Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
Require Import mathcomp.ssreflect.ssreflect. | |
From mathcomp | |
Require Import ssrbool ssrfun eqtype ssrnat seq div. | |
From mathcomp | |
Require Import fintype bigop prime finset ssralg fingroup morphism. | |
From mathcomp | |
Require Import automorphism quotient gfunctor commutator zmodp center pgroup. | |
From mathcomp | |
Require Import sylow gseries nilpotent abelian maximal. | |
From mathcomp | |
Require Import matrix mxalgebra mxrepresentation mxabelem. | |
From odd_order | |
Require Import BGsection1 BGsection2. | |
(******************************************************************************) | |
(* This file contains the useful material in B & G, appendices A and B, i.e., *) | |
(* the proof of the p-stability properties and the ZL-Theorem (the Puig *) | |
(* replacement for the Glaubermann ZJ-theorem). The relevant definitions are *) | |
(* given in BGsection1. *) | |
(* Theorem A.4(a) has not been formalised: it is a result on external *) | |
(* p-stability, which concerns faithful representations of group with a *) | |
(* trivial p-core on a field of characteristic p. It's the historical concept *) | |
(* that was studied by Hall and Higman, but it's not used for FT. Note that *) | |
(* the finite field case can be recovered from A.4(c) with a semi-direct *) | |
(* product. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Local Open Scope ring_scope. | |
Import GroupScope GRing.Theory. | |
Section AppendixA. | |
Implicit Type gT : finGroupType. | |
Implicit Type p : nat. | |
Import MatrixGenField. | |
(* This is B & G, Theorem A.4(c) (in Appendix A, not section 16!). We follow *) | |
(* both B & G and Gorenstein in using the general form of the p-stable *) | |
(* property. We could simplify the property because the conditions under *) | |
(* which we prove p-stability are inherited by sections (morphic image in our *) | |
(* framework), and restrict to the case where P is normal in G. (Clearly the *) | |
(* 'O_p^'(G) * P <| G premise plays no part in the proof.) *) | |
(* Theorems A.1-A.3 are essentially inlined in this proof. *) | |
Theorem odd_p_stable gT p (G : {group gT}) : odd #|G| -> p.-stable G. | |
Proof. | |
move: gT G. | |
pose p_xp gT (E : {group gT}) x := p.-elt x && (x \in 'C([~: E, [set x]])). | |
suffices IH gT (E : {group gT}) x y (G := <<[set x; y]>>) : | |
[&& odd #|G|, p.-group E & G \subset 'N(E)] -> p_xp gT E x && p_xp gT E y -> | |
p.-group (G / 'C(E)). | |
- move=> gT G oddG P A pP /andP[/mulGsubP[_ sPG] _] /andP[sANG pA] cRA. | |
apply/subsetP=> _ /morphimP[x Nx Ax ->]; have NGx := subsetP sANG x Ax. | |
apply: Baer_Suzuki => [|_ /morphimP[y Ny NGy ->]]; first exact: mem_quotient. | |
rewrite -morphJ // -!morphim_set1 -?[<<_>>]morphimY ?sub1set ?groupJ //. | |
set G1 := _ <*> _; rewrite /pgroup -(card_isog (second_isog _)); last first. | |
by rewrite join_subG !sub1set Nx groupJ. | |
have{Nx NGx Ny NGy} [[Gx Nx] [Gy Ny]] := (setIP NGx, setIP NGy). | |
have sG1G: G1 \subset G by rewrite join_subG !sub1set groupJ ?andbT. | |
have nPG1: G1 \subset 'N(P) by rewrite join_subG !sub1set groupJ ?andbT. | |
