsP _ y My) ?gFnorm. | |
Qed. | |
Lemma FTsupp0_norm M : M \subset 'N('A0(M)). | |
Proof. | |
rewrite normsU ?FTsupp_norm // setIdE normsI //. | |
by apply/normsP=> x _; apply/setP=> y; rewrite mem_conjg !inE !p_eltJ. | |
Qed. | |
Section MmaxFTsupp. | |
(* Support inclusions that depend on the maximality of M. *) | |
Variable M : {group gT}. | |
Hypothesis maxM : M \in 'M. | |
Lemma FTsupp1_sub : 'A1(M) \subset 'A(M). | |
Proof. | |
apply/subsetP=> x A1x; apply/bigcupP; exists x => //. | |
have [ntx Ms_x] := setD1P A1x; rewrite 3!inE ntx cent1id (subsetP _ x Ms_x) //. | |
by case: (~~ _); rewrite ?FTcore_sub_der1 ?FTcore_sub. | |
Qed. | |
Lemma FTsupp1_sub0 : 'A1(M) \subset 'A0(M). | |
Proof. exact: subset_trans FTsupp1_sub (FTsupp_sub0 M). Qed. | |
Lemma FTsupp1_neq0 : 'A1(M) != set0. | |
Proof. by rewrite setD_eq0 subG1 FTcore_neq1. Qed. | |
Lemma FTsupp_neq0 : 'A(M) != set0. | |
Proof. | |
by apply: contraNneq FTsupp1_neq0 => AM_0; rewrite -subset0 -AM_0 FTsupp1_sub. | |
Qed. | |
Lemma FTsupp0_neq0 : 'A0(M) != set0. | |
Proof. | |
by apply: contraNneq FTsupp_neq0 => A0M_0; rewrite -subset0 -A0M_0 FTsupp_sub0. | |
Qed. | |
Lemma Fcore_sub_FTsupp1 : M`_\F^# \subset 'A1(M). | |
Proof. exact: setSD (Fcore_sub_FTcore maxM). Qed. | |
Lemma Fcore_sub_FTsupp : M`_\F^# \subset 'A(M). | |
Proof. exact: subset_trans Fcore_sub_FTsupp1 FTsupp1_sub. Qed. | |
Lemma Fcore_sub_FTsupp0 : M`_\F^# \subset 'A0(M). | |
Proof. exact: subset_trans Fcore_sub_FTsupp1 FTsupp1_sub0. Qed. | |
Lemma Fitting_sub_FTsupp : 'F(M)^# \subset 'A(M). | |
Proof. | |
pose pi := \pi(M`_\F); have nilF := Fitting_nil M. | |
have [U defF]: {U : {group gT} | M`_\F \x U = 'F(M)}. | |
have hallH := pHall_subl (Fcore_sub_Fitting M) (gFsub _ _) (Fcore_Hall M). | |
exists 'O_pi^'('F(M))%G; rewrite (nilpotent_Hall_pcore nilF hallH). | |
exact: nilpotent_pcoreC. | |
apply/subsetP=> xy /setD1P[ntxy Fxy]; apply/bigcupP. | |
have [x [y [Hx Vy Dxy _]]] := mem_dprod defF Fxy. | |
have [z [ntz Hz czxy]]: exists z, [/\ z != 1%g, z \in M`_\F & x \in 'C[z]]. | |
have [-> | ntx] := eqVneq x 1%g; last by exists x; rewrite ?cent1id. | |
by have /trivgPn[z ntz] := mmax_Fcore_neq1 maxM; exists z; rewrite ?group1. | |
exists z; first by rewrite !inE ntz (subsetP (Fcore_sub_FTcore maxM)). | |
rewrite 3!inE ntxy {2}Dxy groupMl //= andbC (subsetP _ y Vy) //=; last first. | |
by rewrite sub_cent1 (subsetP _ _ Hz) // centsC; have [] := dprodP defF. | |
rewrite -FTtype_Pmax // (subsetP _ xy Fxy) //. | |
case MtypeP: (M \in _); last exact: gFsub. | |
by have [_ _ _ ->] := Fitting_structure maxM. | |
Qed. | |
Lemma Fitting_sub_FTsupp0 : 'F(M)^# \subset 'A0(M). | |
Proof. exact: subset_trans Fitting_sub_FTsupp (FTsupp_sub0 M). Qed. | |
Lemma FTsupp_eq1 : (2 < FTtype M)%N -> 'A(M) = 'A1(M). | |
Proof. | |
move=> typeMgt2; rewrite /'A(M) -(subnKC typeMgt2) /= -FTcore_eq_der1 //. | |
apply/setP=> y; apply/bigcupP/idP=> [[x A1x /setD1P[nty /setIP[Ms_y _]]] | A1y]. | |
exact/setD1P. | |
by exists y; rewrite // inE in_setI cent1id andbT -in_setD. | |
Qed. | |
End MmaxFTsupp. | |
Section SingleGroupSummaries. | |
Variables M U K : {group gT}. | |
Hypotheses (maxM : M \in 'M) (complU : kappa_complement M U K). | |
Let Kstar := 'C_(M`_\sigma)(K). | |
Theorem BGsummaryA : | |
[/\ (*1*) [/\ M`_\sigma <| M, \sigma(M).-Hall(M) M`_\sigma & | |
\sigma(M).-Hall(G) M`_\sigma], | |
(*2*) \kappa(M).-Hall(M) K /\ cyclic K, | |
(*3*) [/\ U \in [complements to M`_\sigma <*> K in M], | |
K \subset 'N(U), | |
M`_\sigma <*> U <| M, | |
U <| U <*> K | |
& M`_\sigma * U * K = M], | |
(*4*) {in K^#, forall k, 'C_U[k] = 1} | |
& | |
[/\ (*5*) Kstar != 1 /\ {in K^#, forall k, K \x Kstar = 'C_M[k]}, | |
(*6*) [/\ M`_\F != 1, M`_\F \subset M`_\sigma, M`_\sigma \subset M^`(1), | |
M^`(1) \proper M & nilpotent (M^`(1) / M`_\F)], | |
(*7*) [/\ M^`(2) \subset 'F(M), M`_\F * 'C_M(M`_\F) = 'F(M) | |
& K :!=: 1 -> 'F(M) \subset M^`(1)] | |
& (*8*) M`_\F != M`_\sigma -> | |
[/\ U :=: 1, normedTI 'F(M)^# G M & prime #|K| ]]]. | |
Proof. | |
have [hallU hallK _] := complU; split. | |
- by rewrite pcore_normal Msigma_Hall // Msigma_Hall_G. | |
- by have [[]] := kappa_structure maxM complU. | |
- have [_ defM _ _ _] := kappa_compl_context maxM complU. | |
have [[_ UK _ defUK]] := sdprodP defM; rewrite defUK. | |
have [nsKUK _ mulUK nUK _] := sdprod_context defUK. | |
rewrite -mulUK mulG_subG mulgA => mulMsUK /andP[nMsU nMsK] _. | |
rewrite (norm_joinEr nUK) mulUK; split=> //. | |
rewrite inE coprime_TIg /= norm_joinEr //=. | |
by rewrite -mulgA (normC nUK) mulgA mulMsUK !eqxx. | |
rewrite (pnat_coprime _ (pHall_pgroup hallU)) // -pgroupE pgroupM. | |
rewrite (sub_pgroup _ (pHall_pgroup hallK)) => [|p k_p]; last first. | |
by apply/orP; right. | |
by rewrite (sub_pgroup _ (pcore_pgroup _ _)) => // p s_p; apply/orP; left. | |
have{defM} [[defM _ _] _ _ _ _] := kappa_structure maxM complU. | |
have [[MsU _ defMsU] _ _ _ _] := sdprodP defM; rewrite defMsU in defM. | |
have [_ mulMsU _ _] := sdprodP defMsU. | |
by rewrite norm_joinEr // mulMsU; case/sdprod_context: defM. | |
- by have [] := kappa_compl_context maxM complU. | |
split. | |
- have [K1 | ntK] := eqsVneq K 1. | |
rewrite /Kstar K1 cent1T setIT Msigma_neq1 // setDv. | |
by split=> // k; rewrite inE. | |
have PmaxM: M \in 'M_'P by rewrite inE -(trivg_kappa maxM hallK) ntK. | |
have [_ [defNK _] [-> _] _ _] := Ptype_structure PmaxM hallK. | |
have [_ _ cKKs tiKKs] := dprodP defNK; rewrite dprodEY //; split=> // k Kk. | |
by have [_ _ [_ _ _ [_ _ -> // _ _] _]] := Ptype_embedding PmaxM hallK. | |
- have [_ _ [_ ->] _] := Fitting_structure maxM. | |
by have [[]] := Fcore_structure maxM. | |
- have [_ [-> defF _] _ sFM'] := Fitting_structure maxM. | |
have [_ -> _] := cprodP defF; split=> // ntK. | |
by rewrite sFM' // inE -(trivg_kappa maxM hallK) ntK. | |
move=> not_nilMs; pose q := #|Kstar|. | |
have solMs: solvable M`_\sigma := solvableS (pcore_sub _ _) (mmax_sol maxM). | |
have [D hallD] := Hall_exists q^' solMs. | |
have [_] := Fcore_structure maxM; case/(_ K D)=> //. | |
case=> P1maxM _ _ [-> _ _ _] _ _ _; split=> //. | |
by apply/eqP; rewrite (trivg_kappa_compl maxM complU). | |
