Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) | |
From mathcomp Require Import all_ssreflect ssralg ssrnum matrix interval. | |
Require Import boolp reals mathcomp_extra classical_sets signed functions. | |
Require Import topology prodnormedzmodule normedtype landau forms. | |
(******************************************************************************) | |
(* This file provides a theory of differentiation. It includes the standard *) | |
(* rules of differentiation (differential of a sum, of a product, of *) | |
(* exponentiation, of the inverse, etc.) as well as standard theorems (the *) | |
(* Extreme Value Theorem, Rolle's theorem, the Mean Value Theorem). *) | |
(* *) | |
(* Parsable notations (in all of the following, f is not supposed to be *) | |
(* differentiable): *) | |
(* 'd f x == the differential of a function f at a point x *) | |
(* differentiable f x == the function f is differentiable at a point x *) | |
(* 'J f x == the Jacobian of f at a point x *) | |
(* 'D_v f == the directional derivative of f along v *) | |
(* f^`() == the derivative of f of domain R *) | |
(* f^`(n) == the nth derivative of f of domain R *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import Order.TTheory GRing.Theory Num.Theory. | |
Import numFieldNormedType.Exports. | |
Local Open Scope ring_scope. | |
Local Open Scope classical_set_scope. | |
Reserved Notation "''d' f x" (at level 0, f at level 0, x at level 0, | |
format "''d' f x"). | |
Reserved Notation "'is_diff' F" (at level 0, F at level 0, | |
format "'is_diff' F"). | |
Reserved Notation "''J' f p" (at level 10, p, f at next level, | |
format "''J' f p"). | |
Reserved Notation "''D_' v f" (at level 10, v, f at next level, | |
format "''D_' v f"). | |
Reserved Notation "''D_' v f c" (at level 10, v, f at next level, | |
format "''D_' v f c"). (* printing *) | |
Reserved Notation "f ^` ()" (at level 8, format "f ^` ()"). | |
Reserved Notation "f ^` ( n )" (at level 8, format "f ^` ( n )"). | |
Section Differential. | |
Context {K : numDomainType} {V W : normedModType K}. | |
Definition diff (F : filter_on V) (_ : phantom (set (set V)) F) (f : V -> W) := | |
(get (fun (df : {linear V -> W}) => continuous df /\ forall x, | |
f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))). | |
Local Notation "''d' f x" := (@diff _ (Phantom _ [filter of x]) f). | |
Fact diff_key : forall T, T -> unit. Proof. by constructor. Qed. | |
CoInductive differentiable_def (f : V -> W) (x : filter_on V) | |
(phF : phantom (set (set V)) x) : Prop := DifferentiableDef of | |
(continuous ('d f x) /\ | |
f = cst (f (lim x)) + 'd f x \o center (lim x) +o_x (center (lim x))). | |
Local Notation differentiable f F := (@differentiable_def f _ (Phantom _ [filter of F])). | |
Class is_diff_def (x : filter_on V) (Fph : phantom (set (set V)) x) (f : V -> W) | |
(df : V -> W) := DiffDef { | |
ex_diff : differentiable f x ; | |
diff_val : 'd f x = df :> (V -> W) | |
}. | |
Hint Mode is_diff_def - - ! - : typeclass_instances. | |
