Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) | |
From HB Require Import structures. | |
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap. | |
Require Import mathcomp_extra boolp classical_sets signed functions cardinality. | |
Require Import reals ereal topology normedtype sequences esum measure. | |
Require Import lebesgue_measure fsbigop numfun. | |
(******************************************************************************) | |
(* Lebesgue Integral *) | |
(* *) | |
(* This file contains a formalization of the Lebesgue integral. It starts *) | |
(* with simple functions and their integral, provides basic operations *) | |
(* (addition, etc.), and proves the properties of their integral *) | |
(* (semi-linearity, non-decreasingness). It then defines the integral of *) | |
(* measurable functions, proves the approximation theorem, the properties of *) | |
(* their integral (semi-linearity, non-decreasingness), the monotone *) | |
(* convergence theorem, and Fatou's lemma. Finally, it proves the linearity *) | |
(* properties of the integral, the dominated convergence theorem and Fubini's *) | |
(* theorem. *) | |
(* *) | |
(* Main reference: *) | |
(* - Daniel Li, Intégration et applications, 2016 *) | |
(* *) | |
(* {nnfun T >-> R} == type of non-negative functions *) | |
(* {fimfun T >-> R} == type of functions with a finite image *) | |
(* {sfun T >-> R} == type of simple functions *) | |
(* {nnsfun T >-> R} == type of non-negative simple functions *) | |
(* cst_nnsfun r == constant simple function *) | |
(* nnsfun0 := cst_nnsfun 0 *) | |
(* sintegral mu f == integral of the function f with the measure mu *) | |
(* \int[mu]_(x in D) f x == integral of the measurable function f over the *) | |
(* domain D with measure mu *) | |
(* \int[mu]_x f x := \int[mu]_(x in setT) f x *) | |
(* dyadic_itv n k == the interval *) | |
(* `[(k%:R * 2 ^- n), (k.+1%:R * 2 ^- n)[ *) | |
(* approx D f == nondecreasing sequence of functions that *) | |
(* approximates f over D using dyadic intervals *) | |
(* Rintegral mu D f := fine (\int[mu]_(x in D) f x). *) | |
(* mu.-integrable D f == f is measurable over D and the integral of f *) | |
(* w.r.t. D is < +oo *) | |
(* ae_eq D f g == f is equal to g almost everywhere *) | |
(* product_measure1 m1 s2 == product measure over T1 * T2, m1 is a measure *) | |
(* measure over T1, s2 is a proof that a measure m2 *) | |
(* over T2 is sigma-finite *) | |
(* product_measure2 s2 m2 == product_measure1 mutatis mutandis *) | |
(* *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import Order.TTheory GRing.Theory Num.Def Num.Theory. | |
Import numFieldTopology.Exports. | |
Local Open Scope classical_set_scope. | |
Local Open Scope ring_scope. | |
Reserved Notation "\int [ mu ]_ ( i 'in' D ) F" | |
(at level 36, F at level 36, mu at level 10, i, D at level 50, | |
format "'[' \int [ mu ]_ ( i 'in' D ) '/ ' F ']'"). | |
Reserved Notation "\int [ mu ]_ i F" | |
(at level 36, F at level 36, mu at level 10, i at level 0, | |
right associativity, format "'[' \int [ mu ]_ i '/ ' F ']'"). | |
Reserved Notation "mu .-integrable" (at level 2, format "mu .-integrable"). | |
#[global] | |
Hint Extern 0 (measurable [set _]) => solve [apply: measurable_set1] : core. | |
HB.mixin Record IsMeasurableFun d (aT : measurableType d) (rT : realType) (f : aT -> rT) := { | |
measurable_funP : measurable_fun setT f | |
}. | |
#[global] Hint Resolve fimfun_inP : core. | |
HB.structure Definition MeasurableFun d aT rT := {f of @IsMeasurableFun d aT rT f}. | |
Reserved Notation "{ 'mfun' aT >-> T }" | |
(at level 0, format "{ 'mfun' aT >-> T }"). | |
Reserved Notation "[ 'mfun' 'of' f ]" | |
(at level 0, format "[ 'mfun' 'of' f ]"). | |
Notation "{ 'mfun' aT >-> T }" := (@MeasurableFun.type _ aT T) : form_scope. | |
Notation "[ 'mfun' 'of' f ]" := [the {mfun _ >-> _} of f] : form_scope. | |
#[global] Hint Resolve measurable_funP : core. | |
HB.structure Definition SimpleFun d (aT (*rT*) : measurableType d) (rT : realType) := | |
{f of @IsMeasurableFun d aT rT f & @FiniteImage aT rT f}. | |
Reserved Notation "{ 'sfun' aT >-> T }" | |
(at level 0, format "{ 'sfun' aT >-> T }"). | |
Reserved Notation "[ 'sfun' 'of' f ]" | |
(at level 0, format "[ 'sfun' 'of' f ]"). | |
Notation "{ 'sfun' aT >-> T }" := (@SimpleFun.type _ aT T) : form_scope. | |
Notation "[ 'sfun' 'of' f ]" := [the {sfun _ >-> _} of f] : form_scope. | |
Lemma measurable_sfunP {d} {aT : measurableType d} {rT : realType} (f : {mfun aT >-> rT}) (y : rT) : | |
measurable (f @^-1` [set y]). | |
Proof. by rewrite -[f @^-1` _]setTI; exact: measurable_funP. Qed. | |
HB.mixin Record IsNonNegFun (aT : Type) (rT : numDomainType) (f : aT -> rT) := { | |
fun_ge0 : forall x, 0 <= f x | |
}. | |
HB.structure Definition NonNegFun aT rT := {f of @IsNonNegFun aT rT f}. | |
Reserved Notation "{ 'nnfun' aT >-> T }" | |
(at level 0, format "{ 'nnfun' aT >-> T }"). | |
Reserved Notation "[ 'nnfun' 'of' f ]" | |
(at level 0, format "[ 'nnfun' 'of' f ]"). | |
Notation "{ 'nnfun' aT >-> T }" := (@NonNegFun.type aT T) : form_scope. | |
Notation "[ 'nnfun' 'of' f ]" := [the {nnfun _ >-> _} of f] : form_scope. | |
#[global] Hint Extern 0 (is_true (0 <= _)) => solve [apply: fun_ge0] : core. | |
HB.structure Definition NonNegSimpleFun d (aT : measurableType d) (rT : realType) := | |
{f of @SimpleFun d _ _ f & @NonNegFun aT rT f}. | |
Reserved Notation "{ 'nnsfun' aT >-> T }" | |
(at level 0, format "{ 'nnsfun' aT >-> T }"). | |
Reserved Notation "[ 'nnsfun' 'of' f ]" | |
(at level 0, format "[ 'nnsfun' 'of' f ]"). | |
Notation "{ 'nnsfun' aT >-> T }" := (@NonNegSimpleFun.type _ aT T) : form_scope. | |
Notation "[ 'nnsfun' 'of' f ]" := [the {nnsfun _ >-> _} of f] : form_scope. | |
Section ring. | |
Context (aT : pointedType) (rT : ringType). | |
Lemma fimfun_mulr_closed : mulr_closed (@fimfun aT rT). | |
Proof. | |
split=> [|f g]; rewrite !inE/=; first exact: finite_image_cst. | |
by move=> fA gA; apply: (finite_image11 (fun x y => x * y)). | |
Qed. | |
Canonical fimfun_mul := MulrPred fimfun_mulr_closed. | |
Canonical fimfun_ring := SubringPred fimfun_mulr_closed. | |
Definition fimfun_ringMixin := [ringMixin of {fimfun aT >-> rT} by <:]. | |
Canonical fimfun_ringType := RingType {fimfun aT >-> rT} fimfun_ringMixin. | |
Implicit Types (f g : {fimfun aT >-> rT}). | |
Lemma fimfunM f g : f * g = f \* g :> (_ -> _). Proof. by []. Qed. | |
Lemma fimfun1 : (1 : {fimfun aT >-> rT}) = cst 1 :> (_ -> _). Proof. by []. Qed. | |
Lemma fimfun_prod I r (P : {pred I}) (f : I -> {fimfun aT >-> rT}) (x : aT) : | |
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x. | |
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed. | |
Lemma fimfunX f n : f ^+ n = (fun x => f x ^+ n) :> (_ -> _). | |
Proof. | |
by apply/funext => x; elim: n => [|n IHn]//; rewrite !exprS fimfunM/= IHn. | |
Qed. | |
Lemma indic_fimfun_subproof X : @FiniteImage aT rT \1_X. | |
Proof. | |
split; apply: (finite_subfset [fset 0; 1]%fset) => x [tt /=]. | |
by rewrite !inE indicE; case: (_ \in _) => _ <-; rewrite ?eqxx ?orbT. | |
Qed. | |
HB.instance Definition _ X := indic_fimfun_subproof X. | |
Definition indic_fimfun (X : set aT) := [the {fimfun aT >-> rT} of \1_X]. | |
HB.instance Definition _ k f := FImFun.copy (k \o* f) (f * cst_fimfun k). | |
Definition scale_fimfun k f := [the {fimfun aT >-> rT} of k \o* f]. | |
End ring. | |
Arguments indic_fimfun {aT rT} _. | |
Section comring. | |
Context (aT : pointedType) (rT : comRingType). | |
Definition fimfun_comRingMixin := [comRingMixin of {fimfun aT >-> rT} by <:]. | |
Canonical fimfun_comRingType := | |
ComRingType {fimfun aT >-> rT} fimfun_comRingMixin. | |
Implicit Types (f g : {fimfun aT >-> rT}). | |
HB.instance Definition _ f g := FImFun.copy (f \* g) (f * g). | |
End comring. | |
Lemma fimfunE T (R : ringType) (f : {fimfun T >-> R}) x : | |
f x = \sum_(y <- fset_set (range f)) (y * \1_(f @^-1` [set y]) x). | |
Proof. | |
have fxfA: f x \in fset_set (f @` setT) by rewrite in_fset_set// inE; exists x. | |
rewrite (big_fsetD1 (f x))//= indicE (@id (_ \in _)) ?mulr1 ?inE//=. | |
rewrite big_seq_cond ?big1 ?addr0// => y; rewrite ?andbT !inE eq_sym. | |
move=> /andP[fxNy yA]; rewrite indicE [_ \in _]negbTE ?mulr0// notin_set. | |
by move=> fxy; rewrite -fxy eqxx in fxNy. | |
Qed. | |
Lemma fimfunEord T (R : ringType) (f : {fimfun T >-> R}) | |
(s := fset_set (f @` setT)) : | |
forall x, f x = \sum_(i < #|`s|) (s`_i * \1_(f @^-1` [set s`_i]) x). | |
Proof. by move=> x; rewrite fimfunE /s // (big_nth 0) big_mkord. Qed. | |
Lemma trivIset_preimage1 {aT rT} D (f : aT -> rT) : | |
trivIset D (fun x => f @^-1` [set x]). | |
Proof. by move=> y z _ _ [x [<- <-]]. Qed. | |
Lemma trivIset_preimage1_in {aT} {rT : choiceType} (D : set rT) (A : set aT) | |
(f : aT -> rT) : trivIset D (fun x => A `&` f @^-1` [set x]). | |
Proof. by move=> y z _ _ [x [[_ <-] [_ <-]]]. Qed. | |
Section fimfun_bin. | |
Variables (d : measure_display) (T : measurableType d). | |
Variables (R : numDomainType) (f g : {fimfun T >-> R}). | |
Lemma max_fimfun_subproof : @FiniteImage T R (f \max g). | |
Proof. by split; apply: (finite_image11 maxr). Qed. | |
HB.instance Definition _ := max_fimfun_subproof. | |
End fimfun_bin. | |
HB.factory Record FiniteDecomp (T : pointedType) (R : ringType) (f : T -> R) := | |
{ fimfunE : exists (r : seq R) (A_ : R -> set T), | |
forall x, f x = \sum_(y <- r) (y * \1_(A_ y) x) }. | |
HB.builders Context T R f of @FiniteDecomp T R f. | |
Lemma finite_subproof: @FiniteImage T R f. | |
Proof. | |
split; have [r [A_ fE]] := fimfunE. | |
suff -> : f = \sum_(y <- r) cst_fimfun y * indic_fimfun (A_ y) by []. | |
by apply/funext=> x; rewrite fE fimfun_sum. | |
Qed. | |
HB.instance Definition _ := finite_subproof. | |
HB.end. | |
Section mfun_pred. | |
Context {d} {aT : measurableType d} {rT : realType}. | |
Definition mfun : {pred aT -> rT} := mem [set f | measurable_fun setT f]. | |
Definition mfun_key : pred_key mfun. Proof. exact. Qed. | |
Canonical mfun_keyed := KeyedPred mfun_key. | |
End mfun_pred. | |
Section mfun. | |
Context {d} {aT : measurableType d} {rT : realType}. | |
Notation T := {mfun aT >-> rT}. | |
Notation mfun := (@mfun _ aT rT). | |
Section Sub. | |
Context (f : aT -> rT) (fP : f \in mfun). | |
Definition mfun_Sub_subproof := @IsMeasurableFun.Build d aT rT f (set_mem fP). | |
#[local] HB.instance Definition _ := mfun_Sub_subproof. | |
Definition mfun_Sub := [mfun of f]. | |
End Sub. | |
Lemma mfun_rect (K : T -> Type) : | |
(forall f (Pf : f \in mfun), K (mfun_Sub Pf)) -> forall u : T, K u. | |
Proof. | |
move=> Ksub [f [[Pf]]]/=. | |
by suff -> : Pf = (set_mem (@mem_set _ [set f | _] f Pf)) by apply: Ksub. | |
Qed. | |
Lemma mfun_valP f (Pf : f \in mfun) : mfun_Sub Pf = f :> (_ -> _). | |
Proof. by []. Qed. | |
Canonical mfun_subType := SubType T _ _ mfun_rect mfun_valP. | |
Lemma mfuneqP (f g : {mfun aT >-> rT}) : f = g <-> f =1 g. | |
Proof. by split=> [->//|fg]; apply/val_inj/funext. Qed. | |
Definition mfuneqMixin := [eqMixin of {mfun aT >-> rT} by <:]. | |
Canonical mfuneqType := EqType {mfun aT >-> rT} mfuneqMixin. | |
Definition mfunchoiceMixin := [choiceMixin of {mfun aT >-> rT} by <:]. | |
Canonical mfunchoiceType := ChoiceType {mfun aT >-> rT} mfunchoiceMixin. | |
Lemma cst_mfun_subproof x : @IsMeasurableFun d aT rT (cst x). | |
Proof. by split; apply: measurable_fun_cst. Qed. | |
HB.instance Definition _ x := @cst_mfun_subproof x. | |
Definition cst_mfun x := [the {mfun aT >-> rT} of cst x]. | |
Lemma mfun_cst x : @cst_mfun x =1 cst x. Proof. by []. Qed. | |
End mfun. | |
Section ring. | |
Context (d : measure_display) (aT : measurableType d) (rT : realType). | |
Lemma mfun_subring_closed : subring_closed (@mfun _ aT rT). | |
Proof. | |
split=> [|f g|f g]; rewrite !inE/=. | |
- exact: measurable_fun_cst. | |
- exact: measurable_funB. | |
- exact: measurable_funM. | |
Qed. | |
Canonical mfun_add := AddrPred mfun_subring_closed. | |
Canonical mfun_zmod := ZmodPred mfun_subring_closed. | |
Canonical mfun_mul := MulrPred mfun_subring_closed. | |
Canonical mfun_subring := SubringPred mfun_subring_closed. | |
Definition mfun_zmodMixin := [zmodMixin of {mfun aT >-> rT} by <:]. | |
Canonical mfun_zmodType := ZmodType {mfun aT >-> rT} mfun_zmodMixin. | |
Definition mfun_ringMixin := [ringMixin of {mfun aT >-> rT} by <:]. | |
Canonical mfun_ringType := RingType {mfun aT >-> rT} mfun_ringMixin. | |
Definition mfun_comRingMixin := [comRingMixin of {mfun aT >-> rT} by <:]. | |
Canonical mfun_comRingType := ComRingType {mfun aT >-> rT} mfun_comRingMixin. | |
Implicit Types (f g : {mfun aT >-> rT}). | |
Lemma mfun0 : (0 : {mfun aT >-> rT}) =1 cst 0 :> (_ -> _). Proof. by []. Qed. | |
Lemma mfun1 : (1 : {mfun aT >-> rT}) =1 cst 1 :> (_ -> _). Proof. by []. Qed. | |
Lemma mfunN f : - f = \- f :> (_ -> _). Proof. by []. Qed. | |
Lemma mfunD f g : f + g = f \+ g :> (_ -> _). Proof. by []. Qed. | |
Lemma mfunB f g : f - g = f \- g :> (_ -> _). Proof. by []. Qed. | |
Lemma mfunM f g : f * g = f \* g :> (_ -> _). Proof. by []. Qed. | |
Lemma mfun_sum I r (P : {pred I}) (f : I -> {mfun aT >-> rT}) (x : aT) : | |
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x. | |
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed. | |
Lemma mfun_prod I r (P : {pred I}) (f : I -> {mfun aT >-> rT}) (x : aT) : | |
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x. | |
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed. | |
Lemma mfunX f n : f ^+ n = (fun x => f x ^+ n) :> (_ -> _). | |
Proof. by apply/funext=> x; elim: n => [|n IHn]//; rewrite !exprS mfunM/= IHn. Qed. | |
HB.instance Definition _ f g := MeasurableFun.copy (f \+ g) (f + g). | |
HB.instance Definition _ f g := MeasurableFun.copy (\- f) (- f). | |
HB.instance Definition _ f g := MeasurableFun.copy (f \- g) (f - g). | |
HB.instance Definition _ f g := MeasurableFun.copy (f \* g) (f * g). | |
Definition mindic (D : set aT) of measurable D : aT -> rT := \1_D. | |
Lemma mindicE (D : set aT) (mD : measurable D) : | |
mindic mD = (fun x => (x \in D)%:R). | |
Proof. by rewrite /mindic funeqE => t; rewrite indicE. Qed. | |
HB.instance Definition _ (D : set aT) (mD : measurable D) : | |
@FImFun aT rT (mindic mD) := FImFun.on (mindic mD). | |
Lemma indic_mfun_subproof (D : set aT) (mD : measurable D) : | |
@IsMeasurableFun d aT rT (mindic mD). | |
Proof. | |
split=> mA /= B mB; rewrite preimage_indic. | |
case: ifPn => B1; case: ifPn => B0 //. | |
- by rewrite setIT. | |
- exact: measurableI. | |
- by apply: measurableI => //; apply: measurableC. | |
- by rewrite setI0. | |
Qed. | |
HB.instance Definition _ D mD := @indic_mfun_subproof D mD. | |
Definition indic_mfun (D : set aT) (mD : measurable D) := | |
[the {mfun aT >-> rT} of mindic mD]. | |
HB.instance Definition _ k f := MeasurableFun.copy (k \o* f) (f * cst_mfun k). | |
Definition scale_mfun k f := [the {mfun aT >-> rT} of k \o* f]. | |
Lemma max_mfun_subproof f g : @IsMeasurableFun d aT rT (f \max g). | |
Proof. by split; apply: measurable_fun_max. Qed. | |
HB.instance Definition _ f g := max_mfun_subproof f g. | |
Definition max_mfun f g := [the {mfun aT >-> _} of f \max g]. | |
End ring. | |
Arguments indic_mfun {d aT rT} _. | |
Section sfun_pred. | |
Context {d} {aT : measurableType d} {rT : realType}. | |
Definition sfun : {pred _ -> _} := [predI @mfun _ aT rT & fimfun]. | |
Definition sfun_key : pred_key sfun. Proof. exact. Qed. | |
Canonical sfun_keyed := KeyedPred sfun_key. | |
Lemma sub_sfun_mfun : {subset sfun <= mfun}. Proof. by move=> x /andP[]. Qed. | |
Lemma sub_sfun_fimfun : {subset sfun <= fimfun}. Proof. by move=> x /andP[]. Qed. | |
End sfun_pred. | |
Section sfun. | |
Context {d} {aT : measurableType d} {rT : realType}. | |
Notation T := {sfun aT >-> rT}. | |
Notation sfun := (@sfun _ aT rT). | |
Section Sub. | |
Context (f : aT -> rT) (fP : f \in sfun). | |
Definition sfun_Sub1_subproof := | |
@IsMeasurableFun.Build d aT rT f (set_mem (sub_sfun_mfun fP)). | |
#[local] HB.instance Definition _ := sfun_Sub1_subproof. | |
Definition sfun_Sub2_subproof := | |
@FiniteImage.Build aT rT f (set_mem (sub_sfun_fimfun fP)). | |
#[local] HB.instance Definition _ := sfun_Sub2_subproof. | |
Definition sfun_Sub := [sfun of f]. | |
End Sub. | |
Lemma sfun_rect (K : T -> Type) : | |
(forall f (Pf : f \in sfun), K (sfun_Sub Pf)) -> forall u : T, K u. | |
Proof. | |
move=> Ksub [f [[Pf1] [Pf2]]]; have Pf : f \in sfun by apply/andP; rewrite ?inE. | |
have -> : Pf1 = (set_mem (sub_sfun_mfun Pf)) by []. | |
have -> : Pf2 = (set_mem (sub_sfun_fimfun Pf)) by []. | |
exact: Ksub. | |
Qed. | |
Lemma sfun_valP f (Pf : f \in sfun) : sfun_Sub Pf = f :> (_ -> _). | |
Proof. by []. Qed. | |
Canonical sfun_subType := SubType T _ _ sfun_rect sfun_valP. | |
Lemma sfuneqP (f g : {sfun aT >-> rT}) : f = g <-> f =1 g. | |
Proof. by split=> [->//|fg]; apply/val_inj/funext. Qed. | |
Definition sfuneqMixin := [eqMixin of {sfun aT >-> rT} by <:]. | |
Canonical sfuneqType := EqType {sfun aT >-> rT} sfuneqMixin. | |
Definition sfunchoiceMixin := [choiceMixin of {sfun aT >-> rT} by <:]. | |
Canonical sfunchoiceType := ChoiceType {sfun aT >-> rT} sfunchoiceMixin. | |
(* TODO: BUG: HB *) | |
(* HB.instance Definition _ (x : rT) := @cst_mfun_subproof aT rT x. *) | |
Definition cst_sfun x := [the {sfun aT >-> rT} of cst x]. | |
Lemma cst_sfunE x : @cst_sfun x =1 cst x. Proof. by []. Qed. | |
End sfun. | |
(* a better way to refactor function stuffs *) | |
Lemma fctD (T : pointedType) (K : ringType) (f g : T -> K) : f + g = f \+ g. | |
Proof. by []. Qed. | |
Lemma fctN (T : pointedType) (K : ringType) (f : T -> K) : - f = \- f. | |
Proof. by []. Qed. | |
Lemma fctM (T : pointedType) (K : ringType) (f g : T -> K) : f * g = f \* g. | |
Proof. by []. Qed. | |
Lemma fctZ (T : pointedType) (K : ringType) (L : lmodType K) k (f : T -> L) : | |
k *: f = k \*: f. | |
Proof. by []. Qed. | |
Arguments cst _ _ _ _ /. | |
Definition fctWE := (fctD, fctN, fctM, fctZ). | |
Section ring. | |
Context (d : measure_display) (aT : measurableType d) (rT : realType). | |
Lemma sfun_subring_closed : subring_closed (@sfun d aT rT). | |
Proof. | |
by split=> [|f g|f g]; rewrite ?inE/= ?rpred1//; | |
move=> /andP[/= mf ff] /andP[/= mg fg]; rewrite !(rpredB, rpredM). | |
Qed. | |
Canonical sfun_add := AddrPred sfun_subring_closed. | |
Canonical sfun_zmod := ZmodPred sfun_subring_closed. | |
Canonical sfun_mul := MulrPred sfun_subring_closed. | |
Canonical sfun_subring := SubringPred sfun_subring_closed. | |
Definition sfun_zmodMixin := [zmodMixin of {sfun aT >-> rT} by <:]. | |
Canonical sfun_zmodType := ZmodType {sfun aT >-> rT} sfun_zmodMixin. | |
Definition sfun_ringMixin := [ringMixin of {sfun aT >-> rT} by <:]. | |
Canonical sfun_ringType := RingType {sfun aT >-> rT} sfun_ringMixin. | |
Definition sfun_comRingMixin := [comRingMixin of {sfun aT >-> rT} by <:]. | |
Canonical sfun_comRingType := ComRingType {sfun aT >-> rT} sfun_comRingMixin. | |
Implicit Types (f g : {sfun aT >-> rT}). | |
Lemma sfun0 : (0 : {sfun aT >-> rT}) =1 cst 0. Proof. by []. Qed. | |
Lemma sfun1 : (1 : {sfun aT >-> rT}) =1 cst 1. Proof. by []. Qed. | |
Lemma sfunN f : - f =1 \- f. Proof. by []. Qed. | |
Lemma sfunD f g : f + g =1 f \+ g. Proof. by []. Qed. | |
Lemma sfunB f g : f - g =1 f \- g. Proof. by []. Qed. | |
Lemma sfunM f g : f * g =1 f \* g. Proof. by []. Qed. | |
Lemma sfun_sum I r (P : {pred I}) (f : I -> {sfun aT >-> rT}) (x : aT) : | |
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x. | |
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed. | |
Lemma sfun_prod I r (P : {pred I}) (f : I -> {sfun aT >-> rT}) (x : aT) : | |
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x. | |
Proof. by elim/big_rec2: _ => //= i y ? Pi <-. Qed. | |
Lemma sfunX f n : f ^+ n =1 (fun x => f x ^+ n). | |
Proof. by move=> x; elim: n => [|n IHn]//; rewrite !exprS sfunM/= IHn. Qed. | |
HB.instance Definition _ f g := MeasurableFun.copy (f \+ g) (f + g). | |
HB.instance Definition _ f g := MeasurableFun.copy (\- f) (- f). | |
HB.instance Definition _ f g := MeasurableFun.copy (f \- g) (f - g). | |
HB.instance Definition _ f g := MeasurableFun.copy (f \* g) (f * g). | |
Definition indic_sfun (D : set aT) (mD : measurable D) := | |
[the {sfun aT >-> rT} of mindic rT mD]. | |
HB.instance Definition _ k f := MeasurableFun.copy (k \o* f) (f * cst_sfun k). | |
Definition scale_sfun k f := [the {sfun aT >-> rT} of k \o* f]. | |
HB.instance Definition _ f g := max_mfun_subproof f g. | |
Definition max_sfun f g := [the {sfun aT >-> _} of f \max g]. | |
End ring. | |
Arguments indic_sfun {d aT rT} _. | |
Lemma fset_set_comp (T1 : Type) (T2 T3 : choiceType) (D : set T1) | |
(f : {fimfun T1 >-> T2}) (g : T2 -> T3) : | |
fset_set [set (g \o f) x | x in D] = | |
[fset g x | x in fset_set [set f x | x in D]]%fset. | |
Proof. by rewrite -(image_comp f g) fset_set_image. Qed. | |
Lemma preimage_nnfun0 T (R : realDomainType) (f : {nnfun T >-> R}) t : | |
t < 0 -> f @^-1` [set t] = set0. | |
Proof. | |
move=> t0. | |
by apply/preimage10 => -[x _]; apply: contraPnot t0 => <-; rewrite le_gtF. | |
Qed. | |
Lemma preimage_cstM T (R : realFieldType) (x y : R) (f : T -> R) : | |
x != 0 -> (cst x \* f) @^-1` [set y] = f @^-1` [set y / x]. | |
Proof. | |
move=> x0; apply/seteqP; rewrite /preimage; split => [z/= <-|z/= ->]. | |
by rewrite mulrAC divrr ?mul1r// unitfE. | |
by rewrite mulrCA divrr ?mulr1// unitfE. | |
Qed. | |
Lemma preimage_add T (R : numDomainType) (f g : T -> R) z : | |
(f \+ g) @^-1` [set z] = \bigcup_(a in f @` setT) | |
((f @^-1` [set a]) `&` (g @^-1` [set z - a])). | |
Proof. | |
apply/seteqP; split=> [x /= fgz|x [_ /= [y _ <-]] []]. | |
have : z - f x \in g @` setT. | |
by rewrite inE /=; exists x=> //; rewrite -fgz addrC addKr. | |
rewrite inE /= => -[x' _ gzf]; exists (z - g x')%R => /=. | |
by exists x => //; rewrite gzf opprB addrC subrK. | |
rewrite /preimage /=; split; first by rewrite gzf opprB addrC subrK. | |
by rewrite gzf opprB addrC subrK -fgz addrC addKr. | |
rewrite /preimage /= => [fxfy gzf]. | |
by rewrite gzf -fxfy addrC subrK. | |
Qed. | |
Section nnsfun_functions. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Lemma cst_nnfun_subproof (x : {nonneg R}) : @IsNonNegFun T R (cst x%:num). | |
Proof. by split=> /=. Qed. | |
HB.instance Definition _ x := @cst_nnfun_subproof x. | |
Definition cst_nnsfun (r : {nonneg R}) := [the {nnsfun T >-> R} of cst r%:num]. | |
Definition nnsfun0 : {nnsfun T >-> R} := cst_nnsfun 0%R%:nng. | |
Lemma indic_nnfun_subproof (D : set T) : @IsNonNegFun T R (\1_D). | |
Proof. by split=> //=; rewrite /indic. Qed. | |
HB.instance Definition _ D := @indic_nnfun_subproof D. | |
HB.instance Definition _ D (mD : measurable D) : | |
@NonNegFun T R (mindic R mD) := NonNegFun.on (mindic R mD). | |
End nnsfun_functions. | |
Arguments nnsfun0 {d T R}. | |
Section nnfun_bin. | |
Variables (T : Type) (R : numDomainType) (f g : {nnfun T >-> R}). | |
Lemma add_nnfun_subproof : @IsNonNegFun T R (f \+ g). | |
Proof. by split => x; rewrite addr_ge0//; apply/fun_ge0. Qed. | |
HB.instance Definition _ := add_nnfun_subproof. | |
Lemma mul_nnfun_subproof : @IsNonNegFun T R (f \* g). | |
Proof. by split => x; rewrite mulr_ge0//; apply/fun_ge0. Qed. | |
HB.instance Definition _ := mul_nnfun_subproof. | |
Lemma max_nnfun_subproof : @IsNonNegFun T R (f \max g). | |
Proof. by split => x /=; rewrite /maxr; case: ifPn => _; apply: fun_ge0. Qed. | |
HB.instance Definition _ := max_nnfun_subproof. | |
End nnfun_bin. | |
Section nnsfun_bin. | |
Variables (d : measure_display) (T : measurableType d). | |
Variables (R : realType) (f g : {nnsfun T >-> R}). | |
HB.instance Definition _ := MeasurableFun.on (f \+ g). | |
Definition add_nnsfun := [the {nnsfun T >-> R} of f \+ g]. | |
HB.instance Definition _ := MeasurableFun.on (f \* g). | |
Definition mul_nnsfun := [the {nnsfun T >-> R} of f \* g]. | |
HB.instance Definition _ := MeasurableFun.on (f \max g). | |
Definition max_nnsfun := [the {nnsfun T >-> R} of f \max g]. | |
Definition indic_nnsfun A (mA : measurable A) := [the {nnsfun T >-> R} of mindic R mA]. | |
End nnsfun_bin. | |
Arguments add_nnsfun {d T R} _ _. | |
Arguments mul_nnsfun {d T R} _ _. | |
Arguments max_nnsfun {d T R} _ _. | |
Section nnsfun_iter. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (D : set T). | |
Variable f : {nnsfun T >-> R}^nat. | |
Definition sum_nnsfun n := \big[add_nnsfun/nnsfun0]_(i < n) f i. | |
Lemma sum_nnsfunE n t : sum_nnsfun n t = \sum_(i < n) (f i t). | |
Proof. by rewrite /sum_nnsfun; elim/big_ind2 : _ => [|x g y h <- <-|]. Qed. | |
Definition bigmax_nnsfun n := \big[max_nnsfun/nnsfun0]_(i < n) f i. | |
Lemma bigmax_nnsfunE n t : bigmax_nnsfun n t = \big[maxr/0]_(i < n) (f i t). | |
Proof. by rewrite /bigmax_nnsfun; elim/big_ind2 : _ => [|x g y h <- <-|]. Qed. | |
End nnsfun_iter. | |
Section nnsfun_cover. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d). | |
Variables (R : realType) (f : {nnsfun T >-> R}). | |
Lemma nnsfun_cover : | |
\big[setU/set0]_(i \in range f) (f @^-1` [set i]) = setT. | |
Proof. by rewrite fsbig_setU//= -subTset => x _; exists (f x). Qed. | |
Lemma nnsfun_coverT : | |
\big[setU/set0]_(i \in [set: R]) (f @^-1` [set i]) = setT. | |
Proof. | |
by rewrite -(fsbig_widen (range f)) ?nnsfun_cover//= => x [_ /= /preimage10->]. | |
Qed. | |
End nnsfun_cover. | |
#[global] Hint Extern 0 (measurable (_ @^-1` [set _])) => | |
solve [apply: measurable_sfunP] : core. | |
Lemma measurable_sfun_inP {d} {aT : measurableType d} {rT : realType} | |
(f : {mfun aT >-> rT}) D (y : rT) : | |
measurable D -> measurable (D `&` f @^-1` [set y]). | |
Proof. by move=> Dm; apply: measurableI. Qed. | |
#[global] Hint Extern 0 (measurable (_ `&` _ @^-1` [set _])) => | |
solve [apply: measurable_sfun_inP; assumption] : core. | |
#[global] Hint Extern 0 (finite_set _) => solve [apply: fimfunP] : core. | |
Section measure_fsbig. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d). | |
Variables (R : realType) (m : {measure set T -> \bar R}). | |
Lemma measure_fsbig (I : choiceType) (A : set I) (F : I -> set T) : | |
finite_set A -> | |
(forall i, A i -> measurable (F i)) -> trivIset A F -> | |
m (\big[setU/set0]_(i \in A) F i) = \sum_(i \in A) m (F i). | |
Proof. | |
move=> Afin Fm Ft. | |
by rewrite fsbig_finite// -measure_fin_bigcup// bigcup_fset_set. | |
Qed. | |
Lemma additive_nnsfunr (g f : {nnsfun T >-> R}) x : | |
\sum_(i \in range g) m (f @^-1` [set x] `&` (g @^-1` [set i])) = | |
m (f @^-1` [set x] `&` \big[setU/set0]_(i \in range g) (g @^-1` [set i])). | |
Proof. | |
rewrite -?measure_fsbig//. | |
- by rewrite !fsbig_finite//= big_distrr//. | |
- by move=> i Ai; apply: measurableI => //. | |
- exact/trivIset_setI/trivIset_preimage1. | |
Qed. | |
Lemma additive_nnsfunl (g f : {nnsfun T >-> R}) x : | |
\sum_(i \in range g) m (g @^-1` [set i] `&` (f @^-1` [set x])) = | |
m (\big[setU/set0]_(i \in range g) (g @^-1` [set i]) `&` f @^-1` [set x]). | |
Proof. by under eq_fsbigr do rewrite setIC; rewrite setIC additive_nnsfunr. Qed. | |
End measure_fsbig. | |
Section mulem_ge0. | |
Local Open Scope ereal_scope. | |
Let mulef_ge0 (R : realDomainType) x (f : R -> \bar R) : | |
(forall x, 0 <= f x) -> ((x < 0)%R -> f x = 0) -> 0 <= x%:E * f x. | |
Proof. | |
move=> A0 xA /=; have [x0|x0] := ltP x 0%R; first by rewrite (xA x0) mule0. | |
by rewrite mule_ge0. | |
Qed. | |
Lemma muleindic_ge0 d (T : measurableType d) (R : realDomainType) | |