by apply: contraR not_nilMs; case/nonTI_Fitting_facts=> // _ -> _. | |
Qed. | |
(* This is a variant of B & G, Lemma 16.1(e) that better fits the Peterfalvi *) | |
(* definitions. *) | |
Lemma sdprod_FTder : M`_\sigma ><| U = M^`(FTtype M != 1%N). | |
Proof. | |
rewrite -FTtype_Fmax // (trivgFmax maxM complU). | |
have [[defM _ _] defM' _ _ _] := kappa_structure maxM complU. | |
by case: (altP eqP) defM' defM => [-> _ | _ [] //]; rewrite sdprodg1. | |
Qed. | |
Theorem BGsummaryB : | |
[/\ (*1*) forall p S, p.-Sylow(U) S -> abelian S /\ 'r(S) <= 2, | |
(*2*) abelian <<U :&: 'A(M)>>, | |
(*3*) exists U0 : {group gT}, | |
[/\ U0 \subset U, exponent U0 = exponent U & [disjoint U0 & 'A(M)]] | |
& (*4*) (forall X, X \subset U -> X :!=: 1 -> 'C_(M`_\sigma)(X) != 1 -> | |
'M('C(X)) = [set M]) | |
/\ (*5*) ('A(M) != 'A1(M) -> normedTI ('A(M) :\: 'A1(M)) G M)]. | |
Proof. | |
split. | |
- move=> p S sylS; have [hallU _ _] := complU; have [sUM sk'U _] := and3P hallU. | |
have [-> | ntS] := eqsVneq S 1; first by rewrite abelian1 rank1. | |
have sk'p: p \in \sigma_kappa(M)^'. | |
by rewrite (pnatPpi sk'U) // -p_rank_gt0 -(rank_Sylow sylS) rank_gt0. | |
have{} sylS := subHall_Sylow hallU sk'p sylS. | |
have [[sSM pS _] [/= s'p _]] := (and3P sylS, norP sk'p). | |
rewrite (sigma'_nil_abelian maxM) ?(pi_pgroup pS) ?(pgroup_nil pS) //. | |
by rewrite (rank_Sylow sylS) leqNgt (contra _ s'p) //; apply: alpha_sub_sigma. | |
- have [_ _ _ cUA_UA _] := kappa_structure maxM complU. | |
apply: abelianS cUA_UA; rewrite genS // -big_distrr ?setIS -?def_FTcore //=. | |
by apply/bigcupsP=> x A1x; rewrite (bigcup_max x) // setDE setIAC subsetIr. | |
- have [-> | ntU] := eqsVneq U 1. | |
exists 1%G; split; rewrite // disjoint_sym disjoints_subset. | |
by apply/bigcupsP=> x _; rewrite setDE subsetIr. | |
have [_ _ _ _ [// | U0 [sU0U expU0 frobU0]]] := kappa_structure maxM complU. | |
exists U0; split; rewrite // -setI_eq0 big_distrr /= /'A1(M) def_FTcore //. | |
rewrite big1 // => x A1x; apply/eqP; rewrite setIDA setD_eq0 setICA. | |
by rewrite (Frobenius_reg_compl frobU0) ?subsetIr. | |
set part4 := forall X, _; have part4holds: part4. | |
move=> X sXU ntX nregX. | |
by have [_ _] := kappa_structure maxM complU; case/(_ X). | |
have [[nsMsM _ _] _ [_ _ nsMsUM _ _] _ _] := BGsummaryA. | |
have{nsMsM nsMsUM}[[_ nMsM] [_ nMsUM]] := (andP nsMsM, andP nsMsUM). | |
rewrite eqEsubset FTsupp1_sub // -setD_eq0 andbT; set B := _ :\: _. | |
have nBM: M \subset 'N(B) by rewrite normsD ?FTsupp_norm ?FTsupp1_norm. | |
have uniqB y (u := y.`_\sigma(M)^'): y \in B -> 'M('C[u]) = [set M]. | |
case/setDP=> /bigcupP[x /setD1P[ntx Ms_x] /setD1P[nty /setIP[M'y cxy]]]. | |
rewrite !inE nty def_FTcore //= in Ms_x * => notMs_y; set M' := M^`(_) in M'y. | |
have [nsMsM' _ _ _ _] := sdprod_context sdprod_FTder. | |
have [[sMsM' nMsM'] sM'M]:= (andP nsMsM', der_sub _ M : M' \subset M). | |
have hallMs := pHall_subl sMsM' sM'M (Msigma_Hall maxM). | |
have hallU: \sigma(M)^'.-Hall(M') U. | |
by rewrite -(compl_pHall _ hallMs) sdprod_compl ?sdprod_FTder. | |
have suM': <[u]> \subset M' by rewrite cycle_subG groupX. | |
have solM': solvable M' := solvableS sM'M (mmax_sol maxM). | |
have [z M'z suzU] := Hall_Jsub solM' hallU suM' (p_elt_constt _ _). | |
have Mz': z^-1 \in M by rewrite groupV (subsetP sM'M). | |
rewrite -(conjgK z u) -(group_inj (conjGid Mz')) -cent_cycle. | |
rewrite !cycleJ centJ; apply: def_uniq_mmaxJ (part4holds _ suzU _ _). | |
rewrite /= -cycleJ cycle_eq1 -consttJ; apply: contraNneq notMs_y. | |
move/constt1P; rewrite p_eltNK p_eltJ => sMy. | |
by rewrite (mem_normal_Hall hallMs). | |
rewrite -(normsP nMsM' z M'z) centJ -conjIg -(isog_eq1 (conj_isog _ _)). | |
by apply/trivgPn; exists x; rewrite //= inE Ms_x cent_cycle cent1C groupX. | |
split=> // nzB; apply/normedTI_P; rewrite setTI; split=> // a _. | |
case/pred0Pn=> x /andP[/= Bx]; rewrite mem_conjg => /uniqB/(def_uniq_mmaxJ a). | |
rewrite consttJ -normJ conjg_set1 conjgKV uniqB // => /set1_inj defM. | |
by rewrite -(norm_mmax maxM) inE {2}defM. | |
Qed. | |
Let Z := K <*> Kstar. | |
Let Zhat := Z :\: (K :|: Kstar). | |
(* We strengthened the uniqueness condition in part (4) to *) | |
(* 'M_\sigma(K) = [set Mstar]. *) | |
Theorem BGsummaryC : K :!=: 1 -> | |
[/\ | |
[/\ (*1*) abelian U /\ ~~ ('N(U) \subset M), | |
(*2*) [/\ cyclic Kstar, Kstar != 1, Kstar \subset M`_\F & ~~ cyclic M`_\F] | |
& (*3*) M`_\sigma ><| U = M^`(1) /\ Kstar \subset M^`(2)], | |
exists Mstar, | |
[/\ (*4*) [/\ Mstar \in 'M_'P, 'C_(Mstar`_\sigma)(Kstar) = K, | |
\kappa(Mstar).-Hall(Mstar) Kstar | |
& 'M_\sigma(K) = [set Mstar]], (* uniqueness *) | |
(*5*) {in 'E^1(Kstar), forall X, 'M('C(X)) = [set M]} | |
/\ {in 'E^1(K), forall Y, 'M('C(Y)) = [set Mstar]}, | |
(*6*) [/\ M :&: Mstar = Z, K \x Kstar = Z & cyclic Z] | |
& (*7*) (M \in 'M_'P2 \/ Mstar \in 'M_'P2) | |
/\ {in 'M_'P, forall H, gval H \in M :^: G :|: Mstar :^: G}] | |
& [/\ (*8*) normedTI Zhat G Z, | |
(*9*) let B := 'A0(M) :\: 'A(M) in | |
B = class_support Zhat M /\ normedTI B G M, | |
(*10*) U :!=: 1 -> | |
[/\ prime #|K|, normedTI 'F(M)^# G M & M`_\sigma \subset 'F(M)] | |
& (*11*) U :==: 1 -> prime #|Kstar| ]]. | |
Proof. | |
move=> ntK; have [_ hallK _] := complU. | |
have PmaxM: M \in 'M_'P by rewrite inE -(trivg_kappa maxM hallK) ntK. | |
split. | |
- have [_ [//|-> ->] _ _ _] := kappa_structure maxM complU. | |
have [-> -> -> -> ->] := Ptype_cyclics PmaxM hallK; do 2!split=> //. | |
have [L maxCK_L] := mmax_exists (mFT_cent_proper ntK). | |
have [-> | ntU] := eqsVneq U 1. | |
by rewrite norm1 proper_subn // mmax_proper. | |
have P2maxM: M \in 'M_'P2 by rewrite inE -(trivg_kappa_compl maxM complU) ntU. | |
have [r _ rU] := rank_witness U; have [R sylR] := Sylow_exists r U. | |
have ntR: R :!=: 1 by rewrite -rank_gt0 (rank_Sylow sylR) -rU rank_gt0. | |
have ltRG: R \proper G := mFT_pgroup_proper (pHall_pgroup sylR). | |
have [H maxNR_H] := mmax_exists (mFT_norm_proper ntR ltRG). | |
apply: contra (subset_trans (subsetIr H _)) _. | |
by have [_ _ _ [->]] := P2type_signalizer P2maxM complU maxCK_L sylR maxNR_H. | |
- have [L [PmaxL _] [uniqL []]] := Ptype_embedding PmaxM hallK. | |