Lemma diffP (F : filter_on V) (f : V -> W) : | |
differentiable f F <-> | |
continuous ('d f F) /\ | |
(forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F)). | |
Proof. by split=> [[] |]; last constructor; rewrite funeqE. Qed. | |
Lemma diff_continuous (x : filter_on V) (f : V -> W) : | |
differentiable f x -> continuous ('d f x). | |
Proof. by move=> /diffP []. Qed. | |
(* We should have a continuous class or structure *) | |
Hint Extern 0 (continuous _) => exact: diff_continuous : core. | |
Lemma diffE (F : filter_on V) (f : V -> W) : | |
differentiable f F -> | |
forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F). | |
Proof. by move=> /diffP []. Qed. | |
Lemma littleo_center0 (x : V) (f : V -> W) (e : V -> V) : | |
[o_x e of f] = [o_ (0 : V) (e \o shift x) of f \o shift x] \o center x. | |
Proof. | |
rewrite /the_littleo /insubd /=; have [g /= _ <-{f}|/asboolP Nfe] /= := insubP. | |
rewrite insubT //= ?comp_shiftK //; apply/asboolP => _/posnumP[eps]. | |
rewrite [\forall x \near _, _ <= _](near_shift x) sub0r; near=> y. | |
by rewrite /= subrK; near: y; have /eqoP := littleo_eqo g; apply. | |
rewrite insubF //; apply/asboolP => fe; apply: Nfe => _/posnumP[eps]. | |
by rewrite [\forall x \near _, _ <= _](near_shift 0) subr0; apply: fe. | |
Unshelve. all: by end_near. Qed. | |
End Differential. | |
Section Differential_numFieldType. | |
Context {K : numFieldType (*TODO: to numDomainType?*)} {V W : normedModType K}. | |
(* duplicate from Section Differential *) | |
Local Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])). | |
Local Notation "''d' f x" := (@diff _ _ _ _ (Phantom _ [filter of x]) f). | |
Hint Extern 0 (continuous _) => exact: diff_continuous : core. | |
Lemma diff_locallyxP (x : V) (f : V -> W) : | |
differentiable f x <-> continuous ('d f x) /\ | |
forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h. | |
Proof. | |
split=> [dxf|[dfc dxf]]. | |
split => //; apply: eqaddoEx => h; have /diffE -> := dxf. | |
rewrite lim_id // addrK; congr (_ + _); rewrite littleo_center0 /= addrK. | |
by congr ('o); rewrite funeqE => k /=; rewrite addrK. | |
apply/diffP; split=> //; apply: eqaddoEx; move=> y. | |
rewrite lim_id // -[in LHS](subrK x y) dxf; congr (_ + _). | |
rewrite -(comp_centerK x id) -[X in the_littleo _ _ _ X](comp_centerK x). | |
by rewrite -[_ (y - x)]/((_ \o (center x)) y) -littleo_center0. | |
Qed. | |
Lemma diff_locallyx (x : V) (f : V -> W) : differentiable f x -> | |
forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h. | |
Proof. by move=> /diff_locallyxP []. Qed. | |
Lemma diff_locallyxC (x : V) (f : V -> W) : differentiable f x -> | |
forall h, f (x + h) = f x + 'd f x h +o_(h \near 0 : V) h. | |
Proof. by move=> ?; apply/eqaddoEx => h; rewrite [x + h]addrC diff_locallyx. Qed. | |
Lemma diff_locallyP (x : V) (f : V -> W) : | |
differentiable f x <-> | |
continuous ('d f x) /\ (f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id). | |
Proof. by apply: iff_trans (diff_locallyxP _ _) _; rewrite funeqE. Qed. | |
Lemma diff_locally (x : V) (f : V -> W) : differentiable f x -> | |