rewrite -setIA setICA (setIidPr sG1G). | |
rewrite (card_isog (second_isog _)) ?norms_cent //. | |
apply: IH => //; first by rewrite pP nPG1 (oddSg sG1G). | |
rewrite /p_xp -{2}(normP Ny) -conjg_set1 -conjsRg centJ memJ_conjg. | |
rewrite p_eltJ andbb (mem_p_elt pA) // -sub1set centsC (sameP commG1P trivgP). | |
by rewrite -cRA !commgSS ?sub1set. | |
move: {2}_.+1 (ltnSn #|E|) => n; elim: n => // n IHn in gT E x y G *. | |
rewrite ltnS => leEn /and3P[oddG pE nEG] /and3P[/andP[p_x cRx] p_y cRy]. | |
have [Gx Gy]: x \in G /\ y \in G by apply/andP; rewrite -!sub1set -join_subG. | |
apply: wlog_neg => p'Gc; apply/pgroupP=> q q_pr qGc; apply/idPn => p'q. | |
have [Q sylQ] := Sylow_exists q [group of G]. | |
have [sQG qQ]: Q \subset G /\ q.-group Q by case/and3P: sylQ. | |
have{qQ p'q} p'Q: p^'.-group Q by apply: sub_in_pnat qQ => q' _ /eqnP->. | |
have{q q_pr sylQ qGc} ncEQ: ~~ (Q \subset 'C(E)). | |
apply: contraL qGc => cEQ; rewrite -p'natE // -partn_eq1 //. | |
have nCQ: Q \subset 'N('C(E)) by apply: subset_trans (normG _). | |
have sylQc: q.-Sylow(G / 'C(E)) (Q / 'C(E)) by rewrite morphim_pSylow. | |
by rewrite -(card_Hall sylQc) -trivg_card1 (sameP eqP trivgP) quotient_sub1. | |
have solE: solvable E := pgroup_sol pE. | |
have ntE: E :!=: 1 by apply: contra ncEQ; move/eqP->; rewrite cents1. | |
have{Q ncEQ p'Q sQG} minE_EG: minnormal E (E <*> G). | |
apply/mingroupP; split=> [|D]; rewrite join_subG ?ntE ?normG //. | |
case/and3P=> ntD nDE nDG sDE; have nDGi := subsetP nDG. | |
apply/eqP; rewrite eqEcard sDE leqNgt; apply: contra ncEQ => ltDE. | |
have nDQ: Q \subset 'N(D) by rewrite (subset_trans sQG). | |
have cDQ: Q \subset 'C(D). | |
rewrite -quotient_sub1 ?norms_cent // ?[_ / _]card1_trivg //. | |
apply: pnat_1 (morphim_pgroup _ p'Q); apply: pgroupS (quotientS _ sQG) _. | |
apply: IHn (leq_trans ltDE leEn) _ _; first by rewrite oddG (pgroupS sDE). | |
rewrite /p_xp p_x p_y /=; apply/andP. | |
by split; [move: cRx | move: cRy]; apply: subsetP; rewrite centS ?commSg. | |
apply: (stable_factor_cent cDQ) solE; rewrite ?(pnat_coprime pE) //. | |
apply/and3P; split; rewrite // -quotient_cents2 // centsC. | |
rewrite -quotient_sub1 ?norms_cent ?quotient_norms ?(subset_trans sQG) //=. | |
rewrite [(_ / _) / _]card1_trivg //=. | |
apply: pnat_1 (morphim_pgroup _ (morphim_pgroup _ p'Q)). | |
apply: pgroupS (quotientS _ (quotientS _ sQG)) _. | |
have defGq: G / D = <<[set coset D x; coset D y]>>. | |
by rewrite quotient_gen -1?gen_subG ?quotientU ?quotient_set1 ?nDGi. | |
rewrite /= defGq IHn ?(leq_trans _ leEn) ?ltn_quotient // -?defGq. | |
by rewrite quotient_odd // quotient_pgroup // quotient_norms. | |
rewrite /p_xp -!sub1set !morph_p_elt -?quotient_set1 ?nDGi //=. | |
by rewrite -!quotientR ?quotient_cents ?sub1set ?nDGi. | |
have abelE: p.-abelem E. | |
by rewrite -is_abelem_pgroup //; case: (minnormal_solvable minE_EG _ solE). | |
have cEE: abelian E by case/and3P: abelE. | |
have{minE_EG} minE: minnormal E G. | |
case/mingroupP: minE_EG => _ minE; apply/mingroupP; rewrite ntE. | |
split=> // D ntD sDE; apply: minE => //; rewrite join_subG cents_norm //. | |