rewrite -/Kstar -/Z -/Zhat => hallKstar _ [defK _] [cycZ defML _ _ _]. | |
case=> _ P2_MorL Pmax_conjMorL _; exists L. | |
suffices uniqMSK: 'M_\sigma(K) = [set L]. | |
have [_ [defNK _] [_ uniqM] _ _] := Ptype_structure PmaxM hallK. | |
do 2!split=> //; last by case: P2_MorL => [] [-> _]; [left | right]. | |
by have [_ _ cKKs tiKKs] := dprodP defNK; rewrite dprodEY. | |
have sKLs: K \subset L`_\sigma by rewrite -defK subsetIl. | |
have [X E1X]: exists X, X \in 'E^1(K) by apply/rank_geP; rewrite rank_gt0. | |
have sXK: X \subset K by case/nElemP: E1X => ? /pnElemP[]. | |
have [maxL sCXL] := mem_uniq_mmax (uniqL X E1X). | |
have [x defKx] := cyclicP (cyclicS (joing_subl _ _) cycZ). | |
have SMxL: L \in 'M_\sigma[x] by rewrite -defKx inE maxL. | |
have ell1x: \ell_\sigma(x) == 1%N. | |
by rewrite (Msigma_ell1 maxL) // !inE -cycle_eq1 -cycle_subG -defKx ntK. | |
apply/eqP; rewrite eq_sym eqEcard defKx sub1set SMxL cards1 leqNgt. | |
apply/negP=> ntSMx; have [_ [//|_ ntR _ _]] := FT_signalizer_context ell1x. | |
case/(_ L)=> // /sdprodP[_ _ _ tiRL]; case/negP: ntR. | |
rewrite -subG1 -tiRL subsetIidl -setIA setICA setISS ?pcore_sub //. | |
by rewrite subsetIidr /= -cent_cycle -defKx (subset_trans (centS sXK) sCXL). | |
split; last 1 first. | |
- rewrite (trivg_kappa_compl maxM complU) => P1maxM. | |
have [L _ [_ _ _ _ [_ [] [] //]]] := Ptype_embedding PmaxM hallK. | |
by rewrite inE P1maxM. | |
- by have [L _ [_ _ _ _ [[]]]] := Ptype_embedding PmaxM hallK. | |
- have [L _ [_ _ _]] := Ptype_embedding PmaxM hallK; rewrite -/Zhat -/Z. | |
case=> cycZ defML defCK defCKs defCZhat [[tiZhat tiZhatM _] _ _ defM] B. | |
have sZM: Z \subset M by rewrite -[Z]defML subsetIl. | |
have sZhM: Zhat \subset M by rewrite subDset setUC subsetU ?sZM. | |
suffices defB: B = class_support Zhat M. | |
split=> //; apply/normedTI_P. | |
rewrite setTI normsD ?FTsupp_norm ?FTsupp0_norm //; split=> // [|g _]. | |
case/andP: tiZhat => /set0Pn[z Zz] _; apply/set0Pn; exists z. | |
by rewrite defB mem_class_support. | |
rewrite defB => /pred0Pn[_ /andP[/imset2P[z x Zz Mx ->] /= Bg_zx]]. | |
apply/idPn; rewrite -(groupMr g (groupVr Mx)) -in_setC. | |
case/tiZhatM/pred0Pn; exists z; rewrite /= Zz conjsgM mem_conjgV. | |
by apply: subsetP Bg_zx; rewrite conjSg class_support_subG. | |
rewrite /B /'A0(M); set M' := M^`(_); set su := \pi(M'). | |
have defM': M' = M^`(1) by rewrite /M' -FTtype_Pmax ?PmaxM. | |
have{hallK} hallM': su.-Hall(M) M'. | |
by rewrite Hall_pi //= -/M' defM' (sdprod_Hall defM) (pHall_Hall hallK). | |
have{hallM'} hallK: su^'.-Hall(M) K. | |
by rewrite -(compl_pHall _ hallM') /= -/M' defM' sdprod_compl. | |
have su'K: su^'.-group K := pHall_pgroup hallK. | |
have suKs: su.-group Kstar. | |
by rewrite (pgroupS _ (pgroup_pi _)) ///= -/M' defM' subIset ?Msigma_der1. | |
apply/setP=> x; rewrite !inE; apply/andP/imset2P=> [[]| [y a]]; last first. | |
case/setDP=> Zy; rewrite inE => /norP[not_Ky notKs_y] Ma ->. | |
have My := subsetP sZM y Zy; have Mya := groupJ My Ma. | |
have [not_suy not_su'y]: ~~ su.-elt y /\ ~~ su^'.-elt y. | |
have defZ: K * Kstar = Z by rewrite -cent_joinEr ?subsetIr. | |
have [hallK_Z hallKs] := coprime_mulGp_Hall defZ su'K suKs. | |
have ns_Z := sub_abelian_normal _ (cyclic_abelian cycZ). | |
rewrite -(mem_normal_Hall hallKs) -?ns_Z ?joing_subr // notKs_y. | |
by rewrite -(mem_normal_Hall hallK_Z) -?ns_Z ?joing_subl. | |
rewrite Mya !p_eltJ not_suy not_su'y orbT; split=> //. | |
apply: contra not_suy => /bigcupP[_ _ /setD1P[_ /setIP[M'ya _]]]. | |
by rewrite -(p_eltJ _ y a) (mem_p_elt (pgroup_pi _)). | |
move/negPf=> -> /and3P[Mx not_sux not_su'x]; set y := x.`_su^'. | |
have syM: <[y]> \subset M by rewrite cycle_subG groupX. | |
have [a Ma Kya] := Hall_Jsub (mmax_sol maxM) hallK syM (p_elt_constt _ _). | |
have{Kya} K1ya: y ^ a \in K^#. | |
rewrite !inE -cycle_subG cycleJ Kya andbT -consttJ. | |
by apply: contraNneq not_sux; move/constt1P; rewrite p_eltNK p_eltJ. | |
exists (x ^ a) a^-1; rewrite ?groupV ?conjgK // 2!inE andbC negb_or. | |
rewrite -[Z](defCK _ K1ya) inE groupJ // cent1C -consttJ groupX ?cent1id //. | |
by rewrite (contra (mem_p_elt su'K)) ?(contra (mem_p_elt suKs)) ?p_eltJ. | |
rewrite (trivg_kappa_compl maxM complU) => notP1maxM. | |
have P2maxM: M \in 'M_'P2 by apply/setDP. | |
split; first by have [_ _ _ _ []] := Ptype_structure PmaxM hallK. | |
apply: contraR notP1maxM; case/nonTI_Fitting_facts=> //. | |
by case/setUP=> //; case/idPn; case/setDP: PmaxM. | |
have [<- | neqMF_Ms] := eqVneq M`_\F M`_\sigma; first exact: Fcore_sub_Fitting. | |
have solMs: solvable M`_\sigma := solvableS (pcore_sub _ _) (mmax_sol maxM). | |
have [D hallD] := Hall_exists #|Kstar|^' solMs. | |
by case: (Fcore_structure maxM) notP1maxM => _ /(_ K D)[] // [->]. | |
Qed. | |
End SingleGroupSummaries. | |
Theorem BGsummaryD M : M \in 'M -> | |
[/\ (*1*) {in M`_\sigma &, forall x y, y \in x ^: G -> y \in x ^: M}, | |
(*2*) forall g (Ms := M`_\sigma), g \notin M -> | |
Ms:&: M :^ g = Ms :&: Ms :^ g /\ cyclic (Ms :&: M :^ g), | |
(*3*) {in M`_\sigma^#, forall x, | |
[/\ Hall 'C[x] 'C_M[x], 'R[x] ><| 'C_M[x] = 'C[x] | |
& let MGx := [set Mg in M :^: G | x \in Mg] in | |
[transitive 'R[x], on MGx | 'Js] /\ #|'R[x]| = #|MGx| ]} | |
& (*4*) {in M`_\sigma^#, forall x (N := 'N[x]), ~~ ('C[x] \subset M) -> | |
[/\ 'M('C[x]) = [set N] /\ N`_\F = N`_\sigma, | |
x \in 'A(N) :\: 'A1(N) /\ N \in 'M_'F :|: 'M_'P2, | |
\sigma(N)^'.-Hall(N) (M :&: N) | |
& N \in 'M_'P2 -> | |
[/\ M \in 'M_'F, | |
exists2 E, [Frobenius M = M`_\sigma ><| gval E] & cyclic E | |
& ~~ normedTI (M`_\F)^# G M]]}]. | |
Proof. | |
move=> maxM; have [[U K] /= complU] := kappa_witness maxM. | |
have defSM: {in M`_\sigma^#, | |
forall x, [set Mg in M :^: G | x \in Mg] = val @: 'M_\sigma[x]}. | |
- move=> x /setD1P[ntx Ms_x]. | |
have SMxM: M \in 'M_\sigma[x] by rewrite inE maxM cycle_subG. | |
apply/setP=> /= Mg; apply/setIdP/imsetP=> [[] | [H]]. | |
case/imsetP=> g _ -> Mg_x; exists (M :^ g)%G => //=. | |
rewrite inE cycle_subG (mem_Hall_pcore (Msigma_Hall _)) ?mmaxJ // maxM. | |
by rewrite (eq_p_elt _ (sigmaJ _ _)) (mem_p_elt (pcore_pgroup _ M)). | |
case/setIdP=> maxH; rewrite cycle_subG => Hs_x ->. | |
split; last exact: subsetP (pcore_sub _ _) x Hs_x. | |