(f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id). | |
Proof. by move=> /diff_locallyP []. Qed. | |
End Differential_numFieldType. | |
Notation "''d' f F" := (@diff _ _ _ _ (Phantom _ [filter of F]) f). | |
Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])). | |
Notation "'is_diff' F" := (is_diff_def (Phantom _ [filter of F])). | |
#[global] Hint Extern 0 (differentiable _ _) => solve[apply: ex_diff] : core. | |
#[global] Hint Extern 0 ({for _, continuous _}) => exact: diff_continuous : core. | |
Lemma differentiableP (R : numDomainType) (V W : normedModType R) (f : V -> W) x : | |
differentiable f x -> is_diff x f ('d f x). | |
Proof. by move=> ?; apply: DiffDef. Qed. | |
Section jacobian. | |
Definition jacobian n m (R : numFieldType) (f : 'rV[R]_n.+1 -> 'rV[R]_m.+1) p := | |
lin1_mx ('d f p). | |
End jacobian. | |
Notation "''J' f p" := (jacobian f p). | |
Section DifferentialR. | |
Context {R : numFieldType} {V W : normedModType R}. | |
(* split in multiple bits: | |
- a linear map which is locally bounded is a little o of 1 | |
- the identity is a littleo of 1 | |
*) | |
Lemma differentiable_continuous (x : V) (f : V -> W) : | |
differentiable f x -> {for x, continuous f}. | |
Proof. | |
move=> /diff_locallyP [dfc]; rewrite -addrA. | |
rewrite (littleo_bigO_eqo (cst (1 : R))); last first. | |
apply/eqOP; near=> k; rewrite /cst [`|1|]normr1 mulr1. | |
near=> y; rewrite ltW //; near: y; apply/nbhs_normP. | |
exists k; first by near: k; exists 0. | |
by move=> ? /=; rewrite -ball_normE /= sub0r normrN. | |
rewrite addfo; first by move=> /eqolim; rewrite cvg_comp_shift add0r. | |
by apply/eqolim0P; apply: (cvg_trans (dfc 0)); rewrite linear0. | |
Unshelve. all: by end_near. Qed. | |
Section littleo_lemmas. | |
Variables (X Y Z : normedModType R). | |
Lemma normm_littleo x (f : X -> Y) : `| [o_(x \near x) (1 : R) of f x]| = 0. | |
Proof. | |
rewrite /cst /=; have [e /(_ (`|e x|/2) _)/nbhs_singleton /=] := littleo. | |
rewrite pmulr_lgt0 // [`|1|]normr1 mulr1 [leLHS]splitr ger_addr pmulr_lle0 //. | |
by move=> /implyP; case : real_ltgtP; rewrite ?realE ?normrE //= lexx. | |
Qed. | |
Lemma littleo_lim0 (f : X -> Y) (h : _ -> Z) (x : X) : | |
f @ x --> (0 : Y) -> [o_x f of h] x = 0. | |
Proof. | |
move/eqolim0P => ->; have [k /(_ _ [gt0 of 1 : R])/=] := littleo. | |
by move=> /nbhs_singleton; rewrite mul1r normm_littleo normr_le0 => /eqP. | |
Qed. | |
End littleo_lemmas. | |
Section diff_locally_converse_tentative. | |
(* if there exist A and B s.t. f(a + h) = A + B h + o(h) then | |
f is differentiable at a, A = f(a) and B = f'(a) *) | |
(* this is a consequence of diff_continuous and eqolim0 *) | |
(* indeed the differential being b *: idfun is locally bounded *) | |
(* and thus a littleo of 1, and so is id *) | |
(* This can be generalized to any dimension *) | |
Lemma diff_locally_converse_part1 (f : R -> R) (a b x : R) : | |
f \o shift x = cst a + b *: idfun +o_ (0 : R) id -> f x = a. | |
Proof. | |
rewrite funeqE => /(_ 0) /=; rewrite add0r => ->. | |