by rewrite centsC (subset_trans sDE). | |
have nCG: G \subset 'N('C_G(E)) by rewrite normsI ?normG ?norms_cent. | |
suffices{p'Gc} pG'c: p.-group (G / 'C_G(E))^`(1). | |
have [Pc sylPc sGc'Pc]:= Sylow_superset (der_subS _ _) pG'c. | |
have nsPc: Pc <| G / 'C_G(E) by rewrite sub_der1_normal ?(pHall_sub sylPc). | |
case/negP: p'Gc; rewrite /pgroup -(card_isog (second_isog _)) ?norms_cent //. | |
rewrite setIC; apply: pgroupS (pHall_pgroup sylPc) => /=. | |
rewrite sub_quotient_pre // join_subG !sub1set !(subsetP nCG, inE) //=. | |
by rewrite !(mem_normal_Hall sylPc) ?mem_quotient ?morph_p_elt ?(subsetP nCG). | |
have defC := rker_abelem abelE ntE nEG; rewrite /= -/G in defC. | |
set rG := abelem_repr abelE ntE nEG in defC. | |
case ncxy: (rG x *m rG y == rG y *m rG x). | |
have Cxy: [~ x, y] \in 'C_G(E). | |
rewrite -defC inE groupR //= !repr_mxM ?groupM ?groupV // mul1mx -/rG. | |
by rewrite (eqP ncxy) -!repr_mxM ?groupM ?groupV // mulKg mulVg repr_mx1. | |
rewrite [_^`(1)](commG1P _) ?pgroup1 //= quotient_gen -gen_subG //= -/G. | |
rewrite !gen_subG centsC gen_subG quotient_cents2r ?gen_subG //= -/G. | |
rewrite /commg_set imset2Ul !imset2_set1l !imsetU !imset_set1. | |
by rewrite !subUset andbC !sub1set !commgg group1 /= -invg_comm groupV Cxy. | |
pose Ax : 'M(E) := rG x - 1; pose Ay : 'M(E) := rG y - 1. | |
have Ax2: Ax *m Ax = 0. | |
apply/row_matrixP=> i; apply/eqP; rewrite row_mul mulmxBr mulmx1. | |
rewrite row0 subr_eq0 -(can_eq (rVabelemK abelE ntE)) rVabelemJ //. | |
rewrite conjgE -(centP cRx) ?mulKg //. | |
rewrite linearB /= addrC row1 rowE rVabelemD rVabelemN rVabelemJ //=. | |
by rewrite mem_commg ?set11 ?mem_rVabelem. | |
have Ay2: Ay *m Ay = 0. | |
apply/row_matrixP=> i; apply/eqP; rewrite row_mul mulmxBr mulmx1. | |
rewrite row0 subr_eq0 -(inj_eq (@rVabelem_inj _ _ _ abelE ntE)). | |
rewrite rVabelemJ // conjgE -(centP cRy) ?mulKg //. | |
rewrite linearB /= addrC row1 rowE rVabelemD rVabelemN rVabelemJ //=. | |
by rewrite mem_commg ?set11 ?mem_rVabelem. | |
pose A := Ax *m Ay + Ay *m Ax. | |
have cAG: centgmx rG A. | |
rewrite /centgmx gen_subG subUset !sub1set !inE Gx Gy /=; apply/andP. | |
rewrite -[rG x](subrK 1%R) -[rG y](subrK 1%R) -/Ax -/Ay. | |
rewrite 2!(mulmxDl _ 1 A) 2!(mulmxDr A _ 1) !mulmx1 !mul1mx. | |
rewrite !(inj_eq (addIr A)) ![_ *m A]mulmxDr ![A *m _]mulmxDl. | |
by rewrite -!mulmxA Ax2 Ay2 !mulmx0 !mulmxA Ax2 Ay2 !mul0mx !addr0 !add0r. | |
have irrG: mx_irreducible rG by apply/abelem_mx_irrP. | |
pose FA := gen_of irrG cAG; pose dA := gen_dim A. | |
pose rAG : mx_representation [fieldType of FA] G dA := gen_repr irrG cAG. | |
pose inFA m W : 'M[FA]_(m, dA) := in_gen irrG cAG W. | |
pose valFA m (W : 'M[FA]_(m, dA)) := val_gen W. | |
rewrite -(rker_abelem abelE ntE nEG) -/rG -(rker_gen irrG cAG) -/rAG. | |
have dA_gt0: dA > 0 by rewrite (gen_dim_gt0 irrG cAG). | |
have irrAG: mx_irreducible rAG by apply: gen_mx_irr. | |
have: dA <= 2. | |
case Ax0: (Ax == 0). | |
by rewrite subr_eq0 in Ax0; case/eqP: ncxy; rewrite (eqP Ax0) mulmx1 mul1mx. | |
case/rowV0Pn: Ax0 => v /submxP[u def_v nzv]. | |
pose U := col_mx v (v *m Ay); pose UA := <<inFA (1 + 1)%N U>>%MS. | |