pose p := pdiv #[x]; have pixp: p \in \pi(#[x]) by rewrite pi_pdiv order_gt1. | |
apply/idPn=> /(sigma_partition maxM maxH)/(_ p). | |
rewrite inE /= (pnatPpi (mem_p_elt (pcore_pgroup _ _) Ms_x)) //. | |
by rewrite (pnatPpi (mem_p_elt (pcore_pgroup _ _) Hs_x)). | |
split. | |
- have hallMs := pHall_subl (subxx _) (subsetT _) (Msigma_Hall_G maxM). | |
move=> x y Ms_x Ms_y /=/imsetP[a _ def_y]; rewrite def_y in Ms_y *. | |
have [b /setIP[Mb _ ->]] := sigma_Hall_tame maxM hallMs Ms_x Ms_y. | |
exact: imset_f. | |
- move=> g notMg; split. | |
apply/eqP; rewrite eqEsubset andbC setIS ?conjSg ?pcore_sub //=. | |
rewrite subsetI subsetIl -MsigmaJ. | |
rewrite (sub_Hall_pcore (Msigma_Hall _)) ?mmaxJ ?subsetIr //. | |
rewrite (eq_pgroup _ (sigmaJ _ _)). | |
exact: pgroupS (subsetIl _ _) (pcore_pgroup _ _). | |
have [E hallE] := ex_sigma_compl maxM. | |
by have [_ _] := sigma_compl_embedding maxM hallE; case/(_ g). | |
- move=> x Ms1x /=. | |
have [[ntx Ms_x] ell1x] := (setD1P Ms1x, Msigma_ell1 maxM Ms1x). | |
have [[trR oR nsRC hallR] defC] := FT_signalizer_context ell1x. | |
have SMxM: M \in 'M_\sigma[x] by rewrite inE maxM cycle_subG. | |
suffices defCx: 'R[x] ><| 'C_M[x] = 'C[x]. | |
split=> //; first by rewrite -(sdprod_Hall defCx). | |
rewrite defSM //; split; last by rewrite (card_imset _ val_inj). | |
apply/imsetP; exists (gval M); first exact: imset_f. | |
by rewrite -(atransP trR _ SMxM) -imset_comp. | |
have [| SMgt1] := leqP #|'M_\sigma[x]| 1. | |
rewrite leq_eqVlt {2}(cardD1 M) SMxM orbF => eqSMxM. | |
have ->: 'R[x] = 1 by apply/eqP; rewrite trivg_card1 oR. | |
by rewrite sdprod1g (setIidPr _) ?cent1_sub_uniq_sigma_mmax. | |
have [uniqN _ _ _ defCx] := defC SMgt1. | |
have{defCx} [[defCx _ _ _] [_ sCxN]] := (defCx M SMxM, mem_uniq_mmax uniqN). | |
by rewrite -setIA (setIidPr sCxN) in defCx. | |
move=> x Ms1x /= not_sCM. | |
have [[ntx Ms_x] ell1x] := (setD1P Ms1x, Msigma_ell1 maxM Ms1x). | |
have SMxM: M \in 'M_\sigma[x] by rewrite inE maxM cycle_subG. | |
have SMgt1: #|'M_\sigma[x]| > 1. | |
apply: contraR not_sCM; rewrite -leqNgt leq_eqVlt {2}(cardD1 M) SMxM orbF. | |
by move/cent1_sub_uniq_sigma_mmax->. | |
have [_ [//|uniqN ntR t2Nx notP1maxN]] := FT_signalizer_context ell1x. | |
have [maxN sCxN] := mem_uniq_mmax uniqN. | |
case/(_ M SMxM)=> _ st2NsM _ ->; split=> //. | |
- by rewrite (Fcore_eq_Msigma maxN (notP1type_Msigma_nil _)) // -in_setU. | |
- split=> //; apply/setDP; split. | |
have [y Ry nty] := trivgPn _ ntR; have [Nsy cxy] := setIP Ry. | |
apply/bigcupP; exists y; first by rewrite 2!inE def_FTcore ?nty. | |
rewrite 3!inE ntx cent1C cxy -FTtype_Pmax //= andbT. | |
have Nx: x \in 'N[x] by rewrite (subsetP sCxN) ?cent1id. | |
case PmaxN: ('N[x] \in 'M_'P) => //. | |
have [KN hallKN] := Hall_exists \kappa('N[x]) (mmax_sol maxN). | |
have [_ _ [_ _ _ _ [_ _ _ defN]]] := Ptype_embedding PmaxN hallKN. | |
have hallN': \kappa('N[x])^'.-Hall('N[x]) 'N[x]^`(1). | |
exact/(sdprod_normal_pHallP (der_normal 1 _) hallKN). | |
rewrite (mem_normal_Hall hallN') ?der_normal // (sub_p_elt _ t2Nx) // => p. | |
by case/andP=> _; apply: contraL => /rank_kappa->. | |
rewrite 2!inE ntx def_FTcore //=; apply: contra ntx => Ns_x. | |
rewrite -(constt_p_elt (mem_p_elt (pcore_pgroup _ _) Ns_x)). | |
by rewrite (constt1P (sub_p_elt _ t2Nx)) // => p; case/andP. | |
move=> P2maxN; have [PmaxN _] := setDP P2maxN; have [_ notFmaxN] := setDP PmaxN. | |
have [FmaxM _ [E _]] := nonFtype_signalizer_base maxM Ms1x not_sCM notFmaxN. | |
case=> cycE frobM; split=> //; first by exists E. | |
move: SMgt1; rewrite (cardsD1 M) SMxM ltnS lt0n => /pred0Pn[My /setD1P[neqMyM]]. | |
move/(imset_f val); rewrite -defSM //= => /setIdP[/imsetP[y _ defMy] My_x]. | |
rewrite (Fcore_eq_Msigma maxM (notP1type_Msigma_nil _)) ?FmaxM //. | |
apply/normedTI_P=> [[_ _ /(_ y (in_setT y))/contraR/implyP/idPn[]]]. | |
rewrite -{1}(norm_mmax maxM) (sameP normP eqP) -defMy neqMyM. | |
apply/pred0Pn; exists x; rewrite /= conjD1g !inE ntx Ms_x /= -MsigmaJ. | |
rewrite (mem_Hall_pcore (Msigma_Hall _)) ?mmaxJ /= -?defMy //. | |
by rewrite defMy (eq_p_elt _ (sigmaJ _ _)) (mem_p_elt (pcore_pgroup _ _) Ms_x). | |
Qed. | |
Lemma mmax_transversalP : | |
[/\ 'M^G \subset 'M, is_transversal 'M^G (orbit 'JG G @: 'M) 'M, | |
{in 'M^G &, injective (fun M => M :^: G)} | |
& {in 'M, forall M, exists x, (M :^ x)%G \in 'M^G}]. | |
Proof. | |
have: [acts G, on 'M | 'JG] by apply/actsP=> x _ M; rewrite mmaxJ. | |
case/orbit_transversalP; rewrite -/mmax_transversal => -> -> injMX memMX. | |
split=> // [M H MX_M MX_H /= eqMH | M /memMX[x _]]; last by exists x. | |
have /orbitP[x Gx defH]: val H \in M :^: G by rewrite eqMH orbit_refl. | |
by apply/eqP; rewrite -injMX // -(group_inj defH) (mem_orbit 'JG). | |
Qed. | |
(* We are conforming to the statement of B & G, but we defer the introduction *) | |
(* of 'M^G to Peterfalvi (8.17), which requires several other changes. *) | |
Theorem BGsummaryE : | |
[/\ (*1*) forall M, M \in 'M -> | |
#|class_support M^~~ G| = (#|M`_\sigma|.-1 * #|G : M|)%N, | |
(*2*) {in \pi(G), forall p, | |
exists2 M : {group gT}, M \in 'M & p \in \sigma(M)} | |
/\ {in 'M &, forall M H, | |
gval H \notin M :^: G -> [predI \sigma(M) & \sigma(H)] =i pred0} | |
& (*3*) let PG := [set class_support M^~~ G | M : {group gT} in 'M] in | |
[/\ partition PG (cover PG), | |
'M_'P = set0 :> {set {group gT}} -> cover PG = G^# | |
& forall M K, M \in 'M_'P -> \kappa(M).-Hall(M) K -> | |
let Kstar := 'C_(M`_\sigma)(K) in | |
let Zhat := (K <*> Kstar) :\: (K :|: Kstar) in | |
partition [set class_support Zhat G; cover PG] G^#]]. | |
Proof. | |
split=> [||PG]; first exact: card_class_support_sigma. | |
by split=> [p /sigma_mmax_exists[M]|]; [exists M | apply: sigma_partition]. | |
have [noPmax | ntPmax] := eqVneq 'M_'P (set0 : {set {group gT}}). | |
rewrite noPmax; move/eqP in noPmax; have [partPG _] := mFT_partition gT. | |
have /and3P[/eqP-> _ _] := partPG noPmax; rewrite partPG //. | |
by split=> // M K; rewrite inE. | |
have [_ partZPG] := mFT_partition gT. | |
have partPG: partition PG (cover PG). | |
have [M PmaxM] := set0Pn _ ntPmax; have [maxM _] := setDP PmaxM. | |