by rewrite -[LHS]/(_ 0 + _ 0 + _ 0) /cst [X in a + X]scaler0 littleo_lim0 ?addr0. | |
Qed. | |
End diff_locally_converse_tentative. | |
Definition derive (f : V -> W) a v := | |
lim ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^'). | |
Local Notation "''D_' v f" := (derive f ^~ v). | |
Local Notation "''D_' v f c" := (derive f c v). (* printing *) | |
Definition derivable (f : V -> W) a v := | |
cvg ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^'). | |
Class is_derive (a v : V) (f : V -> W) (df : W) := DeriveDef { | |
ex_derive : derivable f a v; | |
derive_val : 'D_v f a = df | |
}. | |
Lemma derivable_nbhs (f : V -> W) a v : | |
derivable f a v -> | |
(fun h => (f \o shift a) (h *: v)) = (cst (f a)) + | |
(fun h => h *: ('D_v f a)) +o_ (nbhs (0 :R)) id. | |
Proof. | |
move=> df; apply/eqaddoP => _/posnumP[e]. | |
rewrite -nbhs_nearE nbhs_simpl /= dnbhsE; split; last first. | |
rewrite /at_point opprD -![(_ + _ : _ -> _) _]/(_ + _) scale0r add0r. | |
by rewrite addrA subrr add0r normrN scale0r !normr0 mulr0. | |
have /eqolimP := df; rewrite -[lim _]/(derive _ _ _). | |
move=> /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]). | |
apply: filter_app; rewrite /= !near_simpl near_withinE; near=> h => hN0. | |
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _). | |
rewrite /cst /= [`|1|]normr1 mulr1 => dfv. | |
rewrite addrA -[X in X + _]scale1r -(@mulVf _ h) //. | |
rewrite mulrC -scalerA -scalerBr normmZ. | |
rewrite -ler_pdivl_mull; last by rewrite normr_gt0. | |
by rewrite mulrCA mulVf ?mulr1; last by rewrite normr_eq0. | |
Unshelve. all: by end_near. Qed. | |
Lemma derivable_nbhsP (f : V -> W) a v : | |
derivable f a v <-> | |
(fun h => (f \o shift a) (h *: v)) = (cst (f a)) + | |
(fun h => h *: ('D_v f a)) +o_ (nbhs (0 : R)) id. | |
Proof. | |
split; first exact: derivable_nbhs. | |
move=> df; apply/cvg_ex; exists ('D_v f a). | |
apply/(@eqolimP _ _ _ (dnbhs_filter_on _))/eqaddoP => _/posnumP[e]. | |
have /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]) := df. | |
rewrite /= !(near_simpl, near_withinE); apply: filter_app; near=> h. | |
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _). | |
rewrite /cst /= [`|1|]normr1 mulr1 addrA => dfv hN0. | |
rewrite -[X in _ - X]scale1r -(@mulVf _ h) //. | |
rewrite -scalerA -scalerBr normmZ normfV ler_pdivr_mull ?normr_gt0 //. | |
by rewrite mulrC. | |
Unshelve. all: by end_near. Qed. | |
Lemma derivable_nbhsx (f : V -> W) a v : | |
derivable f a v -> forall h, f (a + h *: v) = f a + h *: 'D_v f a | |
+o_(h \near (nbhs (0 : R))) h. | |
Proof. | |
move=> /derivable_nbhs; rewrite funeqE => df. | |
by apply: eqaddoEx => h; have /= := (df h); rewrite addrC => ->. | |
Qed. | |
Lemma derivable_nbhsxP (f : V -> W) a v : | |
derivable f a v <-> forall h, f (a + h *: v) = f a + h *: 'D_v f a | |
+o_(h \near (nbhs (0 :R))) h. | |
Proof. | |
split; first exact: derivable_nbhsx. | |
move=> df; apply/derivable_nbhsP; apply/eqaddoE; rewrite funeqE => h. | |
by rewrite /= addrC df. | |
Qed. | |