pose rvalFA m (W : 'M[FA]_(m, dA)) := rowval_gen W. | |
have Umod: mxmodule rAG UA. | |
rewrite /mxmodule gen_subG subUset !sub1set !inE Gx Gy /= andbC. | |
apply/andP; split; rewrite (eqmxMr _ (genmxE _)) -in_genJ // genmxE. | |
rewrite submx_in_gen // -[rG y](subrK 1%R) -/Ay mulmxDr mulmx1. | |
rewrite addmx_sub // mul_col_mx -mulmxA Ay2 mulmx0. | |
by rewrite -!addsmxE addsmx0 addsmxSr. | |
rewrite -[rG x](subrK 1%R) -/Ax mulmxDr mulmx1 in_genD mul_col_mx. | |
rewrite -mulmxA -[Ay *m Ax](addKr (Ax *m Ay)) (mulmxDr v _ A) -mulmxN. | |
rewrite mulmxA {1 2}def_v -(mulmxA u) Ax2 mulmx0 mul0mx add0r. | |
pose B := A; rewrite -(mul0mx _ B) -mul_col_mx -[B](mxval_groot irrG cAG). | |
rewrite {B} -[_ 0 v](in_genK irrG cAG) -val_genZ val_genK. | |
rewrite addmx_sub ?scalemx_sub ?submx_in_gen //. | |
by rewrite -!addsmxE adds0mx addsmxSl. | |
have nzU: UA != 0. | |
rewrite -mxrank_eq0 genmxE mxrank_eq0 -(can_eq (fun W => val_genK W)). | |
by rewrite in_genK val_gen0 -submx0 col_mx_sub submx0 negb_and nzv. | |
case/mx_irrP: irrAG => _ /(_ UA Umod nzU)/eqnP <-. | |
by rewrite genmxE rank_leq_row. | |
rewrite leq_eqVlt ltnS leq_eqVlt ltnNge dA_gt0 orbF orbC; case/pred2P=> def_dA. | |
rewrite [_^`(1)](commG1P _) ?pgroup1 // quotient_cents2r // gen_subG. | |
apply/subsetP=> zt; case/imset2P=> z t Gz Gt ->{zt}. | |
rewrite !inE groupR //= mul1mx; have Gtz := groupM Gt Gz. | |
rewrite -(inj_eq (can_inj (mulKmx (repr_mx_unit rAG Gtz)))) mulmx1. | |
rewrite [eq_op]lock -repr_mxM ?groupR ?groupM // -commgC !repr_mxM // -lock. | |
apply/eqP; move: (rAG z) (rAG t); rewrite /= -/dA def_dA => Az At. | |
by rewrite [Az]mx11_scalar scalar_mxC. | |
move: (kquo_repr _) (kquo_mx_faithful rAG) => /=; set K := rker _. | |
rewrite def_dA => r2G; move/der1_odd_GL2_charf; move/implyP. | |
rewrite quotient_odd //= -/G; apply: etrans; apply: eq_pgroup => p'. | |
have [p_pr _ _] := pgroup_pdiv pE ntE. | |
by rewrite (fmorph_char (gen_rmorphism _ _)) (charf_eq (char_Fp _)). | |
Qed. | |
Section A5. | |
Variables (gT : finGroupType) (p : nat) (G P X : {group gT}). | |
Hypotheses (oddG : odd #|G|) (solG : solvable G) (pP : p.-group P). | |
Hypotheses (nsPG : P <| G) (sXG : X \subset G). | |
Hypotheses (genX : generated_by (p_norm_abelian p P) X). | |
Let C := 'C_G(P). | |
Let defN : 'N_G(P) = G. Proof. by rewrite (setIidPl _) ?normal_norm. Qed. | |
Let nsCG : C <| G. Proof. by rewrite -defN subcent_normal. Qed. | |
Let nCG := normal_norm nsCG. | |
Let nCX := subset_trans sXG nCG. | |
(* This is B & G, Theorem A.5.1; it does not depend on the solG assumption. *) | |
Theorem odd_abelian_gen_stable : X / C \subset 'O_p(G / C). | |
Proof. | |
case/exists_eqP: genX => gX defX. | |
rewrite -defN sub_quotient_pre // -defX gen_subG. | |
apply/bigcupsP=> A gX_A; have [_ pA nAP cAA] := and4P gX_A. | |
have{gX_A} sAX: A \subset X by rewrite -defX sub_gen ?bigcup_sup. | |
rewrite -sub_quotient_pre ?(subset_trans sAX nCX) //=. | |
rewrite odd_p_stable ?normalM ?pcore_normal //. | |
by rewrite /psubgroup pA defN (subset_trans sAX sXG). | |
by apply/commG1P; rewrite (subset_trans _ cAA) // commg_subr. | |
Qed. | |
(* This is B & G, Theorem A.5.2. *) | |