have [K hallK] := Hall_exists \kappa(M) (mmax_sol maxM). | |
have{partZPG} [/and3P[_ tiPG]] := partZPG M K PmaxM hallK. | |
rewrite inE => /norP[_ notPGset0] _; apply/and3P; split=> //; apply/trivIsetP. | |
by apply: sub_in2 (trivIsetP tiPG) => C; apply: setU1r. | |
split=> // [noPmax | M K PmaxM hallK]; first by case/eqP: ntPmax. | |
have [/=] := partZPG M K PmaxM hallK; rewrite -/PG; set Z := class_support _ G. | |
case/and3P=> /eqP defG1 tiZPG; rewrite 2!inE => /norP[nzZ _] notPGZ. | |
have [_ tiPG nzPG] := and3P partPG; have [maxM _] := setDP PmaxM. | |
rewrite /cover big_setU1 //= -/(cover PG) in defG1. | |
rewrite /trivIset /cover !big_setU1 //= (eqnP tiPG) -/(cover PG) in tiZPG. | |
have tiZ_PG: Z :&: cover PG = set0. | |
by apply/eqP; rewrite setI_eq0 -leq_card_setU eq_sym. | |
have notUPGZ: Z \notin [set cover PG]. | |
by rewrite inE; apply: contraNneq nzZ => defZ; rewrite -tiZ_PG -defZ setIid. | |
rewrite /partition /trivIset /(cover _) !big_setU1 // !big_set1 /= -defG1. | |
rewrite eqxx tiZPG !inE negb_or nzZ /= eq_sym; apply: contraNneq nzPG => PG0. | |
apply/imsetP; exists M => //; apply/eqP; rewrite eq_sym -subset0 -PG0. | |
by rewrite (bigcup_max (class_support M^~~ G)) //; apply: imset_f. | |
Qed. | |
Let typePfacts M (H := M`_\F) U W1 W2 W (defW : W1 \x W2 = W) : | |
M \in 'M -> of_typeP M U defW -> | |
[/\ M \in 'M_'P, \kappa(M).-Hall(M) W1, 'C_H(W1) = W2, | |
(M \in 'M_'P1) = (U :==: 1) || ('N(U) \subset M) | |
& let Ms := M`_\sigma in | |
Ms = M^`(1) -> (H == Ms) = (U :==: 1) /\ abelian (Ms / H) = abelian U]. | |
Proof. | |
move=> maxM []{defW}; move: W1 W2 => K Ks [cycK hallK ntK defM] /=. | |
have [[_ /= sHMs sMsM' _] _] := Fcore_structure maxM. | |
rewrite -/H in sHMs * => [] [nilU sUM' nUK defM'] _ [_ ntKs sKsH _ prKsK _]. | |
have [_ sKM mulM'K _ tiM'K] := sdprod_context defM. | |
have defKs: 'C_H(K) = Ks. | |
have [[x defK] sHM'] := (cyclicP cycK, subset_trans sHMs sMsM'). | |
have K1x: x \in K^# by rewrite !inE -cycle_eq1 -cycle_subG -defK subxx andbT. | |
by rewrite -(setIidPl sHM') -setIA defK cent_cycle prKsK // (setIidPr _). | |
have{hallK} kK: \kappa(M).-group K. | |
apply: sub_pgroup (pgroup_pi K) => p piKp. | |
rewrite unlock inE /= inE /= -!andb_orr orNb andbT -andbA. | |
have [X EpX]: exists X, X \in 'E_p^1(K). | |
by apply/p_rank_geP; rewrite p_rank_gt0. | |
have [sXK abelX dimX] := pnElemP EpX; have [pX _] := andP abelX. | |
have sXM := subset_trans sXK sKM. | |
have ->: p \in \sigma(M)^'. | |
apply: contra (nt_pnElem EpX isT) => sp. | |
rewrite -subG1 -tiM'K subsetI (subset_trans _ sMsM') //. | |
by rewrite (sub_Hall_pcore (Msigma_Hall maxM)) ?(pi_pgroup pX). | |
have ->: 'r_p(M) == 1%N. | |
rewrite -(p_rank_Hall (Hall_pi hallK)) // eqn_leq p_rank_gt0 piKp andbT. | |
apply: leq_trans (p_rank_le_rank p K) _. | |
by rewrite -abelian_rank1_cyclic ?cyclic_abelian. | |
apply/existsP; exists X; rewrite 2!inE sXM abelX dimX /=. | |
by rewrite (subG1_contra _ ntKs) // -defKs setISS ?centS. | |
have PmaxM : M \in 'M_'P. | |
apply/PtypeP; split=> //; exists (pdiv #|K|). | |
by rewrite (pnatPpi kK) // pi_pdiv cardG_gt1. | |
have hallK: \kappa(M).-Hall(M) K. | |
rewrite pHallE sKM -(eqn_pmul2l (cardG_gt0 M^`(1))) (sdprod_card defM). | |
have [K1 hallK1] := Hall_exists \kappa(M) (mmax_sol maxM). | |
have [_ _ [_ _ _ _ [_ _ _ defM1]]] := Ptype_embedding PmaxM hallK1. | |
by rewrite -(card_Hall hallK1) /= (sdprod_card defM1). | |
split=> // [|->]; first set Ms := M`_\sigma; last first. | |
rewrite trivg_card_le1 -(@leq_pmul2l #|H|) ?cardG_gt0 // muln1. | |
split; first by rewrite (sdprod_card defM') eqEcard (subset_trans sHMs). | |
have [_ mulHU nHU tiHU] := sdprodP defM'. | |
by rewrite -mulHU quotientMidl (isog_abelian (quotient_isog nHU tiHU)). | |
have [U1 | /= ntU] := altP eqP. | |
rewrite inE PmaxM -{2}mulM'K /= -defM' U1 sdprodg1 pgroupM. | |
have sH: \sigma(M).-group H := pgroupS sHMs (pcore_pgroup _ _). | |
rewrite (sub_pgroup _ sH) => [|p sMp]; last by rewrite inE /= sMp. | |
by rewrite (sub_pgroup _ kK) // => p kMp; rewrite inE /= kMp orbT. | |
have [P1maxM | notP1maxM] := boolP (M \in _). | |
have defMs: Ms = M^`(1). | |
have [U1 complU1] := ex_kappa_compl maxM hallK. | |
have [_ [//|<- _] _ _ _] := kappa_structure maxM complU1. | |
by case: (P1maxP maxM complU1 P1maxM) => _; move/eqP->; rewrite sdprodg1. | |
pose p := pdiv #|U|; have piUp: p \in \pi(U) by rewrite pi_pdiv cardG_gt1. | |
have hallU: \pi(H)^'.-Hall(M^`(1)) U. | |
have sHM': H \subset M^`(1) by rewrite -defMs. | |
have hallH := pHall_subl sHM' (der_sub 1 M) (Fcore_Hall M). | |
by rewrite -(compl_pHall _ hallH) ?sdprod_compl. | |
have piMs_p: p \in \pi(Ms) by rewrite defMs (piSg sUM'). | |
have{piMs_p} sMp: p \in \sigma(M) := pnatPpi (pcore_pgroup _ _) piMs_p. | |
have sylP: p.-Sylow(M^`(1)) 'O_p(U). | |
apply: (subHall_Sylow hallU (pnatPpi (pHall_pgroup hallU) piUp)). | |
exact: nilpotent_pcore_Hall nilU. | |
rewrite (subset_trans (char_norms (pcore_char p U))) //. | |
rewrite (norm_sigma_Sylow sMp) //. | |
by rewrite (subHall_Sylow (Msigma_Hall maxM)) //= -/Ms defMs. | |
suffices complU: kappa_complement M U K. | |
by symmetry; apply/idPn; have [[[]]] := BGsummaryC maxM complU ntK. | |
split=> //; last by rewrite -norm_joinEr ?groupP. | |
rewrite pHallE (subset_trans _ (der_sub 1 M)) //=. | |
rewrite -(@eqn_pmul2l #|H|) ?cardG_gt0 // (sdprod_card defM'). | |
have [U1 complU1] := ex_kappa_compl maxM hallK. | |
have [hallU1 _ _] := complU1; rewrite -(card_Hall hallU1). | |
have [_ [// | defM'1 _] _ _ _] := kappa_structure maxM complU1. | |
rewrite [H](Fcore_eq_Msigma maxM _) ?(sdprod_card defM'1) //. | |
by rewrite notP1type_Msigma_nil // in_setD notP1maxM PmaxM orbT. | |
Qed. | |
(* This is B & G, Lemma 16.1. *) | |
Lemma FTtypeP i M : M \in 'M -> reflect (FTtype_spec i M) (FTtype M == i). | |
Proof. | |
move=> maxM; pose Ms := M`_\sigma; pose M' := M^`(1); pose H := M`_\F. | |
have [[ntH sHMs sMsM' _] _] := Fcore_structure maxM. | |
apply: (iffP eqP) => [<- | ]; last first. | |
case: i => [// | [[U [[[_ _ defM] _ [U0 [sU0U expU0 frobM]]] _]] | ]]. | |
apply/eqP; rewrite -FTtype_Fmax //; apply: wlog_neg => notFmaxM. | |
have PmaxM: M \in 'M_'P by apply/setDP. | |