End DifferentialR. | |
Notation "''D_' v f" := (derive f ^~ v). | |
Notation "''D_' v f c" := (derive f c v). (* printing *) | |
#[global] Hint Extern 0 (derivable _ _ _) => solve[apply: ex_derive] : core. | |
Section DifferentialR_numFieldType. | |
Context {R : numFieldType} {V W : normedModType R}. | |
Lemma deriveE (f : V -> W) (a v : V) : | |
differentiable f a -> 'D_v f a = 'd f a v. | |
Proof. | |
rewrite /derive => /diff_locally -> /=; set k := 'o _. | |
evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first. | |
rewrite funeqE=> h; rewrite !scalerDr scalerN /cst /=. | |
by rewrite addrC !addrA addNr add0r linearZ /= scalerA /g. | |
apply: cvg_map_lim => //. | |
pose g1 : R -> W := fun h => (h^-1 * h) *: 'd f a v. | |
pose g2 : R -> W := fun h : R => h^-1 *: k (h *: v ). | |
rewrite (_ : g = g1 + g2) ?funeqE // -(addr0 (_ _ v)); apply: cvgD. | |
rewrite -(scale1r (_ _ v)); apply: cvgZl => /= X [e e0]. | |
rewrite /ball_ /= => eX. | |
apply/nbhs_ballP. | |
by exists e => //= x _ x0; apply eX; rewrite mulVr // ?unitfE //= subrr normr0. | |
rewrite /g2. | |
have [/eqP ->|v0] := boolP (v == 0). | |
rewrite (_ : (fun _ => _) = cst 0); first exact: cvg_cst. | |
by rewrite funeqE => ?; rewrite scaler0 /k littleo_lim0 // scaler0. | |
apply/cvg_distP => e e0. | |
rewrite nearE /=; apply/nbhs_ballP. | |
have /(littleoP [littleo of k]) /nbhs_ballP[i i0 Hi] : 0 < e / (2 * `|v|). | |
by rewrite divr_gt0 // pmulr_rgt0 // normr_gt0. | |
exists (i / `|v|); first by rewrite /= divr_gt0 // normr_gt0. | |
move=> /= j; rewrite /ball /= /ball_ add0r normrN. | |
rewrite ltr_pdivl_mulr ?normr_gt0 // => jvi j0. | |
rewrite add0r normrN normmZ -ltr_pdivl_mull ?normr_gt0 ?invr_neq0 //. | |
have /Hi/le_lt_trans -> // : ball 0 i (j *: v). | |
by rewrite -ball_normE /ball_/= add0r normrN (le_lt_trans _ jvi) // normmZ. | |
rewrite -(mulrC e) -mulrA -ltr_pdivl_mull // mulrA mulVr ?unitfE ?gt_eqF //. | |
rewrite normrV ?unitfE // div1r invrK ltr_pdivr_mull; last first. | |
by rewrite pmulr_rgt0 // normr_gt0. | |
rewrite normmZ mulrC -mulrA. | |
by rewrite ltr_pmull ?ltr1n // pmulr_rgt0 ?normm_gt0 // normr_gt0. | |
Qed. | |
End DifferentialR_numFieldType. | |
Section DifferentialR2. | |
Variable R : numFieldType. | |
Implicit Type (V : normedModType R). | |
Lemma derivemxE m n (f : 'rV[R]_m.+1 -> 'rV[R]_n.+1) (a v : 'rV[R]_m.+1) : | |
differentiable f a -> 'D_ v f a = v *m jacobian f a. | |
Proof. by move=> /deriveE->; rewrite /jacobian mul_rV_lin1. Qed. | |
Definition derive1 V (f : R -> V) (a : R) := | |
lim ((fun h => h^-1 *: (f (h + a) - f a)) @ 0^'). | |
Local Notation "f ^` ()" := (derive1 f). | |
Lemma derive1E V (f : R -> V) a : f^`() a = 'D_1 f a. | |
Proof. | |
rewrite /derive1 /derive; set d := (fun _ : R => _); set d' := (fun _ : R => _). | |
by suff -> : d = d' by []; rewrite funeqE=> h; rewrite /d /d' /= [h%:A](mulr1). | |
Qed. | |
(* Is it necessary? *) | |
Lemma derive1E' V f a : differentiable (f : R -> V) a -> | |
f^`() a = 'd f a 1. | |
Proof. by move=> ?; rewrite derive1E deriveE. Qed. | |