Theorem odd_abelian_gen_constrained : | |
'O_p^'(G) = 1 -> 'C_('O_p(G))(P) \subset P -> X \subset 'O_p(G). | |
Proof. | |
set Q := 'O_p(G) => p'G1 sCQ_P. | |
have sPQ: P \subset Q by rewrite pcore_max. | |
have defQ: 'O_{p^', p}(G) = Q by rewrite pseries_pop2. | |
have pQ: p.-group Q by apply: pcore_pgroup. | |
have sCQ: 'C_G(Q) \subset Q. | |
by rewrite -{2}defQ solvable_p_constrained //= defQ /pHall pQ indexgg subxx. | |
have pC: p.-group C. | |
apply/pgroupP=> q q_pr; case/Cauchy=> // u Cu q_u; apply/idPn=> p'q. | |
suff cQu: u \in 'C_G(Q). | |
case/negP: p'q; have{q_u}: q %| #[u] by rewrite q_u. | |
by apply: pnatP q q_pr => //; apply: mem_p_elt pQ _; apply: (subsetP sCQ). | |
have [Gu cPu] := setIP Cu; rewrite inE Gu /= -cycle_subG. | |
rewrite coprime_nil_faithful_cent_stab ?(pgroup_nil pQ) //= -/C -/Q. | |
- by rewrite cycle_subG; apply: subsetP Gu; rewrite normal_norm ?pcore_normal. | |
- by rewrite (pnat_coprime pQ) // [#|_|]q_u pnatE. | |
have sPcQu: P \subset 'C_Q(<[u]>) by rewrite subsetI sPQ centsC cycle_subG. | |
by apply: subset_trans (subset_trans sCQ_P sPcQu); rewrite setIS // centS. | |
rewrite -(quotientSGK nCX) ?pcore_max // -pquotient_pcore //. | |
exact: odd_abelian_gen_stable. | |
Qed. | |
End A5. | |
End AppendixA. | |
Section AppendixB. | |
Local Notation "X --> Y" := (generated_by (norm_abelian X) Y) | |
(at level 70, no associativity) : group_scope. | |
Variable gT : finGroupType. | |
Implicit Types G H A : {group gT}. | |
Implicit Types D E : {set gT}. | |
Implicit Type p : nat. | |
Lemma Puig_char G : 'L(G) \char G. | |
Proof. exact: gFchar. Qed. | |
Lemma center_Puig_char G : 'Z('L(G)) \char G. | |
Proof. by rewrite !gFchar_trans. Qed. | |
(* This is B & G, Lemma B.1(a). *) | |
Lemma Puig_succS G D E : D \subset E -> 'L_[G](E) \subset 'L_[G](D). | |
Proof. | |
move=> sDE; apply: Puig_max (Puig_succ_sub _ _). | |
exact: norm_abgenS sDE (Puig_gen _ _). | |
Qed. | |
(* This is part of B & G, Lemma B.1(b) (see also BGsection1.Puig1). *) | |
Lemma Puig_sub_even m n G : m <= n -> 'L_{m.*2}(G) \subset 'L_{n.*2}(G). | |
Proof. | |
move/subnKC <-; move: {n}(n - m)%N => n. | |
by elim: m => [|m IHm] /=; rewrite ?sub1G ?Puig_succS. | |
Qed. | |
(* This is part of B & G, Lemma B.1(b). *) | |
Lemma Puig_sub_odd m n G : m <= n -> 'L_{n.*2.+1}(G) \subset 'L_{m.*2.+1}(G). | |
Proof. by move=> le_mn; rewrite Puig_succS ?Puig_sub_even. Qed. | |
(* This is part of B & G, Lemma B.1(b). *) | |
Lemma Puig_sub_even_odd m n G : 'L_{m.*2}(G) \subset 'L_{n.*2.+1}(G). | |
Proof. | |
elim: n m => [|n IHn] m; first by rewrite Puig1 Puig_at_sub. | |
by case: m => [|m]; rewrite ?sub1G ?Puig_succS ?IHn. | |
Qed. | |
(* This is B & G, Lemma B.1(c). *) | |
Lemma Puig_limit G : | |
exists m, forall k, m <= k -> | |
'L_{k.*2}(G) = 'L_*(G) /\ 'L_{k.*2.+1}(G) = 'L(G). | |
Proof. | |
pose L2G m := 'L_{m.*2}(G); pose n := #|G|. | |
have []: #|L2G n| <= n /\ n <= n by rewrite subset_leq_card ?Puig_at_sub. | |
elim: {1 2 3}n => [| m IHm leLm1 /ltnW]; first by rewrite leqNgt cardG_gt0. | |
have [eqLm le_mn|] := eqVneq (L2G m.+1) (L2G m); last first. | |