(f : {nnfun T >-> R}) r z : 0 <= r%:E * (\1_(f @^-1` [set r]) z)%:E. | |
Proof. | |
apply: (@mulef_ge0 _ _ (fun r => (\1_(f @^-1` [set r]) z)%:E)). | |
by move=> x; rewrite lee_fin /indic. | |
by move=> r0; rewrite preimage_nnfun0// indic0. | |
Qed. | |
Lemma mulem_ge0 d (T : measurableType d) (R : realType) | |
(mu : {measure set T -> \bar R}) x (A : R -> set T) : | |
((x < 0)%R -> A x = set0) -> 0 <= x%:E * mu (A x). | |
Proof. | |
by move=> xA; rewrite (@mulef_ge0 _ _ (mu \o _))//= => /xA ->; rewrite measure0. | |
Qed. | |
Arguments mulem_ge0 {d T R mu x} A. | |
Lemma nnfun_mulem_ge0 d (T : measurableType d) (R : realType) | |
(mu : {measure set T -> \bar R})(f : {nnsfun T >-> R}) x : | |
0 <= x%:E * mu (f @^-1` [set x]). | |
Proof. | |
by apply: (mulem_ge0 (fun x => f @^-1` [set x])); exact: preimage_nnfun0. | |
Qed. | |
End mulem_ge0. | |
(**********************************) | |
(* Definition of Simple Integrals *) | |
(**********************************) | |
Section simple_fun_raw_integral. | |
Local Open Scope ereal_scope. | |
Variables (T : Type) (R : numDomainType) (mu : set T -> \bar R) (f : T -> R). | |
Definition sintegral := \sum_(x \in [set: R]) x%:E * mu (f @^-1` [set x]). | |
Lemma sintegralET : | |
sintegral = \sum_(x \in [set: R]) x%:E * mu (f @^-1` [set x]). | |
Proof. by []. Qed. | |
End simple_fun_raw_integral. | |
#[global] Hint Extern 0 (is_true (0 <= (_ : {measure set _ -> \bar _}) _)%E) => | |
solve [apply: measure_ge0] : core. | |
Section sintegral_lemmas. | |
Variables (d : measure_display) (T : measurableType d). | |
Variables (R : realType) (mu : {measure set T -> \bar R}). | |
Local Open Scope ereal_scope. | |
Lemma sintegralE f : | |
sintegral mu f = \sum_(x \in range f) x%:E * mu (f @^-1` [set x]). | |
Proof. | |
rewrite (fsbig_widen (range f) setT)//= => x [_ Nfx] /=. | |
by rewrite preimage10// measure0 mule0. | |
Qed. | |
Lemma sintegral0 : sintegral mu (cst 0%R) = 0. | |
Proof. | |
rewrite sintegralE fsbig1// => r _; rewrite preimage_cst. | |
by case: ifPn => [/[!inE] <-|]; rewrite ?mul0e// measure0 mule0. | |
Qed. | |
Lemma sintegral_ge0 (f : {nnsfun T >-> R}) : 0 <= sintegral mu f. | |
Proof. by rewrite sintegralE fsume_ge0// => r _; exact: nnfun_mulem_ge0. Qed. | |
Lemma sintegral_indic (A : set T) : sintegral mu \1_A = mu A. | |
Proof. | |
rewrite sintegralE (fsbig_widen _ [set 0%R; 1%R]) => //; last 2 first. | |
- exact: image_indic_sub. | |
- by move=> t [[] -> /= /preimage10->]; rewrite measure0 mule0. | |
have N01 : (0 <> 1:> R)%R by move=> /esym/eqP; rewrite oner_eq0. | |
rewrite fsbigU//=; last by move=> t [->]//. | |
rewrite !fsbig_set1 mul0e add0e mul1e. | |
by rewrite preimage_indic ifT ?inE// ifN ?notin_set. | |
Qed. | |
(* NB: not used *) | |
Lemma sintegralEnnsfun (f : {nnsfun T >-> R}) : sintegral mu f = | |
(\sum_(x \in [set r | r > 0]%R) (x%:E * mu (f @^-1` [set x])))%E. | |
Proof. | |
rewrite (fsbig_widen _ setT) ?sintegralET//. | |
move=> x [_ /=]; case: ltgtP => //= [xlt0 _|<-]; last by rewrite mul0e. | |
rewrite preimage10 ?measure0 ?mule0//= => -[t _]. | |
by apply/eqP; apply: contra_ltN xlt0 => /eqP<-. | |
Qed. | |
End sintegral_lemmas. | |
Lemma eq_sintegral d (T : measurableType d) (R : numDomainType) | |
(mu : set T -> \bar R) g f : | |
f =1 g -> sintegral mu f = sintegral mu g. | |
Proof. by move=> /funext->. Qed. | |
Arguments eq_sintegral {d T R mu} g. | |
Section sintegralrM. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d). | |
Variables (R : realType) (m : {measure set T -> \bar R}). | |
Variables (r : R) (f : {nnsfun T >-> R}). | |
Lemma sintegralrM : sintegral m (cst r \* f)%R = r%:E * sintegral m f. | |
Proof. | |
have [->|r0] := eqVneq r 0%R. | |
by rewrite mul0e (eq_sintegral (cst 0%R)) ?sintegral0// => x/=; rewrite mul0r. | |
rewrite !sintegralET. | |
transitivity (\sum_(x \in [set: R]) x%:E * m (f @^-1` [set x / r])). | |
by apply: eq_fsbigr => x; rewrite preimage_cstM. | |
transitivity (\sum_(x \in [set: R]) r%:E * (x%:E * m (f @^-1` [set x]))). | |
rewrite (reindex_fsbigT (fun x => r * x)%R)//; last first. | |
by exists ( *%R r ^-1)%R; [exact: mulKf|exact: mulVKf]. | |
by apply: eq_fsbigr => x; rewrite mulrAC divrr ?unitfE// mul1r muleA EFinM. | |
by rewrite ge0_mule_fsumr// => x; exact: nnfun_mulem_ge0. | |
Qed. | |
End sintegralrM. | |
Section sintegralD. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (m : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f g : {nnsfun T >-> R}). | |
Lemma sintegralD : sintegral m (f \+ g)%R = sintegral m f + sintegral m g. | |
Proof. | |
rewrite !sintegralE; set F := f @` _; set G := g @` _; set FG := _ @` _. | |
pose pf x := f @^-1` [set x]; pose pg y := g @^-1` [set y]. | |
transitivity (\sum_(z \in FG) z%:E * \sum_(a \in F) m (pf a `&` pg (z - a)%R)). | |
apply: eq_fsbigr => z _; rewrite preimage_add -fsbig_setU// measure_fsbig//. | |
by move=> x Fx; apply: measurableI. | |
exact/trivIset_setIr/trivIset_preimage1. | |
under eq_fsbigr do rewrite ge0_mule_fsumr//; rewrite exchange_fsum//. | |
transitivity (\sum_(x \in F) \sum_(y \in G) (x + y)%:E * m (pf x `&` pg y)). | |
apply: eq_fsbigr => x _; rewrite /pf /pg (fsbig_widen G setT)//=; last first. | |
by move=> y [_ /= /preimage10->]; rewrite setI0 measure0 mule0. | |
rewrite (fsbig_widen FG setT)//=; last first. | |
move=> z [_ /= FGz]; rewrite [X in m X](_ : _ = set0) ?measure0 ?mule0//. | |
rewrite -subset0 => //= {x}i /= [<-] /(canLR (@addrNK _ _)). | |
by apply: contra_not FGz => <-; exists i; rewrite //= addrC. | |
rewrite (reindex_fsbigT (+%R x))//=. | |
by apply: eq_fsbigr => y; rewrite addrC addrK. | |
transitivity (\sum_(x \in F) \sum_(y \in G) x%:E * m (pf x `&` pg y) + | |
\sum_(x \in F) \sum_(y \in G) y%:E * m (pf x `&` pg y)). | |
do 2![rewrite -fsbig_split//; apply: eq_fsbigr => _ /set_mem [? _ <-]]. | |
by rewrite EFinD ge0_muleDl// ?lee_fin. | |
congr (_ + _)%E; last rewrite exchange_fsum//; apply: eq_fsbigr => x _. | |
by rewrite -ge0_mule_fsumr// additive_nnsfunr nnsfun_cover setIT. | |
by rewrite -ge0_mule_fsumr// additive_nnsfunl nnsfun_cover setTI. | |
Qed. | |
End sintegralD. | |
Section le_sintegral. | |
Variables (d : measure_display) (T : measurableType d). | |
Variables (R : realType) (m : {measure set T -> \bar R}). | |
Variables f g : {nnsfun T >-> R}. | |
Hypothesis fg : forall x, f x <= g x. | |
Let fgnn : @IsNonNegFun T R (g \- f). | |
Proof. by split=> x; rewrite subr_ge0 fg. Qed. | |
#[local] HB.instance Definition _ := fgnn. | |
Lemma le_sintegral : (sintegral m f <= sintegral m g)%E. | |
Proof. | |
have gfgf : g =1 f \+ (g \- f) by move=> x /=; rewrite addrC subrK. | |
by rewrite (eq_sintegral _ _ gfgf) sintegralD// lee_addl // sintegral_ge0. | |
Qed. | |
End le_sintegral. | |
Lemma is_cvg_sintegral d (T : measurableType d) (R : realType) | |
(m : {measure set T -> \bar R}) (f : {nnsfun T >-> R}^nat) : | |
(forall x, nondecreasing_seq (f ^~ x)) -> cvg (sintegral m \o f). | |
Proof. | |
move=> nd_f; apply/cvg_ex; eexists; apply/ereal_nondecreasing_cvg => a b ab. | |
by apply: le_sintegral => // => x; exact/nd_f. | |
Qed. | |
Definition proj_nnsfun d (T : measurableType d) (R : realType) | |
(f : {nnsfun T >-> R}) (A : set T) (mA : measurable A) := | |
mul_nnsfun f (indic_nnsfun R mA). | |
Definition mrestrict d (T : measurableType d) (R : realType) (f : {nnsfun T >-> R}) | |
A (mA : measurable A) : f \_ A = proj_nnsfun f mA. | |
Proof. | |
apply/funext => x /=; rewrite /patch mindicE. | |
by case: ifP; rewrite (mulr0, mulr1). | |
Qed. | |
Definition scale_nnsfun d (T : measurableType d) (R : realType) | |
(f : {nnsfun T >-> R}) (k : R) (k0 : 0 <= k) := | |
mul_nnsfun (cst_nnsfun T (NngNum k0)) f. | |
Section sintegral_nondecreasing_limit_lemma. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (mu : {measure set T -> \bar R}). | |
Variables (g : {nnsfun T >-> R}^nat) (f : {nnsfun T >-> R}). | |
Hypothesis nd_g : forall x, nondecreasing_seq (g^~ x). | |
Hypothesis gf : forall x, cvg (g^~ x) -> f x <= lim (g^~ x). | |
Let fleg c : (set T)^nat := fun n => [set x | c * f x <= g n x]. | |
Let nd_fleg c : {homo fleg c : n m / (n <= m)%N >-> (n <= m)%O}. | |
Proof. | |
move=> n m nm; rewrite /fleg; apply/subsetPset => x /= cfg. | |
by move: cfg => /le_trans; apply; exact: nd_g. | |
Qed. | |
Let mfleg c n : measurable (fleg c n). | |
Proof. | |
rewrite /fleg [X in _ X](_ : _ = \big[setU/set0]_(y <- fset_set (range f)) | |
\big[setU/set0]_(x <- fset_set (range (g n)) | c * y <= x) | |
(f @^-1` [set y] `&` (g n @^-1` [set x]))). | |
apply: bigsetU_measurable => r _; apply: bigsetU_measurable => r' crr'. | |
by apply: measurableI; apply/measurable_sfunP. | |
rewrite predeqE => t; split => [/= cfgn|]. | |
- rewrite -bigcup_set; exists (f t); first by rewrite /= in_fset_set//= mem_set. | |
rewrite -bigcup_set_cond; exists (g n t) => //=. | |
by rewrite in_fset_set// mem_set. | |
- rewrite -bigcup_fset_set// => -[r [x _ fxr]]. | |
rewrite -bigcup_fset_set_cond// => -[r' [[x' _ gnx'r'] crr']]. | |
by rewrite /preimage/= => -[-> ->]. | |
Qed. | |
Let g1 c n : {nnsfun T >-> R} := proj_nnsfun f (mfleg c n). | |
Let le_ffleg c : {homo (fun p x => g1 c p x): m n / (m <= n)%N >-> (m <= n)%O}. | |
Proof. | |
move=> m n mn; apply/asboolP => t; rewrite /g1/= ler_pmul// 2!mindicE/= ler_nat. | |
have [|//] := boolP (t \in fleg c m); rewrite inE => cnt. | |
by have := nd_fleg c mn => /subsetPset/(_ _ cnt) cmt; rewrite mem_set. | |
Qed. | |
Let bigcup_fleg c : c < 1 -> \bigcup_n fleg c n = setT. | |
Proof. | |
move=> c1; rewrite predeqE => x; split=> // _. | |
have := @fun_ge0 _ _ f x; rewrite le_eqVlt => /predU1P[|] gx0. | |
by exists O => //; rewrite /fleg /=; rewrite -gx0 mulr0 fun_ge0. | |
have [cf|df] := pselect (cvg (g^~ x)). | |
have cfg : lim (g^~ x) > c * f x. | |
by rewrite (lt_le_trans _ (gf cf)) // gtr_pmull. | |
suff [n cfgn] : exists n, g n x >= c * f x by exists n. | |
move/(@lt_lim _ _ _ (nd_g x) cf) : cfg => [n _ nf]. | |
by exists n; apply: nf => /=. | |
have /cvgPpinfty/(_ (c * f x))[n _ ncfgn]:= nondecreasing_dvg_lt (nd_g x) df. | |
by exists n => //; rewrite /fleg /=; apply: ncfgn => /=. | |
Qed. | |
Local Open Scope ereal_scope. | |
Lemma nd_sintegral_lim_lemma : sintegral mu f <= lim (sintegral mu \o g). | |
Proof. | |
suff ? : forall c, (0 < c < 1)%R -> | |
c%:E * sintegral mu f <= lim (sintegral mu \o g). | |
by apply/lee_mul01Pr => //; exact: sintegral_ge0. | |
move=> c /andP[c0 c1]. | |
have cg1g n : c%:E * sintegral mu (g1 c n) <= sintegral mu (g n). | |
rewrite -sintegralrM (_ : (_ \* _)%R = scale_nnsfun (g1 c n) (ltW c0)) //. | |
apply: le_sintegral => // t. | |
suff : forall m x, (c * g1 c m x <= g m x)%R by move=> /(_ n t). | |
move=> m x; rewrite /g1 /proj_nnsfun/= mindicE. | |
by have [|] := boolP (_ \in _); [rewrite inE mulr1|rewrite 2!mulr0 fun_ge0]. | |
suff {cg1g}<- : lim (fun n => sintegral mu (g1 c n)) = sintegral mu f. | |
have is_cvg_g1 : cvg (fun n => sintegral mu (g1 c n)). | |
by apply: is_cvg_sintegral => //= x m n /(le_ffleg c)/lefP/(_ x). | |
rewrite -ereal_limrM // lee_lim//; first exact: ereal_is_cvgrM. | |
- by apply: is_cvg_sintegral => // m n mn; apply/lefP => t; apply: nd_g. | |
- by apply: nearW; exact: cg1g. | |
suff : (fun n => sintegral mu (g1 c n)) --> sintegral mu f by apply/cvg_lim. | |
rewrite [X in X --> _](_ : _ = fun n => \sum_(x <- fset_set (range f)) | |
x%:E * mu (f @^-1` [set x] `&` fleg c n)); last first. | |
rewrite funeqE => n; rewrite sintegralE. | |
transitivity (\sum_(x \in range f) x%:E * mu (g1 c n @^-1` [set x])). | |
apply: eq_fbigl => r. | |
do 2 (rewrite in_finite_support; last exact/finite_setIl). | |
apply/idP/idP. | |
rewrite in_setI => /andP[]; rewrite inE/= => -[x _]; rewrite mindicE. | |
have [_|xcn] := boolP (_ \in _). | |
by rewrite mulr1 => <-; rewrite !inE/= => ?; split => //; exists x. | |
by rewrite mulr0 => /esym ->; rewrite !inE/= mul0e. | |
rewrite in_setI => /andP[]; rewrite inE => -[x _ <-]. | |
rewrite !inE/= => h; split=> //; move: h; rewrite mindicE => /eqP. | |
rewrite mule_eq0 negb_or => /andP[_]; set S := (X in mu X) => mS0. | |
suff : S !=set0 by move=> [y yx]; exists y. | |
by apply/set0P; apply: contra mS0 => /eqP ->; rewrite measure0. | |
rewrite fsbig_finite//=; apply: eq_fbigr => r. | |
rewrite in_fset_set// inE => -[t _ ftr _]. | |
have [->|r0] := eqVneq r 0%R; first by rewrite 2!mul0e. | |
congr (_ * mu _); apply/seteqP; split => x. | |
rewrite /preimage/= mindicE. | |
have [|_] := boolP (_ \in _); first by rewrite mulr1 inE. | |
by rewrite mulr0 => /esym/eqP; rewrite (negbTE r0). | |
by rewrite /preimage/= => -[fxr cnx]; rewrite mindicE mem_set// mulr1. | |
rewrite sintegralE fsbig_finite//=; apply: ereal_lim_sum => [r n _|r _]. | |
apply: (@mulem_ge0 _ _ _ _ _ (fun x => f @^-1` [set x] `&` fleg c n)) => r0. | |
by rewrite preimage_nnfun0// set0I. | |
apply: ereal_cvgrM => //; rewrite [X in _ --> X](_ : _ = | |
mu (\bigcup_n (f @^-1` [set r] `&` fleg c n))); last first. | |
by rewrite -setI_bigcupr bigcup_fleg// setIT. | |
have ? k i : measurable (f @^-1` [set k] `&` fleg c i) by exact: measurableI. | |
apply: cvg_mu_inc => //; first exact: bigcupT_measurable. | |
move=> n m nm; apply/subsetPset; apply: setIS. | |
by move/(nd_fleg c) : nm => /subsetPset. | |
Unshelve. all: by end_near. Qed. | |
End sintegral_nondecreasing_limit_lemma. | |
Section sintegral_nondecreasing_limit. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (mu : {measure set T -> \bar R}). | |
Variables (g : {nnsfun T >-> R}^nat) (f : {nnsfun T >-> R}). | |
Hypothesis nd_g : forall x, nondecreasing_seq (g^~ x). | |
Hypothesis gf : forall x, g ^~ x --> f x. | |
Let limg x : lim (g^~x) = f x. | |
Proof. by apply/cvg_lim; [exact: Rhausdorff| exact: gf]. Qed. | |
Lemma nd_sintegral_lim : sintegral mu f = lim (sintegral mu \o g). | |
Proof. | |
apply/eqP; rewrite eq_le; apply/andP; split. | |
by apply: nd_sintegral_lim_lemma => // x; rewrite -limg. | |
have : nondecreasing_seq (sintegral mu \o g). | |
by move=> m n mn; apply: le_sintegral => // x; exact/nd_g. | |
move=> /ereal_nondecreasing_cvg/cvg_lim -> //. | |
apply: ub_ereal_sup => _ [n _ <-] /=; apply: le_sintegral => // x. | |
rewrite -limg // (nondecreasing_cvg_le (nd_g x)) //. | |
by apply/cvg_ex; exists (f x); exact: gf. | |
Qed. | |
End sintegral_nondecreasing_limit. | |
Section integral. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Implicit Types (f g : T -> \bar R) (D : set T). | |
Let nnintegral mu f := ereal_sup [set sintegral mu h | | |
h in [set h : {nnsfun T >-> R} | forall x, (h x)%:E <= f x]]. | |
Definition integral mu D f (g := f \_ D) := | |
nnintegral mu (g ^\+) - nnintegral mu (g ^\-). | |
Variable (mu : {measure set T -> \bar R}). | |
Let nnintegral_ge0 f : (forall x, 0 <= f x) -> 0 <= nnintegral mu f. | |
Proof. | |
by move=> f0; apply: ereal_sup_ub; exists nnsfun0; last by rewrite sintegral0. | |
Qed. | |
Let eq_nnintegral g f : f =1 g -> nnintegral mu f = nnintegral mu g. | |
Proof. by move=> /funext->. Qed. | |
Let nnintegral0 : nnintegral mu (cst 0) = 0. | |
Proof. | |
rewrite /nnintegral /=; apply/eqP; rewrite eq_le; apply/andP; split; last first. | |
apply/ereal_sup_ub; exists nnsfun0; last by rewrite sintegral0. | |
by []. | |
apply/ub_ereal_sup => /= x [f /= f0 <-]; have {}f0 : forall x, f x = 0%R. | |
by move=> y; apply/eqP; rewrite eq_le -2!lee_fin f0 //= lee_fin//. | |
by rewrite (eq_sintegral (@nnsfun0 _ T R)) ?sintegral0. | |
Qed. | |
Let nnintegral_nnsfun (h : {nnsfun T >-> R}) : | |
nnintegral mu (EFin \o h) = sintegral mu h. | |
Proof. | |
apply/eqP; rewrite eq_le; apply/andP; split. | |
by apply/ub_ereal_sup => /= _ -[g /= gh <-]; rewrite le_sintegral. | |
by apply: ereal_sup_ub => /=; exists h. | |
Qed. | |
Local Notation "\int_ ( x 'in' D ) F" := (integral mu D (fun x => F)) | |
(at level 36, F at level 36, x, D at level 50, | |
format "'[' \int_ ( x 'in' D ) '/ ' F ']'"). | |
Lemma eq_integral D g f : {in D, f =1 g} -> | |
\int_(x in D) f x = \int_(x in D) g x. | |
Proof. by rewrite /integral => /eq_restrictP->. Qed. | |
Lemma ge0_integralE D f : (forall x, D x -> 0 <= f x) -> | |
\int_(x in D) f x = nnintegral mu (f \_ D). | |
Proof. | |
move=> f0; rewrite /integral funeneg_restrict funepos_restrict. | |
have /eq_restrictP-> := ge0_funeposE f0. | |
have /eq_restrictP-> := ge0_funenegE f0. | |
by rewrite erestrict0 nnintegral0 sube0. | |
Qed. | |
Lemma ge0_integralTE f : (forall x, 0 <= f x) -> | |
\int_(x in setT) f x = nnintegral mu f. | |
Proof. by move=> f0; rewrite ge0_integralE// patch_setT. Qed. | |
Lemma integralE D f : | |
\int_(x in D) f x = \int_(x in D) (f ^\+ x) - \int_(x in D) f ^\- x. | |
Proof. | |
by rewrite [in LHS]/integral funepos_restrict funeneg_restrict -!ge0_integralE. | |
Qed. | |
Lemma integral0 D : \int_(x in D) (cst 0 x) = 0. | |
Proof. by rewrite ge0_integralE// erestrict0 nnintegral0. Qed. | |
Lemma integral_ge0 D f : (forall x, D x -> 0 <= f x) -> 0 <= \int_(x in D) f x. | |
Proof. | |
move=> f0; rewrite ge0_integralE// nnintegral_ge0// => x. | |
by rewrite /patch; case: ifP; rewrite // inE => /f0->. | |
Qed. | |
Lemma integral_nnsfun D (mD : measurable D) (h : {nnsfun T >-> R}) : | |
\int_(x in D) (h x)%:E = sintegral mu (h \_ D). | |
Proof. | |
rewrite mrestrict -nnintegral_nnsfun// -mrestrict ge0_integralE ?comp_patch//. | |
by move=> x Dx /=; rewrite lee_fin; exact: fun_ge0. | |
Qed. | |
End integral. | |
Notation "\int [ mu ]_ ( x 'in' D ) f" := (integral mu D (fun x => f)) : ereal_scope. | |
Notation "\int [ mu ]_ x f" := ((integral mu setT (fun x => f)))%E : ereal_scope. | |
Arguments eq_integral {d T R mu D} g. | |
Section eq_measure_integral. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) | |
(D : set T). | |
Implicit Types m : {measure set T -> \bar R}. | |
Let eq_measure_integral0 m2 m1 (f : T -> \bar R) : | |
(forall A, measurable A -> A `<=` D -> m1 A = m2 A) -> | |
[set sintegral m1 h | h in | |
[set h : {nnsfun T >-> R} | (forall x, (h x)%:E <= (f \_ D) x)]] `<=` | |
[set sintegral m2 h | h in | |
[set h : {nnsfun T >-> R} | (forall x, (h x)%:E <= (f \_ D) x)]]. | |
Proof. | |
move=> m12 _ [h hfD <-] /=; exists h => //; apply: eq_fsbigr => r _. | |
have [hrD|hrD] := pselect (h @^-1` [set r] `<=` D); first by rewrite m12. | |
suff : r = 0%R by move=> ->; rewrite !mul0e. | |
apply: contra_notP hrD => /eqP r0 t/= htr. | |
have := hfD t. | |
rewrite /patch/=; case: ifPn; first by rewrite inE. | |
move=> tD. | |
move: r0; rewrite -htr => ht0. | |
by rewrite le_eqVlt eqe (negbTE ht0)/= lte_fin// ltNge// fun_ge0. | |
Qed. | |
Lemma eq_measure_integral m2 m1 (f : T -> \bar R) : | |
(forall A, measurable A -> A `<=` D -> m1 A = m2 A) -> | |
\int[m1]_(x in D) f x = \int[m2]_(x in D) f x. | |
Proof. | |
move=> m12; rewrite /integral funepos_restrict funeneg_restrict. | |
by congr (ereal_sup _ - ereal_sup _)%E; rewrite eqEsubset; split; | |
apply: eq_measure_integral0 => A /m12 // /[apply]. | |
Qed. | |
End eq_measure_integral. | |
Arguments eq_measure_integral {d T R D} m2 {m1 f}. | |
Section integral_measure_zero. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Let sintegral_measure_zero (f : T -> R) : sintegral mzero f = 0. | |
Proof. by rewrite sintegralE big1// => r _ /=; rewrite /mzero mule0. Qed. | |
Lemma integral_measure_zero (D : set T) (f : T -> \bar R) : | |
\int[mzero]_(x in D) f x = 0. | |
Proof. | |
have h g : (forall x, 0 <= g x) -> [set sintegral mzero h | | |
h in [set h : {nnsfun T >-> R} | forall x, (h x)%:E <= g x]] = [set 0]. | |
move=> g0; apply/seteqP; split => [_ [h/= Dt <-]|x -> /=]. | |
by rewrite sintegral_measure_zero. | |
by exists (cst_nnsfun _ (@NngNum _ 0 (lexx _))). | |
rewrite integralE !ge0_integralE//= h ?ereal_sup1; last first. | |
by move=> r; rewrite erestrict_ge0. | |
by rewrite h ?ereal_sup1 ?subee// => r; rewrite erestrict_ge0. | |
Qed. | |
End integral_measure_zero. | |
Section domain_change. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) | |
(mu : {measure set T -> \bar R}). | |
Lemma integral_mkcond D f : \int[mu]_(x in D) f x = \int[mu]_x (f \_ D) x. | |
Proof. by rewrite /integral patch_setT. Qed. | |
Lemma integralT_nnsfun (h : {nnsfun T >-> R}) : | |
\int[mu]_x (h x)%:E = sintegral mu h. | |
Proof. by rewrite integral_nnsfun// patch_setT. Qed. | |
Lemma integral_mkcondr D P f : | |
\int[mu]_(x in D `&` P) f x = \int[mu]_(x in D) (f \_ P) x. | |
Proof. by rewrite integral_mkcond [RHS]integral_mkcond patch_setI. Qed. | |
Lemma integral_mkcondl D P f : | |
\int[mu]_(x in P `&` D) f x = \int[mu]_(x in D) (f \_ P) x. | |
Proof. by rewrite setIC integral_mkcondr. Qed. | |
End domain_change. | |
Arguments integral_mkcond {d T R mu} D f. | |
Section nondecreasing_integral_limit. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (mu : {measure set T -> \bar R}) (f : T -> \bar R) | |
(g : {nnsfun T >-> R}^nat). | |
Hypothesis f0 : forall x, 0 <= f x. | |
Hypothesis mf : measurable_fun setT f. | |
Hypothesis nd_g : forall x, nondecreasing_seq (g^~x). | |
Hypothesis gf : forall x, EFin \o g^~x --> f x. | |
Local Open Scope ereal_scope. | |
Lemma nd_ge0_integral_lim : \int[mu]_x f x = lim (sintegral mu \o g). | |
Proof. | |
rewrite ge0_integralTE//. | |
apply/eqP; rewrite eq_le; apply/andP; split; last first. | |
apply: ereal_lim_le; first exact: is_cvg_sintegral. | |
near=> n; apply: ereal_sup_ub; exists (g n) => //= => x. | |
have <- : lim (EFin \o g ^~ x) = f x by apply/cvg_lim => //; exact: gf. | |
have : (EFin \o g ^~ x) --> ereal_sup (range (EFin \o g ^~ x)). | |
by apply: ereal_nondecreasing_cvg => p q pq /=; rewrite lee_fin; exact/nd_g. | |
by move/cvg_lim => -> //; apply: ereal_sup_ub; exists n. | |
have := leey (\int[mu]_x (f x)). | |
rewrite le_eqVlt => /predU1P[|] mufoo; last first. | |
have : \int[mu]_x (f x) \is a fin_num. | |
by rewrite ge0_fin_numE//; exact: integral_ge0. | |
rewrite ge0_integralTE// => /ub_ereal_sup_adherent h. | |
apply: lee_adde => e; have {h} [/= _ [G Gf <-]] := h _ [gt0 of e%:num]. | |
rewrite EFinN lte_subl_addr// => fGe. | |
have : forall x, cvg (g^~ x) -> (G x <= lim (g ^~ x))%R. | |
move=> x cg; rewrite -lee_fin -(EFin_lim cg). | |
by have /cvg_lim gxfx := @gf x; rewrite (le_trans (Gf _))// gxfx. | |
move=> /(nd_sintegral_lim_lemma mu nd_g)/(lee_add2r e%:num%:E). | |
by apply: le_trans; exact: ltW. | |
suff : lim (sintegral mu \o g) = +oo. | |
by move=> ->; rewrite -ge0_integralTE// mufoo. | |
apply/eq_pinftyP => r r0. | |
have [G [Gf rG]] : exists h : {nnsfun T >-> R}, | |
(forall x, (h x)%:E <= f x) /\ (r%:E <= sintegral mu h). | |
have : r%:E < \int[mu]_x (f x). | |
move: (mufoo) => /eq_pinftyP/(_ _ (addr_gt0 r0 r0)). | |
by apply: lt_le_trans => //; rewrite lte_fin ltr_addr. | |
rewrite ge0_integralTE// => /ereal_sup_gt[x [/= G Gf Gx rx]]. | |
by exists G; split => //; rewrite (le_trans (ltW rx)) // Gx. | |
have : forall x, cvg (g^~ x) -> (G x <= lim (g^~ x))%R. | |
move=> x cg; rewrite -lee_fin -(EFin_lim cg). | |
by have /cvg_lim gxfx := @gf x; rewrite (le_trans (Gf _)) // gxfx. | |
by move/(nd_sintegral_lim_lemma mu nd_g) => Gg; rewrite (le_trans rG). | |
Unshelve. all: by end_near. Qed. | |
End nondecreasing_integral_limit. | |
Section dyadic_interval. | |
Variable R : realType. | |
Definition dyadic_itv n k : interval R := | |
`[(k%:R * 2 ^- n), (k.+1%:R * 2 ^- n)[. | |
Local Notation I := dyadic_itv. | |
Lemma dyadic_itv_subU n k : [set` I n k] `<=` | |
[set` I n.+1 k.*2] `|` [set` I n.+1 k.*2.+1]. | |
Proof. | |
move=> r /=; rewrite in_itv /= => /andP[Ir rI]. | |
have [rk|rk] := ltP r (k.*2.+1%:R * (2%:R ^- n.+1)); [left|right]. | |
- rewrite in_itv /= rk andbT (le_trans _ Ir)// -muln2. | |
rewrite natrM exprS invrM ?unitfE// ?expf_neq0// -mulrA (mulrCA 2). | |
by rewrite divrr ?unitfE// mulr1. | |
- rewrite in_itv /= rk /= (lt_le_trans rI)// -doubleS. | |
rewrite -muln2 natrM exprS invrM ?unitfE// ?expf_neq0// -mulrA (mulrCA 2). | |
by rewrite divrr ?unitfE// mulr1. | |
Qed. | |
Lemma bigsetU_dyadic_itv n : `[n%:R, n.+1%:R[%classic = | |
\big[setU/set0]_(n * 2 ^ n.+1 <= k < n.+1 * 2 ^ n.+1) [set` I n.+1 k]. | |
Proof. | |
rewrite predeqE => r; split => [/= /[!in_itv]/= /andP[nr rn1]|]. | |
- rewrite -bigcup_set /=; exists `|floor (r * 2 ^+ n.+1)|%N. | |
rewrite /= mem_index_iota; apply/andP; split. | |
rewrite -ltez_nat gez0_abs ?floor_ge0; last first. | |
by rewrite mulr_ge0// (le_trans _ nr). | |
apply: (@le_trans _ _ (floor (n * 2 ^ n.+1)%:R)); last first. | |
by apply: le_floor; rewrite natrM natrX ler_pmul2r. | |
by rewrite floor_natz intz. | |
rewrite -ltz_nat gez0_abs; last first. | |
by rewrite floor_ge0 mulr_ge0// (le_trans _ nr). | |
rewrite -(@ltr_int R) (le_lt_trans (floor_le _))//. | |
by rewrite PoszM intrM -natrX ltr_pmul2r. | |
rewrite /= in_itv /=; apply/andP; split. | |
rewrite ler_pdivr_mulr// (le_trans _ (floor_le _))//. | |
by rewrite -(@gez0_abs (floor _))// floor_ge0 mulr_ge0// (le_trans _ nr). | |
rewrite ltr_pdivl_mulr// (lt_le_trans (lt_succ_Rfloor _))// RfloorE. | |
rewrite -[in leRHS]addn1 natrD ler_add2r// -(@gez0_abs (floor _))// floor_ge0. | |
by rewrite mulr_ge0// (le_trans _ nr). | |
- rewrite -bigcup_set => -[/= k] /[!mem_index_iota] /andP[nk kn]. | |
rewrite in_itv /= => /andP[knr rkn]; rewrite in_itv /=; apply/andP; split. | |
by rewrite (le_trans _ knr)// ler_pdivl_mulr// -natrX -natrM ler_nat. | |
by rewrite (lt_le_trans rkn)// ler_pdivr_mulr// -natrX -natrM ler_nat. | |
Qed. | |
Lemma dyadic_itv_image n T (f : T -> \bar R) x : | |
(n%:R%:E <= f x < n.+1%:R%:E)%E -> | |
exists k, (2 ^ n.+1 * n <= k < 2 ^ n.+1 * n.+1)%N /\ | |
f x \in EFin @` [set` I n.+1 k]. | |
Proof. | |
move=> fxn; have fxfin : f x \is a fin_num. | |
by rewrite fin_numE; move: fxn; case: (f x) => // /andP[]. | |
have : f x \in EFin @` `[n%:R, n.+1%:R[%classic. | |
rewrite inE /=; exists (fine (f x)); last by rewrite fineK. | |
by rewrite in_itv /= -lee_fin -lte_fin (fineK fxfin). | |
rewrite (bigsetU_dyadic_itv n) inE /= => -[r]; rewrite -bigcup_set => -[k /=]. | |
rewrite mem_index_iota => nk Ir rfx. | |
by exists k; split; [rewrite !(mulnC (2 ^ n.+1)%N)|rewrite !inE /=; exists r]. | |
Qed. | |
End dyadic_interval. | |
Section approximation. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (D : set T) (mD : measurable D). | |
Variables (f : T -> \bar R) (mf : measurable_fun D f). | |
Local Notation I := (@dyadic_itv R). | |
Let A n k := if (k < n * 2 ^ n)%N then | |
D `&` [set x | f x \in EFin @` [set` I n k]] else set0. | |
Let B n := D `&` [set x | n%:R%:E <= f x]%E. | |
Definition approx : (T -> R)^nat := fun n x => | |
\sum_(k < n * 2 ^ n) k%:R * 2 ^- n * (x \in A n k)%:R + | |
n%:R * (x \in B n)%:R. | |
(* technical properties of the sets A and B *) | |
Let mA n k : measurable (A n k). | |
Proof. | |
rewrite /A; case: ifPn => [kn|_]//; rewrite -preimage_comp. | |
by apply: mf => //; apply/measurable_EFin; apply: measurable_itv. | |
Qed. | |
Let trivIsetA n : trivIset setT (A n). | |
Proof. | |
apply/trivIsetP => i j _ _. | |
wlog : i j / (i < j)%N. | |
move=> h; rewrite neq_lt => /orP[ij|ji]. | |
by apply: h => //; rewrite lt_eqF. | |
by rewrite setIC; apply: h => //; rewrite lt_eqF. | |
move=> ij _. | |
rewrite /A; case: ifPn => /= ni; last by rewrite set0I. | |
case: ifPn => /= nj; last by rewrite setI0. | |
rewrite predeqE => t; split => // -[/=] [_]. | |
rewrite inE => -[r /=]; rewrite in_itv /= => /andP[r1 r2] rft [_]. | |
rewrite inE => -[s /=]; rewrite in_itv /= => /andP[s1 s2]. | |
rewrite -rft => -[sr]; rewrite {}sr {s} in s1 s2. | |
have := le_lt_trans s1 r2. | |
by rewrite ltr_pmul2r// ltr_nat ltnS leqNgt ij. | |