apply/FtypeP; split=> // p; apply/idP=> kp. | |
have [X EpX]: exists X, X \in 'E_p^1(U0). | |
apply/p_rank_geP; rewrite p_rank_gt0 -pi_of_exponent expU0 pi_of_exponent. | |
have: p \in \pi(M) by rewrite kappa_pi. | |
rewrite /= -(sdprod_card defM) pi_ofM ?cardG_gt0 //; case/orP=> // Fk. | |
have [[_ sMFMs _ _] _] := Fcore_structure maxM. | |
case/negP: (kappa_sigma' kp). | |
exact: pnatPpi (pcore_pgroup _ _) (piSg sMFMs Fk). | |
have [[sXU0 abelX _] ntX] := (pnElemP EpX, nt_pnElem EpX isT). | |
have kX := pi_pgroup (abelem_pgroup abelX) kp. | |
have [_ sUM _ _ _] := sdprod_context defM. | |
have sXM := subset_trans sXU0 (subset_trans sU0U sUM). | |
have [K hallK sXK] := Hall_superset (mmax_sol maxM) sXM kX. | |
have [ntKs _ _ sKsMF _] := Ptype_cyclics PmaxM hallK; case/negP: ntKs. | |
rewrite -subG1 -(cent_semiregular (Frobenius_reg_ker frobM) sXU0 ntX). | |
by rewrite subsetI sKsMF subIset // centS ?orbT. | |
case=> [[U W K Ks defW [[PtypeM ntU _ _] _ not_sNUM _ _]] | ]. | |
apply/eqP; rewrite -FTtype_P2max // inE andbC. | |
by have [-> _ _ -> _] := typePfacts maxM PtypeM; rewrite negb_or ntU. | |
case=> [[U W K Ks defW [[PtypeM ntU _ _] cUU sNUM]] | ]. | |
have [_ _ _] := typePfacts maxM PtypeM. | |
rewrite (negPf ntU) sNUM FTtype_P1max // cUU /FTtype -/Ms -/M' -/H. | |
by case: ifP => // _; case: (Ms =P M') => // -> _ [//|-> ->]. | |
case=> [[U W K Ks defW [[PtypeM ntU _ _] not_cUU sNUM]] | ]. | |
have [_ _ _] := typePfacts maxM PtypeM. | |
rewrite (negPf ntU) (negPf not_cUU) sNUM FTtype_P1max // /FTtype -/Ms -/M'. | |
by case: ifP => // _; case: (Ms =P M') => // -> _ [//|-> ->]. | |
case=> // [[U K Ks W defW [[PtypeM U_1] _]]]. | |
have [_ _ _] := typePfacts maxM PtypeM. | |
rewrite U_1 eqxx FTtype_P1max //= /FTtype -/Ms -/M' -/H. | |
by case: ifP => // _; case: (Ms =P M') => // -> _ [//|-> _]. | |
have [[U K] /= complU] := kappa_witness maxM; have [hallU hallK _] := complU. | |
have [K1 | ntK] := eqsVneq K 1. | |
have FmaxM: M \in 'M_'F by rewrite -(trivg_kappa maxM hallK) K1. | |
have ->: FTtype M = 1%N by apply/eqP; rewrite -FTtype_Fmax. | |
have ntU: U :!=: 1 by case/(FmaxP maxM complU): FmaxM. | |
have defH: H = Ms. | |
by apply/Fcore_eq_Msigma; rewrite // notP1type_Msigma_nil ?FmaxM. | |
have defM: H ><| U = M. | |
by have [_] := kappa_compl_context maxM complU; rewrite defH K1 sdprodg1. | |
exists U; split. | |
have [_ _ _ cU1U1 exU0] := kappa_structure maxM complU. | |
split=> //; last by rewrite -/Ms -defH in exU0; apply: exU0. | |
exists [group of <<\bigcup_(x in (M`_\sigma)^#) 'C_U[x]>>]. | |
split=> //= [|x Hx]; last by rewrite sub_gen //= -/Ms -defH (bigcup_max x). | |
rewrite -big_distrr /= /normal gen_subG subsetIl. | |
rewrite norms_gen ?normsI ?normG //; apply/subsetP=> u Uu. | |
rewrite inE sub_conjg; apply/bigcupsP=> x Msx. | |
rewrite -sub_conjg -normJ conjg_set1 (bigcup_max (x ^ u)) ?memJ_norm //. | |
by rewrite normD1 (subsetP (gFnorm _ _)) // (subsetP (pHall_sub hallU)). | |
have [|] := boolP [forall (y | y \notin M), 'F(M) :&: 'F(M) :^ y == 1]. | |
move/forall_inP=> TI_F; constructor 1; apply/normedTI_P. | |
rewrite setD_eq0 subG1 mmax_Fcore_neq1 // setTI normD1 gFnorm. | |
split=> // x _; apply: contraR => /TI_F/eqP tiFx. | |
rewrite -setI_eq0 conjD1g -setDIl setD_eq0 -set1gE -tiFx. | |
by rewrite setISS ?conjSg ?Fcore_sub_Fitting. | |
rewrite negb_forall_in => /exists_inP[y notMy ntX]. | |
have [_ _ _ _] := nonTI_Fitting_structure maxM notMy ntX. | |
case=> [[] | [_]]; first by constructor 2. | |
move: #|_| => p; set P := 'O_p(H); rewrite /= -/H => not_cPP cycHp'. | |
case=> [expU | [_]]; [constructor 3 | by rewrite 2!inE FmaxM]. | |
split=> [q /expU | ]. | |
have [_ <- nHU tiHU] := sdprodP defM. | |
by rewrite quotientMidl -(exponent_isog (quotient_isog _ _)). | |
have sylP: p.-Sylow(H) P := nilpotent_pcore_Hall _ (Fcore_nil M). | |
have ntP: P != 1 by apply: contraNneq not_cPP => ->; apply: abelian1. | |
by exists p; rewrite // -p_rank_gt0 -(rank_Sylow sylP) rank_gt0. | |
have PmaxM: M \in 'M_'P by rewrite inE -(trivg_kappa maxM hallK) ntK. | |
have [Mstar _ [_ _ _ [cycW _ _ _ _]]] := Ptype_embedding PmaxM hallK. | |
case=> [[tiV _ _] _ _ defM {Mstar}]. | |
have [_ [_ cycK] [_ nUK _ _ _] _] := BGsummaryA maxM complU; rewrite -/H. | |
case=> [[ntKs defCMK] [_ _ _ _ nilM'H] [sM''F defF /(_ ntK)sFM'] types34]. | |
have hallK_M := pHall_Hall hallK. | |
have [/= [[cUU not_sNUM]]] := BGsummaryC maxM complU ntK; rewrite -/H -/M' -/Ms. | |
case=> cycKs _ sKsH not_cycH [defM' sKsM''] _ [_ _ type2 _]. | |
pose Ks := 'C_H(K); pose W := K <*> Ks; pose V := W :\: (K :|: Ks). | |
have defKs: 'C_Ms(K) = Ks by rewrite -(setIidPr sKsH) setIA (setIidPl sHMs). | |
rewrite {}defKs -/W -/V in ntKs tiV cycW cycKs sKsM'' sKsH defCMK. | |
have{defCMK} prM'K: {in K^#, forall k, 'C_M'[k] = Ks}. | |
have sKsM': Ks \subset M' := subset_trans sKsM'' (der_sub 1 _). | |
move=> k; move/defCMK=> defW; have:= dprod_modr defW sKsM'. | |
have [_ _ _ ->] := sdprodP defM; rewrite dprod1g. | |
by rewrite setIA (setIidPl (der_sub 1 M)). | |
have [sHM' nsM'M] := (subset_trans sHMs sMsM', der_normal 1 M : M' <| M). | |
have hallM': \kappa(M)^'.-Hall(M) M' by apply/(sdprod_normal_pHallP _ hallK). | |
have [sM'M k'M' _] := and3P hallM'. | |
have hallH_M': \pi(H).-Hall(M') H := pHall_subl sHM' sM'M (Fcore_Hall M). | |
have nsHM' := normalS sHM' sM'M (Fcore_normal M). | |
have defW: K \x Ks = W. | |
rewrite dprodEY ?subsetIr //= setIC; apply/trivgP. | |
by have [_ _ _ <-] := sdprodP defM; rewrite setSI ?subIset ?sHM'. | |
have [Ueq1 | ntU] := eqsVneq U 1; last first. | |
have P2maxM: M \in 'M_'P2 by rewrite inE -(trivg_kappa_compl maxM complU) ntU. | |
have ->: FTtype M = 2 by apply/eqP; rewrite -FTtype_P2max. | |
have defH: H = Ms. | |
by apply/Fcore_eq_Msigma; rewrite // notP1type_Msigma_nil ?P2maxM ?orbT. | |
have [//|pr_K tiFM _] := type2; rewrite -defH in defM'. | |
have [_ sUM' _ _ _] := sdprod_context defM'. | |
have MtypeP: of_typeP M U defW by split; rewrite // abelian_nil. | |
have defM'F: M'`_\F = H. | |
apply/eqP; rewrite eqEsubset (Fcore_max hallH_M') ?Fcore_nil // andbT. | |
rewrite (Fcore_max (subHall_Hall hallM' _ (Fcore_Hall _))) ?Fcore_nil //. | |