Definition derive1n V n (f : R -> V) := iter n (@derive1 V) f. | |
Local Notation "f ^` ( n )" := (derive1n n f). | |
Lemma derive1n0 V (f : R -> V) : f^`(0) = f. | |
Proof. by []. Qed. | |
Lemma derive1n1 V (f : R -> V) : f^`(1) = f^`(). | |
Proof. by []. Qed. | |
Lemma derive1nS V (f : R -> V) n : f^`(n.+1) = f^`(n)^`(). | |
Proof. by []. Qed. | |
Lemma derive1Sn V (f : R -> V) n : f^`(n.+1) = f^`()^`(n). | |
Proof. exact: iterSr. Qed. | |
End DifferentialR2. | |
Notation "f ^` ()" := (derive1 f). | |
Notation "f ^` ( n )" := (derive1n n f). | |
Section DifferentialR3. | |
Variable R : numFieldType. | |
Fact dcst (V W : normedModType R) (a : W) (x : V) : continuous (0 : V -> W) /\ | |
cst a \o shift x = cst (cst a x) + \0 +o_ (0 : V) id. | |
Proof. | |
split; first exact: cst_continuous. | |
apply/eqaddoE; rewrite addr0 funeqE => ? /=; rewrite -[LHS]addr0; congr (_ + _). | |
by rewrite littleoE; last exact: littleo0_subproof. | |
Qed. | |
Variables (V W : normedModType R). | |
Fact dadd (f g : V -> W) x : | |
differentiable f x -> differentiable g x -> | |
continuous ('d f x \+ 'd g x) /\ | |
(f + g) \o shift x = cst ((f + g) x) + ('d f x \+ 'd g x) +o_ (0 : V) id. | |
Proof. | |
move=> df dg; split => [?|]; do ?exact: continuousD. | |
apply/(@eqaddoE R); rewrite funeqE => y /=; rewrite -[(f + g) _]/(_ + _). | |
by rewrite ![_ (_ + x)]diff_locallyx// addrACA addox addrACA. | |
Qed. | |
Fact dopp (f : V -> W) x : | |
differentiable f x -> continuous (- ('d f x : V -> W)) /\ | |
(- f) \o shift x = cst (- f x) \- 'd f x +o_ (0 : V) id. | |
Proof. | |
move=> df; split; first by move=> ?; apply: continuousN. | |
apply/eqaddoE; rewrite funeqE => y /=. | |
by rewrite -[(- f) _]/(- (_ _)) diff_locallyx// !opprD oppox. | |
Qed. | |
Lemma is_diff_eq (V' W' : normedModType R) (f f' g : V' -> W') (x : V') : | |
is_diff x f f' -> f' = g -> is_diff x f g. | |
Proof. by move=> ? <-. Qed. | |
Fact dscale (f : V -> W) k x : | |
differentiable f x -> continuous (k \*: 'd f x) /\ | |
(k *: f) \o shift x = cst ((k *: f) x) + k \*: 'd f x +o_ (0 : V) id. | |
Proof. | |
move=> df; split; first by move=> ?; apply: continuousZr. | |
apply/eqaddoE; rewrite funeqE => y /=. | |
by rewrite -[(k *: f) _]/(_ *: _) diff_locallyx // !scalerDr scaleox. | |
Qed. | |
(* NB: could be generalized with K : absRingType instead of R; DONE? *) | |
Fact dscalel (k : V -> R) (f : W) x : | |
differentiable k x -> | |
continuous (fun z : V => 'd k x z *: f) /\ | |
(fun z => k z *: f) \o shift x = | |
cst (k x *: f) + (fun z => 'd k x z *: f) +o_ (0 : V) id. | |
Proof. | |
move=> df; split. | |
move=> ?; exact/continuousZl/diff_continuous. | |
apply/eqaddoE; rewrite funeqE => y /=. | |
by rewrite diff_locallyx //= !scalerDl scaleolx. | |
Qed. | |
Fact dlin (V' W' : normedModType R) (f : {linear V' -> W'}) x : | |
continuous f -> f \o shift x = cst (f x) + f +o_ (0 : V') id. | |
Proof. | |
move=> df; apply: eqaddoE; rewrite funeqE => y /=. | |
rewrite linearD addrC -[LHS]addr0; congr (_ + _). | |
by rewrite littleoE; last exact: littleo0_subproof. (*fixme*) | |