Qed. | |
Let f0_A0 n (i : 'I_(n * 2 ^ n)) x : f x = 0%:E -> i != O :> nat -> | |
x \in A n i = false. | |
Proof. | |
move=> fx0 i0; apply/negbTE; rewrite notin_set /A ltn_ord /= => -[_]. | |
rewrite inE /= => -[r /=]; rewrite in_itv /= => /andP[r1 r2]. | |
rewrite fx0 => -[r0]; move: r1 r2; rewrite {}r0 {r} => + r2. | |
by rewrite ler_pdivr_mulr// mul0r lern0; exact/negP. | |
Qed. | |
Let fgen_A0 n x (i : 'I_(n * 2 ^ n)) : (n%:R%:E <= f x)%E -> | |
x \in A n i = false. | |
Proof. | |
move=> fxn; apply/negbTE; rewrite /A ltn_ord. | |
rewrite notin_set => /= -[_]; apply/negP. | |
rewrite notin_set /= => -[r /=]. | |
rewrite in_itv /= => /andP[r1 r2] rfx. | |
move: fxn; rewrite -rfx lee_fin; apply/negP. | |
rewrite -ltNge (lt_le_trans r2)// -natrX ler_pdivr_mulr//. | |
by rewrite -natrM ler_nat (leq_trans (ltn_ord i)). | |
Qed. | |
Let disj_A0 x n (i k : 'I_(n * 2 ^ n)) : i != k -> | |
x \in A n k -> (x \in A n i) = false. | |
Proof. | |
move=> ik xAn1k; apply/negbTE/negP => xAi. | |
have /trivIsetP/(_ _ _ Logic.I Logic.I ik)/= := @trivIsetA n. | |
rewrite predeqE => /(_ x)[+ _]. | |
by rewrite 2!inE in xAn1k, xAi; move/(_ (conj xAi xAn1k)). | |
Qed. | |
Arguments disj_A0 {x n i} k. | |
Let mB n : measurable (B n). | |
Proof. exact: emeasurable_fun_c_infty. Qed. | |
Let foo_B1 x n : D x -> f x = +oo%E -> x \in B n. | |
Proof. | |
by move=> Dx fxoo; rewrite /B inE /=; split => //=; rewrite /= fxoo leey. | |
Qed. | |
Let f0_B0 x n : f x = 0%:E -> n != 0%N -> (x \in B n) = false. | |
Proof. | |
move=> fx0 n0; apply/negP; rewrite inE /B /= => -[Dx] /=; apply/negP. | |
by rewrite -ltNge fx0 lte_fin ltr0n lt0n. | |
Qed. | |
Let fgtn_B0 x n : (f x < n%:R%:E)%E -> (x \in B n) = false. | |
Proof. | |
move=> fxn; apply/negbTE/negP; rewrite inE /= => -[Dx] /=. | |
by apply/negP; rewrite -ltNge. | |
Qed. | |
Let f0_approx0 n x : f x = 0%E -> approx n x = 0. | |
Proof. | |
move=> fx0; rewrite /approx; have [->|n0] := eqVneq n O. | |
by rewrite mul0n mul0r addr0 big_ord0. | |
rewrite f0_B0 // mulr0 addr0 big1 // => /= i _. | |
have [->|i0] := eqVneq (nat_of_ord i) 0%N; first by rewrite mul0r mul0r. | |
by rewrite f0_A0 // mulr0. | |
Qed. | |
Let fpos_approx_neq0 x : D x -> (0%E < f x < +oo)%E -> | |
\forall n \near \oo, approx n x != 0. | |
Proof. | |
move=> Dx /andP[fx_gt0 fxoo]. | |
have fxfin : f x \is a fin_num. | |
by rewrite fin_numE; move: fxoo fx_gt0; case: (f x). | |
rewrite -(fineK fxfin) lte_fin in fx_gt0. | |
near=> n. | |
rewrite /approx; apply/negP; rewrite paddr_eq0//; last exact: sumr_ge0. | |
move/andP; rewrite psumr_eq0// => -[]/allP /= An0. | |
rewrite mulf_eq0 => /orP[|]. | |
by apply/negP; near: n; exists 1%N => //= m /=; rewrite lt0n pnatr_eq0. | |
rewrite pnatr_eq0 => /eqP. | |
have [//|] := boolP (x \in B n). | |
rewrite notin_set /B /setI /= => /not_andP[] // /negP. | |
rewrite -ltNge => fxn _. | |
have K : (`|floor (fine (f x) * 2 ^+ n)| < n * 2 ^ n)%N. | |
rewrite -ltz_nat gez0_abs; last by rewrite floor_ge0 mulr_ge0// ltW. | |
rewrite -(@ltr_int R); rewrite (le_lt_trans (floor_le _)) // PoszM intrM. | |
by rewrite -natrX ltr_pmul2r// -lte_fin (fineK fxfin). | |
have xAnK : x \in A n (Ordinal K). | |
rewrite inE /A /= K; split => //=. | |
rewrite inE /=; exists (fine (f x)); last by rewrite fineK. | |
rewrite in_itv /=; apply/andP; split. | |
rewrite ler_pdivr_mulr// (le_trans _ (floor_le _))//. | |
by rewrite -(@gez0_abs (floor _))// floor_ge0 mulr_ge0// ltW. | |
rewrite ltr_pdivl_mulr// (lt_le_trans (lt_succ_Rfloor _))// RfloorE. | |
rewrite -[in leRHS]addn1 natrD ler_add2r// -{1}(@gez0_abs (floor _))//. | |
by rewrite floor_ge0// mulr_ge0// ltW. | |
have /[!mem_index_enum]/(_ isT) := An0 (Ordinal K). | |
apply/negP. | |
rewrite xAnK mulr1 /= mulf_neq0// pnatr_eq0//= -lt0n absz_gt0 floor_neq0//. | |
rewrite -ler_pdivr_mulr//; apply/orP; right; apply/ltW; near: n. | |
exact: near_infty_natSinv_expn_lt (PosNum fx_gt0). | |
Unshelve. all: by end_near. Qed. | |
Let f_ub_approx n x : (f x < n%:R%:E)%E -> | |
approx n x == 0 \/ exists k, | |
[/\ (0 < k < n * 2 ^ n)%N, | |
x \in A n k, approx n x = k%:R / 2 ^+ n & | |
f x \in EFin @` [set` I n k]]. | |
Proof. | |
move=> fxn; rewrite /approx fgtn_B0 // mulr0 addr0. | |
set lhs := (X in X == 0); have [|] := eqVneq lhs 0; first by left. | |
rewrite {}/lhs psumr_eq0; last by move=> i _; rewrite mulr_ge0. | |
move/allPn => [/= k _]. | |
rewrite mulf_eq0 negb_or mulf_eq0 negb_or -andbA => /and3P[k_neq0 _]. | |
rewrite pnatr_eq0 eqb0 negbK => xAnk. | |
right. | |
rewrite (bigD1 k) //= xAnk mulr1 big1 ?addr0; last first. | |
by move=> i ik; rewrite (disj_A0 k)// mulr0. | |
exists k; split => //. | |
by rewrite lt0n ltn_ord andbT -(@pnatr_eq0 R). | |
by move: xAnk; rewrite inE /A ltn_ord /= inE /= => -[/[swap] Dx]. | |
Qed. | |
Let notinD_A0 x n k : ~ D x -> (x \in A n k) = false. | |
Proof. | |
by move=> Dx; apply/negP; rewrite /A; case: ifPn => [?|_]; rewrite !inE => -[]. | |
Qed. | |
Let notinD_B0 x n : ~ D x -> (x \in B n) = false. | |
Proof. by move=> Dx; apply/negP; rewrite inE => -[]. Qed. | |
Lemma nd_approx : nondecreasing_seq approx. | |
Proof. | |
apply/nondecreasing_seqP => n; apply/lefP => x. | |
have [Dx|Dx] := pselect (D x); last first. | |
rewrite /approx big1; last by move=> i _; rewrite notinD_A0 // mulr0. | |
rewrite notinD_B0// ?mulr0 addr0. | |
rewrite big1; last by move=> i _; rewrite notinD_A0 // mulr0. | |
by rewrite notinD_B0// ?mulr0 addr0. | |
have [fxn|fxn] := ltP (f x) n%:R%:E. | |
rewrite {2}/approx fgtn_B0 ?mulr0 ?addr0; last first. | |
by rewrite (lt_trans fxn) // lte_fin ltr_nat. | |
have [/eqP ->|[k [/andP[k0 kn] xAnk -> _]]] := f_ub_approx fxn. | |
exact: sumr_ge0. | |
move: (xAnk); rewrite inE {1}/A kn => -[_] /=. | |
rewrite inE => -[r] /dyadic_itv_subU[|] rnk rfx. | |
- have k2n : (k.*2 < n.+1 * 2 ^ n.+1)%N. | |
rewrite expnS mulnCA mul2n ltn_double (ltn_trans kn) //. | |
by rewrite ltn_mul2r expn_gt0 /= ltnS. | |
rewrite (bigD1 (Ordinal k2n)) //=. | |
have xAn1k : x \in A n.+1 k.*2. | |
by rewrite inE /A k2n; split => //=; rewrite inE; exists r. | |
rewrite xAn1k mulr1 big1 ?addr0; last first. | |
by move=> i ik2n; rewrite (disj_A0 (Ordinal k2n)) ?mulr0. | |
rewrite exprS invrM ?unitfE// -muln2 natrM -mulrA (mulrCA 2). | |
by rewrite divrr ?mulr1 ?unitfE. | |
- have k2n : (k.*2.+1 < n.+1 * 2 ^ n.+1)%N. | |
move: kn; rewrite -ltn_double -(ltn_add2r 1) 2!addn1 => /leq_trans; apply. | |
by rewrite -muln2 -mulnA -expnSr ltn_mul2r expn_gt0 /= ltnS. | |
rewrite (bigD1 (Ordinal k2n)) //=. | |
have xAn1k : x \in A n.+1 k.*2.+1. | |
by rewrite /A /= k2n inE; split => //=; rewrite inE/=; exists r. | |
rewrite xAn1k mulr1 big1 ?addr0; last first. | |
by move=> i ik2n; rewrite (disj_A0 (Ordinal k2n)) // mulr0. | |
rewrite -[leLHS]mulr1 -[X in _ * X <= _](@divrr _ 2%:R) ?unitfE//. | |
rewrite mulf_div -natrM muln2 -natrX -natrM -expnSr natrX. | |
by rewrite ler_pmul2r// ler_nat. | |
have /orP[{}fxn|{}fxn] : | |
((n%:R%:E <= f x < n.+1%:R%:E) || (n.+1%:R%:E <= f x))%E. | |
- by move: fxn; case: leP => /= [_ _|_ ->//]; rewrite orbT. | |
- have [k [k1 k2]] := dyadic_itv_image fxn. | |
have xBn : x \in B n. | |
rewrite /B /= inE; split => //. | |
by case/andP : fxn. | |
rewrite /approx xBn mulr1 big1 ?add0r; last first. | |
by move=> /= i _; rewrite fgen_A0 ?mulr0//; case/andP : fxn. | |
rewrite fgtn_B0 ?mulr0 ?addr0; last by case/andP : fxn. | |
have kn2 : (k < n.+1 * 2 ^ n.+1)%N by case/andP : k1 => _; rewrite mulnC. | |
rewrite (bigD1 (Ordinal kn2)) //=. | |
have xAn1k : x \in A n.+1 k by rewrite inE /A kn2. | |
rewrite xAn1k mulr1 big1 ?addr0; last first. | |
by move=> i /= ikn2; rewrite (disj_A0 (Ordinal kn2)) // mulr0. | |
by rewrite -natrX ler_pdivl_mulr// mulrC -natrM ler_nat; case/andP : k1. | |
- have xBn : x \in B n. | |
by rewrite /B /= inE /= /= (le_trans _ fxn) // lee_fin ler_nat. | |
rewrite /approx xBn mulr1. | |
have xBn1 : x \in B n.+1 by rewrite /B /= inE. | |
rewrite xBn1 mulr1 big1 ?add0r. | |
by rewrite big1 ?add0r ?ler_nat// => /= i _; rewrite fgen_A0// mulr0. | |
by move=> /= i _; rewrite fgen_A0 ?mulr0// (le_trans _ fxn)// lee_fin ler_nat. | |
Qed. | |
Lemma cvg_approx x (f0 : forall x, D x -> (0 <= f x)%E) : D x -> | |
(f x < +oo)%E -> (approx^~ x) --> fine (f x). | |
Proof. | |
move=> Dx fxoo; have fxfin : f x \is a fin_num. | |
rewrite fin_numE; apply/andP; split; last by rewrite lt_eqF. | |
by rewrite gt_eqF // (lt_le_trans _ (f0 _ Dx)). | |
apply/(@cvg_distP _ [normedModType R of R^o]) => _/posnumP[e]. | |
rewrite near_map. | |
have [fx0|fx0] := eqVneq (f x) 0%E. | |
by near=> n; rewrite f0_approx0 // fx0 /= subrr normr0. | |
have /(fpos_approx_neq0 Dx) [m _ Hm] : (0 < f x < +oo)%E. | |
by rewrite fxoo andbT lt_neqAle eq_sym fx0 /= f0. | |
near=> n. | |
have mn : (m <= n)%N by near: n; exists m. | |
have : fine (f x) < n%:R. | |
near: n. | |
exists `|floor (fine (f x))|.+1%N => //= p /=. | |
rewrite -(@ler_nat R); apply: lt_le_trans. | |
rewrite -addn1 natrD (_ : `| _ |%:R = (floor (fine (f x)))%:~R); last first. | |
by rewrite -[in RHS](@gez0_abs (floor _))// floor_ge0 //; exact/le0R/f0. | |
by rewrite -RfloorE lt_succ_Rfloor. | |
rewrite -lte_fin (fineK fxfin) => fxn. | |
have [approx_nx0|] := f_ub_approx fxn. | |
by have := Hm _ mn; rewrite approx_nx0. | |
move=> [k [/andP[k0 kn2n] ? ->]]. | |
rewrite inE /= => -[r /=]. | |
rewrite in_itv /= => /andP[k1 k2] rfx. | |
rewrite (@le_lt_trans _ _ (1 / 2 ^+ n)) //. | |
rewrite ler_norml; apply/andP; split. | |
rewrite ler_subr_addl -mulrBl -lee_fin (fineK fxfin) -rfx lee_fin. | |
rewrite (le_trans _ k1)// ler_pmul2r// -(@natrB _ _ 1) // ler_nat subn1. | |
by rewrite leq_pred. | |
rewrite ler_subl_addr -mulrDl -lee_fin -(natrD _ 1) add1n. | |
by rewrite fineK// ltW// -rfx lte_fin. | |
by near: n; exact: near_infty_natSinv_expn_lt. | |
Unshelve. all: by end_near. Qed. | |
Lemma le_approx k x (f0 : forall x, (0 <= f x)%E) : D x -> | |
((approx k x)%:E <= f x)%E. | |
Proof. | |
move=> Dx; have [fixoo|] := ltP (f x) (+oo%E); last first. | |
by rewrite leye_eq => /eqP ->; rewrite leey. | |
have nd_ag : {homo approx ^~ x : n m / (n <= m)%N >-> n <= m}. | |
by move=> m n mn; exact/lefP/nd_approx. | |
have fi0 y : D y -> (0 <= f y)%E by move=> ?; exact: f0. | |
have cvg_af := cvg_approx fi0 Dx fixoo. | |
have is_cvg_af : cvg (approx ^~ x) by apply/cvg_ex; eexists; exact: cvg_af. | |
have {is_cvg_af} := nondecreasing_cvg_le nd_ag is_cvg_af k. | |
rewrite -lee_fin => /le_trans; apply. | |
rewrite -(@fineK _ (f x)); last first. | |
by rewrite fin_numElt fixoo andbT (lt_le_trans _ (f0 _)). | |
by move/(cvg_lim (@Rhausdorff R)) : cvg_af => ->. | |
Qed. | |
Lemma dvg_approx x : D x -> f x = +oo%E -> ~ cvg (approx^~ x : _ -> R^o). | |
Proof. | |
move=> Dx fxoo; have approx_x n : approx n x = n%:R. | |
rewrite /approx foo_B1// mulr1 big1 ?add0r// => /= i _. | |
by rewrite fgen_A0 // ?mulr0 // fxoo leey. | |
case/cvg_ex => /= l; have [l0|l0] := leP 0%R l. | |
- move=> /cvg_distP/(_ _ ltr01); rewrite near_map => -[n _]. | |
move=> /(_ (`|ceil l|.+1 + n)%N) /= /(_ (leq_addl _ _)). | |
rewrite approx_x. | |
apply/negP; rewrite -leNgt distrC (le_trans _ (ler_sub_norm_add _ _)) //. | |
rewrite normrN ler_subr_addl addSnnS [leRHS]ger0_norm ?ler0n//. | |
rewrite natrD ler_add// ?ler1n// ger0_norm // (le_trans (ceil_ge _)) //. | |
by rewrite -(@gez0_abs (ceil _)) // ceil_ge0. | |
- move/cvg_distP => /(_ _ ltr01); rewrite near_map => -[n _]. | |
move=> /(_ (`|floor l|.+1 + n)%N) /= /(_ (leq_addl _ _)). | |
rewrite approx_x. | |
apply/negP; rewrite -leNgt distrC (le_trans _ (ler_sub_norm_add _ _)) //. | |
rewrite normrN ler_subr_addl addSnnS [leRHS]ger0_norm ?ler0n//. | |
rewrite natrD ler_add// ?ler1n// ler0_norm //; last by rewrite ltW. | |
rewrite (@le_trans _ _ (- floor l)%:~R) //. | |
by rewrite mulrNz ler_oppl opprK floor_le. | |
by rewrite -(@lez0_abs (floor _)) // floor_le0 // ltW. | |
Qed. | |
Lemma ecvg_approx (f0 : forall x, D x -> (0 <= f x)%E) x : | |
D x -> EFin \o approx^~x --> f x. | |
Proof. | |
move=> Dx; have := leey (f x); rewrite le_eqVlt => /predU1P[|] fxoo. | |
have dvg_approx := dvg_approx Dx fxoo. | |
have : {homo approx ^~ x : n m / (n <= m)%N >-> n <= m}. | |
by move=> m n mn; have := nd_approx mn => /lefP; exact. | |
move/nondecreasing_dvg_lt => /(_ dvg_approx). | |
by rewrite fxoo; exact/dvg_ereal_cvg. | |
rewrite -(@fineK _ (f x)); first exact: (cvg_comp (cvg_approx f0 Dx fxoo)). | |
by rewrite fin_numElt fxoo andbT (lt_le_trans _ (f0 _ _)). | |
Qed. | |
Let k2n_ge0 n (k : 'I_(n * 2 ^ n)) : 0 <= k%:R * 2 ^- n :> R. | |
Proof. by []. Qed. | |
Definition nnsfun_approx : {nnsfun T >-> R}^nat := fun n => locked (add_nnsfun | |
(sum_nnsfun | |
(fun k => match Bool.bool_dec (k < (n * 2 ^ n))%N true with | |
| left h => scale_nnsfun (indic_nnsfun _ (mA n k)) (k2n_ge0 (Ordinal h)) | |
| right _ => nnsfun0 | |
end) (n * 2 ^ n)%N) | |
(scale_nnsfun (indic_nnsfun _ (mB n)) (ler0n _ n))). | |
Lemma nnsfun_approxE n : nnsfun_approx n = approx n :> (T -> R). | |
Proof. | |
rewrite funeqE => t /=; rewrite /nnsfun_approx; unlock; rewrite /=. | |
rewrite sum_nnsfunE; congr (_ + _). | |
by apply: eq_bigr => i _; case: Bool.bool_dec => [h|/negP]; [|rewrite ltn_ord]. | |
Qed. | |
Lemma cvg_nnsfun_approx (f0 : forall x, D x -> (0 <= f x)%E) x : | |
D x -> EFin \o nnsfun_approx^~x --> f x. | |
Proof. | |
by move=> Dx; under eq_fun do rewrite nnsfun_approxE; exact: ecvg_approx. | |
Qed. | |
Lemma nd_nnsfun_approx : nondecreasing_seq (nnsfun_approx : (T -> R)^nat). | |
Proof. | |
move=> m n mn; rewrite (nnsfun_approxE n) (nnsfun_approxE m). | |
exact: nd_approx. | |
Qed. | |
Lemma approximation : (forall t, D t -> (0 <= f t)%E) -> | |
exists g : {nnsfun T >-> R}^nat, nondecreasing_seq (g : (T -> R)^nat) /\ | |
(forall x, D x -> EFin \o g^~x --> f x). | |
Proof. | |
exists nnsfun_approx; split; [exact: nd_nnsfun_approx|]. | |
move=> x Dx; exact: cvg_nnsfun_approx. | |
Qed. | |
End approximation. | |
Section semi_linearity0. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f1 f2 : T -> \bar R). | |
Hypothesis f10 : forall x, D x -> 0 <= f1 x. | |
Hypothesis mf1 : measurable_fun D f1. | |
Lemma ge0_integralM_EFin k : (0 <= k)%R -> | |
\int[mu]_(x in D) (k%:E * f1 x) = k%:E * \int[mu]_(x in D) f1 x. | |
Proof. | |
rewrite integral_mkcond erestrict_scale [in RHS]integral_mkcond => k0. | |
set h1 := f1 \_ D. | |
have h10 x : 0 <= h1 x by apply: erestrict_ge0. | |
have mh1 : measurable_fun setT h1 by apply/(measurable_restrict _ mD). | |
have [g [nd_g gh1]] := approximation measurableT mh1 (fun x _ => h10 x). | |
pose kg := fun n => scale_nnsfun (g n) k0. | |
rewrite (@nd_ge0_integral_lim _ _ _ mu (fun x => k%:E * h1 x) kg). | |
- rewrite (_ : _ \o _ = fun n => sintegral mu (scale_nnsfun (g n) k0))//. | |
rewrite (_ : (fun _ => _) = (fun n => k%:E * sintegral mu (g n))). | |
rewrite ereal_limrM //; last first. | |
by apply: is_cvg_sintegral => // x m n mn; apply/(lef_at x nd_g). | |
by rewrite -(nd_ge0_integral_lim mu h10) // => x; | |
[exact/(lef_at x nd_g)|exact: gh1]. | |
by under eq_fun do rewrite (sintegralrM mu k (g _)). | |
- by move=> t; rewrite mule_ge0. | |
- by move=> x m n mn; rewrite /kg ler_pmul//; exact/lefP/nd_g. | |
- move=> x. | |
rewrite [X in X --> _](_ : _ = (fun n => k%:E * (g n x)%:E)) ?funeqE//. | |
by apply: ereal_cvgrM => //; exact: gh1. | |
Qed. | |
End semi_linearity0. | |
Section semi_linearity. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f1 f2 : T -> \bar R). | |
Hypothesis f10 : forall x, D x -> 0 <= f1 x. | |
Hypothesis mf1 : measurable_fun D f1. | |
Hypothesis f20 : forall x, D x -> 0 <= f2 x. | |
Hypothesis mf2 : measurable_fun D f2. | |
Lemma ge0_integralD : \int[mu]_(x in D) (f1 x + f2 x) = | |
\int[mu]_(x in D) f1 x + \int[mu]_(x in D) f2 x. | |
Proof. | |
rewrite !(integral_mkcond D) erestrictD. | |
set h1 := f1 \_ D; set h2 := f2 \_ D. | |
have h10 x : 0 <= h1 x by apply: erestrict_ge0. | |
have h20 x : 0 <= h2 x by apply: erestrict_ge0. | |
have mh1 : measurable_fun setT h1 by apply/(measurable_restrict _ mD). | |
have mh2 : measurable_fun setT h2 by apply/(measurable_restrict _ mD). | |
have [g1 [nd_g1 gh1]] := approximation measurableT mh1 (fun x _ => h10 x). | |
have [g2 [nd_g2 gh2]] := approximation measurableT mh2 (fun x _ => h20 x). | |
pose g12 := fun n => add_nnsfun (g1 n) (g2 n). | |
rewrite (@nd_ge0_integral_lim _ _ _ mu _ g12) //; last 3 first. | |
- by move=> x; rewrite adde_ge0. | |
- by apply: nondecreasing_seqD => // x; | |
[exact/(lef_at x nd_g1)|exact/(lef_at x nd_g2)]. | |
- move=> x Dx. | |
rewrite (_ : _ \o _ = (fun n => (g1 n x)%:E + (g2 n x)%:E)) ?funeqE//. | |
apply: ereal_cvgD => //; [|exact: gh1|exact: gh2]. | |
by apply: ge0_adde_def => //; rewrite !inE; [exact: h10|exact: h20]. | |
rewrite (_ : _ \o _ = | |
fun n => sintegral mu (g1 n) + sintegral mu (g2 n)); last first. | |
by rewrite funeqE => n /=; rewrite sintegralD. | |
rewrite (nd_ge0_integral_lim _ _ (fun x => lef_at x nd_g1)) //; last first. | |
by move=> x; exact: gh1. | |
rewrite (nd_ge0_integral_lim _ _ (fun x => lef_at x nd_g2)) //; last first. | |
by move=> x; exact: gh2. | |
rewrite ereal_limD //. | |
by apply: is_cvg_sintegral => // x Dx; exact/(lef_at x nd_g1). | |
by apply: is_cvg_sintegral => // x Dx; exact/(lef_at x nd_g2). | |
rewrite ge0_adde_def => //; rewrite inE; apply: ereal_lim_ge. | |
- by apply: is_cvg_sintegral => // x Dx; exact/(lef_at x nd_g1). | |
- by apply: nearW => n; exact: sintegral_ge0. | |
- by apply: is_cvg_sintegral => // x Dx; exact/(lef_at x nd_g2). | |
- by apply: nearW => n; exact: sintegral_ge0. | |
Qed. | |
Lemma ge0_le_integral : (forall x, D x -> f1 x <= f2 x) -> | |
\int[mu]_(x in D) f1 x <= \int[mu]_(x in D) f2 x. | |
Proof. | |
move=> f12; rewrite !(integral_mkcond D). | |
set h1 := f1 \_ D; set h2 := f2 \_ D. | |
have h10 x : 0 <= h1 x by apply: erestrict_ge0. | |
have h20 x : 0 <= h2 x by apply: erestrict_ge0. | |
have mh1 : measurable_fun setT h1 by apply/(measurable_restrict _ mD). | |
have mh2 : measurable_fun setT h2 by apply/(measurable_restrict _ mD). | |
have h12 x : h1 x <= h2 x by apply: lee_restrict. | |
have [g1 [nd_g1 /(_ _ Logic.I)gh1]] := | |
approximation measurableT mh1 (fun x _ => h10 _). | |
rewrite (nd_ge0_integral_lim _ h10 (fun x => lef_at x nd_g1) gh1)//. | |
apply: ereal_lim_le. | |
by apply: is_cvg_sintegral => // t Dt; exact/(lef_at t nd_g1). | |
near=> n; rewrite ge0_integralTE//; apply: ereal_sup_ub => /=. | |
exists (g1 n) => // t; rewrite (le_trans _ (h12 _)) //. | |
have := gh1 t. | |
have := leey (h1 t); rewrite le_eqVlt => /predU1P[->|ftoo]. | |
by rewrite leey. | |
have h1tfin : h1 t \is a fin_num. | |
by rewrite fin_numE gt_eqF/= ?lt_eqF// (lt_le_trans _ (h10 t)). | |
have := gh1 t. | |
rewrite -(fineK h1tfin) => /ereal_cvg_real[ft_near]. | |
set u_ := (X in X --> _) => u_h1 g1h1. | |
have <- : lim u_ = fine (h1 t) by apply/cvg_lim => //; exact: Rhausdorff. | |
rewrite lee_fin; apply: nondecreasing_cvg_le. | |
by move=> // a b ab; rewrite /u_ /=; exact/lefP/nd_g1. | |
by apply/cvg_ex; eexists; exact: u_h1. | |
Unshelve. all: by end_near. Qed. | |
End semi_linearity. | |
Lemma emeasurable_funN d (T : measurableType d) (R : realType) D (f : T -> \bar R) : | |
measurable D -> measurable_fun D f -> measurable_fun D (fun x => - f x)%E. | |
Proof. | |
by move=> mD mf; apply: measurable_fun_comp => //; exact: emeasurable_fun_minus. | |
Qed. | |
Section approximation_sfun. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (f : T -> \bar R). | |
Variables (D : set T) (mD : measurable D) (mf : measurable_fun D f). | |
Lemma approximation_sfun : | |
exists g : {sfun T >-> R}^nat, (forall x, D x -> EFin \o g^~x --> f x). | |
Proof. | |
have fp0 : (forall x, 0 <= f^\+ x)%E by []. | |
have mfp : measurable_fun D f^\+%E. | |
by apply: emeasurable_fun_max => //; exact: measurable_fun_cst. | |
have fn0 : (forall x, 0 <= f^\- x)%E by []. | |
have mfn : measurable_fun D f^\-%E. | |
by apply: emeasurable_fun_max => //; | |
[exact: emeasurable_funN | exact: measurable_fun_cst]. | |
have [fp_ [fp_nd fp_cvg]] := approximation mD mfp (fun x _ => fp0 x). | |
have [fn_ [fn_nd fn_cvg]] := approximation mD mfn (fun x _ => fn0 x). | |
exists (fun n => [the {sfun T >-> R} of fp_ n \+ cst (-1) \* fn_ n]) => x /=. | |
rewrite [X in X --> _](_ : _ = | |
EFin \o fp_^~ x \+ (-%E \o EFin \o fn_^~ x))%E; last first. | |
by apply/funext => n/=; rewrite EFinD mulN1r. | |
by move=> Dx; rewrite (funeposneg f); apply: ereal_cvgD; | |
[exact: add_def_funeposneg|apply: fp_cvg|apply:ereal_cvgN; exact: fn_cvg]. | |
Qed. | |
End approximation_sfun. | |
Section emeasurable_fun. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Implicit Types (D : set T) (f g : T -> \bar R). | |
Lemma emeasurable_funD D f g : | |
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \+ g). | |
Proof. | |
move=> mf mg mD. | |
have Cnoom : measurable (~` [set -oo] : set (\bar R)) by apply: measurableC. | |
have Cpoom : measurable (~` [set +oo] : set (\bar R)) by apply: measurableC. | |
have mfg : measurable (D `&` [set x | f x +? g x]). | |
suff -> : [set x | f x +? g x] = | |
(f @^-1` (~` [set +oo]) `|` g @^-1` (~` [set -oo])) `&` | |
(f @^-1` (~` [set -oo]) `|` g @^-1` (~` [set +oo])). | |
by rewrite setIIr; apply: measurableI; | |
rewrite setIUr; apply: measurableU; do ?[apply: mf|apply: mg]. | |
apply/predeqP=> x; rewrite /preimage/= /adde_def !(negb_and, negb_or). | |
by rewrite !(rwP2 eqP idP) !(rwP2 negP idP) !(rwP2 orP idP) !(rwP2 andP idP). | |
wlog fg : D mD mf mg mfg / forall x, D x -> f x +? g x => [hwlogD|]; last first. | |
have [f_ f_cvg] := approximation_sfun mD mf. | |
have [g_ g_cvg] := approximation_sfun mD mg. | |
apply: (emeasurable_fun_cvg (fun n x => (f_ n x + g_ n x)%:E)) => //. | |
move=> n; apply/EFin_measurable_fun. | |
by apply: (@measurable_funS _ _ _ _ setT) => //; exact: measurable_funD. | |
move=> x Dx; under eq_fun do rewrite EFinD. | |
by apply: ereal_cvgD; [exact: fg|exact: f_cvg|exact: g_cvg]. | |
move=> A mA; wlog NAnoo: A mD mf mg mA / ~ (A -oo) => [hwlogA|]. | |
have [] := pselect (A -oo); last exact: hwlogA. | |
move=> /(@setD1K _ -oo)<-; rewrite preimage_setU setIUr. | |
apply: measurableU; last by apply: hwlogA=> //; [exact: measurableD|case=>/=]. | |
have -> : (f \+ g) @^-1` [set -oo] = f @^-1` [set -oo] `|` g @^-1` [set -oo]. | |
apply/seteqP; split=> x /= => [/eqP|[]]; rewrite /preimage/=. | |
- by rewrite adde_eq_ninfty => /orP[] /eqP->; [left|right]. | |
- by move->. | |
- by move->; rewrite addeC. | |
by rewrite setIUr; apply: measurableU; [apply: mf|apply: mg]. | |
have-> : D `&` (f \+ g) @^-1` A = | |
(D `&` [set x | f x +? g x]) `&` (f \+ g) @^-1` A. | |
rewrite -setIA; congr (_ `&` _). | |
apply/seteqP; split=> x; rewrite /preimage/=; last by case. | |
move=> Afgx; split=> //. | |
by case: (f x) (g x) Afgx => [rf||] [rg||]. | |
have Dfg : D `&` [set x | f x +? g x] `<=` D by apply: subIset; left. | |
apply: hwlogD => //. | |
- by apply: (measurable_funS mD) => //; do ?exact: measurableI. | |
- by apply: (measurable_funS mD) => //; do ?exact: measurableI. | |
- by rewrite -setIA setIid. | |
- by move=> ? []. | |
Qed. | |
Lemma emeasurable_fun_sum D I s (h : I -> (T -> \bar R)) : | |
(forall n, measurable_fun D (h n)) -> | |
measurable_fun D (fun x => \sum_(i <- s) h i x). | |
Proof. | |
elim: s => [|s t ih] mf. | |
by under eq_fun do rewrite big_nil; exact: measurable_fun_cst. | |
under eq_fun do rewrite big_cons //=; apply: emeasurable_funD => //. | |
exact: ih. | |
Qed. | |
Lemma ge0_emeasurable_fun_sum D (h : nat -> (T -> \bar R)) : | |
(forall k x, 0 <= h k x) -> (forall k, measurable_fun D (h k)) -> | |
measurable_fun D (fun x => \sum_(i <oo) h i x). | |
Proof. | |
move=> h0 mh; rewrite [X in measurable_fun _ X](_ : _ = | |
(fun x => elim_sup (fun n => \sum_(0 <= i < n) h i x))); last first. | |
apply/funext=> x; rewrite is_cvg_elim_supE//. | |
exact: is_cvg_ereal_nneg_natsum. | |
by apply: measurable_fun_elim_sup => k; exact: emeasurable_fun_sum. | |
Qed. | |
Lemma emeasurable_funB D f g : | |
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \- g). | |
Proof. | |
by move=> mf mg mD; apply: emeasurable_funD => //; exact: emeasurable_funN. | |
Qed. | |
Lemma emeasurable_funM D f g : | |
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \* g). | |
Proof. | |
move=> mf mg mD. | |
have m0 : measurable ([set 0] : set (\bar R)) by []. | |
have mC0 : measurable ([set~ 0] : set (\bar R)) by apply: measurableC. | |
have mCoo : measurable (~` [set -oo; +oo] : set (\bar R)). | |
exact/measurableC/measurableU. | |
have mfg : measurable (D `&` [set x | f x *? g x]). | |
suff -> : [set x | f x *? g x] = | |
(f @^-1` (~` [set 0]) `|` g @^-1` (~` [set -oo; +oo])) `&` | |
(g @^-1` (~` [set 0]) `|` f @^-1` (~` [set -oo; +oo])). | |
by rewrite setIIr; apply: measurableI; | |
rewrite setIUr; apply: measurableU; do ?[apply: mf|apply: mg]. | |
apply/predeqP=> x; rewrite /preimage/= /mule_def !(negb_and, negb_or). | |
rewrite !(rwP2 eqP idP) !(rwP2 negP idP) !(rwP2 orP idP). | |
rewrite !(rwP2 negP idP) !(rwP2 orP idP) !(rwP2 andP idP). | |
rewrite eqe_absl leey andbT (orbC (g x == +oo)). | |
by rewrite eqe_absl leey andbT (orbC (f x == +oo)). | |
wlog fg : D mD mf mg mfg / forall x, D x -> f x *? g x => [hwlogM|]; last first. | |
have [f_ f_cvg] := approximation_sfun mD mf. | |
have [g_ g_cvg] := approximation_sfun mD mg. | |
apply: (emeasurable_fun_cvg (fun n x => (f_ n x * g_ n x)%:E)) => //. | |
move=> n; apply/EFin_measurable_fun. | |
by apply: measurable_funM => //; exact: (@measurable_funS _ _ _ _ setT). | |
move=> x Dx; under eq_fun do rewrite EFinM. | |
by apply: ereal_cvgM; [exact: fg|exact: f_cvg|exact: g_cvg]. | |
move=> A mA; wlog NA0: A mD mf mg mA / ~ (A 0) => [hwlogA|]. | |
have [] := pselect (A 0); last exact: hwlogA. | |
move=> /(@setD1K _ 0)<-; rewrite preimage_setU setIUr. | |
apply: measurableU; last by apply: hwlogA=> //; [exact: measurableD|case => /=]. | |
have -> : (fun x => f x * g x) @^-1` [set 0] = | |
f @^-1` [set 0] `|` g @^-1` [set 0]. | |
apply/seteqP; split=> x /= => [/eqP|[]]; rewrite /preimage/=. | |
by rewrite mule_eq0 => /orP[] /eqP->; [left|right]. | |
by move=> ->; rewrite mul0e. | |
by move=> ->; rewrite mule0. | |
by rewrite setIUr; apply: measurableU; [apply: mf|apply: mg]. | |
have-> : D `&` (fun x => f x * g x) @^-1` A = | |
(D `&` [set x | f x *? g x]) `&` (fun x => f x * g x) @^-1` A. | |
rewrite -setIA; congr (_ `&` _). | |
apply/seteqP; split=> x; rewrite /preimage/=; last by case. | |
move=> Afgx; split=> //; apply: neq0_mule_def. | |
by apply: contra_notT NA0; rewrite negbK => /eqP <-. | |
have Dfg : D `&` [set x | f x *? g x] `<=` D by apply: subIset; left. | |
apply: hwlogM => //. | |
- by apply: (measurable_funS mD) => //; do ?exact: measurableI. | |
- by apply: (measurable_funS mD) => //; do ?exact: measurableI. | |
- by rewrite -setIA setIid. | |
- by move=> ? []. | |
Qed. | |
Lemma emeasurable_funeM D (f : T -> \bar R) (k : \bar R) : | |
measurable_fun D f -> measurable_fun D (fun x => k * f x)%E. | |
Proof. | |
move=> mf; rewrite (_ : (fun x => k * f x) = (cst k) \* f)//. | |
exact/(emeasurable_funM _ mf)/measurable_fun_cst. | |
Qed. | |
End emeasurable_fun. | |
Section ge0_integral_sum. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (I : Type) (f : I -> (T -> \bar R)). | |
Hypothesis mf : forall n, measurable_fun D (f n). | |
Hypothesis f0 : forall n x, D x -> 0 <= f n x. | |
Lemma ge0_integral_sum (s : seq I) : | |