by move=> p piM'Fp; apply: pnatPpi k'M' (piSg (Fcore_sub _) piM'Fp). | |
exact: gFnormal_trans nsM'M. | |
exists U _ K _ defW; split=> //; split; first by rewrite defM'F. | |
by exists U; split=> // x _; apply: subsetIl. | |
have [_ _ _ _ /(_ ntU)] := kappa_structure maxM complU. | |
by rewrite -/Ms -defH -defM'F. | |
have P1maxM: M \in 'M_'P1 by rewrite -(trivg_kappa_compl maxM complU) Ueq1. | |
have: 2 < FTtype M <= 5 by rewrite -FTtype_P1max. | |
rewrite /FTtype -/H -/Ms; case: ifP => // _; case: eqP => //= defMs _. | |
have [Y hallY nYK]: exists2 Y, \pi(H)^'.-Hall(M') (gval Y) & K \subset 'N(Y). | |
apply: coprime_Hall_exists; first by case/sdprodP: defM. | |
by rewrite (coprime_sdprod_Hall_l defM) (pHall_Hall hallM'). | |
exact: solvableS sM'M (mmax_sol maxM). | |
have{} defM': H ><| Y = M' by apply/(sdprod_normal_p'HallP _ hallY). | |
have MtypeP: of_typeP M Y defW. | |
have [_ sYM' mulHY nHY tiHY] := sdprod_context defM'. | |
do 2!split=> //; rewrite (isog_nil (quotient_isog nHY tiHY)). | |
by rewrite /= -quotientMidl mulHY. | |
have [_ _ _ sNYG [//| defY1 ->]] := typePfacts maxM MtypeP. | |
rewrite defY1; have [Y1 | ntY] := altP (Y :=P: 1); last first. | |
move/esym: sNYG; rewrite (negPf ntY) P1maxM /= => sNYG. | |
have [|_ tiFM prK] := types34; first by rewrite defY1. | |
by case: ifPn; exists Y _ K _ defW. | |
exists Y _ K _ defW; split=> //=. | |
have [|] := boolP [forall (y | y \notin M), 'F(M) :&: 'F(M) :^ y == 1]. | |
move/forall_inP=> TI_F; constructor 1; apply/normedTI_P. | |
rewrite setD_eq0 subG1 mmax_Fcore_neq1 // setTI normD1 gFnorm. | |
split=> // x _; apply: contraR => /TI_F/eqP tiFx. | |
rewrite -setI_eq0 conjD1g -setDIl setD_eq0 -set1gE -tiFx. | |
by rewrite setISS ?conjSg ?Fcore_sub_Fitting. | |
rewrite negb_forall_in => /exists_inP[y notMy ntX]. | |
have [_ _ _ _] := nonTI_Fitting_structure maxM notMy ntX. | |
case=> [[] | [_]]; first by case/idPn; case/setDP: PmaxM. | |
move: #|_| => p; set P := 'O_p(H); rewrite /= -/H => not_cPP cycHp'. | |
have sylP: p.-Sylow(H) P := nilpotent_pcore_Hall _ (Fcore_nil M). | |
have ntP: P != 1 by apply: contraNneq not_cPP => ->; apply: abelian1. | |
have piHp: p \in \pi(H) by rewrite -p_rank_gt0 -(rank_Sylow sylP) rank_gt0. | |
have defH: H = Ms by apply/eqP; rewrite defY1 Y1. | |
rewrite -defMs -defH in defM; have [_ <- nHU tiHU] := sdprodP defM. | |
rewrite quotientMidl -(card_isog (quotient_isog _ _)) //. | |
rewrite -(exponent_isog (quotient_isog _ _)) // exponent_cyclic //=. | |
case=> [K_dv_H1 | []]; [constructor 2 | constructor 3]; exists p => //. | |
by rewrite K_dv_H1. | |
Qed. | |
(* This is B & G, Theorem I. *) | |
(* Note that the first assertion is not used in the Perterfalvi revision of *) | |
(* the character theory part of the proof. *) | |
Theorem BGsummaryI : | |
[/\ forall H x a, Hall G H -> nilpotent H -> x \in H -> x ^ a \in H -> | |
exists2 y, y \in 'N(H) & x ^ a = x ^ y | |
& {in 'M, forall M, FTtype M == 1%N} | |
\/ exists ST : {group gT} * {group gT}, let (S, T) := ST in | |
[/\ S \in 'M /\ T \in 'M, | |
exists Wi : {group gT} * {group gT}, let (W1, W2) := Wi in | |
let W := W1 <*> W2 in let V := W :\: (W1 :|: W2) in | |
(*a*) [/\ cyclic W, normedTI V G W & W1 :!=: 1 /\ W2 :!=: 1] /\ | |
(*b*) [/\ S^`(1) ><| W1 = S, T^`(1) ><| W2 = T & S :&: T = W], | |
(*c*) {in 'M, forall M, FTtype M != 1%N -> | |
exists x, S :^ x = M \/ T :^ x = M}, | |
(*d*) FTtype S == 2 \/ FTtype T == 2 | |
& (*e*) 1 < FTtype S <= 5 /\ 1 < FTtype T <= 5]]. | |
Proof. | |
split=> [H x a hallH nilH Hx|]. | |
have [M maxM sHMs] := nilpotent_Hall_sigma nilH hallH. | |
have{} hallH := pHall_subl sHMs (subsetT _) (Hall_pi hallH). | |
by case/(sigma_Hall_tame maxM hallH Hx) => // y; case/setIP; exists y. | |
have [allFM | ] := boolP (('M : {set {group gT}}) \subset 'M_'F). | |
by left=> M maxM; rewrite -FTtype_Fmax // (subsetP allFM). | |
case/subsetPn=> S maxS notFmaxS; right. | |
have PmaxS: S \in 'M_'P by apply/setDP. | |
have [[U W1] /= complU] := kappa_witness maxS; have [_ hallW1 _] := complU. | |
have ntW1: W1 :!=: 1 by rewrite (trivg_kappa maxS). | |
have [[_ [_]]] := BGsummaryC maxS complU ntW1; set W2 := 'C_(_)(W1) => ntW2 _. | |
set W := W1 <*> W2; set V := W :\: _ => _ _ [T [[PmaxT defW1 hallW2 _] _]]. | |
case=> defST _ cycW [P2maxST PmaxST] [tiV _ _] _. | |
have [maxT _] := setDP PmaxT. | |
have [_ _ [_ _ _ _ [_ _ _ defS]]] := Ptype_embedding PmaxS hallW1. | |
have [_ _ [_ _ _ _ [_ _ _ defT]]] := Ptype_embedding PmaxT hallW2. | |
exists (S, T); split=> //; first by exists (W1, [group of W2]). | |
- move=> M maxM; rewrite /= -FTtype_Pmax //. | |
by case/PmaxST/setUP => /imsetP[x _ ->]; exists x; by [left | right]. | |
- by rewrite -!{1}FTtype_P2max. | |
rewrite !{1}(ltn_neqAle 1) -!{1}andbA !{1}FTtype_range // !{1}andbT. | |
by rewrite !{1}(eq_sym 1%N) -!{1}FTtype_Pmax. | |
Qed. | |
Lemma FTsupp0_type1 M : FTtype M == 1%N -> 'A0(M) = 'A(M). | |
Proof. | |
move=> typeM; apply/setUidPl/subsetP=> x; rewrite typeM !inE => /and3P[Mx]. | |
by rewrite (mem_p_elt (pgroup_pi M)). | |
Qed. | |
Lemma FTsupp0_typeP M (H := M`_\F) U W1 W2 W (defW : W1 \x W2 = W) : | |
M \in 'M -> of_typeP M U defW -> | |
let V := W :\: (W1 :|: W2) in 'A0(M) :\: 'A(M) = class_support V M. | |
Proof. | |
move: W1 W2 => K Ks in defW * => maxM MtypeP /=. | |
have [[_ _ ntK _] _ _ _ _] := MtypeP. | |
have [PmaxM hallK defKs _ _] := typePfacts maxM MtypeP. | |
have [[_ sHMs _ _] _] := Fcore_structure maxM. | |
have [V complV] := ex_kappa_compl maxM hallK. | |
have [[_ [_ _ sKsH _] _] _ [_ [-> _] _ _]] := BGsummaryC maxM complV ntK. | |
by rewrite -(setIidPr sKsH) setIA (setIidPl sHMs) defKs -(dprodWY defW). | |
Qed. | |
(* This is the part of B & G, Theorem II that is relevant to the proof of *) | |
(* Peterfalvi (8.7). We drop the considerations on the set of supporting *) | |
(* groups, in particular (Tii)(a), but do include additional information on D *) | |
(* namely the fact that D is included in 'A1(M), not just 'A(M). *) | |
Theorem BGsummaryII M (X : {set gT}) : | |
M \in 'M -> X \in pred2 'A(M) 'A0(M) -> | |
let D := [set x in X | ~~ ('C[x] \subset M)] in | |
[/\ D \subset 'A1(M), (* was 'A(M) in B & G *) | |