rewrite eq_sym eqEcard Puig_sub_even ?leqnSn // -ltnNge => lt_m1_m. | |
exact: IHm (leq_trans lt_m1_m leLm1). | |
have{} eqLm k: m <= k -> 'L_{k.*2}(G) = L2G m. | |
rewrite leq_eqVlt => /predU1P[-> // |]; elim: k => // k IHk. | |
by rewrite leq_eqVlt => /predU1P[<- //| ltmk]; rewrite -eqLm !PuigS IHk. | |
by exists m => k le_mk; rewrite Puig_def PuigS /Puig_inf /= !eqLm. | |
Qed. | |
(* This is B & G, Lemma B.1(d), second part; the first part is covered by *) | |
(* BGsection1.Puig_inf_sub. *) | |
Lemma Puig_inf_sub_Puig G : 'L_*(G) \subset 'L(G). | |
Proof. exact: Puig_sub_even_odd. Qed. | |
(* This is B & G, Lemma B.1(e). *) | |
Lemma abelian_norm_Puig n G A : | |
n > 0 -> abelian A -> A <| G -> A \subset 'L_{n}(G). | |
Proof. | |
case: n => // n _ cAA /andP[sAG nAG]. | |
rewrite PuigS sub_gen // bigcup_sup // inE sAG /norm_abelian cAA andbT. | |
exact: subset_trans (Puig_at_sub n G) nAG. | |
Qed. | |
(* This is B & G, Lemma B.1(f), first inclusion. *) | |
Lemma sub_cent_Puig_at n p G : | |
n > 0 -> p.-group G -> 'C_G('L_{n}(G)) \subset 'L_{n}(G). | |
Proof. | |
move=> n_gt0 pG. | |
have /ex_maxgroup[M /(max_SCN pG)SCN_M]: exists M, (gval M <| G) && abelian M. | |
by exists 1%G; rewrite normal1 abelian1. | |
have{SCN_M} [cMM [nsMG defCM]] := (SCN_abelian SCN_M, SCN_P SCN_M). | |
have sML: M \subset 'L_{n}(G) by apply: abelian_norm_Puig. | |
by apply: subset_trans (sML); rewrite -defCM setIS // centS. | |
Qed. | |
(* This is B & G, Lemma B.1(f), second inclusion. *) | |
Lemma sub_center_cent_Puig_at n G : 'Z(G) \subset 'C_G('L_{n}(G)). | |
Proof. by rewrite setIS ?centS ?Puig_at_sub. Qed. | |
(* This is B & G, Lemma B.1(f), third inclusion (the fourth is trivial). *) | |
Lemma sub_cent_Puig_inf p G : p.-group G -> 'C_G('L_*(G)) \subset 'L_*(G). | |
Proof. by apply: sub_cent_Puig_at; rewrite double_gt0. Qed. | |
(* This is B & G, Lemma B.1(f), fifth inclusion (the sixth is trivial). *) | |
Lemma sub_cent_Puig p G : p.-group G -> 'C_G('L(G)) \subset 'L(G). | |
Proof. exact: sub_cent_Puig_at. Qed. | |
(* This is B & G, Lemma B.1(f), final remark (we prove the contrapositive). *) | |
Lemma trivg_center_Puig_pgroup p G : p.-group G -> 'Z('L(G)) = 1 -> G :=: 1. | |
Proof. | |
move=> pG LG1; apply/(trivg_center_pgroup pG)/trivgP. | |
rewrite -(trivg_center_pgroup (pgroupS (Puig_sub _) pG) LG1). | |
by apply: subset_trans (sub_cent_Puig pG); apply: sub_center_cent_Puig_at. | |
Qed. | |
(* This is B & G, Lemma B.1(g), second part; the first part is simply the *) | |
(* definition of 'L(G) in terms of 'L_*(G). *) | |
Lemma Puig_inf_def G : 'L_*(G) = 'L_[G]('L(G)). | |
Proof. | |
have [k defL] := Puig_limit G. | |
by case: (defL k) => // _ <-; case: (defL k.+1) => [|<- //]; apply: leqnSn. | |
Qed. | |
(* This is B & G, Lemma B.2. *) | |
Lemma sub_Puig_eq G H : H \subset G -> 'L(G) \subset H -> 'L(H) = 'L(G). | |
Proof. | |
move=> sHG sLG_H; apply/setP/subset_eqP/andP. | |
have sLH_G := subset_trans (Puig_succ_sub _ _) sHG. | |
have gPuig := norm_abgenS _ (Puig_gen _ _). | |
have [[kG defLG] [kH defLH]] := (Puig_limit G, Puig_limit H). | |
have [/defLG[_ {1}<-] /defLH[_ <-]] := (leq_maxl kG kH, leq_maxr kG kH). | |