\int[mu]_(x in D) (\sum_(k <- s) f k x) = | |
\sum_(k <- s) \int[mu]_(x in D) (f k x). | |
Proof. | |
elim: s => [|h t ih]. | |
by (under eq_fun do rewrite big_nil); rewrite big_nil integral0. | |
rewrite big_cons /= -ih -ge0_integralD//. | |
- by apply: eq_integral => x Dx; rewrite big_cons. | |
- by move=> *; apply: f0. | |
- by move=> *; apply: sume_ge0 => // k _; exact: f0. | |
- exact: emeasurable_fun_sum. | |
Qed. | |
End ge0_integral_sum. | |
Section monotone_convergence_theorem. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (g' : (T -> \bar R)^nat). | |
Hypothesis mg' : forall n, measurable_fun D (g' n). | |
Hypothesis g'0 : forall n x, D x -> 0 <= g' n x. | |
Hypothesis nd_g' : forall x, D x -> nondecreasing_seq (g'^~ x). | |
Let f' := fun x => lim (g'^~ x). | |
Let g n := (g' n \_ D). | |
Let g0 n x : 0 <= g n x. Proof. exact/erestrict_ge0/g'0. Qed. | |
Let mg n : measurable_fun setT (g n). | |
Proof. exact/(measurable_restrict _ mD). Qed. | |
Let nd_g x : nondecreasing_seq (g^~ x). | |
Proof. | |
by move=> m n mn; rewrite /g/patch; case: ifP => // /set_mem /nd_g' ->. | |
Qed. | |
Let f := fun x => lim (g^~ x). | |
Let is_cvg_g t : cvg (g^~ t). | |
Proof. by move=> ?; apply: ereal_nondecreasing_is_cvg => m n ?; apply/nd_g. Qed. | |
Local Definition g2' n : (T -> R)^nat := approx setT (g n). | |
Local Definition g2 n : {nnsfun T >-> R}^nat := nnsfun_approx measurableT (mg n). | |
Local Definition max_g2' : (T -> R)^nat := | |
fun k t => (\big[maxr/0]_(i < k) (g2' i k) t)%R. | |
Local Definition max_g2 : {nnsfun T >-> R}^nat := | |
fun k => bigmax_nnsfun (g2^~ k) k. | |
Let is_cvg_g2 n t : cvg (EFin \o (g2 n ^~ t)). | |
Proof. | |
apply: ereal_nondecreasing_is_cvg => a b ab. | |
by rewrite lee_fin 2!nnsfun_approxE; exact/lefP/nd_approx. | |
Qed. | |
Let nd_max_g2 : nondecreasing_seq (max_g2 : (T -> R)^nat). | |
Proof. | |
apply/nondecreasing_seqP => n; apply/lefP => x; rewrite 2!bigmax_nnsfunE. | |
rewrite (@le_trans _ _ (\big[maxr/0]_(i < n) g2 i n.+1 x)%R) //. | |
apply: le_bigmax => i _; apply: (nondecreasing_seqP (g2 i ^~ x)).2 => a b ab. | |
by rewrite !nnsfun_approxE; exact/lefP/nd_approx. | |
rewrite (bigmaxD1 ord_max)// le_maxr; apply/orP; right. | |
rewrite [leRHS](eq_bigl (fun i => nat_of_ord i < n)%N); last first. | |
move=> i /=; rewrite neq_lt; apply/orP/idP => [[//|]|]; last by left. | |
by move=> /(leq_trans (ltn_ord i)); rewrite ltnn. | |
by rewrite (big_ord_narrow (leqnSn n)). | |
Qed. | |
Let is_cvg_max_g2 t : cvg (EFin \o max_g2 ^~ t). | |
Proof. | |
apply: ereal_nondecreasing_is_cvg => m n mn; rewrite lee_fin. | |
exact/lefP/nd_max_g2. | |
Qed. | |
Let max_g2_g k x : ((max_g2 k x)%:E <= g k x)%O. | |
Proof. | |
rewrite bigmax_nnsfunE. | |
apply: (@le_trans _ _ (\big[maxe/0%:E]_(i < k) g k x)); last first. | |
apply/bigmax_lerP; split => //; apply: g0D. | |
rewrite (@big_morph _ _ EFin 0%:E maxe) //; last by move=> *; rewrite maxEFin. | |
apply: le_bigmax => i _; rewrite nnsfun_approxE /=. | |
by rewrite (le_trans (le_approx _ _ _)) => //; exact/nd_g/ltnW. | |
Qed. | |
Let lim_max_g2_f t : lim (EFin \o max_g2 ^~ t) <= f t. | |
Proof. | |
by apply: lee_lim => //; near=> n; exact/max_g2_g. | |
Unshelve. all: by end_near. Qed. | |
Let lim_g2_max_g2 t n : lim (EFin\o g2 n ^~ t) <= lim (EFin \o max_g2 ^~ t). | |
Proof. | |
apply: lee_lim => //; near=> k; rewrite /= bigmax_nnsfunE lee_fin. | |
have nk : (n < k)%N by near: k; exists n.+1. | |
exact: (@bigmax_sup _ _ _ (Ordinal nk)). | |
Unshelve. all: by end_near. Qed. | |
Let cvg_max_g2_f t : EFin \o max_g2 ^~ t --> f t. | |
Proof. | |
have /cvg_ex[l g_l] := @is_cvg_max_g2 t. | |
suff : l == f t by move=> /eqP <-. | |
rewrite eq_le; apply/andP; split. | |
by rewrite /f (le_trans _ (lim_max_g2_f _)) // (cvg_lim _ g_l). | |
have := leey l; rewrite le_eqVlt => /predU1P[->|loo]; first by rewrite leey. | |
rewrite -(cvg_lim _ g_l) //= ereal_lim_le => //. | |
near=> n. | |
have := leey (g n t); rewrite le_eqVlt => /predU1P[|] fntoo. | |
have h := @dvg_approx _ _ _ setT _ t Logic.I fntoo. | |
have g2oo : lim (EFin \o g2 n ^~ t) = +oo. | |
apply/cvg_lim => //; apply/dvg_ereal_cvg. | |
under [X in X --> _]eq_fun do rewrite nnsfun_approxE. | |
have : {homo (approx setT (g n))^~ t : n0 m / (n0 <= m)%N >-> (n0 <= m)%R}. | |
exact/lef_at/nd_approx. | |
by move/nondecreasing_dvg_lt => /(_ h). | |
have -> : lim (EFin \o max_g2 ^~ t) = +oo. | |
by have := lim_g2_max_g2 t n; rewrite g2oo leye_eq => /eqP. | |
by rewrite leey. | |
- have approx_g_g := @cvg_approx _ _ _ setT _ t (fun t _ => g0 n t) Logic.I fntoo. | |
have <- : lim (EFin \o g2 n ^~ t) = g n t. | |
have /cvg_lim <- // : EFin \o (approx setT (g n)) ^~ t --> g n t. | |
move/cvg_comp : approx_g_g; apply. | |
by rewrite -(@fineK _ (g n t))// ge0_fin_numE// g0. | |
rewrite (_ : _ \o _ = EFin \o approx setT (g n) ^~ t)// funeqE => m. | |
by rewrite [in RHS]/= -nnsfun_approxE. | |
exact: (le_trans _ (lim_g2_max_g2 t n)). | |
Unshelve. all: by end_near. Qed. | |
Lemma monotone_convergence : | |
\int[mu]_(x in D) (f' x) = lim (fun n => \int[mu]_(x in D) (g' n x)). | |
Proof. | |
rewrite integral_mkcond. | |
under [in RHS]eq_fun do rewrite integral_mkcond -/(g _). | |
have -> : f' \_ D = f. | |
apply/funext => x; rewrite /f /f' /g /patch /=; case: ifPn => //=. | |
by rewrite lim_cst. | |
apply/eqP; rewrite eq_le; apply/andP; split; last first. | |
have nd_int_g : nondecreasing_seq (fun n => \int[mu]_x g n x). | |
move=> m n mn; apply: ge0_le_integral => //. | |
by move=> *; exact: nd_g. | |
have ub n : \int[mu]_x g n x <= \int[mu]_x f x. | |
apply: ge0_le_integral => //. | |
- by move=> x _; apply: ereal_lim_ge => //; apply: nearW => k; exact/g0. | |
- apply: emeasurable_fun_cvg mg _ => x _. | |
exact: ereal_nondecreasing_is_cvg. | |
- move=> x Dx; apply: ereal_lim_ge => //. | |
near=> m; have nm : (n <= m)%N by near: m; exists n. | |
exact/nd_g. | |
by apply: ereal_lim_le => //; [exact:ereal_nondecreasing_is_cvg|exact:nearW]. | |
rewrite (@nd_ge0_integral_lim _ _ _ mu _ max_g2) //; last 2 first. | |
- by move=> t; apply: ereal_lim_ge => //; apply: nearW => n; exact: g0. | |
- by move=> t m n mn; exact/lefP/nd_max_g2. | |
apply: lee_lim. | |
- by apply: is_cvg_sintegral => // t m n mn; exact/lefP/nd_max_g2. | |
- apply: ereal_nondecreasing_is_cvg => // n m nm; apply: ge0_le_integral => //. | |
by move=> *; exact/nd_g. | |
- apply: nearW => n; rewrite ge0_integralTE//. | |
by apply: ereal_sup_ub; exists (max_g2 n) => // t; exact: max_g2_g. | |
Unshelve. all: by end_near. Qed. | |
Lemma cvg_monotone_convergence : | |
(fun n => \int[mu]_(x in D) g' n x) --> \int[mu]_(x in D) f' x. | |
Proof. | |
rewrite monotone_convergence; apply: ereal_nondecreasing_is_cvg => m n mn. | |
by apply: ge0_le_integral => // t Dt; [exact: g'0|exact: g'0|exact: nd_g']. | |
Qed. | |
End monotone_convergence_theorem. | |
Section integral_series. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D). | |
Variable f : (T -> \bar R)^nat. | |
Hypothesis mf : forall n, measurable_fun D (f n). | |
Hypothesis f0 : forall n x, D x -> 0 <= f n x. | |
Lemma integral_sum : \int[mu]_(x in D) (\sum_(n <oo) f n x) = | |
\sum_(n <oo) (\int[mu]_(x in D) (f n x)). | |
Proof. | |
rewrite monotone_convergence //. | |
- rewrite -lim_mkord. | |
rewrite (_ : (fun _ => _) = (fun n => (\sum_(k < n) \int[mu]_(x in D) f k x)))//. | |
by rewrite funeqE => n; rewrite ge0_integral_sum// big_mkord. | |
- by move=> n; exact: emeasurable_fun_sum. | |
- by move=> n x Dx; apply: sume_ge0 => m _; exact: f0. | |
- by move=> x Dx m n mn; apply: lee_sum_nneg_natr => // k _ _; exact: f0. | |
Qed. | |
End integral_series. | |
(* generalization of ge0_integralM_EFin to a constant potentially +oo | |
using the monotone convergence theorem *) | |
Section ge0_integralM. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f : T -> \bar R). | |
Hypothesis mf : measurable_fun D f. | |
Lemma ge0_integralM (k : \bar R) : (forall x, D x -> 0 <= f x) -> | |
0 <= k -> \int[mu]_(x in D) (k * f x)%E = k * \int[mu]_(x in D) (f x). | |
Proof. | |
move=> f0; move: k => [k|_|//]; first exact: ge0_integralM_EFin. | |
pose g : (T -> \bar R)^nat := fun n x => n%:R%:E * f x. | |
have mg n : measurable_fun D (g n) by apply: emeasurable_funeM. | |
have g0 n x : D x -> 0 <= g n x. | |
by move=> Dx; apply: mule_ge0; [rewrite lee_fin|exact:f0]. | |
have nd_g x : D x -> nondecreasing_seq (g^~x). | |
by move=> Dx m n mn; rewrite lee_wpmul2r ?f0// lee_fin ler_nat. | |
pose h := fun x => lim (g^~ x). | |
transitivity (\int[mu]_(x in D) lim (g^~ x)). | |
apply: eq_integral => x Dx; apply/esym/cvg_lim => //. | |
have [fx0|fx0|fx0] := ltgtP 0 (f x). | |
- rewrite gt0_mulye//; apply/ereal_cvgPpinfty => M M0. | |
rewrite /g; case: (f x) fx0 => [r r0|_|//]; last first. | |
exists 1%N => // m /= m0. | |
by rewrite mulry gtr0_sg// ?mul1e ?leey// ltr0n. | |
near=> n; rewrite lee_fin -ler_pdivr_mulr//. | |
near: n; exists `|ceil (M / r)|%N => // m /=. | |
rewrite -(ler_nat R); apply: le_trans. | |
by rewrite natr_absz ger0_norm ?ceil_ge// ceil_ge0// divr_ge0// ltW. | |
- rewrite lt0_mulye//; apply/ereal_cvgPninfty => M M0. | |
rewrite /g; case: (f x) fx0 => [r r0|//|_]; last first. | |
exists 1%N => // m /= m0. | |
by rewrite mulrNy gtr0_sg// ?ltr0n// mul1e ?leNye. | |
near=> n; rewrite lee_fin -ler_ndivr_mulr//. | |
near: n; exists `|ceil (M / r)|%N => // m /=. | |
rewrite -(ler_nat R); apply: le_trans. | |
rewrite natr_absz ger0_norm ?ceil_ge// ceil_ge0// -mulrNN. | |
by rewrite mulr_ge0// ler_oppr oppr0 ltW// invr_lt0. | |
- rewrite -fx0 mule0 /g -fx0 [X in X @ _ --> _](_ : _ = cst 0). | |
exact: cvg_cst. | |
by rewrite funeqE => n /=; rewrite mule0. | |
rewrite (monotone_convergence mu mD mg g0 nd_g). | |
rewrite (_ : (fun _ => _) = (fun n => n%:R%:E * \int[mu]_(x in D) (f x))); last first. | |
by rewrite funeqE => n; exact: ge0_integralM_EFin. | |
have : 0 <= \int[mu]_(x in D) (f x) by exact: integral_ge0. | |
rewrite le_eqVlt => /predU1P[<-|if_gt0]. | |
rewrite mule0 (_ : (fun _ => _) = cst 0) ?lim_cst//. | |
by under eq_fun do rewrite mule0. | |
rewrite gt0_mulye//; apply/cvg_lim => //; apply/ereal_cvgPpinfty => M M0. | |
near=> n; have [ifoo|] := ltP (\int[mu]_(x in D) (f x)) +oo; last first. | |
rewrite leye_eq => /eqP ->; rewrite mulry muleC gt0_mulye ?leey//. | |
by near: n; exists 1%N => // n /= n0; rewrite gtr0_sg// ?lte_fin// ltr0n. | |
rewrite -(@fineK _ (\int[mu]_(x in D) f x)); last first. | |
by rewrite fin_numElt ifoo andbT (le_lt_trans _ if_gt0). | |
rewrite -lee_pdivr_mulr//; last first. | |
by move: if_gt0 ifoo; case: (\int[mu]_(x in D) f x). | |
near: n. | |
exists `|ceil (M * (fine (\int[mu]_(x in D) f x))^-1)|%N => //. | |
move=> n /=; rewrite -(@ler_nat R) -lee_fin; apply: le_trans. | |
rewrite lee_fin natr_absz ger0_norm ?ceil_ge//. | |
rewrite ceil_ge0// mulr_ge0 //; first exact: ltW. | |
by rewrite invr_ge0; exact/le0R/integral_ge0. | |
Unshelve. all: by end_near. Qed. | |
End ge0_integralM. | |
Section fatou. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f : (T -> \bar R)^nat). | |
Hypothesis mf : forall n, measurable_fun D (f n). | |
Hypothesis f0 : forall n x, D x -> 0 <= f n x. | |
Lemma fatou : \int[mu]_(x in D) elim_inf (f^~ x) <= | |
elim_inf (fun n => \int[mu]_(x in D) f n x). | |
Proof. | |
pose g n := fun x => einfs (f ^~ x) n. | |
have mg := measurable_fun_einfs mf. | |
have g0 n x : D x -> 0 <= g n x. | |
by move=> Dx; apply: lb_ereal_inf => _ [m /= nm <-]; exact: f0. | |
rewrite monotone_convergence //; last first. | |
move=> x Dx m n mn /=; apply: le_ereal_inf => _ /= [p /= np <-]. | |
by exists p => //=; rewrite (leq_trans mn). | |
apply: lee_lim. | |
- apply/cvg_ex; eexists; apply/ereal_nondecreasing_cvg => a b ab. | |
apply: ge0_le_integral => //; [exact: g0| exact: mg| exact: g0| exact: mg|]. | |
move=> x Dx; apply: le_ereal_inf => _ [n /= bn <-]. | |
by exists n => //=; rewrite (leq_trans ab). | |
- apply/cvg_ex; eexists; apply/ereal_nondecreasing_cvg => a b ab. | |
apply: le_ereal_inf => // _ [n /= bn <-]. | |
by exists n => //=; rewrite (leq_trans ab). | |
- apply: nearW => m. | |
have : forall n p, (p >= n)%N -> | |
\int[mu]_(x in D) g n x <= einfs (fun k => \int[mu]_(x in D) f k x) n. | |
move=> n p np; apply: lb_ereal_inf => /= _ [k /= nk <-]. | |
apply: ge0_le_integral => //; [exact: g0|exact: mg|exact: f0|]. | |
by move=> x Dx; apply: ereal_inf_lb; exists k. | |
exact. | |
Qed. | |
End fatou. | |
Section integralN. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Lemma integralN D (f : T -> \bar R) : | |
\int[mu]_(x in D) f^\+ x +? (- \int[mu]_(x in D) f^\- x) -> | |
\int[mu]_(x in D) - f x = - \int[mu]_(x in D) f x. | |
Proof. | |
have [f_fin _|] := boolP (\int[mu]_(x in D) f^\- x \is a fin_num). | |
rewrite integralE// [in RHS]integralE// oppeD ?fin_numN// oppeK addeC. | |
by rewrite funenegN. | |
rewrite fin_numE negb_and 2!negbK => /orP[nfoo|/eqP nfoo]. | |
exfalso; move/negP : nfoo; apply; rewrite -leeNy_eq; apply/negP. | |
by rewrite -ltNge (lt_le_trans _ (integral_ge0 _ _)). | |
rewrite nfoo adde_defEninfty. | |
rewrite -leye_eq -ltNge lte_pinfty_eq => /orP[f_fin|/eqP pfoo]. | |
rewrite integralE// [in RHS]integralE// nfoo [in RHS]addeC oppeD//. | |
by rewrite funenegN. | |
by rewrite integralE// [in RHS]integralE// funeposN funenegN nfoo pfoo. | |
Qed. | |
Lemma integral_ge0N (D : set T) (f : T -> \bar R) : | |
(forall x, D x -> 0 <= f x) -> | |
\int[mu]_(x in D) - f x = - \int[mu]_(x in D) f x. | |
Proof. | |
move=> f0; rewrite integralN // (eq_integral _ _ (ge0_funenegE _))// integral0. | |
by rewrite oppe0 fin_num_adde_def. | |
Qed. | |
End integralN. | |
Section integral_cst. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) | |
(mu : {measure set T -> \bar R}). | |
Variables (f : T -> \bar R) (D : set T) (mD : measurable D). | |
Lemma sintegral_cst (x : {nonneg R}) : | |
sintegral mu (cst x%:num \_ D) = x%:num%:E * mu D. | |
Proof. | |
rewrite sintegralE (fsbig_widen _ [set 0%R; x%:num])/=; last 2 first. | |
- by move=> y [t _ <-] /=; rewrite /patch; case: ifPn; [right|left]. | |
- by move=> y [_ /=/preimage10->]; rewrite measure0 mule0. | |
have [->|x0] := eqVneq x%:num 0%R; first by rewrite setUid fsbig_set1 !mul0e. | |
rewrite fsbigU0//=; last by move=> y [->]/esym; apply/eqP. | |
rewrite !fsbig_set1 mul0e add0e preimage_restrict//. | |
by rewrite ifN ?set0U ?setIidl//= notin_set; apply/eqP; rewrite eq_sym. | |
Qed. | |
Lemma integral_cst (r : R) : \int[mu]_(x in D) (EFin \o cst r) x = r%:E * mu D. | |
Proof. | |
wlog r0 : r / (0 <= r)%R. | |
move=> h; have [|r0] := leP 0%R r; first exact: h. | |
rewrite -[in RHS](opprK r) EFinN mulNe -h ?oppr_ge0; last exact: ltW. | |
rewrite -integral_ge0N//; last by move=> t ?; rewrite /= lee_fin oppr_ge0 ltW. | |
by under [RHS]eq_integral do rewrite /= opprK. | |
rewrite (eq_integral (EFin \o cst_nnsfun T (NngNum r0)))//. | |
by rewrite integral_nnsfun// sintegral_cst. | |
Qed. | |
Lemma integral_cst_pinfty : mu D != 0 -> \int[mu]_(x in D) (cst +oo) x = +oo. | |
Proof. | |
move=> muD0; pose g : (T -> \bar R)^nat := fun n => cst n%:R%:E. | |
have <- : (fun t => lim (g^~ t)) = cst +oo. | |
rewrite funeqE => t; apply/cvg_lim => //=. | |
apply/dvg_ereal_cvg/cvgPpinfty => M; exists `|ceil M|%N => //= m. | |
rewrite /= -(ler_nat R); apply: le_trans. | |
by rewrite (le_trans (ceil_ge _))// natr_absz ler_int ler_norm. | |
rewrite monotone_convergence //. | |
- rewrite /g (_ : (fun _ => _) = (fun n => n%:R%:E * mu D)); last first. | |
by rewrite funeqE => n; rewrite -integral_cst. | |
apply/cvg_lim => //; apply/ereal_cvgPpinfty => M M0. | |
have [muDoo|muDoo] := ltP (mu D) +oo; last first. | |
exists 1%N => // m /= m0; move: muDoo; rewrite leye_eq => /eqP ->. | |
by rewrite mulry gtr0_sg ?mul1e ?leey// ltr0n. | |
exists `|ceil (M / fine (mu D))|%N => // m /=. | |
rewrite -(ler_nat R) => MDm. | |
rewrite -(@fineK _ (mu D)); last by rewrite ge0_fin_numE//. | |
rewrite -lee_pdivr_mulr; last first. | |
by apply: lt0R; rewrite muDoo andbT lt_neqAle measure_ge0// andbT eq_sym. | |
rewrite lee_fin; apply: le_trans MDm. | |
by rewrite natr_absz (le_trans (ceil_ge _))// ler_int ler_norm. | |
- by move=> n; exact: measurable_fun_cst. | |
- by move=> n x Dx; rewrite lee_fin. | |
- by move=> t Dt n m nm; rewrite /g lee_fin ler_nat. | |
Qed. | |
End integral_cst. | |
Section integral_ind. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D). | |
Lemma integral_indic (E : set T) : measurable E -> | |
\int[mu]_(x in D) (\1_E x)%:E = mu (E `&` D). | |
Proof. | |
move=> mE; rewrite (_ : \1_E = indic_nnsfun R mE)// integral_nnsfun//=. | |
by rewrite restrict_indic sintegral_indic//; exact: measurableI. | |
Qed. | |
End integral_ind. | |
Section integralM_indic. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (m : {measure set T -> \bar R}) (D : set T) (mD : measurable D). | |
Lemma integralM_indic (f : R -> set T) (k : R) : | |
((k < 0)%R -> f k = set0) -> measurable (f k) -> | |
\int[m]_(x in D) (k * \1_(f k) x)%:E = k%:E * \int[m]_(x in D) (\1_(f k) x)%:E. | |
Proof. | |
move=> fk0 mfk; have [k0|k0] := ltP k 0%R. | |
rewrite (eq_integral (cst 0%E)) ?integral0 ?mule0; last first. | |
by move=> x _; rewrite fk0// indic0 mulr0. | |
rewrite (eq_integral (cst 0%E)) ?integral0 ?mule0// => x _. | |
by rewrite fk0// indic0. | |
under eq_integral do rewrite EFinM. | |
rewrite ge0_integralM//. | |
- apply/EFin_measurable_fun/(@measurable_funS _ _ _ _ setT) => //. | |
by rewrite (_ : \1_(f k) = mindic R mfk). | |
- by move=> y _; rewrite lee_fin. | |
Qed. | |
Lemma integralM_indic_nnsfun (f : {nnsfun T >-> R}) (k : R) : | |
\int[m]_(x in D) (k * \1_(f @^-1` [set k]) x)%:E = | |
k%:E * \int[m]_(x in D) (\1_(f @^-1` [set k]) x)%:E. | |
Proof. | |
rewrite (@integralM_indic (fun k => f @^-1` [set k]))// => k0. | |
by rewrite preimage_nnfun0. | |
Qed. | |
End integralM_indic. | |
Section integral_dirac. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (a : T) (R : realType). | |
Variables (D : set T) (mD : measurable D). | |
Let ge0_integral_dirac (f : T -> \bar R) (mf : measurable_fun D f) | |
(f0 : forall x, D x -> 0 <= f x) : | |
D a -> \int[\d_a]_(x in D) (f x) = f a. | |
Proof. | |
move=> Da; have [f_ [ndf_ f_f]] := approximation mD mf f0. | |
transitivity (lim (fun n => \int[\d_ a]_(x in D) (f_ n x)%:E)). | |
rewrite -monotone_convergence//. | |
- apply: eq_integral => x Dx; apply/esym/cvg_lim => //; apply: f_f. | |
by rewrite inE in Dx. | |
- by move=> n; apply/EFin_measurable_fun; exact/(@measurable_funS _ _ _ _ setT). | |
- by move=> *; rewrite lee_fin. | |
- by move=> x _ m n mn; rewrite lee_fin; exact/lefP/ndf_. | |
rewrite (_ : (fun _ => _) = (fun n => (f_ n a)%:E)). | |
by apply/cvg_lim => //; exact: f_f. | |
apply/funext => n; under eq_integral do rewrite fimfunE -sumEFin. | |
rewrite ge0_integral_sum//. | |
- under eq_bigr; first by move=> r _; rewrite integralM_indic_nnsfun//; over. | |
rewrite /= (big_fsetD1 (f_ n a)); last first. | |
by rewrite in_fset_set// in_setE; exists a. | |
rewrite integral_indic//= diracE mem_set// mule1. | |
rewrite big1_fset ?adde0// => r; rewrite !inE => /andP[rfna _] _. | |
rewrite integral_indic//= diracE memNset ?mule0//. | |
by apply/not_andP; left; exact/nesym/eqP. | |
- move=> r; apply/EFin_measurable_fun. | |
apply: measurable_funM => //; first exact: measurable_fun_cst. | |
apply: (@measurable_funS _ _ _ _ setT) => //. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP (f_ n) r)). | |
- by move=> r x _; rewrite muleindic_ge0. | |
Qed. | |
Lemma integral_dirac (f : T -> \bar R) (mf : measurable_fun D f) : | |
\int[\d_ a]_(x in D) f x = (\1_D a)%:E * f a. | |
Proof. | |
have [/[!inE] aD|aD] := boolP (a \in D). | |
rewrite integralE ge0_integral_dirac//; last exact/emeasurable_fun_funepos. | |
rewrite ge0_integral_dirac//; last exact/emeasurable_fun_funeneg. | |
by rewrite [in RHS](funeposneg f) indicE mem_set// mul1e. | |
rewrite indicE (negbTE aD) mul0e -(integral_measure_zero D f)//. | |
apply: eq_measure_integral => //= S mS DS; rewrite /dirac indicE memNset// => /DS. | |
by rewrite notin_set in aD. | |
Qed. | |
End integral_dirac. | |
Section integral_measure_sum_nnsfun. | |
Local Open Scope ereal_scope. | |
Variables (d : _) (T : measurableType d) (R : realType). | |
Variables (m_ : {measure set T -> \bar R}^nat) (N : nat). | |
Let m := msum m_ N. | |
Let integral_measure_sum_indic (E D : set T) (mE : measurable E) | |
(mD : measurable D) : | |
\int[m]_(x in E) (\1_D x)%:E = \sum_(n < N) \int[m_ n]_(x in E) (\1_D x)%:E. | |
Proof. | |
rewrite integral_indic//= /msum/=; apply eq_bigr => i _. | |
by rewrite integral_indic// setIT. | |
Qed. | |
Let integralT_measure_sum (f : {nnsfun T >-> R}) : | |
\int[m]_x (f x)%:E = \sum_(n < N) \int[m_ n]_x (f x)%:E. | |
Proof. | |
under eq_integral do rewrite fimfunE -sumEFin. | |
rewrite ge0_integral_sum//; last 2 first. | |
- move=> r /=; apply: measurable_fun_comp => //. | |
apply: measurable_funM => //. | |
exact: measurable_fun_cst. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f r)). | |
- by move=> r t _; rewrite EFinM muleindic_ge0. | |
transitivity (\sum_(i <- fset_set (range f)) | |
(\sum_(n < N) i%:E * \int[m_ n]_x (\1_(f @^-1` [set i]) x)%:E)). | |
apply eq_bigr => r _. | |
rewrite integralM_indic_nnsfun// integral_measure_sum_indic//. | |
by rewrite ge0_sume_distrr// => n _; apply integral_ge0 => t _; rewrite lee_fin. | |
rewrite exchange_big/=; apply eq_bigr => i _. | |
rewrite integralT_nnsfun sintegralE fsbig_finite//=; apply eq_bigr => r _. | |
by congr (_ * _); rewrite integral_indic// setIT. | |
Qed. | |
Lemma integral_measure_sum_nnsfun (D : set T) (mD : measurable D) | |
(f : {nnsfun T >-> R}) : | |
\int[m]_(x in D) (f x)%:E = \sum_(n < N) \int[m_ n]_(x in D) (f x)%:E. | |
Proof. | |
rewrite integral_mkcond. | |
transitivity (\int[m]_x (proj_nnsfun f mD x)%:E). | |
by apply: eq_integral => t _ /=; rewrite /patch mindicE; | |
case: ifPn => // tD; rewrite ?mulr1 ?mulr0. | |
rewrite integralT_measure_sum; apply eq_bigr => i _. | |
rewrite [RHS]integral_mkcond; apply: eq_integral => t _. | |
rewrite /= /patch /mindic indicE. | |
by case: (boolP (t \in D)) => tD; rewrite ?mulr1 ?mulr0. | |
Qed. | |
End integral_measure_sum_nnsfun. | |
Lemma integral_measure_add_nnsfun (d : _) (T : measurableType d) (R : realType) | |
(m1 m2 : {measure set T -> \bar R}) (D : set T) (mD : measurable D) | |
(f : {nnsfun T >-> R}) : | |
(\int[measure_add m1 m2]_(x in D) (f x)%:E = | |
\int[m1]_(x in D) (f x)%:E + \int[m2]_(x in D) (f x)%:E)%E. | |
Proof. | |
rewrite /measureD integral_measure_sum_nnsfun// 2!big_ord_recl/= big_ord0. | |
by rewrite adde0. | |
Qed. | |
Section integral_mfun_measure_sum. | |
Local Open Scope ereal_scope. | |
Variables (d : _) (T : measurableType d) (R : realType). | |
Variable m_ : {measure set T -> \bar R}^nat. | |
Lemma ge0_integral_measure_sum (D : set T) (mD : measurable D) | |
(f : T -> \bar R) : | |
(forall x, D x -> 0 <= f x) -> measurable_fun D f -> forall N, | |
\int[msum m_ N]_(x in D) f x = \sum_(n < N) \int[m_ n]_(x in D) f x. | |
Proof. | |
move=> f0 mf. | |
have [f_ [f_nd f_f]] := approximation mD mf f0. | |
elim => [|N ih]; first by rewrite big_ord0 msum_mzero integral_measure_zero. | |
rewrite big_ord_recr/= -ih. | |
rewrite (_ : _ m_ N.+1 = measure_add [the measure _ _ of msum m_ N] (m_ N)); last first. | |
by apply/funext => A; rewrite measure_addE /msum/= big_ord_recr. | |
have mf_ n : measurable_fun D (fun x => (f_ n x)%:E). | |
by apply: (@measurable_funS _ _ _ _ setT) => //; exact/EFin_measurable_fun. | |
have f_ge0 n x : D x -> 0 <= (f_ n x)%:E by move=> Dx; rewrite lee_fin. | |
have cvg_f_ (m : {measure set T -> \bar R}) : cvg (fun x => \int[m]_(x0 in D) (f_ x x0)%:E). | |
apply: ereal_nondecreasing_is_cvg => a b ab. | |
apply ge0_le_integral => //; [exact: f_ge0|exact: f_ge0|]. | |
by move=> t Dt; rewrite lee_fin; apply/lefP/f_nd. | |
transitivity (lim (fun n => | |
\int[measure_add [the measure _ _ of msum m_ N] (m_ N)]_(x in D) (f_ n x)%:E)). | |
rewrite -monotone_convergence//; last first. | |
by move=> t Dt a b ab; rewrite lee_fin; exact/lefP/f_nd. | |
by apply eq_integral => t /[!inE] Dt; apply/esym/cvg_lim => //; exact: f_f. | |
transitivity (lim (fun n => | |
\int[msum m_ N]_(x in D) (f_ n x)%:E + \int[m_ N]_(x in D) (f_ n x)%:E)). | |
by congr (lim _); apply/funext => n; by rewrite integral_measure_add_nnsfun. | |
rewrite ereal_limD//; last first. | |
by apply: ge0_adde_def; rewrite inE; | |
apply: ereal_lim_ge => //; apply: nearW => n; | |
apply: integral_ge0 => //; exact: f_ge0. | |
by congr (_ + _); (rewrite -monotone_convergence//; [ | |
apply eq_integral => t /[!inE] Dt; apply/cvg_lim => //; exact: f_f | | |
move=> t Dt a b ab; rewrite lee_fin; exact/lefP/f_nd]). | |
Qed. | |
End integral_mfun_measure_sum. | |
Lemma integral_measure_add (d : _) (T : measurableType d) (R : realType) | |
(m1 m2 : {measure set T -> \bar R}) (D : set T) (mD : measurable D) | |
(f : T -> \bar R) : | |
(forall x, D x -> 0 <= f x)%E -> measurable_fun D f -> | |
(\int[measure_add m1 m2]_(x in D) f x = | |
\int[m1]_(x in D) f x + \int[m2]_(x in D) f x)%E. | |
Proof. | |
move=> f0 mf; rewrite /measureD ge0_integral_measure_sum// 2!big_ord_recl/=. | |
by rewrite big_ord0 adde0. | |
Qed. | |
Section integral_measure_series. | |
Local Open Scope ereal_scope. | |
Variables (d : _) (T : measurableType d) (R : realType). | |
Variable m_ : {measure set T -> \bar R}^nat. | |
Let m := mseries m_ O. | |
Let integral_measure_series_indic (D : set T) (mD : measurable D) : | |
\int[m]_x (\1_D x)%:E = \sum_(n <oo) \int[m_ n]_x (\1_D x)%:E. | |
Proof. | |
rewrite integral_indic// setIT /m/= /mseries; apply: eq_nneseries => i _. | |
by rewrite integral_indic// setIT. | |
Qed. | |
Lemma integral_measure_series_nnsfun (D : set T) (mD : measurable D) | |
(f : {nnsfun T >-> R}) : | |
\int[m]_x (f x)%:E = \sum_(n <oo) \int[m_ n]_x (f x)%:E. | |
Proof. | |
under eq_integral do rewrite fimfunE -sumEFin. | |
rewrite ge0_integral_sum//; last 2 first. | |
- move=> r /=. | |
apply: measurable_fun_comp => //. | |
apply: measurable_funM => //; first exact: measurable_fun_cst. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f r)). | |
- by move=> r t _; rewrite EFinM muleindic_ge0. | |
transitivity (\sum_(i <- fset_set (range f)) | |
(\sum_(n <oo) i%:E * \int[m_ n]_x (\1_(f @^-1` [set i]) x)%:E)). | |
apply eq_bigr => r _. | |
rewrite integralM_indic_nnsfun// integral_measure_series_indic// nneseriesrM//. | |
by move=> n _; apply integral_ge0 => t _; rewrite lee_fin. | |
rewrite -nneseries_sum; last first. | |
move=> r j _. | |
have [r0|r0] := leP 0%R r. | |
by rewrite mule_ge0//; apply integral_ge0 => // t _; rewrite lee_fin. | |
rewrite (eq_integral (cst 0)) ?integral0 ?mule0// => t _. | |
by rewrite preimage_nnfun0// indicE in_set0. | |
apply eq_nneseries => k _. | |
rewrite integralT_nnsfun sintegralE fsbig_finite//=; apply eq_bigr => r _. | |
by congr (_ * _); rewrite integral_indic// setIT. | |
Qed. | |
End integral_measure_series. | |
Section ge0_integral_measure_series. | |
Local Open Scope ereal_scope. | |
Variables (d : _) (T : measurableType d) (R : realType). | |
Variable m_ : {measure set T -> \bar R}^nat. | |
Let m := mseries m_ O. | |
Lemma ge0_integral_measure_series (D : set T) (mD : measurable D) (f : T -> \bar R) : | |
(forall t, D t -> 0 <= f t) -> | |
measurable_fun D f -> | |
\int[m]_(x in D) f x = \sum_(n <oo) \int[m_ n]_(x in D) f x. | |
Proof. | |
move=> f0 mf. | |
apply/eqP; rewrite eq_le; apply/andP; split; last first. | |