(*i*) {in X, forall x a, x ^ a \in X -> exists2 y, y \in M & x ^ a = x ^ y} | |
& {in D, forall x (L := 'N[x]), | |
[/\ (*ii*) 'M('C[x]) = [set L], FTtype L \in pred2 1%N 2, | |
[/\ (*b*) L`_\F ><| (M :&: L) = L, | |
(*c*) {in X, forall y, coprime #|L`_\F| #|'C_M[y]| }, | |
(*d*) x \in 'A(L) :\: 'A1(L) | |
& (*e*) 'C_(L`_\F)[x] ><| 'C_M[x] = 'C[x]] | |
& (*iii*) FTtype L == 2 -> | |
exists2 E, [Frobenius M = M`_\F ><| gval E] & cyclic E]}]. | |
Proof. | |
move=> maxM defX. | |
have sA0M: 'A0(M) \subset M := subset_trans (FTsupp0_sub M) (subsetDl M 1). | |
have sAA0: 'A(M) \subset 'A0(M) := FTsupp_sub0 M. | |
have sAM: 'A(M) \subset M := subset_trans sAA0 sA0M. | |
without loss {defX} ->: X / X = 'A0(M). | |
case/pred2P: defX => ->; move/(_ _ (erefl _))=> //. | |
set D0 := finset _ => [[sD0A1 tameA0 signD0]] D. | |
have sDD0: D \subset D0 by rewrite /D /D0 !setIdE setSI. | |
split=> [|x Ax a Axa|x Dx]; first exact: subset_trans sDD0 sD0A1. | |
by apply: tameA0; apply: (subsetP sAA0). | |
have [/= -> -> [-> coA0L -> -> frobL]] := signD0 x (subsetP sDD0 x Dx). | |
by do 2![split=> //] => y Ay; rewrite coA0L // (subsetP sAA0). | |
move=> {X} D; pose Ms := M`_\sigma. | |
have tiA0A x a: x \in 'A0(M) :\: 'A(M) -> x ^ a \notin 'A(M). | |
rewrite 3!inE; case: (x \in _) => //= /and3P[_ notM'x _]. | |
apply: contra notM'x => /bigcupP[y _ /setD1P[_ /setIP[Mx _]]]. | |
by rewrite -(p_eltJ _ _ a) (mem_p_elt (pgroup_pi _)). | |
have tiA0 x a: x \in 'A0(M) :\: 'A1(M) -> x ^ a \in 'A0(M) -> a \in M. | |
case/setDP=> A0x notA1x A0xa. | |
have [Mx Mxa] := (subsetP sA0M x A0x, subsetP sA0M _ A0xa). | |
have [[U K] /= complU] := kappa_witness maxM. | |
have [Ax | notAx] := boolP (x \in 'A(M)). | |
have [_ _ _ [_]] := BGsummaryB maxM complU; set B := _ :\: _ => tiB. | |
have Bx: x \in B by apply/setDP. | |
have /tiB/normedTI_memJ_P: 'A(M) != 'A1(M) by apply: contraTneq Ax => ->. | |
case=> _ _ /(_ x) <- //; rewrite 3?inE // conjg_eq1; apply/andP; split. | |
apply: contra notA1x; rewrite !inE def_FTcore // => /andP[->]. | |
by rewrite !(mem_Hall_pcore (Msigma_Hall maxM)) // p_eltJ. | |
by apply: contraLR Ax => notAxa; rewrite -(conjgK a x) tiA0A // inE notAxa. | |
have ntK: K :!=: 1. | |
rewrite -(trivgFmax maxM complU) FTtype_Fmax //. | |
by apply: contra notAx => /FTsupp0_type1 <-. | |
have [_ _ [_ [_ /normedTI_memJ_P[_ _ tiB]] _ _]]:= BGsummaryC maxM complU ntK. | |
by rewrite -(tiB x) inE ?tiA0A ?notAx // inE notAx. | |
have sDA1: D \subset 'A1(M). | |
apply/subsetPn=> [[x /setIdP[A0x not_sCxM] notA1x]]. | |
case/subsetP: not_sCxM => a cxa. | |
by apply: (tiA0 x); [apply/setDP | rewrite /conjg -(cent1P cxa) mulKg]. | |
have sDMs1: D \subset Ms^# by rewrite /Ms -def_FTcore. | |
have [tameMs _ signM PsignM] := BGsummaryD maxM. | |
split=> // [x A0x a A0xa|x Dx]. | |
have [A1x | notA1x] := boolP (x \in 'A1(M)); last first. | |
by exists a; rewrite // (tiA0 x) // inE notA1x. | |
case/setD1P: A1x => _; rewrite def_FTcore // => Ms_x. | |
apply/imsetP; rewrite tameMs ?imset_f ?inE //. | |
rewrite (mem_Hall_pcore (Msigma_Hall maxM)) ?(subsetP sA0M) //. | |
by rewrite p_eltJ (mem_p_elt (pcore_pgroup _ _) Ms_x). | |
have [Ms1x [_ not_sCxM]] := (subsetP sDMs1 x Dx, setIdP Dx). | |
have [[uniqN defNF] [ANx typeN hallMN] type2] := PsignM x Ms1x not_sCxM. | |
have [maxN _] := mem_uniq_mmax uniqN. | |
split=> //; last 1 first. | |
- rewrite -FTtype_P2max // => /type2[FmaxM]. | |
by rewrite (Fcore_eq_Msigma maxM _) // notP1type_Msigma_nil ?FmaxM. | |
- by rewrite !inE -FTtype_Fmax // -FTtype_P2max // -in_setU. | |
split=> // [|y A0y|]; rewrite defNF ?sdprod_sigma //=; last by case/signM: Ms1x. | |
rewrite coprime_pi' ?cardG_gt0 // -pgroupE. | |
rewrite (eq_p'group _ (pi_Msigma maxN)); apply: wlog_neg => not_sNx'CMy. | |
have ell1x := Msigma_ell1 maxM Ms1x. | |
have SMxM: M \in 'M_\sigma[x] by rewrite inE maxM cycle_subG; case/setD1P: Ms1x. | |
have MSx_gt1: #|'M_\sigma[x]| > 1. | |
rewrite ltn_neqAle lt0n {2}(cardD1 M) SMxM andbT eq_sym. | |
by apply: contra not_sCxM; move/cent1_sub_uniq_sigma_mmax->. | |
have [FmaxM t2'M]: M \in 'M_'F /\ \tau2(M)^'.-group M. | |
apply: (non_disjoint_signalizer_Frobenius ell1x MSx_gt1 SMxM). | |
by apply: contra not_sNx'CMy; apply: pgroupS (subsetIl _ _). | |
have defA0: 'A0(M) = Ms^#. | |
rewrite FTsupp0_type1; last by rewrite -FTtype_Fmax. | |
rewrite /'A(M) /'A1(M) -FTtype_Fmax // FmaxM def_FTcore //= -/Ms. | |
apply/setP => z; apply/bigcupP/idP=> [[t Ms1t] | Ms1z]; last first. | |
have [ntz Ms_z] := setD1P Ms1z. | |
by exists z; rewrite // 3!inE ntz cent1id (subsetP (pcore_sub _ _) z Ms_z). | |
case/setD1P=> ntz; case/setIP=> Mz ctz. | |
rewrite 2!inE ntz (mem_Hall_pcore (Msigma_Hall maxM)) //. | |
apply: sub_in_pnat (pnat_pi (order_gt0 z)) => p _ pi_z_p. | |
have szM: <[z]> \subset M by rewrite cycle_subG. | |
have [piMp [_ k'M]] := (piSg szM pi_z_p, setIdP FmaxM). | |
apply: contraR (pnatPpi k'M piMp) => s'p /=. | |
rewrite unlock; apply/andP; split. | |
have:= piMp; rewrite (partition_pi_mmax maxM) (negPf s'p) orbF. | |
by rewrite orbCA [p \in _](negPf (pnatPpi t2'M piMp)). | |
move: pi_z_p; rewrite -p_rank_gt0 /= -(setIidPr szM). | |
case/p_rank_geP=> P; rewrite pnElemI -setIdE => /setIdP[EpP sPz]. | |
apply/exists_inP; exists P => //; apply/trivgPn. | |
have [ntt Ms_t] := setD1P Ms1t; exists t => //. | |
by rewrite inE Ms_t (subsetP (centS sPz)) // cent_cycle cent1C. | |
move: A0y; rewrite defA0 => /setD1P[nty Ms_y]. | |
have sCyMs: 'C_M[y] \subset Ms. | |
rewrite -[Ms](setD1K (group1 _)) -subDset /= -defA0 subsetU //. | |
rewrite (bigcup_max y) //; first by rewrite 2!inE nty def_FTcore. | |
by rewrite -FTtype_Fmax ?FmaxM. | |
have notMGN: gval 'N[x] \notin M :^: G. | |
have [_ [//|_ _ t2Nx _ _]] := FT_signalizer_context ell1x. | |
have [ntx Ms_x] := setD1P Ms1x; have sMx := mem_p_elt (pcore_pgroup _ _) Ms_x. | |
apply: contra ntx => /imsetP[a _ defN]. | |
rewrite -order_eq1 (pnat_1 sMx (sub_p_elt _ t2Nx)) // => p. | |
by rewrite defN tau2J // => /andP[]. | |
apply: sub_pgroup (pgroupS sCyMs (pcore_pgroup _ _)) => p sMp. | |
by apply: contraFN (sigma_partition maxM maxN notMGN p) => sNp; apply/andP. | |
Qed. | |
End Section16. | |