split; do [elim: (maxn _ _) => [|k IHk /=]; first by rewrite !Puig1]. | |
rewrite doubleS !(PuigS _.+1) Puig_max ?gPuig // Puig_max ?gPuig //. | |
exact: subset_trans (Puig_sub_even_odd _.+1 _ _) sLG_H. | |
rewrite doubleS Puig_max // -!PuigS Puig_def gPuig //. | |
by rewrite Puig_inf_def Puig_max ?gPuig ?sLH_G. | |
Qed. | |
Lemma norm_abgen_pgroup p X G : | |
p.-group G -> X --> G -> generated_by (p_norm_abelian p X) G. | |
Proof. | |
move=> pG /exists_eqP[gG defG]. | |
have:= subxx G; rewrite -{1 3}defG gen_subG /= => /bigcupsP-sGG. | |
apply/exists_eqP; exists gG; congr <<_>>; apply: eq_bigl => A. | |
by rewrite andbA andbAC andb_idr // => /sGG/pgroupS->. | |
Qed. | |
Variables (p : nat) (G S : {group gT}). | |
Hypotheses (oddG : odd #|G|) (solG : solvable G) (sylS : p.-Sylow(G) S). | |
Hypothesis p'G1 : 'O_p^'(G) = 1. | |
Let T := 'O_p(G). | |
Let nsTG : T <| G := pcore_normal _ _. | |
Let pT : p.-group T := pcore_pgroup _ _. | |
Let pS : p.-group S := pHall_pgroup sylS. | |
Let sSG := pHall_sub sylS. | |
(* This is B & G, Lemma B.3. *) | |
Lemma pcore_Sylow_Puig_sub : 'L_*(S) \subset 'L_*(T) /\ 'L(T) \subset 'L(S). | |
Proof. | |
have [[kS defLS] [kT defLT]] := (Puig_limit S, Puig_limit [group of T]). | |
have [/defLS[<- <-] /defLT[<- <-]] := (leq_maxl kS kT, leq_maxr kS kT). | |
have sL_ := subset_trans (Puig_succ_sub _ _). | |
elim: (maxn kS kT) => [|k [_ sL1]]; first by rewrite !Puig1 pcore_sub_Hall. | |
have{sL1} gL: 'L_{k.*2.+1}(T) --> 'L_{k.*2.+2}(S). | |
exact: norm_abgenS sL1 (Puig_gen _ _). | |
have sCT_L: 'C_T('L_{k.*2.+1}(T)) \subset 'L_{k.*2.+1}(T). | |
exact: sub_cent_Puig_at pT. | |
have{sCT_L} sLT: 'L_{k.*2.+2}(S) \subset T. | |
apply: odd_abelian_gen_constrained sCT_L => //. | |
- exact: pgroupS (Puig_at_sub _ _) pT. | |
- exact: gFnormal_trans nsTG. | |
- exact: sL_ sSG. | |
by rewrite norm_abgen_pgroup // (pgroupS _ pS) ?Puig_at_sub. | |
have sL2: 'L_{k.*2.+2}(S) \subset 'L_{k.*2.+2}(T) by apply: Puig_max. | |
split; [exact: sL2 | rewrite doubleS; apply: subset_trans (Puig_succS _ sL2) _]. | |
by rewrite Puig_max -?PuigS ?Puig_gen // sL_ // pcore_sub_Hall. | |
Qed. | |
Let Y := 'Z('L(T)). | |
Let L := 'L(S). | |
(* This is B & G, Theorem B.4(b). *) | |
Theorem Puig_center_normal : 'Z(L) <| G. | |
Proof. | |
have [sLiST sLTS] := pcore_Sylow_Puig_sub. | |
have sLiLT: 'L_*(T) \subset 'L(T) by apply: Puig_sub_even_odd. | |
have sZY: 'Z(L) \subset Y. | |
rewrite subsetI andbC subIset ?centS ?orbT //=. | |
suffices: 'C_S('L_*(S)) \subset 'L(T). | |
by apply: subset_trans; rewrite setISS ?Puig_sub ?centS ?Puig_sub_even_odd. | |
apply: subset_trans (subset_trans sLiST sLiLT). | |
by apply: sub_cent_Puig_at pS; rewrite double_gt0. | |
have chY: Y \char G by rewrite !gFchar_trans. | |
have nsCY_G: 'C_G(Y) <| G by rewrite char_normal 1?subcent_char ?char_refl. | |
have [C defC sCY_C nsCG] := inv_quotientN nsCY_G (pcore_normal p _). | |
have sLG: L \subset G by rewrite gFsub_trans ?(pHall_sub sylS). | |
have nsL_nCS: L <| 'N_G(C :&: S). | |
have sYLiS: Y \subset 'L_*(S). | |
rewrite abelian_norm_Puig ?double_gt0 ?center_abelian //. | |
apply: normalS (pHall_sub sylS) (char_normal chY). | |