suff : forall n, \sum_(k < n) \int[m_ k]_(x in D) f x <= \int[m]_(x in D) f x. | |
move=> n; apply: ereal_lim_le => //. | |
by apply: is_cvg_ereal_nneg_natsum => k _; exact: integral_ge0. | |
by apply: nearW => x; rewrite big_mkord. | |
move=> n. | |
rewrite [X in _ <= X](_ : _ = (\sum_(k < n) \int[m_ k]_(x in D) f x | |
+ \int[mseries m_ n]_(x in D) f x)); last first. | |
transitivity (\int[measure_add [the measure _ _ of msum m_ n] | |
[the measure _ _ of mseries m_ n]]_(x in D) f x). | |
congr (\int[_]_(_ in D) _); apply/funext => A. | |
by rewrite measure_addE; exact: nneseries_split. | |
rewrite integral_measure_add//; congr (_ + _). | |
by rewrite -ge0_integral_measure_sum. | |
by apply: lee_addl; exact: integral_ge0. | |
rewrite ge0_integralE//=; apply: ub_ereal_sup => /= _ [g /= gf] <-. | |
rewrite -integralT_nnsfun (integral_measure_series_nnsfun _ mD). | |
apply: lee_nneseries => n _. | |
by apply integral_ge0 => // x _; rewrite lee_fin. | |
rewrite [leRHS]integral_mkcond; apply ge0_le_integral => //. | |
- by move=> x _; rewrite lee_fin. | |
- exact/EFin_measurable_fun. | |
- by move=> x _; rewrite erestrict_ge0. | |
- exact/(measurable_restrict _ mD). | |
Qed. | |
End ge0_integral_measure_series. | |
Section subset_integral. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Lemma integral_setU (A B : set T) (mA : measurable A) (mB : measurable B) | |
(f : T -> \bar R) : measurable_fun (A `|` B) f -> | |
(forall x, (A `|` B) x -> 0 <= f x) -> [disjoint A & B] -> | |
\int[mu]_(x in A `|` B) f x = \int[mu]_(x in A) f x + \int[mu]_(x in B) f x. | |
Proof. | |
move=> mf f0 AB. | |
transitivity (\int[mu]_(x in A `|` B) ((f \_ A) x + (f \_ B) x)). | |
apply: eq_integral => x; rewrite inE => -[xA|xB]. | |
rewrite /patch mem_set// ifF ?adde0//; apply/negbTE/negP; rewrite inE => xB. | |
by move: AB; rewrite disj_set2E => /eqP; apply/eqP/set0P; exists x. | |
rewrite /patch addeC mem_set// ifF ?adde0//; apply/negbTE/negP; rewrite inE => xA. | |
by move: AB; rewrite disj_set2E => /eqP; apply/eqP/set0P; exists x. | |
rewrite ge0_integralD//; last 5 first. | |
- exact: measurableU. | |
- by move=> x _; apply: erestrict_ge0 => y Ay; apply: f0; left. | |
- have : measurable_fun A f. | |
by apply: measurable_funS mf; [exact: measurableU|exact: subsetUl]. | |
by apply/(measurable_restrict _ _ _ _).1 => //; exact: measurableU. | |
- by move=> x _; apply: erestrict_ge0 => y By; apply: f0; right. | |
- have : measurable_fun B f. | |
by apply: measurable_funS mf; [exact: measurableU|exact: subsetUr]. | |
by apply/(measurable_restrict _ _ _ _).1 => //; exact: measurableU. | |
by rewrite -integral_mkcondl setIC setUK -integral_mkcondl setKU. | |
Qed. | |
Lemma subset_integral (A B : set T) (mA : measurable A) (mB : measurable B) | |
(f : T -> \bar R) : measurable_fun B f -> (forall x, B x -> 0 <= f x) -> | |
A `<=` B -> \int[mu]_(x in A) f x <= \int[mu]_(x in B) f x. | |
Proof. | |
move=> mf f0 AB; rewrite -(setDUK AB) integral_setU//; last 4 first. | |
- exact: measurableD. | |
- by rewrite setDUK. | |
- by move=> x; rewrite setDUK//; exact: f0. | |
- by rewrite disj_set2E setDIK. | |
by apply: lee_addl; apply: integral_ge0 => x [Bx _]; exact: f0. | |
Qed. | |
Lemma integral_set0 (f : T -> \bar R) : \int[mu]_(x in set0) f x = 0. | |
Proof. | |
rewrite integral_mkcond (eq_integral (cst 0)) ?integral0// => x _. | |
by rewrite /restrict; case: ifPn => //; rewrite in_set0. | |
Qed. | |
Lemma ge0_integral_bigsetU (F : (set T)^nat) (f : T -> \bar R) n : | |
(forall n, measurable (F n)) -> | |
let D := \big[setU/set0]_(i < n) F i in | |
measurable_fun D f -> | |
(forall x, D x -> 0 <= f x) -> | |
trivIset `I_n F -> | |
\int[mu]_(x in D) f x = \sum_(i < n) \int[mu]_(x in F i) f x. | |
Proof. | |
move=> mF. | |
elim: n => [|n ih] D mf f0 tF; first by rewrite /D 2!big_ord0 integral_set0. | |
rewrite /D big_ord_recr/= integral_setU//; last 4 first. | |
- exact: bigsetU_measurable. | |
- by move: mf; rewrite /D big_ord_recr. | |
- by move: f0; rewrite /D big_ord_recr. | |
- apply/eqP; move: (trivIset_bigsetUI tF (ltnSn n) (leqnn n)). | |
rewrite [in X in X -> _](eq_bigl xpredT)// => i. | |
by rewrite (leq_trans (ltn_ord i)). | |
rewrite ih ?big_ord_recr//. | |
- apply: measurable_funS mf => //; first exact: bigsetU_measurable. | |
by rewrite /D big_ord_recr /=; apply: subsetUl. | |
- by move=> t Dt; apply: f0; rewrite /D big_ord_recr/=; left. | |
- by apply: sub_trivIset tF => x; exact: leq_trans. | |
Qed. | |
Lemma le_integral_abse (D : set T) (mD : measurable D) (g : T -> \bar R) a : | |
measurable_fun D g -> (0 < a)%R -> | |
a%:E * mu (D `&` [set x | (`|g x| >= a%:E)%E]) <= \int[mu]_(x in D) `|g x|. | |
Proof. | |
move=> mg a0; have ? : measurable (D `&` [set x | (a%:E <= `|g x|)%E]). | |
by apply: emeasurable_fun_c_infty => //; exact: measurable_fun_comp. | |
apply: (@le_trans _ _ (\int[mu]_(x in D `&` [set x | `|g x| >= a%:E]) `|g x|)). | |
rewrite -integral_cst//; apply: ge0_le_integral => //. | |
- by move=> x _ /=; rewrite ltW. | |
- exact/EFin_measurable_fun/measurable_fun_cst. | |
- by apply: measurable_fun_comp => //; exact: measurable_funS mg. | |
- by move=> x /= []. | |
by apply: subset_integral => //; exact: measurable_fun_comp. | |
Qed. | |
End subset_integral. | |
Section Rintegral. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Definition Rintegral (D : set T) (f : T -> \bar R) := | |
fine (\int[mu]_(x in D) f x). | |
End Rintegral. | |
Section integrable. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Definition integrable (mu : set T -> \bar R) D f := | |
measurable_fun D f /\ (\int[mu]_(x in D) `|f x| < +oo). | |
Variables (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D). | |
Implicit Type f g : T -> \bar R. | |
Notation mu_int := (integrable mu D). | |
Lemma integrable0 : mu_int (cst 0). | |
Proof. | |
split; first exact: measurable_fun_cst. | |
under eq_integral do rewrite (gee0_abs (lexx 0)). | |
by rewrite integral0. | |
Qed. | |
Lemma eq_integrable f g : {in D, f =1 g} -> mu_int f -> mu_int g. | |
Proof. | |
move=> fg [mf fi]; split; first exact: eq_measurable_fun mf. | |
rewrite (le_lt_trans _ fi)//; apply: ge0_le_integral=> //. | |
by apply: measurable_fun_comp => //; exact: eq_measurable_fun mf. | |
by apply: measurable_fun_comp => //; exact: eq_measurable_fun mf. | |
by move=> x Dx; rewrite fg// inE. | |
Qed. | |
Lemma le_integrable f g : measurable_fun D f -> | |
(forall x, D x -> `|f x| <= `|g x|) -> mu_int g -> mu_int f. | |
Proof. | |
move=> mf fg [mfg goo]; split => //; rewrite (le_lt_trans _ goo) //. | |
by apply: ge0_le_integral => //; exact: measurable_fun_comp. | |
Qed. | |
Lemma integrableN f : mu_int f -> mu_int (-%E \o f). | |
Proof. | |
move=> [mf foo]; split; last by rewrite /comp; under eq_fun do rewrite abseN. | |
by rewrite /comp; apply: measurable_fun_comp =>//; exact: emeasurable_fun_minus. | |
Qed. | |
Lemma integrablerM (k : R) f : mu_int f -> mu_int (fun x => k%:E * f x). | |
Proof. | |
move=> [mf foo]; split; first exact: emeasurable_funeM. | |
under eq_fun do rewrite abseM. | |
by rewrite ge0_integralM// ?lte_mul_pinfty//; exact: measurable_fun_comp. | |
Qed. | |
Lemma integrableMr (k : R) f : mu_int f -> mu_int (f \* cst k%:E). | |
Proof. | |
by move=> mf; apply: eq_integrable (integrablerM k mf) => // x; rewrite muleC. | |
Qed. | |
Lemma integrableD f g : mu_int f -> mu_int g -> mu_int (f \+ g). | |
Proof. | |
move=> [mf foo] [mg goo]; split; first exact: emeasurable_funD. | |
apply: (@le_lt_trans _ _ (\int[mu]_(x in D) (`|f x| + `|g x|))). | |
apply: ge0_le_integral => //. | |
- by apply: measurable_fun_comp => //; exact: emeasurable_funD. | |
- by apply: emeasurable_funD; apply: measurable_fun_comp. | |
- by move=> *; exact: lee_abs_add. | |
by rewrite ge0_integralD //; [exact: lte_add_pinfty| | |
exact: measurable_fun_comp|exact: measurable_fun_comp]. | |
Qed. | |
Lemma integrableB f g : mu_int f -> mu_int g -> mu_int (f \- g). | |
Proof. by move=> fi gi; exact/(integrableD fi)/integrableN. Qed. | |
Lemma integrable_add_def f : mu_int f -> | |
\int[mu]_(x in D) f^\+ x +? - \int[mu]_(x in D) f^\- x. | |
Proof. | |
move=> [mf]; rewrite -[fun x => _]/(abse \o f) fune_abse => foo. | |
rewrite ge0_integralD // in foo; last 2 first. | |
- exact: emeasurable_fun_funepos. | |
- exact: emeasurable_fun_funeneg. | |
apply: ltpinfty_adde_def. | |
- by apply: le_lt_trans foo; rewrite lee_addl// integral_ge0. | |
- by rewrite inE (@le_lt_trans _ _ 0)// lee_oppl oppe0 integral_ge0. | |
Qed. | |
Lemma integrable_funepos f : mu_int f -> mu_int f^\+. | |
Proof. | |
move=> [Df foo]; split; first exact: emeasurable_fun_funepos. | |
apply: le_lt_trans foo; apply: ge0_le_integral => //. | |
- by apply/measurable_fun_comp => //; exact: emeasurable_fun_funepos. | |
- exact/measurable_fun_comp. | |
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// lee_addl. | |
Qed. | |
Lemma integrable_funeneg f : mu_int f -> mu_int f^\-. | |
Proof. | |
move=> [Df foo]; split; first exact: emeasurable_fun_funeneg. | |
apply: le_lt_trans foo; apply: ge0_le_integral => //. | |
- by apply/measurable_fun_comp => //; exact: emeasurable_fun_funeneg. | |
- exact/measurable_fun_comp. | |
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// lee_addr. | |
Qed. | |
Lemma integral_funeneg_lt_pinfty f : mu_int f -> | |
\int[mu]_(x in D) f^\- x < +oo. | |
Proof. | |
move=> [mf]; apply: le_lt_trans; apply: ge0_le_integral => //. | |
- by apply: emeasurable_fun_funeneg => //; exact: emeasurable_funN. | |
- exact: measurable_fun_comp. | |
- move=> x Dx; have [fx0|/ltW fx0] := leP (f x) 0. | |
rewrite lee0_abs// /funeneg. | |
by move: fx0; rewrite -{1}oppe0 -lee_oppr => /max_idPl ->. | |
rewrite gee0_abs// /funeneg. | |
by move: (fx0); rewrite -{1}oppe0 -lee_oppl => /max_idPr ->. | |
Qed. | |
Lemma integral_funepos_lt_pinfty f : mu_int f -> | |
\int[mu]_(x in D) f^\+ x < +oo. | |
Proof. | |
move=> [mf]; apply: le_lt_trans; apply: ge0_le_integral => //. | |
- by apply: emeasurable_fun_funepos => //; exact: emeasurable_funN. | |
- exact: measurable_fun_comp. | |
- move=> x Dx; have [fx0|/ltW fx0] := leP (f x) 0. | |
rewrite lee0_abs// /funepos. | |
by move: (fx0) => /max_idPr ->; rewrite -lee_oppr oppe0. | |
by rewrite gee0_abs// /funepos; move: (fx0) => /max_idPl ->. | |
Qed. | |
Lemma integrable_neg_fin_num f : | |
mu_int f -> \int[mu]_(x in D) f^\- x \is a fin_num. | |
Proof. | |
move=> fi. | |
rewrite fin_numElt; apply/andP; split. | |
by rewrite (@lt_le_trans _ _ 0) ?lte_ninfty//; exact: integral_ge0. | |
case: fi => mf; apply: le_lt_trans; apply: ge0_le_integral => //. | |
- exact/emeasurable_fun_funeneg. | |
- exact/measurable_fun_comp. | |
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) lee_addr. | |
Qed. | |
Lemma integrable_pos_fin_num f : | |
mu_int f -> \int[mu]_(x in D) f^\+ x \is a fin_num. | |
Proof. | |
move=> fi. | |
rewrite fin_numElt; apply/andP; split. | |
by rewrite (@lt_le_trans _ _ 0) ?lte_ninfty//; exact: integral_ge0. | |
case: fi => mf; apply: le_lt_trans; apply: ge0_le_integral => //. | |
- exact/emeasurable_fun_funepos. | |
- exact/measurable_fun_comp. | |
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) lee_addl. | |
Qed. | |
End integrable. | |
Notation "mu .-integrable" := (integrable mu) : type_scope. | |
Arguments eq_integrable {d T R mu D} mD f. | |
Section sequence_measure. | |
Local Open Scope ereal_scope. | |
Variables (d : _) (T : measurableType d) (R : realType). | |
Variable m_ : {measure set T -> \bar R}^nat. | |
Let m := mseries m_ O. | |
Lemma integral_measure_series (D : set T) (mD : measurable D) (f : T -> \bar R) : | |
(forall n, integrable (m_ n) D f) -> | |
measurable_fun D f -> | |
\sum_(n <oo) `|\int[m_ n]_(x in D) f^\- x | < +oo%E -> | |
\sum_(n <oo) `|\int[m_ n]_(x in D) f^\+ x | < +oo%E -> | |
\int[m]_(x in D) f x = \sum_(n <oo) \int[m_ n]_(x in D) f x. | |
Proof. | |
move=> fi mf fmoo fpoo; rewrite integralE. | |
rewrite ge0_integral_measure_series//; last exact/emeasurable_fun_funepos. | |
rewrite ge0_integral_measure_series//; last exact/emeasurable_fun_funeneg. | |
transitivity (\sum_(n <oo) (fine (\int[m_ n]_(x in D) f^\+ x))%:E - | |
\sum_(n <oo) (fine (\int[m_ n]_(x in D) f^\- x))%:E). | |
by congr (_ - _); apply eq_nneseries => n _; rewrite fineK//; | |
[exact: integrable_pos_fin_num|exact: integrable_neg_fin_num]. | |
have fineKn : \sum_(n <oo) `|\int[m_ n]_(x in D) f^\- x| = | |
\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\- x))%:E|. | |
apply eq_nneseries => n _; congr abse; rewrite fineK//. | |
exact: integrable_neg_fin_num. | |
have fineKp : \sum_(n <oo) `|\int[m_ n]_(x in D) f^\+ x| = | |
\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\+ x))%:E|. | |
apply eq_nneseries => n _; congr abse; rewrite fineK//. | |
exact: integrable_pos_fin_num. | |
rewrite nneseries_esum; last by move=> n _; exact/le0R/integral_ge0. | |
rewrite nneseries_esum; last by move=> n _; exact/le0R/integral_ge0. | |
rewrite -esumB//; last 4 first. | |
- by rewrite /= /summable -nneseries_esum// -fineKp. | |
- rewrite /summable /= -nneseries_esum. | |
by rewrite -fineKn; exact: fmoo. | |
by []. | |
- by move=> n _; exact/le0R/integral_ge0. | |
- by move=> n _; exact/le0R/integral_ge0. | |
rewrite -summable_nneseries_esum; last first. | |
rewrite /summable. | |
apply: (@le_lt_trans _ _ (\esum_(i in (fun=> true)) | |
`|(fine (\int[m_ i]_(x in D) f x))%:E|)). | |
apply: le_esum => k _; rewrite -EFinB -fineB// -?integralE//; | |
[exact: integrable_pos_fin_num|exact: integrable_neg_fin_num]. | |
rewrite -nneseries_esum; last by []. | |
apply: (@le_lt_trans _ _ (\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\+ x))%:E| + | |
\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\- x))%:E|)). | |
rewrite -nneseriesD//; apply lee_nneseries => // n _. | |
rewrite integralE fineB// ?EFinB. | |
- exact: (le_trans (lee_abs_sub _ _)). | |
- exact: integrable_pos_fin_num. | |
- exact: integrable_neg_fin_num. | |
apply: lte_add_pinfty; first by rewrite -fineKp. | |
by rewrite -fineKn; exact: fmoo. | |
by apply eq_nneseries => k _; rewrite !fineK// -?integralE//; | |
[exact: integrable_neg_fin_num|exact: integrable_pos_fin_num]. | |
Qed. | |
End sequence_measure. | |
Section integrable_lemmas. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Lemma ge0_integral_bigcup (F : (set _)^nat) (f : T -> \bar R) : | |
(forall k, measurable (F k)) -> | |
let D := \bigcup_k F k in | |
mu.-integrable D f -> | |
(forall x, D x -> 0 <= f x) -> | |
trivIset setT F -> | |
\int[mu]_(x in D) f x = \sum_(i <oo) \int[mu]_(x in F i) f x. | |
Proof. | |
move=> mF D fi f0 tF; pose f_ N := f \_ (\big[setU/set0]_(0 <= i < N) F i). | |
have lim_f_ t : f_ ^~ t --> (f \_ D) t. | |
rewrite [X in _ --> X](_ : _ = ereal_sup (range (f_ ^~ t))); last first. | |
apply/eqP; rewrite eq_le; apply/andP; split. | |
rewrite /restrict; case: ifPn => [|_]. | |
rewrite in_setE => -[n _ Fnt]; apply: ereal_sup_ub; exists n.+1 => //. | |
by rewrite /f_ big_mkord patchT// in_setE big_ord_recr/=; right. | |
rewrite (@le_trans _ _ (f_ O t))// ?ereal_sup_ub//. | |
by rewrite /f_ patchN// big_mkord big_ord0 inE/= in_set0. | |
apply: ub_ereal_sup => x [n _ <-]. | |
by rewrite /f_ restrict_lee// big_mkord; exact: bigsetU_bigcup. | |
apply: ereal_nondecreasing_cvg => a b ab. | |
rewrite /f_ !big_mkord restrict_lee //; last exact: subset_bigsetU. | |
by move=> x Dx; apply: f0 => //; exact: bigsetU_bigcup Dx. | |
transitivity (\int[mu]_x lim (f_ ^~ x)). | |
rewrite integral_mkcond; apply: eq_integral => x _. | |
by apply/esym/cvg_lim => //; exact: lim_f_. | |
rewrite monotone_convergence//; last 3 first. | |
- move=> n; apply/(measurable_restrict f) => //. | |
by apply: bigsetU_measurable => k _; exact: mF. | |
case: fi => + _; apply/measurable_funS =>//; first exact: bigcup_measurable. | |
by rewrite big_mkord; exact: bigsetU_bigcup. | |
- move=> n x _; apply: erestrict_ge0 => y; rewrite big_mkord => Dy; apply: f0. | |
exact: bigsetU_bigcup Dy. | |
- move=> x _ a b ab; apply: restrict_lee. | |
by move=> y; rewrite big_mkord => Dy; apply: f0; exact: bigsetU_bigcup Dy. | |
by rewrite 2!big_mkord; apply: subset_bigsetU. | |
transitivity (lim (fun N => \int[mu]_(x in \big[setU/set0]_(i < N) F i) f x)). | |
congr (lim _); rewrite funeqE => n. | |
by rewrite /f_ [in RHS]integral_mkcond big_mkord. | |
congr (lim _); rewrite funeqE => /= n; rewrite ge0_integral_bigsetU ?big_mkord//. | |
- case: fi => + _; apply: measurable_funS => //; first exact: bigcup_measurable. | |
exact: bigsetU_bigcup. | |
- by move=> y Dy; apply: f0; exact: bigsetU_bigcup Dy. | |
- exact: sub_trivIset tF. | |
Qed. | |
Lemma integrableS (E D : set T) (f : T -> \bar R) : | |
measurable E -> measurable D -> D `<=` E -> | |
mu.-integrable E f -> mu.-integrable D f. | |
Proof. | |
move=> mE mD DE [mf ifoo]; split; first exact: measurable_funS mf. | |
apply: le_lt_trans ifoo; apply: subset_integral => //. | |
exact: measurable_fun_comp. | |
Qed. | |
Lemma integrable_mkcond D f : measurable D -> | |
mu.-integrable D f <-> mu.-integrable setT (f \_ D). | |
Proof. | |
move=> mD; rewrite /integrable [in X in X <-> _]integral_mkcond. | |
under [in X in X <-> _]eq_integral do rewrite restrict_abse. | |
split => [|] [mf foo]. | |
- by split; [exact/(measurable_restrict _ _ _ _).1| | |
exact: le_lt_trans foo]. | |
- by split; [exact/(measurable_restrict _ _ measurableT _).2| | |
exact: le_lt_trans foo]. | |
Qed. | |
End integrable_lemmas. | |
Arguments integrable_mkcond {d T R mu D} f. | |
Section integrable_ae. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f : T -> \bar R). | |
Hypotheses fint : mu.-integrable D f. | |
Lemma integrable_ae : {ae mu, forall x, D x -> f x \is a fin_num}. | |
Proof. | |
have [muD0|muD0] := eqVneq (mu D) 0. | |
by exists D; split => // t /= /not_implyP[]. | |
pose E := [set x | `|f x| = +oo /\ D x ]. | |
have mE : measurable E. | |
rewrite [X in measurable X](_ : _ = D `&` f @^-1` [set -oo; +oo]). | |
by apply: fint.1 => //; exact: measurableU. | |
rewrite predeqE => t; split=> [[/eqP ftoo Dt]|[Dt]]. | |
split => //. | |
by move: ftoo; rewrite /preimage /= eqe_absl => /andP[/orP[|]/eqP]; tauto. | |
by rewrite /preimage /= => -[|]; rewrite /E /= => ->. | |
have [ET|ET] := eqVneq E setT. | |
have foo t : `|f t| = +oo by have [] : E t by rewrite ET. | |
move: fint.2. | |
suff: \int[mu]_(x in D) `|f x| = +oo by move=> ->; rewrite ltxx. | |
by rewrite -(integral_cst_pinfty mD muD0)//; exact: eq_integral. | |
suff: mu E = 0. | |
move=> muE0; exists E; split => // t /= /not_implyP[Dt ftfin]; split => //. | |
apply/eqP; rewrite eqe_absl leey andbT. | |
by move/negP : ftfin; rewrite fin_numE negb_and 2!negbK orbC. | |
have [->|/set0P E0] := eqVneq E set0; first by rewrite measure0. | |
have [M M0 muM] : exists2 M, (0 <= M)%R & | |
forall n, n%:R%:E * mu (E `&` D) <= M%:E. | |
exists (fine (\int[mu]_(x in D) `|f x|)); first exact/le0R/integral_ge0. | |
move=> n. | |
rewrite -integral_indic// -ge0_integralM//; last 2 first. | |
- apply: measurable_fun_comp=> //; apply: (@measurable_funS _ _ _ _ setT)=>//. | |
by rewrite (_ : \1_ _ = indic_nnsfun R mE). | |
- by move=> *; rewrite lee_fin. | |
rewrite fineK//; last first. | |
by case: fint => _ foo; rewrite ge0_fin_numE//; exact: integral_ge0. | |
apply: ge0_le_integral => //. | |
- by move=> *; rewrite lee_fin /indic. | |
- apply/EFin_measurable_fun; apply: measurable_funM=>//. | |
+ exact: measurable_fun_cst. | |
+ apply: (@measurable_funS _ _ _ _ setT)=>//. | |
by rewrite (_ : \1_ _ = indic_nnsfun R mE)//. | |
- by apply: measurable_fun_comp => //; case: fint. | |
- move=> x Dx; rewrite /= indicE. | |
have [|xE] := boolP (x \in E); last by rewrite mule0. | |
by rewrite /E inE /= => -[->]; rewrite leey. | |
apply/eqP/negPn/negP => /eqP muED0. | |
move/not_forallP : muM; apply. | |
have [muEDoo|] := ltP (mu (E `&` D)) +oo; last first. | |
by rewrite leye_eq => /eqP ->; exists 1%N; rewrite mul1e leye_eq. | |
exists `|ceil (M * (fine (mu (E `&` D)))^-1)|%N.+1. | |
apply/negP; rewrite -ltNge. | |
rewrite -[X in _ * X](@fineK _ (mu (E `&` D))); last first. | |
by rewrite fin_numElt muEDoo andbT (lt_le_trans _ (measure_ge0 _ _)). | |
rewrite lte_fin -ltr_pdivr_mulr. | |
rewrite -addn1 natrD natr_absz ger0_norm. | |
by rewrite (le_lt_trans (ceil_ge _))// ltr_addl. | |
by rewrite ceil_ge0// divr_ge0//; apply/le0R/measure_ge0; exact: measurableI. | |
rewrite -lte_fin fineK. | |
rewrite lt_neqAle measure_ge0// ?andbT. | |
suff: E `&` D = E by move=> ->; apply/eqP/nesym. | |
by rewrite predeqE => t; split=> -[]. | |
by rewrite ge0_fin_numE// measure_ge0//; exact: measurableI. | |
Qed. | |
End integrable_ae. | |
Section linearityM. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f : T -> \bar R). | |
Hypothesis intf : mu.-integrable D f. | |
Lemma integralM r : | |
\int[mu]_(x in D) (r%:E * f x) = r%:E * \int[mu]_(x in D) f x. | |
Proof. | |
have [r0|r0|->] := ltgtP r 0%R; last first. | |
by under eq_fun do rewrite mul0e; rewrite mul0e integral0. | |
- rewrite [in LHS]integralE// gt0_funeposM// gt0_funenegM//. | |
rewrite (ge0_integralM_EFin _ _ _ _ (ltW r0)) //; last first. | |
by apply: emeasurable_fun_funepos => //; case: intf. | |
rewrite (ge0_integralM_EFin _ _ _ _ (ltW r0)) //; last first. | |
by apply: emeasurable_fun_funeneg => //; case: intf. | |
rewrite -muleBr 1?[in RHS]integralE//. | |
by apply: integrable_add_def; case: intf. | |
- rewrite [in LHS]integralE// lt0_funeposM// lt0_funenegM//. | |
rewrite ge0_integralM_EFin //; last 2 first. | |
+ by apply: emeasurable_fun_funeneg => //; case: intf. | |
+ by rewrite -ler_oppr oppr0 ltW. | |
rewrite ge0_integralM_EFin //; last 2 first. | |
+ by apply: emeasurable_fun_funepos => //; case: intf. | |
+ by rewrite -ler_oppr oppr0 ltW. | |
rewrite -mulNe -EFinN opprK addeC EFinN mulNe -muleBr //; last first. | |
by apply: integrable_add_def; case: intf. | |
by rewrite [in RHS]integralE. | |
Qed. | |
End linearityM. | |
Section linearity. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f1 f2 : T -> R). | |
Let g1 := EFin \o f1. | |
Let g2 := EFin \o f2. | |
Hypothesis if1 : mu.-integrable D g1. | |
Hypothesis if2 : mu.-integrable D g2. | |
Lemma integralD_EFin : | |
\int[mu]_(x in D) (g1 \+ g2) x = | |
\int[mu]_(x in D) g1 x + \int[mu]_(x in D) g2 x. | |
Proof. | |
suff: \int[mu]_(x in D) ((g1 \+ g2)^\+ x) + \int[mu]_(x in D) (g1^\- x) + | |
\int[mu]_(x in D) (g2^\- x) = | |
\int[mu]_(x in D) ((g1 \+ g2)^\- x) + \int[mu]_(x in D) (g1^\+ x) + | |
\int[mu]_(x in D) (g2^\+ x). | |
move=> h; rewrite [in LHS]integralE. | |
move/eqP : h; rewrite -[in eqRHS]addeA [in eqRHS]addeC. | |
have g12pos : | |
\int[mu]_(x in D) (g1^\+ x) + \int[mu]_(x in D) (g2^\+ x) \is a fin_num. | |
rewrite ge0_fin_numE//. | |
by rewrite lte_add_pinfty//; exact: integral_funepos_lt_pinfty. | |
by apply: adde_ge0; exact: integral_ge0. | |
have g12neg : | |
\int[mu]_(x in D) (g1^\- x) + \int[mu]_(x in D) (g2^\- x) \is a fin_num. | |
rewrite ge0_fin_numE//. | |
by rewrite lte_add_pinfty// ; exact: integral_funeneg_lt_pinfty. | |
by apply: adde_ge0; exact: integral_ge0. | |
rewrite -sube_eq; last 2 first. | |
- rewrite ge0_fin_numE. | |
apply: lte_add_pinfty; last exact: integral_funeneg_lt_pinfty. | |
apply: lte_add_pinfty; last exact: integral_funeneg_lt_pinfty. | |
have : mu.-integrable D (g1 \+ g2) by apply: integrableD. | |
exact: integral_funepos_lt_pinfty. | |
apply: adde_ge0; last exact: integral_ge0. | |
by apply: adde_ge0; exact: integral_ge0. | |
- by rewrite adde_defC fin_num_adde_def. | |
rewrite -(addeA (\int[mu]_(x in D) (g1 \+ g2)^\+ x)). | |
rewrite (addeC (\int[mu]_(x in D) (g1 \+ g2)^\+ x)). | |
rewrite -addeA (addeC (\int[mu]_(x in D) g1^\- x + \int[mu]_(x in D) g2^\- x)). | |
rewrite eq_sym -(sube_eq g12pos); last by rewrite fin_num_adde_def. | |
move/eqP => <-. | |
rewrite oppeD; last first. | |
rewrite ge0_fin_numE; first exact: integral_funeneg_lt_pinfty if2. | |
exact: integral_ge0. | |
rewrite -addeA (addeCA (\int[mu]_(x in D) (g2^\+ x) )). | |
by rewrite addeA -(integralE _ _ g1) -(integralE _ _ g2). | |
have : (g1 \+ g2)^\+ \+ g1^\- \+ g2^\- = (g1 \+ g2)^\- \+ g1^\+ \+ g2^\+. | |
rewrite funeqE => x. | |
apply/eqP; rewrite -2!addeA [in eqRHS]addeC -sube_eq; last 2 first. | |
by rewrite /funepos /funeneg /g1 /g2 /= !maxEFin. | |
by rewrite /funepos /funeneg /g1 /g2 /= !maxEFin. | |
rewrite addeAC eq_sym -sube_eq; last 2 first. | |
by rewrite /funepos /funeneg !maxEFin. | |
by rewrite /funepos /funeneg !maxEFin. | |
apply/eqP. | |
rewrite -[LHS]/((g1^\+ \+ g2^\+ \- (g1^\- \+ g2^\-)) x) -funeD_posD. | |
by rewrite -[RHS]/((_ \- _) x) -funeD_Dpos. | |
move/(congr1 (fun y => \int[mu]_(x in D) (y x) )). | |
rewrite (ge0_integralD mu mD); last 4 first. | |
- by move=> x _; rewrite adde_ge0. | |
- apply: emeasurable_funD. | |
by apply/emeasurable_fun_funepos/emeasurable_funD; [case: if1|case: if2]. | |
by apply: emeasurable_fun_funeneg; case: if1. | |
- by []. | |
- by apply: emeasurable_fun_funeneg; case: if2. | |
rewrite (ge0_integralD mu mD); last 4 first. | |
- by []. | |
- by apply/emeasurable_fun_funepos/emeasurable_funD; [case: if1|case: if2]. | |
- by []. | |
- by apply/emeasurable_fun_funepos/emeasurable_funN => //; case: if1. | |
move=> ->. | |
rewrite (ge0_integralD mu mD); last 4 first. | |
- by move=> x _; exact: adde_ge0. | |
- apply: emeasurable_funD. | |
by apply/emeasurable_fun_funeneg/emeasurable_funD; [case: if1|case: if2]. | |
by apply: emeasurable_fun_funepos; case: if1. | |
- by []. | |
- by apply: emeasurable_fun_funepos; case: if2. | |
rewrite (ge0_integralD mu mD) //. | |
- by apply/emeasurable_fun_funeneg/emeasurable_funD => //; [case: if1|case: if2]. | |
- by apply: emeasurable_fun_funepos; case: if1. | |
Qed. | |
End linearity. | |
Lemma integralB_EFin d (T : measurableType d) (R : realType) | |
(mu : {measure set T -> \bar R}) (D : set T) (f1 f2 : T -> R) | |
(mD : measurable D) : | |
mu.-integrable D (EFin \o f1) -> mu.-integrable D (EFin \o f2) -> | |
(\int[mu]_(x in D) ((f1 x)%:E - (f2 x)%:E) = | |
(\int[mu]_(x in D) (f1 x)%:E - \int[mu]_(x in D) (f2 x)%:E))%E. | |
Proof. | |
move=> if1 if2; rewrite (integralD_EFin mD if1); last first. | |
by rewrite (_ : _ \o _ = (fun x => - (f2 x)%:E))%E; [exact: integrableN|by []]. | |
by rewrite -integralN//; exact: integrable_add_def. | |
Qed. | |
Lemma le_abse_integral d (R : realType) (T : measurableType d) | |
(mu : {measure set T -> \bar R}) (D : set T) (f : T -> \bar R) | |
(mD : measurable D) : measurable_fun D f -> | |
(`| \int[mu]_(x in D) (f x) | <= \int[mu]_(x in D) `|f x|)%E. | |
Proof. | |
move=> mf. | |
rewrite integralE (le_trans (lee_abs_sub _ _))// gee0_abs; last first. | |
exact: integral_ge0. | |
rewrite gee0_abs; last exact: integral_ge0. | |
by rewrite -ge0_integralD // -?fune_abse//; | |
[exact: emeasurable_fun_funepos | exact: emeasurable_fun_funeneg]. | |
Qed. | |
Section integral_indic. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) | |
(mu : {measure set T -> \bar R}). | |
Lemma integral_setI_indic (E D : set T) (mD : measurable D) (f : T -> \bar R) : | |
measurable E -> | |
\int[mu]_(x in E `&` D) f x = \int[mu]_(x in E) (f x * (\1_D x)%:E). | |
Proof. | |
move=> mE; rewrite integral_mkcondr; apply: eq_integral => x xE. | |
by rewrite indic_restrict /patch; case: ifPn; rewrite ?mule1 ?mule0. | |
Qed. | |
Lemma integralEindic (D : set T) (mD : measurable D) (f : T -> \bar R) : | |