by rewrite subIset // (subset_trans sLTS) ?Puig_sub. | |
have gYL: Y --> L := norm_abgenS sYLiS (Puig_gen _ _). | |
have sLCS: L \subset C :&: S. | |
rewrite subsetI Puig_sub andbT. | |
rewrite -(quotientSGK _ sCY_C) ?(subset_trans sLG) ?normal_norm // -defC. | |
rewrite odd_abelian_gen_stable ?char_normal ?norm_abgen_pgroup //. | |
by rewrite (pgroupS _ pT) ?subIset // Puig_sub. | |
by rewrite (pgroupS _ pS) ?Puig_sub. | |
rewrite -[L](sub_Puig_eq _ sLCS) ?subsetIr // gFnormal_trans ?normalSG //. | |
by rewrite subIset // sSG orbT. | |
have sylCS: p.-Sylow(C) (C :&: S) := Sylow_setI_normal nsCG sylS. | |
have{} defC: 'C_G(Y) * (C :&: S) = C. | |
apply/eqP; rewrite eqEsubset mulG_subG sCY_C subsetIl /=. | |
have nCY_C: C \subset 'N('C_G(Y)). | |
exact: subset_trans (normal_sub nsCG) (normal_norm nsCY_G). | |
rewrite -quotientSK // -defC /= -pseries1. | |
rewrite -(pseries_catr_id [:: p : nat_pred]) (pseries_rcons_id [::]) /=. | |
rewrite pseries1 /= pseries1 defC pcore_sub_Hall // morphim_pHall //. | |
by rewrite subIset ?nCY_C. | |
have defG: 'C_G(Y) * 'N_G(C :&: S) = G. | |
have sCS_N: C :&: S \subset 'N_G(C :&: S). | |
by rewrite subsetI normG subIset // sSG orbT. | |
by rewrite -(mulSGid sCS_N) mulgA defC (Frattini_arg _ sylCS). | |
have nsZ_N: 'Z(L) <| 'N_G(C :&: S) := gFnormal_trans _ nsL_nCS. | |
rewrite /normal subIset ?sLG //= -{1}defG mulG_subG /=. | |
rewrite cents_norm ?normal_norm // centsC. | |
by rewrite (subset_trans sZY) // centsC subsetIr. | |
Qed. | |
End AppendixB. | |
Section Puig_factorization. | |
Variables (gT : finGroupType) (p : nat) (G S : {group gT}). | |
Hypotheses (oddG : odd #|G|) (solG : solvable G) (sylS : p.-Sylow(G) S). | |
(* This is B & G, Theorem B.4(a). *) | |
Theorem Puig_factorization : 'O_p^'(G) * 'N_G('Z('L(S))) = G. | |
Proof. | |
set D := 'O_p^'(G); set Z := 'Z(_); have [sSG pS _] := and3P sylS. | |
have sSN: S \subset 'N(D) by rewrite (subset_trans sSG) ?gFnorm. | |
have p'D: p^'.-group D := pcore_pgroup _ _. | |
have tiSD: S :&: D = 1 := coprime_TIg (pnat_coprime pS p'D). | |
have def_Zq: Z / D = 'Z('L(S / D)). | |
rewrite !quotientE -(setIid S) -(morphim_restrm sSN); set f := restrm _ _. | |
have injf: 'injm f by rewrite ker_restrm ker_coset tiSD. | |
rewrite -!(injmF _ injf) ?Puig_sub //= morphim_restrm. | |
by rewrite (setIidPr _) // subIset ?Puig_sub. | |
have{def_Zq} nZq: Z / D <| G / D. | |
have sylSq: p.-Sylow(G / D) (S / D) by apply: morphim_pHall. | |
rewrite def_Zq (Puig_center_normal _ _ sylSq) ?quotient_odd ?quotient_sol //. | |
exact: trivg_pcore_quotient. | |
have sZS: Z \subset S by rewrite subIset ?Puig_sub. | |
have sZN: Z \subset 'N_G(Z) by rewrite subsetI normG (subset_trans sZS). | |
have nDZ: Z \subset 'N(D) by rewrite (subset_trans sZS). | |
rewrite -(mulSGid sZN) mulgA -(norm_joinEr nDZ) (@Frattini_arg p) //= -/D -/Z. | |
rewrite -cosetpre_normal quotientK ?quotientGK ?pcore_normal // in nZq. | |
by rewrite norm_joinEr. | |
rewrite /pHall -divgS joing_subr ?(pgroupS sZS) /= ?norm_joinEr //= -/Z. | |
by rewrite TI_cardMg ?mulnK //; apply/trivgP; rewrite /= setIC -tiSD setSI. | |
Qed. | |
End Puig_factorization. | |