\int[mu]_(x in D) f x = \int[mu]_(x in D) (f x * (\1_D x)%:E). | |
Proof. by rewrite -integral_setI_indic// setIid. Qed. | |
End integral_indic. | |
Section ae_eq. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (mu : {measure set T -> \bar R}) (D : set T). | |
Implicit Types f g h i : T -> \bar R. | |
Definition ae_eq f g := {ae mu, forall x, D x -> f x = g x}. | |
Lemma ae_eq_comp (j : \bar R -> \bar R) f g : | |
ae_eq f g -> ae_eq (j \o f) (j \o g). | |
Proof. | |
move=> [N [mN N0 subN]]; exists N; split => //. | |
by apply: subset_trans subN; apply: subsetC => x /= /[apply] ->. | |
Qed. | |
Lemma ae_eq_funeposneg f g : ae_eq f g <-> ae_eq f^\+ g^\+ /\ ae_eq f^\- g^\-. | |
Proof. | |
split=> [[N [mN N0 DfgN]]|[[A [mA A0 DfgA] [B [mB B0 DfgB]]]]]. | |
by split; exists N; split => // x Dfgx; apply: DfgN => /=; | |
apply: contra_not Dfgx => /= /[apply]; rewrite /funepos /funeneg => ->. | |
exists (A `|` B); rewrite null_set_setU//; split=> //; first exact: measurableU. | |
move=> x /= /not_implyP[Dx fgx]; apply: contrapT => /not_orP[Ax Bx]. | |
have [fgpx|fgnx] : f^\+ x <> g^\+ x \/ f^\- x <> g^\- x. | |
apply: contrapT => /not_orP[/contrapT fgpx /contrapT fgnx]. | |
by apply: fgx; rewrite (funeposneg f) (funeposneg g) fgpx fgnx. | |
- by apply: Ax; exact/DfgA/not_implyP. | |
- by apply: Bx; exact/DfgB/not_implyP. | |
Qed. | |
Lemma ae_eq_sym f g : ae_eq f g -> ae_eq g f. | |
Proof. | |
move=> [N1 [mN1 N10 subN1]]; exists N1; split => // x /= Dba; apply: subN1 => /=. | |
by apply: contra_not Dba => [+ Dx] => ->. | |
Qed. | |
Lemma ae_eq_trans f g h : ae_eq f g -> ae_eq g h -> ae_eq f h. | |
Proof. | |
move=> [N1 [mN1 N10 abN1]] [N2 [mN2 N20 bcN2]]; exists (N1 `|` N2); split => //. | |
- exact: measurableU. | |
- by rewrite null_set_setU. | |
- rewrite -(setCK N1) -(setCK N2) -setCI; apply: subsetC => x [N1x N2x] /= Dx. | |
move/subsetC : abN1 => /(_ _ N1x); rewrite setCK /= => ->//. | |
by move/subsetC : bcN2 => /(_ _ N2x); rewrite setCK /= => ->. | |
Qed. | |
Lemma ae_eq_sub f g h i : ae_eq f g -> ae_eq h i -> ae_eq (f \- h) (g \- i). | |
Proof. | |
move=> [N1 [mN1 N10 abN1]] [N2 [mN2 N20 bcN2]]; exists (N1 `|` N2); split => //. | |
- exact: measurableU. | |
- by rewrite null_set_setU. | |
- rewrite -(setCK N1) -(setCK N2) -setCI; apply: subsetC => x [N1x N2x] /= Dx. | |
move/subsetC : abN1 => /(_ _ N1x); rewrite setCK /= => ->//. | |
by move/subsetC : bcN2 => /(_ _ N2x); rewrite setCK /= => ->. | |
Qed. | |
Lemma ae_eq_mul2r f g h : ae_eq f g -> ae_eq (f \* h) (g \* h). | |
Proof. | |
move=> [N1 [mN1 N10 abN1]]; exists N1; split => // x /= /not_implyP[Dx]. | |
move=> acbc; apply: abN1 => /=; apply/not_implyP; split => //. | |
by apply: contra_not acbc => ->. | |
Qed. | |
Lemma ae_eq_mul2l f g h : ae_eq f g -> ae_eq (h \* f) (h \* g). | |
Proof. | |
move=> /ae_eq_mul2r-/(_ h); under eq_fun do rewrite muleC. | |
by under [in X in ae_eq _ X -> _]eq_fun do rewrite muleC. | |
Qed. | |
Lemma ae_eq_mul1l f g : ae_eq f (cst 1) -> ae_eq g (g \* f). | |
Proof. | |
move=> /ae_eq_mul2l-/(_ g)/ae_eq_sym. | |
by under [in X in ae_eq X _ -> _]eq_fun do rewrite mule1. | |
Qed. | |
Lemma ae_eq_mul f g h : ae_eq f g -> ae_eq (f \* h) (g \* h). | |
Proof. | |
move=> [N1 [mN1 N10 abN1]]; exists N1; split => // x /= /not_implyP[Dx]. | |
move=> acbc; apply: abN1 => /=; apply/not_implyP; split => //. | |
by apply: contra_not acbc => ->. | |
Qed. | |
Lemma ae_eq_abse f g : ae_eq f g -> ae_eq (abse \o f) (abse \o g). | |
Proof. | |
move=> [N [mN N0 subN]]; exists N; split => //; apply: subset_trans subN. | |
by apply: subsetC => x /= /[apply] ->. | |
Qed. | |
End ae_eq. | |
Section ae_eq_integral. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Local Notation ae_eq := (ae_eq mu). | |
Let ae_eq_integral_abs_bounded (D : set T) (mD : measurable D) (f : T -> \bar R) | |
M : measurable_fun D f -> (forall x, D x -> `|f x| <= M%:E) -> | |
ae_eq D f (cst 0) -> \int[mu]_(x in D) `|f x|%E = 0. | |
Proof. | |
move=> mf fM [N [mA mN0 Df0N]]. | |
pose Df_neq0 := D `&` [set x | f x != 0]. | |
have mDf_neq0 : measurable Df_neq0 by exact: emeasurable_neq. | |
pose f' : T -> R := indic Df_neq0. | |
have le_f_M t : D t -> `|f t| <= M%:E * (f' t)%:E. | |
move=> Dt; rewrite /f' indicE; have [|] := boolP (t \in Df_neq0). | |
by rewrite inE => -[_ _]; rewrite mule1 fM. | |
by rewrite notin_set=> /not_andP[//|/negP/negPn/eqP ->]; rewrite abse0 mule0. | |
have : 0 <= \int[mu]_(x in D) `|f x| <= `|M|%:E * mu Df_neq0. | |
rewrite integral_ge0//= /Df_neq0 -{2}(setIid D) setIAC -integral_indic//. | |
rewrite -/Df_neq0 -ge0_integralM//; last 2 first. | |
- apply: measurable_fun_comp=> //; apply: (@measurable_funS _ _ _ _ setT) => //. | |
by rewrite (_ : \1_ _ = mindic R mDf_neq0). | |
- by move=> x Dx; rewrite lee_fin. | |
apply: ge0_le_integral => //. | |
- exact: measurable_fun_comp. | |
- by move=> x Dx; rewrite mule_ge0// lee_fin. | |
- apply: emeasurable_funM; first exact: measurable_fun_cst. | |
apply: measurable_fun_comp => //. | |
apply: (@measurable_funS _ _ _ _ setT)=> //. | |
by rewrite (_ : \1_ _ = mindic R mDf_neq0)//. | |
- move=> x Dx. | |
rewrite (le_trans (le_f_M _ Dx))// lee_fin /f' indicE. | |
by case: (_ \in _) => //; rewrite ?mulr1 ?mulr0// ler_norm. | |
have -> : mu Df_neq0 = 0. | |
apply: (subset_measure0 _ _ _ mN0) => //. | |
apply: subset_trans Df0N => /= x [/= f0 Dx] /=. | |
by apply/not_implyP; split => //; exact/eqP. | |
by rewrite mule0 -eq_le => /eqP. | |
Qed. | |
Lemma ae_eq_integral_abs (D : set T) (mD : measurable D) (f : T -> \bar R) : | |
measurable_fun D f -> \int[mu]_(x in D) `|f x| = 0 <-> ae_eq D f (cst 0). | |
Proof. | |
move=> mf; split=> [iDf0|Df0]. | |
exists (D `&` [set x | f x != 0]); split; [exact: emeasurable_neq| |]; last first. | |
by move=> t /= /not_implyP [Dt /eqP ft0]. | |
have muDf a : (0 < a)%R -> mu (D `&` [set x | a%:E <= `|f x |]) = 0. | |
move=> a0; apply/eqP; rewrite eq_le measure_ge0 ?andbT; last first. | |
move: (@le_integral_abse _ _ _ mu _ mD _ _ mf a0). | |
by rewrite -lee_pdivl_mull// iDf0 mule0 setIC. | |
rewrite [X in mu X](_ : _ = | |
\bigcup_n (D `&` [set x | `|f x| >= n.+1%:R^-1%:E])); last first. | |
rewrite predeqE => t; split=> [[Dt ft0]|[n _ /= [Dt nft]]]. | |
have [ftoo|ftoo] := eqVneq `|f t| +oo%E. | |
by exists 0%N => //; split => //=; rewrite ftoo /= leey. | |
pose m := `|ceil (fine `|f t|)^-1|%N. | |
have ftfin : `|f t|%E \is a fin_num. | |
by rewrite fin_numE gt_eqF //= (lt_le_trans _ (abse_ge0 _)). | |
exists m => //; split => //=. | |
rewrite -(@fineK _ `|f t|) // lee_fin -ler_pinv; last 2 first. | |
- rewrite inE unitfE fine_eq0 // abse_eq0 ft0/=; apply/lt0R. | |
by rewrite lt_neqAle abse_ge0 -ge0_fin_numE// eq_sym abse_eq0 ft0. | |
- by rewrite inE unitfE invr_eq0 pnatr_eq0 /= invr_gt0. | |
rewrite invrK /m -addn1 natrD natr_absz ger0_norm ?ceil_ge0//. | |
apply: (@le_trans _ _ ((fine `|f t|)^-1 + 1)%R); first by rewrite ler_addl. | |
by rewrite ler_add2r// ceil_ge. | |
by split => //; apply: contraTN nft => /eqP ->; rewrite abse0 -ltNge. | |
transitivity (lim (fun n => mu (D `&` [set x | `|f x| >= n.+1%:R^-1%:E]))). | |
apply/esym/cvg_lim => //; apply: cvg_mu_inc. | |
- move=> i; apply: emeasurable_fun_c_infty => //. | |
exact: measurable_fun_comp. | |
- apply: bigcupT_measurable => i. | |
by apply: emeasurable_fun_c_infty => //; exact: measurable_fun_comp. | |
- move=> m n mn; apply/subsetPset; apply: setIS => t /=. | |
by apply: le_trans; rewrite lee_fin lef_pinv // ?ler_nat // posrE. | |
by rewrite (_ : (fun _ => _) = cst 0) ?lim_cst//= funeqE => n /=; rewrite muDf. | |
pose f_ := fun n x => mine `|f x| n%:R%:E. | |
have -> : (fun x => `|f x|) = (fun x => lim (f_^~ x)). | |
rewrite funeqE => x; apply/esym/cvg_lim => //; apply/cvg_ballP => _/posnumP[e]. | |
rewrite near_map; near=> n; rewrite /ball /= /ereal_ball /= /f_. | |
have [->|fxoo] := eqVneq `|f x|%E +oo. | |
rewrite /= (@ger0_norm _ n%:R)// ger0_norm; last first. | |
by rewrite subr_ge0 ler_pdivr_mulr ?mul1r ?ler_addr. | |
rewrite -{1}(@divrr _ (1 + n%:R)%R) ?unitfE; last first. | |
by rewrite gt_eqF// {1}(_ : 1 = 1%:R)%R // -natrD add1n. | |
rewrite -mulrBl addrK ltr_pdivr_mulr; last first. | |
by rewrite {1}(_ : 1 = 1%:R)%R // -natrD add1n. | |
rewrite mulrDr mulr1 ltr_spsaddl// -ltr_pdivr_mull// mulr1. | |
near: n. | |
exists `|ceil (1 + e%:num^-1)|%N => // n /=. | |
rewrite -(@ler_nat R); apply: lt_le_trans. | |
rewrite natr_absz ger0_norm ?ceil_ge ?ceil_ge0//. | |
by rewrite (lt_le_trans _ (ceil_ge _))// ltr_addr. | |
have fxn : `|f x| <= n%:R%:E. | |
rewrite -(@fineK _ `|f x|); last first. | |
by rewrite fin_numE fxoo andbT gt_eqF// (lt_le_trans _ (abse_ge0 _)). | |
rewrite lee_fin. | |
near: n. | |
exists `|ceil (fine (`|f x|))|%N => // n /=. | |
rewrite -(@ler_nat R); apply: le_trans. | |
by rewrite natr_absz ger0_norm ?ceil_ge// ceil_ge0. | |
by rewrite min_l// subrr normr0. | |
transitivity (lim (fun n => \int[mu]_(x in D) (f_ n x) )). | |
apply/esym/cvg_lim => //; apply: cvg_monotone_convergence => //. | |
- move=> n; apply: emeasurable_fun_min => //; first exact: measurable_fun_comp. | |
exact: measurable_fun_cst. | |
- by move=> n t Dt; rewrite /f_ lexI abse_ge0 //= lee_fin. | |
- move=> t Dt m n mn; rewrite /f_ lexI. | |
have [ftm|ftm] := leP `|f t|%E m%:R%:E. | |
by rewrite lexx /= (le_trans ftm)// lee_fin ler_nat. | |
by rewrite (ltW ftm) /= lee_fin ler_nat. | |
have ae_eq_f_ n : ae_eq D (f_ n) (cst 0). | |
case: Df0 => N [mN muN0 DfN]. | |
exists N; split => // t /= /not_implyP[Dt fnt0]. | |
apply: DfN => /=; apply/not_implyP; split => //. | |
apply: contra_not fnt0 => ft0. | |
by rewrite /f_ ft0 /= normr0 min_l// lee_fin. | |
have f_bounded n x : D x -> `|f_ n x| <= n%:R%:E. | |
move=> Dx; rewrite /f_; have [|_] := leP `|f x| n%:R%:E. | |
by rewrite abse_id. | |
by rewrite gee0_abs// lee_fin. | |
have if_0 n : \int[mu]_(x in D) `|f_ n x| = 0. | |
apply: (@ae_eq_integral_abs_bounded _ _ _ n%:R) => //. | |
by apply: emeasurable_fun_min => //; | |
[exact: measurable_fun_comp|exact: measurable_fun_cst]. | |
exact: f_bounded. | |
rewrite (_ : (fun _ => _) = (cst 0)) // ?lim_cst// funeqE => n. | |
rewrite (_ : (fun x => f_ n x) = abse \o f_ n); first exact: if_0. | |
rewrite funeqE => x /=; rewrite gee0_abs// /f_. | |
by have [|_] := leP `|f x| n%:R%:E; [by []|rewrite lee_fin]. | |
Unshelve. all: by end_near. Qed. | |
Lemma integral_abs_eq0 D (N : set T) (f : T -> \bar R) : | |
measurable N -> measurable D -> N `<=` D -> measurable_fun D f -> | |
mu N = 0 -> \int[mu]_(x in N) `|f x| = 0. | |
Proof. | |
move=> mN mD ND mf muN0; rewrite integralEindic//. | |
rewrite (eq_integral (fun x => `|f x * (\1_N x)%:E|)); last first. | |
by move=> t _; rewrite abseM (@gee0_abs _ (\1_N t)%:E)// lee_fin. | |
apply/ae_eq_integral_abs => //. | |
apply: emeasurable_funM => //; first exact: (@measurable_funS _ _ _ _ D). | |
apply/EFin_measurable_fun/(@measurable_funS _ _ _ _ setT) => //. | |
by rewrite (_ : \1_N = mindic R mN). | |
exists N; split => // t /= /not_implyP[_]; rewrite indicE. | |
by have [|] := boolP (t \in N); rewrite ?inE ?mule0. | |
Qed. | |
Lemma funID (N : set T) (mN : measurable N) (f : T -> \bar R) : | |
let oneCN := [the {nnsfun T >-> R} of mindic R (measurableC mN)] in | |
let oneN := [the {nnsfun T >-> R} of mindic R mN] in | |
f = (fun x => f x * (oneCN x)%:E) \+ (fun x => f x * (oneN x)%:E). | |
Proof. | |
move=> oneCN oneN; rewrite funeqE => x. | |
rewrite /oneCN /oneN/= /mindic !indicE. | |
have [xN|xN] := boolP (x \in N). | |
by rewrite mule1 in_setC xN mule0 add0e. | |
by rewrite in_setC xN mule0 adde0 mule1. | |
Qed. | |
Lemma negligible_integrable (D N : set T) (f : T -> \bar R) : | |
measurable N -> measurable D -> measurable_fun D f -> | |
mu N = 0 -> mu.-integrable D f <-> mu.-integrable (D `\` N) f. | |
Proof. | |
move=> mN mD mf muN0. | |
pose mCN := measurableC mN. | |
pose oneCN : {nnsfun T >-> R} := [the {nnsfun T >-> R} of mindic R mCN]. | |
pose oneN : {nnsfun T >-> R} := [the {nnsfun T >-> R} of mindic R mN]. | |
have intone : mu.-integrable D (fun x => f x * (oneN x)%:E). | |
split. | |
apply: emeasurable_funM=> //; apply/EFin_measurable_fun. | |
exact: (@measurable_funS _ _ _ _ setT). | |
rewrite (eq_integral (fun x => `|f x| * (\1_N x)%:E)); last first. | |
by move=> t _; rewrite abseM (@gee0_abs _ (\1_N t)%:E) // lee_fin. | |
rewrite -integral_setI_indic// (@integral_abs_eq0 D)//. | |
- exact: measurableI. | |
- by apply: (subset_measure0 _ _ _ muN0) => //; exact: measurableI. | |
have h1 : mu.-integrable D f <-> mu.-integrable D (fun x => f x * (oneCN x)%:E). | |
split=> [intf|intCf]. | |
split. | |
apply: emeasurable_funM=> //; apply/EFin_measurable_fun => //. | |
exact: (@measurable_funS _ _ _ _ setT). | |
rewrite (eq_integral (fun x => `|f x| * (\1_(~` N) x)%:E)); last first. | |
by move=> t _; rewrite abseM (@gee0_abs _ (\1_(~` N) t)%:E) // lee_fin. | |
rewrite -integral_setI_indic//; case: intf => _; apply: le_lt_trans. | |
by apply: subset_integral => //; [exact:measurableI|exact:measurable_fun_comp]. | |
split => //; rewrite (funID mN f) -/oneCN -/oneN. | |
have ? : measurable_fun D (fun x : T => f x * (oneCN x)%:E). | |
apply: emeasurable_funM=> //. | |
by apply/EFin_measurable_fun; exact: (@measurable_funS _ _ _ _ setT). | |
have ? : measurable_fun D (fun x : T => f x * (oneN x)%:E). | |
apply: emeasurable_funM => //. | |
by apply/EFin_measurable_fun; apply: (@measurable_funS _ _ _ _ setT). | |
apply: (@le_lt_trans _ _ | |
(\int[mu]_(x in D) (`|f x * (oneCN x)%:E| + `|f x * (oneN x)%:E|))). | |
apply: ge0_le_integral => //. | |
- by apply: measurable_fun_comp => //; exact: emeasurable_funD. | |
- by apply: emeasurable_funD; exact: measurable_fun_comp. | |
- by move=> *; rewrite lee_abs_add. | |
rewrite ge0_integralD//; | |
[|exact: measurable_fun_comp|exact: measurable_fun_comp]. | |
by apply: lte_add_pinfty; [case: intCf|case: intone]. | |
have h2 : mu.-integrable (D `\` N) f <-> | |
mu.-integrable D (fun x => f x * (oneCN x)%:E). | |
split=> [intCf|intCf]. | |
split. | |
apply: emeasurable_funM=> //; apply/EFin_measurable_fun => //. | |
exact: (@measurable_funS _ _ _ _ setT). | |
rewrite (eq_integral (fun x => `|f x| * (\1_(~` N) x)%:E)); last first. | |
by move=> t _; rewrite abseM (@gee0_abs _ (\1_(~` N) t)%:E)// lee_fin. | |
rewrite -integral_setI_indic //; case: intCf => _; apply: le_lt_trans. | |
apply: subset_integral=> //; [exact: measurableI|exact: measurableD|]. | |
by apply: measurable_fun_comp => //; apply: measurable_funS mf => // ? []. | |
split. | |
move=> mDN A mA; rewrite setDE (setIC D) -setIA; apply: measurableI => //. | |
exact: mf. | |
rewrite integral_setI_indic//. | |
case: intCf => _; rewrite (eq_integral (fun x => `|f x| * (\1_(~` N) x)%:E))//. | |
by move=> t _; rewrite abseM (@gee0_abs _ (\1_(~` N) t)%:E)// lee_fin. | |
by apply: (iff_trans h1); exact: iff_sym. | |
Qed. | |
Lemma negligible_integral (D N : set T) (f : T -> \bar R) : | |
measurable N -> measurable D -> measurable_fun D f -> | |
(forall x, D x -> 0 <= f x) -> | |
mu N = 0 -> \int[mu]_(x in D) f x = \int[mu]_(x in D `\` N) f x. | |
Proof. | |
move=> mN mD mf f0 muN0. | |
rewrite {1}(funID mN f) ge0_integralD//; last 4 first. | |
- by move=> x Dx; apply: mule_ge0 => //; [exact: f0|rewrite lee_fin]. | |
- apply: emeasurable_funM=> //; apply/EFin_measurable_fun=> //. | |
exact: (@measurable_funS _ _ _ _ setT). | |
- by move=> x Dx; apply: mule_ge0 => //; [exact: f0|rewrite lee_fin]. | |
- apply: emeasurable_funM=> //; apply/EFin_measurable_fun=> //. | |
exact: (@measurable_funS _ _ _ _ setT). | |
rewrite -integral_setI_indic//; last exact: measurableC. | |
rewrite -integral_setI_indic// [X in _ + X = _](_ : _ = 0) ?adde0//. | |
rewrite (eq_integral (abse \o f)); last first. | |
move=> x; rewrite in_setI => /andP[xD xN]. | |
by rewrite /= gee0_abs// f0//; rewrite inE in xD. | |
rewrite (@integral_abs_eq0 D)//; first exact: measurableI. | |
by apply: (subset_measure0 _ _ _ muN0) => //; exact: measurableI. | |
Qed. | |
Lemma ge0_ae_eq_integral (D : set T) (f g : T -> \bar R) : | |
measurable D -> measurable_fun D f -> measurable_fun D g -> | |
(forall x, D x -> 0 <= f x) -> (forall x, D x -> 0 <= g x) -> | |
ae_eq D f g -> \int[mu]_(x in D) (f x) = \int[mu]_(x in D) (g x). | |
Proof. | |
move=> mD mf mg f0 g0 [N [mN N0 subN]]. | |
rewrite integralEindic// [RHS]integralEindic//. | |
rewrite (negligible_integral mN)//; last 2 first. | |
- apply: emeasurable_funM => //; apply/EFin_measurable_fun. | |
by apply: (@measurable_funS _ _ _ _ setT) => //; rewrite (_ : \1_D = mindic R mD). | |
- by move=> x Dx; apply: mule_ge0 => //; [exact: f0|rewrite lee_fin]. | |
rewrite [RHS](negligible_integral mN)//; last 2 first. | |
- apply: emeasurable_funM => //; apply/EFin_measurable_fun. | |
by apply: (@measurable_funS _ _ _ _ setT) => //; rewrite (_ : \1_D = mindic R mD). | |
- by move=> x Dx; apply: mule_ge0 => //; [exact: g0|rewrite lee_fin]. | |
- apply: eq_integral => x;rewrite in_setD => /andP[_ xN]. | |
apply: contrapT; rewrite indicE; have [|?] := boolP (x \in D). | |
rewrite inE => Dx; rewrite !mule1. | |
move: xN; rewrite notin_set; apply: contra_not => fxgx; apply: subN => /=. | |
exact/not_implyP. | |
by rewrite !mule0. | |
Qed. | |
Lemma ae_eq_integral (D : set T) (f g : T -> \bar R) : | |
measurable D -> measurable_fun D f -> measurable_fun D g -> | |
ae_eq D f g -> integral mu D f = integral mu D g. | |
Proof. | |
move=> mD mf mg /ae_eq_funeposneg[Dfgp Dfgn]. | |
rewrite integralE// [in RHS]integralE//; congr (_ - _). | |
by apply: ge0_ae_eq_integral => //; [exact: emeasurable_fun_funepos| | |
exact: emeasurable_fun_funepos]. | |
by apply: ge0_ae_eq_integral => //; [exact: emeasurable_fun_funeneg| | |
exact: emeasurable_fun_funeneg]. | |
Qed. | |
End ae_eq_integral. | |
Section ae_measurable_fun. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Hypothesis cmu : measure_is_complete mu. | |
Variables (D : set T) (f g : T -> \bar R). | |
Lemma ae_measurable_fun : ae_eq mu D f g -> | |
measurable_fun D f -> measurable_fun D g. | |
Proof. | |
move=> [N [mN N0 subN]] mf B mB mD. | |
apply: (measurability (ErealGenOInfty.measurableE R)) => // _ [_ [x ->] <-]. | |
rewrite [X in measurable X](_ : _ = D `&` ~` N `&` (f @^-1` `]x, +oo[) | |
`|` (D `&` N `&` g @^-1` `]x, +oo[)); last first. | |
rewrite /preimage. | |
apply/seteqP; split=> [y /= [Dy gyxoo]|y /= [[[Dy Ny] fyxoo]|]]. | |
- have [->|fgy] := eqVneq (f y) (g y). | |
have [yN|yN] := boolP (y \in N). | |
by right; split => //; rewrite inE in yN. | |
by left; split => //; rewrite notin_set in yN. | |
by right; split => //; split => //; apply: subN => /= /(_ Dy); exact/eqP. | |
- split => //; have [<-//|fgy] := eqVneq (f y) (g y). | |
by exfalso; apply/Ny/subN => /= /(_ Dy); exact/eqP. | |
- by move=> [[]]. | |
apply: measurableU. | |
- rewrite setIAC; apply: measurableI; last exact/measurableC. | |
exact/mf/emeasurable_itv_bnd_pinfty. | |
- by apply: cmu; exists N; split => //; rewrite setIAC; apply: subIset; right. | |
Qed. | |
End ae_measurable_fun. | |
Section integralD. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f1 f2 : T -> \bar R). | |
Hypotheses (if1 : mu.-integrable D f1) (if2 : mu.-integrable D f2). | |
Lemma integralD : \int[mu]_(x in D) (f1 x + f2 x) = | |
\int[mu]_(x in D) f1 x + \int[mu]_(x in D) f2 x. | |
Proof. | |
pose A := D `&` [set x | f1 x \is a fin_num]. | |
pose B := D `&` [set x | f2 x \is a fin_num]. | |
have mA : measurable A by apply: emeasurable_fin_num => //; case: if1. | |
have mB : measurable B by apply: emeasurable_fin_num => //; case: if2. | |
have mAB : measurable (A `&` B) by apply: measurableI. | |
pose g1 := (fine \o f1 \_ (A `&` B))%R. | |
pose g2 := (fine \o f2 \_ (A `&` B))%R. | |
have ig1 : mu.-integrable D (EFin \o g1). | |
rewrite (_ : _ \o _ = f1 \_ (A `&` B)) //. | |
apply: (integrableS measurableT)=>//; apply/(integrable_mkcond _ _).1 => //. | |
by apply: integrableS if1=>//; rewrite -setIAC -setIA; apply: subIset; left. | |
rewrite /g1 funeqE => x //=; rewrite !/restrict; case: ifPn => //. | |
rewrite 2!in_setI => /andP[/andP[xA f1xfin] _] /=. | |
by rewrite fineK//; rewrite inE in f1xfin. | |
have ig2 : mu.-integrable D (EFin \o g2). | |
rewrite (_ : _ \o _ = f2 \_ (A `&` B)) //. | |
apply: (integrableS measurableT)=>//; apply/(integrable_mkcond _ _).1 => //. | |
by apply: integrableS if2=>//; rewrite -setIAC -setIA; apply: subIset; left. | |
rewrite /g2 funeqE => x //=; rewrite !/restrict; case: ifPn => //. | |
rewrite in_setI => /andP[_]; rewrite in_setI => /andP[xB f2xfin] /=. | |
by rewrite fineK//; rewrite inE in f2xfin. | |
transitivity (\int[mu]_(x in D) (EFin \o (g1 \+ g2)%R) x). | |
apply: ae_eq_integral => //. | |
- by apply: emeasurable_funD => //; [case: if1|case: if2]. | |
- rewrite (_ : _ \o _ = (EFin \o g1) \+ (EFin \o g2))//. | |
by apply: emeasurable_funD => //; [case: ig1|case: ig2]. | |
- have [N1 [mN1 N10 subN1]] := integrable_ae mD if1. | |
have [N2 [mN2 N20 subN2]] := integrable_ae mD if2. | |
exists (N1 `|` N2); split; [exact: measurableU|by rewrite null_set_setU|]. | |
rewrite -(setCK N1) -(setCK N2) -setCI. | |
apply: subsetC => x [N1x N2x] /= Dx. | |
move/subsetC : subN1 => /(_ x N1x); rewrite setCK /= => /(_ Dx) f1x. | |
move/subsetC : subN2 => /(_ x N2x); rewrite setCK /= => /(_ Dx) f2x. | |
rewrite /g1 /g2 /restrict /=; have [|] := boolP (x \in A `&` B). | |
by rewrite in_setI => /andP[xA xB] /=; rewrite EFinD !fineK. | |
by rewrite in_setI negb_and => /orP[|]; | |
rewrite in_setI negb_and /= (mem_set Dx)/= notin_set/=. | |
- rewrite (_ : _ \o _ = (EFin \o g1) \+ (EFin \o g2))// integralD_EFin//. | |
congr (_ + _). | |
+ apply: ae_eq_integral => //; [by case: ig1|by case: if1|]. | |
have [N1 [mN1 N10 subN1]] := integrable_ae mD if1. | |
have [N2 [mN2 N20 subN2]] := integrable_ae mD if2. | |
exists (N1 `|` N2); split; [exact: measurableU|by rewrite null_set_setU|]. | |
rewrite -(setCK N1) -(setCK N2) -setCI. | |
apply: subsetC => x [N1x N2x] /= Dx. | |
move/subsetC : subN1 => /(_ x N1x); rewrite setCK /= => /(_ Dx) f1x. | |
move/subsetC : subN2 => /(_ x N2x); rewrite setCK /= => /(_ Dx) f2x. | |
rewrite /g1 /= /restrict. | |
have [/=|] := boolP (x \in A `&` B); first by rewrite fineK. | |
by rewrite in_setI negb_and => /orP[|]; | |
rewrite in_setI negb_and /= (mem_set Dx) /= notin_set. | |
+ apply: ae_eq_integral => //;[by case: ig2|by case: if2|]. | |
have [N1 [mN1 N10 subN1]] := integrable_ae mD if1. | |
have [N2 [mN2 N20 subN2]] := integrable_ae mD if2. | |
exists (N1 `|` N2); split; [exact: measurableU|by rewrite null_set_setU|]. | |
rewrite -(setCK N1) -(setCK N2) -setCI. | |
apply: subsetC => x [N1x N2x] /= Dx. | |
move/subsetC : subN1 => /(_ x N1x); rewrite setCK /= => /(_ Dx) f1x. | |
move/subsetC : subN2 => /(_ x N2x); rewrite setCK /= => /(_ Dx) f2x. | |
rewrite /g2 /= /restrict. | |
have [/=|] := boolP (x \in A `&` B); first by rewrite fineK. | |
by rewrite in_setI negb_and => /orP[|]; | |
rewrite in_setI negb_and /= (mem_set Dx) /= notin_set. | |
Qed. | |
End integralD. | |
Section integralB. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType). | |
Variables (mu : {measure set T -> \bar R}) (D : set T). | |
Variables (mD : measurable D) (f1 f2 : T -> \bar R). | |
Hypotheses (if1 : mu.-integrable D f1) (if2 : mu.-integrable D f2). | |
Lemma integralB : \int[mu]_(x in D) (f1 \- f2) x = | |
\int[mu]_(x in D) f1 x - \int[mu]_(x in D) f2 x. | |
Proof. | |
rewrite -[in RHS](@integralN _ _ _ _ _ f2); last exact: integrable_add_def. | |
by rewrite -[in RHS]integralD//; exact: integrableN. | |
Qed. | |
End integralB. | |
Section integral_counting. | |
Local Open Scope ereal_scope. | |
Variables (R : realType). | |
Lemma counting_dirac (A : set nat) : counting R A = \sum_(n <oo) \d_ n A. | |
Proof. | |
have -> : \sum_(n <oo) \d_ n A = \esum_(i in A) \d_ i A :> \bar R. | |
rewrite nneseries_esum// (_ : [set _ | _] = setT); last exact/seteqP. | |
rewrite [in LHS](esumID A)// !setTI [X in _ + X](_ : _ = 0) ?adde0//. | |
by apply esum0 => i Ai; rewrite /= /dirac indicE memNset. | |
rewrite /counting/=; case: ifPn => /asboolP finA. | |
by rewrite -finite_card_dirac. | |
by rewrite infinite_card_dirac. | |
Qed. | |
Lemma summable_integral_dirac (a : nat -> \bar R) : summable setT a -> | |
\sum_(n <oo) `|\int[\d_ n]_x a x| < +oo. | |
Proof. | |
move=> sa. | |
apply: (@le_lt_trans _ _ (\sum_(i <oo) `|fine (a i)|%:E)). | |
apply lee_nneseries => // n _; rewrite integral_dirac//. | |
move: (@summable_pinfty _ _ _ _ sa n Logic.I). | |
by case: (a n) => //= r _; rewrite indicE/= mem_set// mul1r. | |
move: (sa); rewrite /summable (_ : [set: nat] = (fun=> true))//; last exact/seteqP. | |
rewrite -nneseries_esum//; apply: le_lt_trans. | |
by apply lee_nneseries => // n _ /=; case: (a n) => //; rewrite leey. | |
Qed. | |
Lemma integral_count (a : nat -> \bar R) : summable setT a -> | |
\int[counting R]_t (a t) = \sum_(k <oo) (a k). | |
Proof. | |
move=> sa. | |
transitivity (\int[mseries (fun n => [the measure _ _ of \d_ n]) O]_t a t). | |
congr (integral _ _ _); apply/funext => A. | |
by rewrite /= counting_dirac. | |
rewrite (@integral_measure_series _ _ R (fun n => [the measure _ _ of \d_ n]) setT)//=. | |
- apply: eq_nneseries => i _; rewrite integral_dirac//=. | |
by rewrite indicE mem_set// mul1e. | |
- move=> n; split; first by []. | |
by rewrite integral_dirac//= indicE mem_set// mul1e; exact: (summable_pinfty sa). | |
- by apply: summable_integral_dirac => //; exact: summable_funeneg. | |
- by apply: summable_integral_dirac => //; exact: summable_funepos. | |
Qed. | |
End integral_counting. | |
Section subadditive_countable. | |
Local Open Scope ereal_scope. | |
Variables (d : _) (T : measurableType d) (R : realType). | |
Variable (mu : {measure set T -> \bar R}). | |
Lemma integrable_abse (D : set T) : measurable D -> | |
forall f : T -> \bar R, mu.-integrable D f -> mu.-integrable D (abse \o f). | |
Proof. | |
move=> mD f [mf fi]; split; first exact: measurable_fun_comp. | |
apply: le_lt_trans fi; apply: ge0_le_integral => //. | |
- by apply: measurable_fun_comp => //; exact: measurable_fun_comp. | |
- exact: measurable_fun_comp. | |
- by move=> t Dt //=; rewrite abse_id. | |
Qed. | |
Lemma integrable_summable (F : (set T)^nat) (g : T -> \bar R): | |
trivIset setT F -> (forall k, measurable (F k)) -> | |
mu.-integrable (\bigcup_k F k) g -> | |
summable [set: nat] (fun i => \int[mu]_(x in F i) g x). | |
Proof. | |
move=> tF mF fi. | |
rewrite /summable -(_ : [set _ | true] = setT); last exact/seteqP. | |
rewrite -nneseries_esum//. | |
case: (fi) => _; rewrite ge0_integral_bigcup//; last first. | |
by apply: integrable_abse => //; exact: bigcup_measurable. | |
apply: le_lt_trans; apply: lee_lim. | |
- exact: is_cvg_ereal_nneg_natsum_cond. | |
- by apply: is_cvg_ereal_nneg_natsum_cond => n _ _; exact: integral_ge0. | |
- apply: nearW => n; apply: lee_sum => m _; apply: le_abse_integral => //. | |
by apply: measurable_funS fi.1 => //; [exact: bigcup_measurable| | |
exact: bigcup_sup]. | |
Qed. | |
Lemma integral_bigcup (F : (set _)^nat) (g : T -> \bar R) : | |
trivIset setT F -> (forall k, measurable (F k)) -> | |
mu.-integrable (\bigcup_k F k) g -> | |
(\int[mu]_(x in \bigcup_i F i) g x = \sum_(i <oo) \int[mu]_(x in F i) g x)%E. | |
Proof. | |
move=> tF mF fi. | |
have ? : \int[mu]_(x in \bigcup_i F i) g x \is a fin_num. | |
rewrite fin_numElt -(lte_absl _ +oo). | |
apply: le_lt_trans fi.2; apply: le_abse_integral => //. | |
exact: bigcupT_measurable. | |
exact: fi.1. | |
transitivity (\int[mu]_(x in \bigcup_i F i) g^\+ x - | |
\int[mu]_(x in \bigcup_i F i) g^\- x)%E. | |
rewrite -integralB; last 3 first. | |
- exact: bigcupT_measurable. | |
- by apply: integrable_funepos => //; exact: bigcupT_measurable. | |
-by apply: integrable_funeneg => //; exact: bigcupT_measurable. | |
by apply eq_integral => t Ft; rewrite [in LHS](funeposneg g). | |
transitivity (\sum_(i <oo) (\int[mu]_(x in F i) g^\+ x - | |
\int[mu]_(x in F i) g^\- x)); last first. | |
by apply: eq_nneseries => // i; rewrite [RHS]integralE. | |
transitivity ((\sum_(i <oo) \int[mu]_(x in F i) g^\+ x) - | |
(\sum_(i <oo) \int[mu]_(x in F i) g^\- x))%E. | |
rewrite ge0_integral_bigcup//; last first. | |
by apply: integrable_funepos => //; exact: bigcupT_measurable. | |
by rewrite ge0_integral_bigcup//; apply: integrable_funepos => //; | |
[exact: bigcupT_measurable|exact: integrableN]. | |
rewrite [X in X - _]nneseries_esum; last by move=> n _; exact: integral_ge0. | |
rewrite [X in _ - X]nneseries_esum; last by move=> n _; exact: integral_ge0. | |
rewrite set_true -esumB//=; last 4 first. | |
- apply: integrable_summable => //; apply: integrable_funepos => //. | |
exact: bigcup_measurable. | |
- apply: integrable_summable => //; apply: integrable_funepos => //. | |
exact: bigcup_measurable. | |
- exact: integrableN. | |
- by move=> n _; exact: integral_ge0. | |
- by move=> n _; exact: integral_ge0. | |
rewrite summable_nneseries; last first. | |
rewrite (_ : (fun i : nat => _) = (fun i => \int[mu]_(x in F i) g x)); last first. | |
by apply/funext => i; rewrite -integralE. | |
rewrite -(_ : [set: nat] = (fun=> true)); last exact/seteqP. | |
exact: integrable_summable. | |
by congr (_ - _)%E; rewrite nneseries_esum// set_true. | |
Qed. | |
End subadditive_countable. | |
Section dominated_convergence_lemma. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D) (f_ : (T -> \bar R)^nat). | |
Variables (f : T -> \bar R) (g : T -> \bar R). | |
Hypothesis mf_ : forall n, measurable_fun D (f_ n). | |
Hypothesis f_f : forall x, D x -> f_ ^~ x --> f x. | |
Hypothesis fing : forall x, D x -> g x \is a fin_num. | |
Hypothesis ig : mu.-integrable D g. | |
Hypothesis absfg : forall n x, D x -> `|f_ n x| <= g x. | |
Let g0 x : D x -> 0 <= g x. | |
Proof. by move=> Dx; rewrite (le_trans _ (@absfg O _ Dx))// lee_fin. Qed. | |
Let mf : measurable_fun D f. | |
Proof. exact: (emeasurable_fun_cvg _ _ mf_ f_f). Qed. | |
Local Lemma dominated_integrable : mu.-integrable D f. | |
Proof. | |
split => //; have Dfg x : D x -> `| f x | <= g x. | |
move=> Dx; have /(@cvg_lim _) <- // : `|f_ n x| @[n --> \oo] --> `|f x|. | |
by apply: cvg_abse => //; exact: f_f. | |
apply: ereal_lim_le => //. | |
- by apply: is_cvg_abse; apply/cvg_ex; eexists; exact: f_f. | |
- by apply: nearW => n; exact: absfg. | |
move: ig => [mg]; apply: le_lt_trans; apply: ge0_le_integral => //. | |
- exact: measurable_fun_comp. | |
- exact: measurable_fun_comp. | |
- by move=> x Dx /=; rewrite (gee0_abs (g0 Dx)); exact: Dfg. | |
Qed. | |
Let g_ n x := `|f_ n x - f x|. | |
Let cvg_g_ x : D x -> g_ ^~ x --> 0. | |
Proof. | |
move=> Dx; rewrite -abse0; apply: cvg_abse. | |
move: (f_f Dx); case: (f x) => [r|/=|/=]. | |
- by move=> f_r; apply/ereal_cvg_sub0. | |
- have gx1 : (0 < fine (g x) + 1)%R. | |
by rewrite (@le_lt_trans _ _ (fine (g x))) ?ltr_addl//; exact/le0R/g0. | |
move/ereal_cvgPpinfty/(_ _ gx1) => [n _]/(_ _ (leqnn n)) h. | |
have : (fine (g x) + 1)%:E <= g x. | |
by rewrite (le_trans h)// (le_trans _ (absfg n Dx))// lee_abs. | |
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lte_addl. | |
- have gx1 : (- (fine (g x) + 1) < 0)%R. | |
by rewrite ltr_oppl oppr0 ltr_spaddr//; exact/le0R/g0. | |
move/ereal_cvgPninfty/(_ _ gx1) => [n _]/(_ _ (leqnn n)) h. | |
have : (fine (g x) + 1)%:E <= g x. | |
move: h; rewrite EFinN lee_oppr => /le_trans ->//. | |
by rewrite (le_trans _ (absfg n Dx))// -abseN lee_abs. | |
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lte_addl. | |
Qed. | |
Let gg_ n x : D x -> 0 <= 2%:E * g x - g_ n x. | |
Proof. | |
move=> Dx; rewrite subre_ge0; last by rewrite fin_numM// fing. | |
rewrite -(fineK (fing Dx)) -EFinM mulr_natl mulr2n /g_. | |
rewrite (le_trans (lee_abs_sub _ _))// [in leRHS]EFinD lee_add//. | |
by rewrite fineK// ?fing// absfg. | |
have f_fx : `|(f_ n x)| @[n --> \oo] --> `|f x| by apply: cvg_abse; exact: f_f. | |
move/cvg_lim : (f_fx) => <-//. | |
apply: ereal_lim_le; first by apply/cvg_ex; eexists; exact: f_fx. | |
by apply: nearW => k; rewrite fineK ?fing//; apply: absfg. | |
Qed. | |
Let mgg n : measurable_fun D (fun x => 2%:E * g x - g_ n x). | |
Proof. | |
apply/emeasurable_funB => //; first by apply: emeasurable_funeM; case: ig. | |
by apply/measurable_fun_comp => //; exact: emeasurable_funB. | |
Qed. | |
Let gg_ge0 n x : D x -> 0 <= 2%:E * g x - g_ n x. | |
Proof. by move=> Dx; rewrite gg_. Qed. | |
Local Lemma dominated_cvg0 : (fun n => \int[mu]_(x in D) g_ n x) --> 0. | |
Proof. | |
have := fatou mu mD mgg gg_ge0. | |
rewrite [X in X <= _ -> _](_ : _ = \int[mu]_(x in D) (2%:E * g x) ); last first. | |
apply: eq_integral => t; rewrite inE => Dt. | |
rewrite elim_inf_shift//; last by rewrite fin_numM// fing. | |
rewrite is_cvg_elim_infE//; last first. | |
by apply: ereal_is_cvgN; apply/cvg_ex; eexists; exact: cvg_g_. | |
rewrite [X in _ + X](_ : _ = 0) ?adde0//; apply/cvg_lim => //. | |
by rewrite -(oppe0); apply: ereal_cvgN; exact: cvg_g_. | |
have i2g : \int[mu]_(x in D) (2%:E * g x) < +oo. | |
rewrite integralM// lte_mul_pinfty// ?lee_fin//; case: ig => _. | |
apply: le_lt_trans; rewrite le_eqVlt; apply/orP; left; apply/eqP. | |
by apply: eq_integral => t Dt; rewrite gee0_abs// g0//; rewrite inE in Dt. | |
have ? : \int[mu]_(x in D) (2%:E * g x) \is a fin_num. | |
by rewrite ge0_fin_numE// integral_ge0// => x Dx; rewrite mule_ge0 ?lee_fin ?g0. | |
rewrite [X in _ <= X -> _](_ : _ = \int[mu]_(x in D) (2%:E * g x) + - | |
elim_sup (fun n => \int[mu]_(x in D) g_ n x)); last first. | |
rewrite (_ : (fun _ => _) = (fun n => \int[mu]_(x in D) (2%:E * g x) + | |
\int[mu]_(x in D) - g_ n x)); last first. | |
rewrite funeqE => n; rewrite integralB//. | |
- by rewrite -integral_ge0N// => x Dx//; rewrite /g_. | |
- exact: integrablerM. | |
- have integrable_normfn : mu.-integrable D (abse \o f_ n). | |
apply: le_integrable ig => //. | |
- exact: measurable_fun_comp. | |
- by move=> x Dx /=; rewrite abse_id (le_trans (absfg _ Dx))// lee_abs. | |
suff: mu.-integrable D (fun x => `|f_ n x| + `|f x|). | |
apply: le_integrable => //. | |
- by apply: measurable_fun_comp => //; exact: emeasurable_funB. | |
- move=> x Dx. | |
by rewrite /g_ abse_id (le_trans (lee_abs_sub _ _))// lee_abs. | |
apply: integrableD; [by []| by []|]. | |
apply: le_integrable dominated_integrable => //. | |
- exact: measurable_fun_comp. | |
- by move=> x Dx; rewrite /= abse_id. | |
rewrite elim_inf_shift // -elim_infN; congr (_ + elim_inf _). | |
by rewrite funeqE => n /=; rewrite -integral_ge0N// => x Dx; rewrite /g_. | |
rewrite addeC -lee_subl_addr// subee// lee_oppr oppe0 => lim_ge0. | |
by apply/elim_sup_le_cvg => // n; rewrite integral_ge0// => x _; rewrite /g_. | |
Qed. | |
Local Lemma dominated_cvg : | |
(fun n => \int[mu]_(x in D) f_ n x) --> \int[mu]_(x in D) f x. | |
Proof. | |
have h n : `| \int[mu]_(x in D) f_ n x - \int[mu]_(x in D) f x | | |
<= \int[mu]_(x in D) g_ n x. | |
rewrite -(integralB _ _ dominated_integrable)//; last first. | |
by apply: le_integrable ig => // x Dx /=; rewrite (gee0_abs (g0 Dx)) absfg. | |
by apply: le_abse_integral => //; exact: emeasurable_funB. | |
suff: (fun n => `| \int[mu]_(x in D) f_ n x - \int[mu]_(x in D) f x |) --> 0. | |
move/ereal_cvg_abs0/ereal_cvg_sub0; apply. | |
rewrite fin_numElt (_ : -oo = - +oo)// -lte_absl. | |
case: dominated_integrable => ?; apply: le_lt_trans. | |
by apply: (le_trans _ (@le_abse_integral _ _ _ mu D f mD _)). | |
apply: (@ereal_squeeze _ (cst 0) _ (fun n => \int[mu]_(x in D) g_ n x)). | |
- by apply: nearW => n; rewrite abse_ge0//=; exact: h. | |
- exact: cvg_cst. | |
- exact: dominated_cvg0. | |
Qed. | |
End dominated_convergence_lemma. | |
Arguments dominated_integrable {d T R mu D} _ f_ f g. | |
Section dominated_convergence_theorem. | |
Local Open Scope ereal_scope. | |
Variables (d : measure_display) (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}). | |
Variables (D : set T) (mD : measurable D). | |
Variables (f_ : (T -> \bar R)^nat) (f : T -> \bar R) (g : T -> \bar R). | |
Hypothesis mf_ : forall n, measurable_fun D (f_ n). | |
Hypothesis mf : measurable_fun D f. | |
Hypothesis f_f : {ae mu, forall x, D x -> f_ ^~ x --> f x}. | |
Hypothesis ig : mu.-integrable D g. | |
Hypothesis f_g : {ae mu, forall x n, D x -> `|f_ n x| <= g x}. | |
Let g_ n x := `|f_ n x - f x|. | |
Theorem dominated_convergence : [/\ mu.-integrable D f, | |
(fun n => \int[mu]_(x in D) (g_ n x) ) --> 0 & | |
(fun n => \int[mu]_(x in D) (f_ n x) ) --> \int[mu]_(x in D) (f x) ]. | |
Proof. | |
have [N1 [mN1 N10 subN1]] := f_f. | |
have [N2 [mN2 N20 subN2]] := f_g. | |
have [N3 [mN3 N30 subN3]] := integrable_ae mD ig. | |
pose N := N1 `|` N2 `|` N3. | |
have mN : measurable N by apply: measurableU => //; exact: measurableU. | |
have N0 : mu N = 0. | |
by rewrite null_set_setU// ?null_set_setU//; exact: measurableU. | |
pose f' := f \_ (D `\` N); pose g' := g \_ (D `\` N). | |
pose f_' := fun n => f_ n \_ (D `\` N). | |
have f_f' x : D x -> f_' ^~ x --> f' x. | |
move=> Dx; rewrite /f_' /f' /restrict in_setD mem_set//=. | |
have [/= xN|/= xN] := boolP (x \in N); first exact: cvg_cst. | |
apply: contraPP (xN) => h; apply/negP; rewrite negbK inE; left; left. | |
by apply: subN1 => /= /(_ Dx); exact: contra_not h. | |
have f_g' n x : D x -> `|f_' n x| <= g' x. | |
move=> Dx; rewrite /f_' /g' /restrict in_setD mem_set//=. | |
have [/=|/= xN] := boolP (x \in N); first by rewrite normr0. | |
apply: contrapT => fg; move: xN; apply/negP; rewrite negbK inE; left; right. | |
by apply: subN2 => /= /(_ n Dx). | |
have ? : measurable_fun D (\1_(D `\` N) : T -> R). | |
apply: (@measurable_funS _ _ _ _ setT) => //. | |
by rewrite (_ : \1_ _ = mindic R (measurableD mD mN)). | |
have mu_ n : measurable_fun D (f_' n). | |
apply/(measurable_restrict (f_ n) (measurableD mD mN) _ _).1 => //. | |
by apply: measurable_funS (mf_ _) => // x []. | |
have ig' : mu.-integrable D g'. | |
apply: (integrableS measurableT) => //. | |
apply/(integrable_mkcond g (measurableD mD mN)).1. | |
by apply: integrableS ig => //; exact: measurableD. | |
have finv x : D x -> g' x \is a fin_num. | |
move=> Dx; rewrite /g' /restrict in_setD// mem_set//=. | |
have [//|xN /=] := boolP (x \in N). | |
apply: contrapT => fing; move: xN; apply/negP; rewrite negbK inE; right. | |
by apply: subN3 => /= /(_ Dx). | |
split. | |
- have if' : mu.-integrable D f' by exact: (dominated_integrable _ f_' _ g'). | |
split => //. | |
move: if' => [?]; apply: le_lt_trans. | |
rewrite le_eqVlt; apply/orP; left; apply/eqP/ae_eq_integral => //; | |
[exact: measurable_fun_comp|exact: measurable_fun_comp|]. | |
exists N; split => //; rewrite -(setCK N); apply: subsetC => x Nx Dx. | |
by rewrite /f' /restrict mem_set. | |
- have := @dominated_cvg0 _ _ _ _ _ mD _ _ _ mu_ f_f' finv ig' f_g'. | |
set X := (X in _ -> X --> _); rewrite [X in X --> _ -> _](_ : _ = X) //. | |
apply/funext => n; apply: ae_eq_integral => //. | |
+ apply: measurable_fun_comp => //; apply: emeasurable_funB => //. | |
apply/(measurable_restrict _ (measurableD _ _) _ _).1 => //. | |
by apply: (@measurable_funS _ _ _ _ D) => // x []. | |
+ by rewrite /g_; apply: measurable_fun_comp => //; exact: emeasurable_funB. | |
+ exists N; split => //; rewrite -(setCK N); apply: subsetC => x /= Nx Dx. | |
by rewrite /f_' /f' /restrict mem_set. | |
- have := @dominated_cvg _ _ _ _ _ mD _ _ _ mu_ f_f' finv ig' f_g'. | |
set X := (X in _ -> X --> _); rewrite [X in X --> _ -> _](_ : _ = X) //; last first. | |
apply/funext => n; apply ae_eq_integral => //. | |
exists N; split => //; rewrite -(setCK N); apply: subsetC => x /= Nx Dx. | |
by rewrite /f_' /restrict mem_set. | |
set Y := (X in _ -> _ --> X); rewrite [X in _ --> X -> _](_ : _ = Y) //. | |
apply: ae_eq_integral => //. | |
apply/(measurable_restrict _ (measurableD _ _) _ _).1 => //. | |
by apply: (@measurable_funS _ _ _ _ D) => // x []. | |
exists N; split => //; rewrite -(setCK N); apply: subsetC => x /= Nx Dx. | |
by rewrite /f' /restrict mem_set. | |
Qed. | |
End dominated_convergence_theorem. | |
(******************************************************************************) | |
(* * product measure *) | |
(******************************************************************************) | |
Section measurable_section. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2). | |
Implicit Types (A : set (T1 * T2)). | |
Lemma mem_set_pair1 x y A : | |
(y \in [set y' | (x, y') \in A]) = ((x, y) \in A). | |
Proof. by apply/idP/idP => [|]; [rewrite inE|rewrite !inE /= inE]. Qed. | |
Lemma mem_set_pair2 x y A : | |
(x \in [set x' | (x', y) \in A]) = ((x, y) \in A). | |
Proof. by apply/idP/idP => [|]; [rewrite inE|rewrite 2!inE /= inE]. Qed. | |
Variable R : realType. | |
Lemma measurable_xsection A x : measurable A -> measurable (xsection A x). | |
Proof. | |
move=> mA. | |
pose f : T1 * T2 -> \bar R := EFin \o indic_nnsfun R mA. | |
have mf : measurable_fun setT f by apply/EFin_measurable_fun/measurable_funP. | |
have _ : (fun y => (y \in xsection A x)%:R%:E) = f \o (fun y => (x, y)). | |
rewrite funeqE => y /=; rewrite /xsection /f. | |
by rewrite /= /mindic indicE/= mem_set_pair1. | |
have -> : xsection A x = (fun y => f (x, y)) @^-1` [set 1%E]. | |
rewrite predeqE => y; split; rewrite /xsection /preimage /= /f. | |
by rewrite /= /mindic indicE/= => ->. | |
rewrite /= /mindic indicE. | |
by case: (_ \in _) => //= -[] /eqP; rewrite eq_sym oner_eq0. | |
by rewrite -(setTI (_ @^-1` _)); exact: measurable_fun_prod1. | |
Qed. | |
Lemma measurable_ysection A y : measurable A -> measurable (ysection A y). | |
Proof. | |
move=> mA. | |
pose f : T1 * T2 -> \bar R := EFin \o indic_nnsfun R mA. | |
have mf : measurable_fun setT f by apply/EFin_measurable_fun/measurable_funP. | |
have _ : (fun x => (x \in ysection A y)%:R%:E) = f \o (fun x => (x, y)). | |
rewrite funeqE => x /=; rewrite /ysection /f. | |
by rewrite /= /mindic indicE mem_set_pair2. | |
have -> : ysection A y = (fun x => f (x, y)) @^-1` [set 1%E]. | |
rewrite predeqE => x; split; rewrite /ysection /preimage /= /f. | |
by rewrite /= /mindic indicE => ->. | |
rewrite /= /mindic indicE. | |
by case: (_ \in _) => //= -[] /eqP; rewrite eq_sym oner_eq0. | |
by rewrite -(setTI (_ @^-1` _)); exact: measurable_fun_prod2. | |
Qed. | |
End measurable_section. | |
Section ndseq_closed_B. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Implicit Types A : set (T1 * T2). | |
Section xsection. | |
Variables (pt2 : T2) (m2 : {measure set T2 -> \bar R}). | |
Let phi A := m2 \o xsection A. | |
Let B := [set A | measurable A /\ measurable_fun setT (phi A)]. | |
Lemma xsection_ndseq_closed : ndseq_closed B. | |
Proof. | |
move=> F ndF; rewrite /B /= => BF; split. | |
by apply: bigcupT_measurable => n; have [] := BF n. | |
have phiF x : (fun i => phi (F i) x) --> phi (\bigcup_i F i) x. | |
rewrite /phi /= xsection_bigcup; apply: cvg_mu_inc => //. | |
- by move=> n; apply: measurable_xsection; case: (BF n). | |
- by apply: bigcupT_measurable => i; apply: measurable_xsection; case: (BF i). | |
- move=> m n mn; apply/subsetPset => y; rewrite /xsection/= !inE. | |
by have /subsetPset FmFn := ndF _ _ mn; exact: FmFn. | |
apply: (emeasurable_fun_cvg (phi \o F)) => //. | |
- by move=> i; have [] := BF i. | |
- by move=> x _; exact: phiF. | |
Qed. | |
End xsection. | |
Section ysection. | |
Variables (m1 : {measure set T1 -> \bar R}). | |
Let psi A := m1 \o ysection A. | |
Let B := [set A | measurable A /\ measurable_fun setT (psi A)]. | |
Lemma ysection_ndseq_closed : ndseq_closed B. | |
Proof. | |
move=> F ndF; rewrite /B /= => BF; split. | |
by apply: bigcupT_measurable => n; have [] := BF n. | |
have psiF x : (fun i => psi (F i) x) --> psi (\bigcup_i F i) x. | |
rewrite /psi /= ysection_bigcup; apply: cvg_mu_inc => //. | |
- by move=> n; apply: measurable_ysection; case: (BF n). | |
- by apply: bigcupT_measurable => i; apply: measurable_ysection; case: (BF i). | |
- move=> m n mn; apply/subsetPset => y; rewrite /ysection/= !inE. | |
by have /subsetPset FmFn := ndF _ _ mn; exact: FmFn. | |
apply: (emeasurable_fun_cvg (psi \o F)) => //. | |
- by move=> i; have [] := BF i. | |
- by move=> x _; exact: psiF. | |
Qed. | |
End ysection. | |
End ndseq_closed_B. | |
Section measurable_prod_subset. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Implicit Types A : set (T1 * T2). | |
Section xsection. | |
Variable (m2 : {measure set T2 -> \bar R}) (D : set T2) (mD : measurable D). | |
Let m2D := mrestr m2 mD. | |
HB.instance Definition _ := Measure.on m2D. | |
Let phi A := m2D \o xsection A. | |
Let B := [set A | measurable A /\ measurable_fun setT (phi A)]. | |
Lemma measurable_prod_subset_xsection | |
(m2D_bounded : exists M, forall X, measurable X -> (m2D X < M%:E)%E) : | |
measurable `<=` B. | |
Proof. | |
rewrite measurable_prod_measurableType. | |
set C := [set A1 `*` A2 | A1 in measurable & A2 in measurable]. | |
have CI : setI_closed C. | |
move=> X Y [X1 mX1 [X2 mX2 <-{X}]] [Y1 mY1 [Y2 mY2 <-{Y}]]. | |
exists (X1 `&` Y1); first exact: measurableI. | |
by exists (X2 `&` Y2); [exact: measurableI|rewrite setMI]. | |
have CT : C setT by exists setT => //; exists setT => //; rewrite setMTT. | |
have CB : C `<=` B. | |
move=> X [X1 mX1 [X2 mX2 <-{X}]]; split; first exact: measurableM. | |
have -> : phi (X1 `*` X2) = (fun x => m2D X2 * (\1_X1 x)%:E)%E. | |
rewrite funeqE => x; rewrite indicE /phi /m2/= /mrestr. | |
have [xX1|xX1] := boolP (x \in X1); first by rewrite mule1 in_xsectionM. | |
by rewrite mule0 notin_xsectionM// set0I measure0. | |
apply: emeasurable_funeM => //; apply/EFin_measurable_fun. | |
by rewrite (_ : \1_ _ = mindic R mX1). | |
suff monoB : monotone_class setT B by exact: monotone_class_subset. | |
split => //; [exact: CB| |exact: xsection_ndseq_closed]. | |
move=> X Y XY [mX mphiX] [mY mphiY]; split; first exact: measurableD. | |
have -> : phi (X `\` Y) = (fun x => phi X x - phi Y x)%E. | |
rewrite funeqE => x; rewrite /phi/= xsectionD// /m2D measureD. | |
- by rewrite setIidr//; exact: le_xsection. | |
- exact: measurable_xsection. | |
- exact: measurable_xsection. | |
- move: m2D_bounded => [M m2M]. | |
rewrite (lt_le_trans (m2M (xsection X x) _))// ?leey//. | |
exact: measurable_xsection. | |
exact: emeasurable_funB. | |
Qed. | |
End xsection. | |
Section ysection. | |
Variable (m1 : {measure set T1 -> \bar R}) (D : set T1) (mD : measurable D). | |
Let m1D := mrestr m1 mD. | |
HB.instance Definition _ := Measure.on m1D. | |
Let psi A := m1D \o ysection A. | |
Let B := [set A | measurable A /\ measurable_fun setT (psi A)]. | |
Lemma measurable_prod_subset_ysection | |
(m1_bounded : exists M, forall X, measurable X -> (m1D X < M%:E)%E) : | |
measurable `<=` B. | |
Proof. | |
rewrite measurable_prod_measurableType. | |
set C := [set A1 `*` A2 | A1 in measurable & A2 in measurable]. | |
have CI : setI_closed C. | |
move=> X Y [X1 mX1 [X2 mX2 <-{X}]] [Y1 mY1 [Y2 mY2 <-{Y}]]. | |
exists (X1 `&` Y1); first exact: measurableI. | |
by exists (X2 `&` Y2); [exact: measurableI|rewrite setMI]. | |
have CT : C setT by exists setT => //; exists setT => //; rewrite setMTT. | |
have CB : C `<=` B. | |
move=> X [X1 mX1 [X2 mX2 <-{X}]]; split; first exact: measurableM. | |
have -> : psi (X1 `*` X2) = (fun x => m1D X1 * (\1_X2 x)%:E)%E. | |
rewrite funeqE => y; rewrite indicE /psi /m1/= /mrestr. | |
have [yX2|yX2] := boolP (y \in X2); first by rewrite mule1 in_ysectionM. | |
by rewrite mule0 notin_ysectionM// set0I measure0. | |
apply: emeasurable_funeM => //; apply/EFin_measurable_fun. | |
by rewrite (_ : \1_ _ = mindic R mX2). | |
suff monoB : monotone_class setT B by exact: monotone_class_subset. | |
split => //; [exact: CB| |exact: ysection_ndseq_closed]. | |
move=> X Y XY [mX mphiX] [mY mphiY]; split; first exact: measurableD. | |
have -> : psi (X `\` Y) = (fun x => psi X x - psi Y x)%E. | |
rewrite funeqE => y; rewrite /psi/= ysectionD// /m1D measureD. | |
- by rewrite setIidr//; exact: le_ysection. | |
- exact: measurable_ysection. | |
- exact: measurable_ysection. | |
- move: m1_bounded => [M m1M]. | |
rewrite (lt_le_trans (m1M (ysection X y) _))// ?leey//. | |
exact: measurable_ysection. | |
exact: emeasurable_funB. | |
Qed. | |
End ysection. | |
End measurable_prod_subset. | |
Section measurable_fun_xsection. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m2 : {measure set T2 -> \bar R}). | |
Hypothesis sf_m2 : sigma_finite setT m2. | |
Implicit Types A : set (T1 * T2). | |
Let phi A := m2 \o xsection A. | |
Let B := [set A | measurable A /\ measurable_fun setT (phi A)]. | |
Lemma measurable_fun_xsection A : | |
A \in measurable -> measurable_fun setT (phi A). | |
Proof. | |
move: A; suff : measurable `<=` B by move=> + A; rewrite inE => /[apply] -[]. | |
move/sigma_finiteP : sf_m2 => [F F_T [F_nd F_oo]] X mX. | |
have -> : X = \bigcup_n (X `&` (setT `*` F n)). | |
by rewrite -setI_bigcupr -setM_bigcupr -F_T setMTT setIT. | |
apply: xsection_ndseq_closed. | |
move=> m n mn; apply/subsetPset; apply: setIS; apply: setSM => //. | |
exact/subsetPset/F_nd. | |
move=> n; rewrite -/B; have [? ?] := F_oo n. | |
pose m2Fn := [the measure _ _ of mrestr m2 (F_oo n).1]. | |
have m2Fn_bounded : exists M, forall X, measurable X -> (m2Fn X < M%:E)%E. | |
exists (fine (m2Fn (F n)) + 1) => Y mY. | |
rewrite [in ltRHS]EFinD (le_lt_trans _ (lte_addl _ _)) ?lte_fin//. | |
rewrite fineK; last first. | |
by rewrite ge0_fin_numE ?measure_ge0//= /mrestr/= setIid. | |
rewrite /= /mrestr/= setIid; apply: le_measure => //; rewrite inE//. | |
exact: measurableI. | |
pose phi' A := m2Fn \o xsection A. | |
pose B' := [set A | measurable A /\ measurable_fun setT (phi' A)]. | |
have subset_B' : measurable `<=` B' by exact: measurable_prod_subset_xsection. | |
split=> [|Y mY]; first by apply: measurableI => //; exact: measurableM. | |
have [_ /(_ Y mY)] := subset_B' X mX. | |
have ->// : phi' X = (fun x => m2 [set y | (x, y) \in X `&` setT `*` F n]). | |
rewrite funeqE => x /=; congr (m2 _); rewrite predeqE => y; split => [[]|]. | |
by rewrite /xsection /= inE => Xxy Fny; rewrite inE. | |
by rewrite /xsection /= !inE => -[] Xxy /= [_]. | |
Qed. | |
End measurable_fun_xsection. | |
Section measurable_fun_ysection. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}). | |
Hypothesis sf_m1 : sigma_finite setT m1. | |
Implicit Types A : set (T1 * T2). | |
Let phi A := m1 \o ysection A. | |
Let B := [set A | measurable A /\ measurable_fun setT (phi A)]. | |
Lemma measurable_fun_ysection A : A \in measurable -> measurable_fun setT (phi A). | |
Proof. | |
move: A; suff : measurable `<=` B by move=> + A; rewrite inE => /[apply] -[]. | |
move : sf_m1 => /sigma_finiteP[F F_T [F_nd F_oo]] X mX. | |
have -> : X = \bigcup_n (X `&` (F n `*` setT)). | |
by rewrite -setI_bigcupr -setM_bigcupl -F_T setMTT setIT. | |
apply: ysection_ndseq_closed. | |
move=> m n mn; apply/subsetPset; apply: setIS; apply: setSM => //. | |
exact/subsetPset/F_nd. | |
move=> n; have [? ?] := F_oo n; rewrite -/B. | |
pose m1Fn := [the measure _ _ of mrestr m1 (F_oo n).1]. | |
have m1Fn_bounded : exists M, forall X, measurable X -> (m1Fn X < M%:E)%E. | |
exists (fine (m1Fn (F n)) + 1) => Y mY. | |
rewrite [in ltRHS]EFinD (le_lt_trans _ (lte_addl _ _)) ?lte_fin//. | |
rewrite fineK; last first. | |
by rewrite ge0_fin_numE ?measure_ge0// /m1Fn/= /mrestr setIid. | |
rewrite /m1Fn/= /mrestr setIid; apply: le_measure => //; rewrite inE//=. | |
exact: measurableI. | |
pose psi' A := m1Fn \o ysection A. | |
pose B' := [set A | measurable A /\ measurable_fun setT (psi' A)]. | |
have subset_B' : measurable `<=` B'. | |
exact: measurable_prod_subset_ysection. | |
split=> [|Y mY]; first by apply: measurableI => //; exact: measurableM. | |
have [_ /(_ Y mY)] := subset_B' X mX. | |
have ->// : psi' X = (fun y => m1 [set x | (x, y) \in X `&` F n `*` setT]). | |
rewrite funeqE => y /=; congr (m1 _); rewrite predeqE => x; split => [[]|]. | |
by rewrite /ysection /= inE => Xxy Fny; rewrite inE. | |
by rewrite /ysection /= !inE => -[] Xxy/= []. | |
Qed. | |
End measurable_fun_ysection. | |
Definition product_measure1 d1 d2 | |
(T1 : measurableType d1) (T2 : measurableType d2) (R : realType) | |
(m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}) | |
(sm2 : sigma_finite setT m2) := | |
(fun A => \int[m1]_x (m2 \o xsection A) x)%E. | |
Section product_measure1. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Hypothesis sm2 : sigma_finite setT m2. | |
Implicit Types A : set (T1 * T2). | |
Notation pm1 := (product_measure1 m1 sm2). | |
Let pm10 : pm1 set0 = 0. | |
Proof. | |
rewrite /pm1 (eq_integral (cst 0)) ?integral0//= => x _. | |
by rewrite xsection0 measure0. | |
Qed. | |
Let pm1_ge0 A : 0 <= pm1 A. | |
Proof. | |
by apply: integral_ge0 => // *; exact/measure_ge0/measurable_xsection. | |
Qed. | |
Let pm1_sigma_additive : semi_sigma_additive pm1. | |
Proof. | |
move=> F mF tF mUF; have -> : pm1 (\bigcup_n F n) = \sum_(n <oo) pm1 (F n). | |
transitivity (\int[m1]_x \sum_(n <oo) m2 (xsection (F n) x)). | |
apply: eq_integral => x _; apply/esym/cvg_lim => //=. | |
rewrite xsection_bigcup. | |
apply: (measure_sigma_additive _ (trivIset_xsection tF)). | |
by move=> ?; exact: measurable_xsection. | |
by rewrite integral_sum // => n; apply: measurable_fun_xsection => // /[!inE]. | |
apply/cvg_closeP; split; last by rewrite closeE. | |
by apply: is_cvg_nneseries => *; exact: integral_ge0. | |
Qed. | |
HB.instance Definition _ := isMeasure.Build _ _ _ pm1 | |
pm10 pm1_ge0 pm1_sigma_additive. | |
End product_measure1. | |
Section product_measure1E. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Hypothesis sm2 : sigma_finite setT m2. | |
Implicit Types A : set (T1 * T2). | |
Lemma product_measure1E (A1 : set T1) (A2 : set T2) : | |
measurable A1 -> measurable A2 -> | |
product_measure1 m1 sm2 (A1 `*` A2) = m1 A1 * m2 A2. | |
Proof. | |
move=> mA1 mA2 /=; rewrite /product_measure1 /=. | |
rewrite (_ : (fun _ => _) = fun x => m2 A2 * (\1_A1 x)%:E); last first. | |
rewrite funeqE => x; rewrite indicE. | |
by have [xA1|xA1] /= := boolP (x \in A1); | |
[rewrite in_xsectionM// mule1|rewrite mule0 notin_xsectionM]. | |
rewrite ge0_integralM//. | |
- by rewrite muleC integral_indic// setIT. | |
- by apply: measurable_fun_comp => //; rewrite (_ : \1_ _ = mindic R mA1). | |
- by move=> x _; rewrite lee_fin. | |
Qed. | |
End product_measure1E. | |
Section product_measure_unique. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Hypotheses (sm1 : sigma_finite setT m1) (sm2 : sigma_finite setT m2). | |
Lemma product_measure_unique | |
(m' : {measure set [the semiRingOfSetsType _ of (T1 * T2)%type] -> \bar R}) : | |
(forall A1 A2, measurable A1 -> measurable A2 -> | |
m' (A1 `*` A2) = m1 A1 * m2 A2) -> | |
forall X : set (T1 * T2), measurable X -> product_measure1 m1 sm2 X = m' X. | |
Proof. | |
move=> m'E; pose m := product_measure1 m1 sm2. | |
move/sigma_finiteP : sm1 => [F1 F1_T [F1_nd F1_oo]]. | |
move/sigma_finiteP : sm2 => [F2 F2_T [F2_nd F2_oo]]. | |
have UF12T : \bigcup_k (F1 k `*` F2 k) = setT. | |
rewrite -setMTT F1_T F2_T predeqE => -[x y]; split. | |
by move=> [n _ []/= ? ?]; split; exists n. | |
move=> [/= [n _ F1nx] [k _ F2ky]]; exists (maxn n k) => //; split. | |
- by move: x F1nx; apply/subsetPset/F1_nd; rewrite leq_maxl. | |
- by move: y F2ky; apply/subsetPset/F2_nd; rewrite leq_maxr. | |
have mF1F2 n : measurable (F1 n `*` F2 n) /\ m (F1 n `*` F2 n) < +oo. | |
have [? ?] := F1_oo n; have [? ?] := F2_oo n. | |
split; first exact: measurableM. | |
by rewrite /m product_measure1E // lte_mul_pinfty// ge0_fin_numE. | |
have sm : sigma_finite setT m by exists (fun n => F1 n `*` F2 n). | |
pose C : set (set (T1 * T2)) := [set C | | |
exists A1, measurable A1 /\ exists A2, measurable A2 /\ C = A1 `*` A2]. | |
have CI : setI_closed C. | |
move=> /= _ _ [X1 [mX1 [X2 [mX2 ->]]]] [Y1 [mY1 [Y2 [mY2 ->]]]]. | |
rewrite -setMI; exists (X1 `&` Y1); split; first exact: measurableI. | |
by exists (X2 `&` Y2); split => //; exact: measurableI. | |
move=> X mX; apply: (measure_unique C (fun n => F1 n `*` F2 n)) => //. | |
- rewrite measurable_prod_measurableType //; congr (<<s _ >>). | |
rewrite predeqE; split => [[A1 mA1 [A2 mA2 <-]]|[A1 [mA1 [A2 [mA2 ->]]]]]. | |
by exists A1; split => //; exists A2; split. | |
by exists A1 => //; exists A2. | |
- move=> n; rewrite /C /=; exists (F1 n); split; first by have [] := F1_oo n. | |
by exists (F2 n); split => //; have [] := F2_oo n. | |
- by move=> A [A1 [mA1 [A2 [mA2 ->]]]]; rewrite m'E//= product_measure1E. | |
- move=> k; have [? ?] := F1_oo k; have [? ?] := F2_oo k. | |
by rewrite /= product_measure1E// lte_mul_pinfty// ge0_fin_numE. | |
Qed. | |
End product_measure_unique. | |
Definition product_measure2 d1 d2 | |
(T1 : measurableType d1) (T2 : measurableType d2) (R : realType) | |
(m1 : {measure set T1 -> \bar R}) (sm1 : sigma_finite setT m1) | |
(m2 : {measure set T2 -> \bar R}) := | |
(fun A => \int[m2]_x (m1 \o ysection A) x)%E. | |
Section product_measure2. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Hypothesis sm1 : sigma_finite setT m1. | |
Implicit Types A : set (T1 * T2). | |
Notation pm2 := (product_measure2 sm1 m2). | |
Let pm20 : pm2 set0 = 0. | |
Proof. | |
rewrite /pm2 (eq_integral (cst 0)) ?integral0//= => y _. | |
by rewrite ysection0 measure0. | |
Qed. | |
Let pm2_ge0 A : 0 <= pm2 A. | |
Proof. | |
by apply: integral_ge0 => // *; exact/measure_ge0/measurable_ysection. | |
Qed. | |
Let pm2_sigma_additive : semi_sigma_additive pm2. | |
Proof. | |
move=> F mF tF mUF. | |
have -> : pm2 (\bigcup_n F n) = \sum_(n <oo) pm2 (F n). | |
transitivity (\int[m2]_y \sum_(n <oo) m1 (ysection (F n) y)). | |
apply: eq_integral => y _; apply/esym/cvg_lim => //=. | |
rewrite ysection_bigcup. | |
apply: (measure_sigma_additive _ (trivIset_ysection tF)). | |
by move=> ?; apply: measurable_ysection. | |
by rewrite integral_sum // => n; apply: measurable_fun_ysection => // /[!inE]. | |
apply/cvg_closeP; split; last by rewrite closeE. | |
by apply: is_cvg_nneseries => *; exact: integral_ge0. | |
Qed. | |
HB.instance Definition _ := isMeasure.Build _ _ _ pm2 | |
pm20 pm2_ge0 pm2_sigma_additive. | |
End product_measure2. | |
Section product_measure2E. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Hypothesis sm1 : sigma_finite setT m1. | |
Lemma product_measure2E (A1 : set T1) (A2 : set T2) | |
(mA1 : measurable A1) (mA2 : measurable A2) : | |
product_measure2 sm1 m2 (A1 `*` A2) = m1 A1 * m2 A2. | |
Proof. | |
have mA1A2 : measurable (A1 `*` A2) by apply: measurableM. | |
transitivity (\int[m2]_y (m1 \o ysection (A1 `*` A2)) y) => //. | |
rewrite (_ : _ \o _ = fun y => m1 A1 * (\1_A2 y)%:E). | |
rewrite ge0_integralM//; last 2 first. | |
- by apply: measurable_fun_comp => //; rewrite (_ : \1_ _ = mindic R mA2). | |
- by move=> y _; rewrite lee_fin. | |
by rewrite integral_indic ?setIT ?mul1e. | |
rewrite funeqE => y; rewrite indicE. | |
have [yA2|yA2] := boolP (y \in A2); first by rewrite mule1 /= in_ysectionM. | |
by rewrite mule0 /= notin_ysectionM// measure0. | |
Qed. | |
End product_measure2E. | |
Section fubini_functions. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Variable f : T1 * T2 -> \bar R. | |
Definition fubini_F x := \int[m2]_y f (x, y). | |
Definition fubini_G y := \int[m1]_x f (x, y). | |
End fubini_functions. | |
Section fubini_tonelli. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Hypotheses (sm1 : sigma_finite setT m1) (sm2 : sigma_finite setT m2). | |
Let m := product_measure1 m1 sm2. | |
Let m' := product_measure2 sm1 m2. | |
HB.instance Definition _ := Measure.on m. | |
HB.instance Definition _ := Measure.on m'. | |
Section indic_fubini_tonelli. | |
Variables (A : set (T1 * T2)) (mA : measurable A). | |
Implicit Types A : set (T1 * T2). | |
Let f : (T1 * T2) -> R := \1_A. | |
Let F := fubini_F m2 (EFin \o f). | |
Let G := fubini_G m1 (EFin \o f). | |
Lemma indic_fubini_tonelli_F_ge0 x : 0 <= F x. | |
Proof. by apply: integral_ge0 => // y _; rewrite lee_fin. Qed. | |
Lemma indic_fubini_tonelli_G_ge0 x : 0 <= G x. | |
Proof. by apply: integral_ge0 => // y _; rewrite lee_fin. Qed. | |
Lemma indic_fubini_tonelli_FE : F = m2 \o xsection A. | |
Proof. | |
rewrite funeqE => x; rewrite /= -(setTI (xsection _ _)). | |
rewrite -integral_indic//; last exact: measurable_xsection. | |
rewrite /F /fubini_F -(setTI (xsection _ _)). | |
rewrite integral_setI_indic; [|exact: measurable_xsection|by []]. | |
apply: eq_integral => y _ /=; rewrite indicT mul1e /f !indicE. | |
have [|] /= := boolP (y \in xsection _ _). | |
by rewrite inE /xsection /= => ->. | |
by rewrite /xsection /= notin_set /= => /negP/negbTE ->. | |
Qed. | |
Lemma indic_fubini_tonelli_GE : G = m1 \o ysection A. | |
Proof. | |
rewrite funeqE => y; rewrite /= -(setTI (ysection _ _)). | |
rewrite -integral_indic//; last exact: measurable_ysection. | |
rewrite /F /fubini_F -(setTI (ysection _ _)). | |
rewrite integral_setI_indic; [|exact: measurable_ysection|by []]. | |
apply: eq_integral => x _ /=; rewrite indicT mul1e /f 2!indicE. | |
have [|] /= := boolP (x \in ysection _ _). | |
by rewrite inE /xsection /= => ->. | |
by rewrite /xsection /= notin_set /= => /negP/negbTE ->. | |
Qed. | |
Lemma indic_measurable_fun_fubini_tonelli_F : measurable_fun setT F. | |
Proof. | |
rewrite indic_fubini_tonelli_FE//; apply: measurable_fun_xsection => //. | |
by rewrite inE. | |
Qed. | |
Lemma indic_measurable_fun_fubini_tonelli_G : measurable_fun setT G. | |
Proof. | |
rewrite indic_fubini_tonelli_GE//; apply: measurable_fun_ysection => //. | |
by rewrite inE. | |
Qed. | |
Let mE : m A = \int[m1]_x F x. | |
Proof. by rewrite /m /product_measure1 /= indic_fubini_tonelli_FE. Qed. | |
Lemma indic_fubini_tonelli1 : \int[m]_z (f z)%:E = \int[m1]_x F x. | |
Proof. by rewrite /f integral_indic// setIT indic_fubini_tonelli_FE. Qed. | |
Lemma indic_fubini_tonelli2 : \int[m']_z (f z)%:E = \int[m2]_y G y. | |
by rewrite /f integral_indic// setIT indic_fubini_tonelli_GE. Qed. | |
Lemma indic_fubini_tonelli : \int[m1]_x F x = \int[m2]_y G y. | |
Proof. | |
rewrite -indic_fubini_tonelli1// -indic_fubini_tonelli2//. | |
rewrite integral_indic // integral_indic // setIT/=. | |
by apply: product_measure_unique => //= ? ? ? ?; rewrite /m' product_measure2E. | |
Qed. | |
End indic_fubini_tonelli. | |
Section sfun_fubini_tonelli. | |
Variable f : {nnsfun [the measurableType _ of T1 * T2 : Type] >-> R}. | |
Let F := fubini_F m2 (EFin \o f). | |
Let G := fubini_G m1 (EFin \o f). | |
Lemma sfun_fubini_tonelli_FE : F = fun x => | |
\sum_(k <- fset_set (range f)) k%:E * m2 (xsection (f @^-1` [set k]) x). | |
Proof. | |
rewrite funeqE => x; rewrite /F /fubini_F [in LHS]/=. | |
under eq_fun do rewrite fimfunE -sumEFin. | |
rewrite ge0_integral_sum //; last 2 first. | |
- move=> i; apply/EFin_measurable_fun => //; apply: measurable_funrM => //. | |
apply/measurable_fun_prod1 => //. | |
(*NB: we shouldn't need the following rewriting*) | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f i)). | |
- by move=> r y _; rewrite EFinM; exact: muleindic_ge0. | |
apply: eq_fbigr => i; rewrite in_fset_set// inE => -[/= t _ <-{i} _]. | |
under eq_fun do rewrite EFinM. | |
rewrite ge0_integralM//; last by rewrite lee_fin. | |
- by rewrite -/((m2 \o xsection _) x) -indic_fubini_tonelli_FE. | |
- apply/EFin_measurable_fun/measurable_fun_prod1. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f (f t))). | |
- by move=> y _; rewrite lee_fin. | |
Qed. | |
Lemma sfun_measurable_fun_fubini_tonelli_F : measurable_fun setT F. | |
Proof. | |
rewrite sfun_fubini_tonelli_FE//; apply: emeasurable_fun_sum => // r. | |
by apply: emeasurable_funeM => //; apply: measurable_fun_xsection => // /[!inE]. | |
Qed. | |
Lemma sfun_fubini_tonelli_GE : G = fun y => | |
\sum_(k <- fset_set (range f)) k%:E * m1 (ysection (f @^-1` [set k]) y). | |
Proof. | |
rewrite funeqE => y; rewrite /G /fubini_G [in LHS]/=. | |
under eq_fun do rewrite fimfunE -sumEFin. | |
rewrite ge0_integral_sum //; last 2 first. | |
- move=> i; apply/EFin_measurable_fun => //; apply: measurable_funrM => //. | |
apply/measurable_fun_prod2 => //. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f i)). | |
- by move=> r x _; rewrite EFinM; exact: muleindic_ge0. | |
apply: eq_fbigr => i; rewrite in_fset_set// inE => -[/= t _ <-{i} _]. | |
under eq_fun do rewrite EFinM. | |
rewrite ge0_integralM//; last by rewrite lee_fin. | |
- by rewrite -/((m1 \o ysection _) y) -indic_fubini_tonelli_GE. | |
- apply/EFin_measurable_fun/measurable_fun_prod2. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f (f t))). | |
- by move=> x _; rewrite lee_fin. | |
Qed. | |
Lemma sfun_measurable_fun_fubini_tonelli_G : measurable_fun setT G. | |
Proof. | |
rewrite sfun_fubini_tonelli_GE//; apply: emeasurable_fun_sum => // r. | |
by apply: emeasurable_funeM => //; apply: measurable_fun_ysection => // /[!inE]. | |
Qed. | |
Let EFinf x : (f x)%:E = | |
\sum_(k <- fset_set (range f)) k%:E * (\1_(f @^-1` [set k]) x)%:E. | |
Proof. by rewrite sumEFin /= fimfunE. Qed. | |
Lemma sfun_fubini_tonelli1 : \int[m]_z (f z)%:E = \int[m1]_x F x. | |
Proof. | |
under [LHS]eq_integral | |
do rewrite EFinf; rewrite ge0_integral_sum //; last 2 first. | |
- move=> r; apply/EFin_measurable_fun/measurable_funrM => //. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f r)). | |
- by move=> r /= z _; exact: muleindic_ge0. | |
transitivity (\sum_(k <- fset_set (range f)) | |
\int[m1]_x (k%:E * (fubini_F m2 (EFin \o \1_(f @^-1` [set k])) x))). | |
apply: eq_fbigr => i; rewrite in_fset_set// inE => -[z _ <-{i} _]. | |
rewrite ge0_integralM//; last 3 first. | |
- apply/EFin_measurable_fun. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f (f z)))//. | |
- by move=> /= x _; rewrite lee_fin. | |
- by rewrite lee_fin. | |
rewrite indic_fubini_tonelli1// -ge0_integralM//; last by rewrite lee_fin. | |
- exact: indic_measurable_fun_fubini_tonelli_F. | |
- by move=> /= x _; exact: indic_fubini_tonelli_F_ge0. | |
rewrite -ge0_integral_sum //; last 2 first. | |
- move=> /= r; apply: emeasurable_funeM => //. | |
exact: indic_measurable_fun_fubini_tonelli_F. | |
- move=> r x _; rewrite /fubini_F. | |
have [r0|r0] := leP 0%R r. | |
by rewrite mule_ge0//; exact: indic_fubini_tonelli_F_ge0. | |
rewrite (eq_integral (cst 0%E)) ?integral0 ?mule0// => y _. | |
by rewrite preimage_nnfun0//= indicE in_set0. | |
apply: eq_integral => x _; rewrite sfun_fubini_tonelli_FE. | |
by apply: eq_bigr => ? _; rewrite indic_fubini_tonelli_FE. | |
Qed. | |
Lemma sfun_fubini_tonelli2 : \int[m']_z (f z)%:E = \int[m2]_y G y. | |
Proof. | |
under [LHS]eq_integral | |
do rewrite EFinf; rewrite ge0_integral_sum //; last 2 first. | |
- move=> i; apply/EFin_measurable_fun/measurable_funrM => //. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f i)). | |
- by move=> r /= z _; exact: muleindic_ge0. | |
transitivity (\sum_(k <- fset_set (range f)) | |
\int[m2]_x (k%:E * (fubini_G m1 (EFin \o \1_(f @^-1` [set k])) x))). | |
apply: eq_fbigr => i; rewrite in_fset_set// inE => -[z _ <-{i} _]. | |
rewrite ge0_integralM//; last 3 first. | |
- apply/EFin_measurable_fun. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f (f z))). | |
- by move=> /= x _; rewrite lee_fin. | |
- by rewrite lee_fin. | |
rewrite indic_fubini_tonelli2// -ge0_integralM//; last by rewrite lee_fin. | |
- exact: indic_measurable_fun_fubini_tonelli_G. | |
- by move=> /= x _; exact: indic_fubini_tonelli_G_ge0. | |
rewrite -ge0_integral_sum //; last 2 first. | |
- move=> /= i; apply: emeasurable_funeM => //. | |
exact: indic_measurable_fun_fubini_tonelli_G. | |
- move=> r x _; rewrite /fubini_G. | |
have [r0|r0] := leP 0%R r. | |
by rewrite mule_ge0//; exact: indic_fubini_tonelli_G_ge0. | |
rewrite (eq_integral (cst 0%E)) ?integral0 ?mule0// => y _. | |
by rewrite preimage_nnfun0//= indicE in_set0. | |
apply: eq_integral => x _; rewrite sfun_fubini_tonelli_GE. | |
by apply: eq_bigr => i _; rewrite indic_fubini_tonelli_GE. | |
Qed. | |
Lemma sfun_fubini_tonelli : \int[m]_z (f z)%:E = \int[m']_z (f z)%:E. | |
Proof. | |
under eq_integral do rewrite EFinf. | |
under [RHS]eq_integral do rewrite EFinf. | |
rewrite ge0_integral_sum //; last 2 first. | |
- move=> i; apply/EFin_measurable_fun/measurable_funrM => //. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f i)). | |
- by move=> r z _; exact: muleindic_ge0. | |
transitivity (\sum_(k <- fset_set (range f)) k%:E * | |
\int[m']_z ((EFin \o \1_(f @^-1` [set k])) z)). | |
apply: eq_fbigr => i; rewrite in_fset_set// inE => -[t _ <- _]. | |
rewrite ge0_integralM//; last 3 first. | |
- apply/EFin_measurable_fun. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f (f t))). | |
- by move=> /= x _; rewrite lee_fin. | |
- by rewrite lee_fin. | |
rewrite indic_fubini_tonelli1// indic_fubini_tonelli//. | |
by rewrite -indic_fubini_tonelli2. | |
apply/esym; rewrite ge0_integral_sum //; last 2 first. | |
- move=> i; apply/EFin_measurable_fun/measurable_funrM => //. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f i)). | |
- by move=> r z _; exact: muleindic_ge0. | |
apply: eq_fbigr => i; rewrite in_fset_set// inE => -[x _ <- _]. | |
rewrite ge0_integralM//; last by rewrite lee_fin. | |
- apply/EFin_measurable_fun. | |
by rewrite (_ : \1_ _ = mindic R (measurable_sfunP f (f x))). | |
- by move=> /= y _; rewrite lee_fin. | |
Qed. | |
End sfun_fubini_tonelli. | |
Section fubini_tonelli. | |
Variable f : T1 * T2 -> \bar R. | |
Hypothesis mf : measurable_fun setT f. | |
Hypothesis f0 : forall x, 0 <= f x. | |
Let T := [the measurableType _ of T1 * T2 : Type]. | |
Let F := fubini_F m2 f. | |
Let G := fubini_G m1 f. | |
Let F_ (g : {nnsfun T >-> R}^nat) n x := \int[m2]_y (g n (x, y))%:E. | |
Let G_ (g : {nnsfun T >-> R}^nat) n y := \int[m1]_x (g n (x, y))%:E. | |
Lemma measurable_fun_fubini_tonelli_F : measurable_fun setT F. | |
Proof. | |
have [g [g_nd /= g_f]] := approximation measurableT mf (fun x _ => f0 x). | |
apply: (emeasurable_fun_cvg (F_ g)) => //. | |
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_F. | |
- move=> x _. | |
rewrite /F_ /F /fubini_F [in X in _ --> X](_ : (fun _ => _) = | |
fun y => lim (EFin \o g ^~ (x, y))); last first. | |
by rewrite funeqE => y; apply/esym/cvg_lim => //; exact: g_f. | |
apply: cvg_monotone_convergence => //. | |
- by move=> n; apply/EFin_measurable_fun => //; exact/measurable_fun_prod1. | |
- by move=> n y _; rewrite lee_fin//; exact: fun_ge0. | |
- by move=> y _ a b ab; rewrite lee_fin; exact/lefP/g_nd. | |
Qed. | |
Lemma measurable_fun_fubini_tonelli_G : measurable_fun setT G. | |
Proof. | |
have [g [g_nd /= g_f]] := approximation measurableT mf (fun x _ => f0 x). | |
apply: (emeasurable_fun_cvg (G_ g)) => //. | |
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_G. | |
- move=> y _; rewrite /G_ /G /fubini_G [in X in _ --> X](_ : (fun _ => _) = | |
fun x => lim (EFin \o g ^~ (x, y))); last first. | |
by rewrite funeqE => x; apply/esym/cvg_lim => //; exact: g_f. | |
apply: cvg_monotone_convergence => //. | |
- by move=> n; apply/EFin_measurable_fun => //; exact/measurable_fun_prod2. | |
- by move=> n x _; rewrite lee_fin; exact: fun_ge0. | |
- by move=> x _ a b ab; rewrite lee_fin; exact/lefP/g_nd. | |
Qed. | |
Lemma fubini_tonelli1 : \int[m]_z f z = \int[m1]_x F x. | |
Proof. | |
have [g [g_nd /= g_f]] := approximation measurableT mf (fun x _ => f0 x). | |
have F_F x : F x = lim (F_ g ^~ x). | |
rewrite /F /fubini_F. | |
rewrite [RHS](_ : _ = lim (fun n => \int[m2]_y (EFin \o g n) (x, y)))//. | |
rewrite -monotone_convergence//; last 3 first. | |
- by move=> n; exact/EFin_measurable_fun/measurable_fun_prod1. | |
- by move=> n /= y _; rewrite lee_fin; exact: fun_ge0. | |
- by move=> y /= _ a b; rewrite lee_fin => /g_nd/lefP; exact. | |
by apply: eq_integral => y _; apply/esym/cvg_lim => //; exact: g_f. | |
rewrite [RHS](_ : _ = lim (fun n => \int[m]_z (EFin \o g n) z)). | |
rewrite -monotone_convergence //; last 3 first. | |
- by move=> n; exact/EFin_measurable_fun. | |
- by move=> n /= x _; rewrite lee_fin; exact: fun_ge0. | |
- by move=> y /= _ a b; rewrite lee_fin => /g_nd/lefP; exact. | |
by apply: eq_integral => /= x _; apply/esym/cvg_lim => //; exact: g_f. | |
rewrite [LHS](_ : _ = | |
lim (fun n => \int[m1]_x (\int[m2]_y (EFin \o g n) (x, y)))). | |
by congr (lim _); rewrite funeqE => n; rewrite sfun_fubini_tonelli1. | |
rewrite [RHS](_ : _ = lim (fun n => \int[m1]_x F_ g n x))//. | |
rewrite -monotone_convergence //; first exact: eq_integral. | |
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_F. | |
- move=> n x _; apply: integral_ge0 => // y _ /=; rewrite lee_fin. | |
exact: fun_ge0. | |
- move=> x /= _ a b ab; apply: ge0_le_integral => //. | |
+ by move=> y _; rewrite lee_fin; exact: fun_ge0. | |
+ exact/EFin_measurable_fun/measurable_fun_prod1. | |
+ by move=> *; rewrite lee_fin; exact: fun_ge0. | |
+ exact/EFin_measurable_fun/measurable_fun_prod1. | |
+ by move=> y _; rewrite lee_fin; move/g_nd : ab => /lefP; exact. | |
Qed. | |
Lemma fubini_tonelli2 : \int[m]_z f z = \int[m2]_y G y. | |
Proof. | |
have [g [g_nd /= g_f]] := approximation measurableT mf (fun x _ => f0 x). | |
have G_G y : G y = lim (G_ g ^~ y). | |
rewrite /G /fubini_G. | |
rewrite [RHS](_ : _ = lim (fun n => \int[m1]_x (EFin \o g n) (x, y)))//. | |
rewrite -monotone_convergence//; last 3 first. | |
- by move=> n; exact/EFin_measurable_fun/measurable_fun_prod2. | |
- by move=> n /= x _; rewrite lee_fin; exact: fun_ge0. | |
- by move=> x /= _ a b; rewrite lee_fin => /g_nd/lefP; exact. | |
by apply: eq_integral => x _; apply/esym/cvg_lim => //; exact: g_f. | |
rewrite [RHS](_ : _ = lim (fun n => \int[m]_z (EFin \o g n) z)). | |
rewrite -monotone_convergence //; last 3 first. | |
- by move=> n; exact/EFin_measurable_fun. | |
- by move=> n /= x _; rewrite lee_fin; exact: fun_ge0. | |
- by move=> y /= _ a b; rewrite lee_fin => /g_nd/lefP; exact. | |
by apply: eq_integral => /= x _; apply/esym/cvg_lim => //; exact: g_f. | |
rewrite [LHS](_ : _ = lim | |
(fun n => \int[m2]_y (\int[m1]_x (EFin \o g n) (x, y)))). | |
congr (lim _); rewrite funeqE => n. | |
by rewrite sfun_fubini_tonelli sfun_fubini_tonelli2. | |
rewrite [RHS](_ : _ = lim (fun n => \int[m2]_y G_ g n y))//. | |
rewrite -monotone_convergence //; first exact: eq_integral. | |
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_G. | |
- by move=> n y _; apply: integral_ge0 => // x _ /=; rewrite lee_fin fun_ge0. | |
- move=> y /= _ a b ab; apply: ge0_le_integral => //. | |
+ by move=> x _; rewrite lee_fin fun_ge0. | |
+ exact/EFin_measurable_fun/measurable_fun_prod2. | |
+ by move=> *; rewrite lee_fin fun_ge0. | |
+ exact/EFin_measurable_fun/measurable_fun_prod2. | |
+ by move=> x _; rewrite lee_fin; move/g_nd : ab => /lefP; exact. | |
Qed. | |
End fubini_tonelli. | |
End fubini_tonelli. | |
Arguments fubini_tonelli1 {d1 d2 T1 T2 R m1 m2} sm2 f. | |
Arguments fubini_tonelli2 {d1 d2 T1 T2 R m1 m2} sm1 sm2 f. | |
Arguments measurable_fun_fubini_tonelli_F {d1 d2 T1 T2 R m2} sm2 f. | |
Arguments measurable_fun_fubini_tonelli_G {d1 d2 T1 T2 R m1} sm1 f. | |
Section fubini. | |
Local Open Scope ereal_scope. | |
Variables (d1 d2 : measure_display). | |
Variables (T1 : measurableType d1) (T2 : measurableType d2) (R : realType). | |
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}). | |
Hypotheses (sm1 : sigma_finite setT m1) (sm2 : sigma_finite setT m2). | |
Variable f : T1 * T2 -> \bar R. | |
Hypothesis mf : measurable_fun setT f. | |
Let m := product_measure1 m1 sm2. | |
HB.instance Definition _ := Measure.on m. | |
Lemma fubini1a : | |
m.-integrable setT f <-> \int[m1]_x \int[m2]_y `|f (x, y)| < +oo. | |
Proof. | |
split=> [[_]|] ioo. | |
- by rewrite -(fubini_tonelli1 _ (abse \o f))//=; exact: measurable_fun_comp. | |
- by split=> //; rewrite fubini_tonelli1//; exact: measurable_fun_comp. | |
Qed. | |
Lemma fubini1b : | |
m.-integrable setT f <-> \int[m2]_y \int[m1]_x `|f (x, y)| < +oo. | |
Proof. | |
split=> [[_]|] ioo. | |
- by rewrite -(fubini_tonelli2 _ _ (abse \o f))//=; exact: measurable_fun_comp. | |
- by split=> //; rewrite fubini_tonelli2//; exact: measurable_fun_comp. | |
Qed. | |
Let measurable_fun1 : measurable_fun setT (fun x => \int[m2]_y `|f (x, y)|). | |
Proof. | |
apply: (measurable_fun_fubini_tonelli_F _ (abse \o f)) => //=. | |
exact: measurable_fun_comp. | |
Qed. | |
Let measurable_fun2 : measurable_fun setT (fun y => \int[m1]_x `|f (x, y)|). | |
Proof. | |
apply: (measurable_fun_fubini_tonelli_G _ (abse \o f)) => //=. | |
exact: measurable_fun_comp. | |
Qed. | |
Hypothesis imf : m.-integrable setT f. | |
Lemma ae_integrable1 : | |
{ae m1, forall x, m2.-integrable setT (fun y => f (x, y))}. | |
Proof. | |
have : m1.-integrable setT (fun x => \int[m2]_y `|f (x, y)|). | |
split => //; rewrite (le_lt_trans _ (fubini1a.1 imf))// ge0_le_integral //. | |
- exact: measurable_fun_comp. | |
- by move=> *; exact: integral_ge0. | |
- by move=> *; rewrite gee0_abs//; exact: integral_ge0. | |
move/integrable_ae => /(_ measurableT) [N [mN N0 subN]]; exists N; split => //. | |
apply/(subset_trans _ subN)/subsetC => x /= /(_ Logic.I) im2f. | |
by split; [exact/measurable_fun_prod1|by move/fin_numPlt : im2f => /andP[]]. | |
Qed. | |
Lemma ae_integrable2 : | |
{ae m2, forall y, m1.-integrable setT (fun x => f (x, y))}. | |
Proof. | |
have : m2.-integrable setT (fun y => \int[m1]_x `|f (x, y)|). | |
split => //; rewrite (le_lt_trans _ (fubini1b.1 imf))// ge0_le_integral //. | |
- exact: measurable_fun_comp. | |
- by move=> *; exact: integral_ge0. | |
- by move=> *; rewrite gee0_abs//; exact: integral_ge0. | |
move/integrable_ae => /(_ measurableT) [N [mN N0 subN]]; exists N; split => //. | |
apply/(subset_trans _ subN)/subsetC => x /= /(_ Logic.I) im1f. | |
by split; [exact/measurable_fun_prod2|move/fin_numPlt : im1f => /andP[]]. | |
Qed. | |
Let F := fubini_F m2 f. | |
Let Fplus x := \int[m2]_y f^\+ (x, y). | |
Let Fminus x := \int[m2]_y f^\- (x, y). | |
Let FE : F = Fplus \- Fminus. Proof. apply/funext=> x; exact: integralE. Qed. | |
Let measurable_Fplus : measurable_fun setT Fplus. | |
Proof. | |
by apply: measurable_fun_fubini_tonelli_F => //; exact: emeasurable_fun_funepos. | |
Qed. | |
Let measurable_Fminus : measurable_fun setT Fminus. | |
Proof. | |
by apply: measurable_fun_fubini_tonelli_F => //; exact: emeasurable_fun_funeneg. | |
Qed. | |
Lemma measurable_fubini_F : measurable_fun setT F. | |
Proof. | |
rewrite FE. | |
by apply: emeasurable_funB; [exact: measurable_Fplus|exact: measurable_Fminus]. | |
Qed. | |
Let integrable_Fplus : m1.-integrable setT Fplus. | |
Proof. | |
split=> //; apply: le_lt_trans (fubini1a.1 imf); apply: ge0_le_integral => //. | |
- exact: measurable_fun_comp. | |
- by move=> x _; exact: integral_ge0. | |
- move=> x _; apply: le_trans. | |
apply: le_abse_integral => //; apply: emeasurable_fun_funepos => //. | |
exact: measurable_fun_prod1. | |
apply: ge0_le_integral => //. | |
- apply: measurable_fun_comp => //. | |
by apply: emeasurable_fun_funepos => //; exact: measurable_fun_prod1. | |
- by apply: measurable_fun_comp => //; exact/measurable_fun_prod1. | |
- by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addl. | |
Qed. | |
Let integrable_Fminus : m1.-integrable setT Fminus. | |
Proof. | |
split=> //; apply: le_lt_trans (fubini1a.1 imf); apply: ge0_le_integral => //. | |
- exact: measurable_fun_comp. | |
- by move=> *; exact: integral_ge0. | |
- move=> x _; apply: le_trans. | |
apply: le_abse_integral => //; apply: emeasurable_fun_funeneg => //. | |
exact: measurable_fun_prod1. | |
apply: ge0_le_integral => //. | |
+ apply: measurable_fun_comp => //; apply: emeasurable_fun_funeneg => //. | |
exact: measurable_fun_prod1. | |
+ by apply: measurable_fun_comp => //; exact: measurable_fun_prod1. | |
+ by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addr. | |
Qed. | |
Lemma integrable_fubini_F : m1.-integrable setT F. | |
Proof. by rewrite FE; exact: integrableB. Qed. | |
Let G := fubini_G m1 f. | |
Let Gplus y := \int[m1]_x f^\+ (x, y). | |
Let Gminus y := \int[m1]_x f^\- (x, y). | |
Let GE : G = Gplus \- Gminus. Proof. apply/funext=> x; exact: integralE. Qed. | |
Let measurable_Gplus : measurable_fun setT Gplus. | |
Proof. | |
by apply: measurable_fun_fubini_tonelli_G => //; exact: emeasurable_fun_funepos. | |
Qed. | |
Let measurable_Gminus : measurable_fun setT Gminus. | |
Proof. | |
by apply: measurable_fun_fubini_tonelli_G => //; exact: emeasurable_fun_funeneg. | |
Qed. | |
Lemma measurable_fubini_G : measurable_fun setT G. | |
Proof. by rewrite GE; exact: emeasurable_funB. Qed. | |
Let integrable_Gplus : m2.-integrable setT Gplus. | |
Proof. | |
split=> //; apply: le_lt_trans (fubini1b.1 imf); apply: ge0_le_integral => //. | |
- exact: measurable_fun_comp. | |
- by move=> *; exact: integral_ge0. | |
- move=> y _; apply: le_trans. | |
apply: le_abse_integral => //; apply: emeasurable_fun_funepos => //. | |
exact: measurable_fun_prod2. | |
apply: ge0_le_integral => //. | |
- apply: measurable_fun_comp => //. | |
by apply: emeasurable_fun_funepos => //; exact: measurable_fun_prod2. | |
- by apply: measurable_fun_comp => //; exact: measurable_fun_prod2. | |
- by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addl. | |
Qed. | |
Let integrable_Gminus : m2.-integrable setT Gminus. | |
Proof. | |
split=> //; apply: le_lt_trans (fubini1b.1 imf); apply: ge0_le_integral => //. | |
- exact: measurable_fun_comp. | |
- by move=> *; exact: integral_ge0. | |
- move=> y _; apply: le_trans. | |
apply: le_abse_integral => //; apply: emeasurable_fun_funeneg => //. | |
exact: measurable_fun_prod2. | |
apply: ge0_le_integral => //. | |
+ apply: measurable_fun_comp => //. | |
by apply: emeasurable_fun_funeneg => //; exact: measurable_fun_prod2. | |
+ by apply: measurable_fun_comp => //; exact: measurable_fun_prod2. | |
+ by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addr. | |
Qed. | |
Lemma fubini1 : \int[m1]_x F x = \int[m]_z f z. | |
Proof. | |
rewrite FE integralB// [in RHS]integralE//. | |
rewrite fubini_tonelli1//; last exact: emeasurable_fun_funepos. | |
by rewrite fubini_tonelli1//; exact: emeasurable_fun_funeneg. | |
Qed. | |
Lemma fubini2 : \int[m2]_x G x = \int[m]_z f z. | |
Proof. | |
rewrite GE integralB// [in RHS]integralE//. | |
rewrite fubini_tonelli2//; last exact: emeasurable_fun_funepos. | |
by rewrite fubini_tonelli2//; exact: emeasurable_fun_funeneg. | |
Qed. | |
Theorem Fubini : | |
\int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y). | |
Proof. by rewrite fubini1 -fubini2. Qed. | |
End fubini. | |