Qed. | |
(* TODO: generalize *) | |
Lemma compoO_eqo (U V' W' : normedModType R) (f : U -> V') | |
(g : V' -> W') : | |
[o_ (0 : V') id of g] \o [O_ (0 : U) id of f] =o_ (0 : U) id. | |
Proof. | |
apply/eqoP => _ /posnumP[e]. | |
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : U) id of f]]. | |
have := littleoP [littleo of [o_ (0 : V') id of g]]. | |
move=> /(_ (e%:num / k%:num)) /(_ _) /nbhs_ballP [//|_ /posnumP[d] hd]. | |
apply: filter_app; near=> x => leOxkx; apply: le_trans (hd _ _) _; last first. | |
rewrite -ler_pdivl_mull //; apply: le_trans leOxkx _. | |
by rewrite invf_div mulrA -[_ / _ * _]mulrA mulVf // mulr1. | |
rewrite -ball_normE /= distrC subr0 (le_lt_trans leOxkx) //. | |
rewrite -ltr_pdivl_mull //; near: x; rewrite /= !nbhs_simpl. | |
apply/nbhs_ballP; exists (k%:num ^-1 * d%:num) => //= x. | |
by rewrite -ball_normE /= distrC subr0. | |
Unshelve. all: by end_near. Qed. | |
Lemma compoO_eqox (U V' W' : normedModType R) (f : U -> V') | |
(g : V' -> W') : | |
forall x : U, [o_ (0 : V') id of g] ([O_ (0 : U) id of f] x) =o_(x \near 0 : U) x. | |
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compoO_eqo. Qed. | |
(* TODO: generalize *) | |
Lemma compOo_eqo (U V' W' : normedModType R) (f : U -> V') | |
(g : V' -> W') : | |
[O_ (0 : V') id of g] \o [o_ (0 : U) id of f] =o_ (0 : U) id. | |
Proof. | |
apply/eqoP => _ /posnumP[e]. | |
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : V') id of g]]. | |
move=> /nbhs_ballP [_ /posnumP[d] hd]. | |
have ekgt0 : e%:num / k%:num > 0 by []. | |
have /(_ _ ekgt0) := littleoP [littleo of [o_ (0 : U) id of f]]. | |
apply: filter_app; near=> x => leoxekx; apply: le_trans (hd _ _) _; last first. | |
by rewrite -ler_pdivl_mull // mulrA [_^-1 * _]mulrC. | |
rewrite -ball_normE /= distrC subr0; apply: le_lt_trans leoxekx _. | |
rewrite -ltr_pdivl_mull //; near: x; rewrite /= nbhs_simpl. | |
apply/nbhs_ballP; exists ((e%:num / k%:num) ^-1 * d%:num) => //= x. | |
by rewrite -ball_normE /= distrC subr0. | |
Unshelve. all: by end_near. Qed. | |
End DifferentialR3. | |
Section DifferentialR3_numFieldType. | |
Variable R : numFieldType. | |
Lemma littleo_linear0 (V W : normedModType R) (f : {linear V -> W}) : | |
(f : V -> W) =o_ (0 : V) id -> f = cst 0 :> (V -> W). | |
Proof. | |
move/eqoP => oid. | |
rewrite funeqE => x; apply/eqP; have [|xn0] := real_le0P (normr_real x). | |
by rewrite normr_le0 => /eqP ->; rewrite linear0. | |
rewrite -normr_le0 -(mul0r `|x|) -ler_pdivr_mulr //. | |
apply/ler0_addgt0P => _ /posnumP[e]; rewrite ler_pdivr_mulr //. | |
have /oid /nbhs_ballP [_ /posnumP[d] dfe] := !! gt0 e. | |
set k := ((d%:num / 2) / (PosNum xn0)%:num)^-1. | |
rewrite -{1}(@scalerKV _ _ k _ x) /k // linearZZ normmZ. | |
rewrite -ler_pdivl_mull; last by rewrite gtr0_norm. | |
rewrite mulrCA (@le_trans _ _ (e%:num * `|k^-1 *: x|)) //; last first. | |
by rewrite ler_pmul // normmZ normfV. | |
apply: dfe. | |
rewrite -ball_normE /ball_/= sub0r normrN normmZ. | |
rewrite invrK -ltr_pdivl_mulr // ger0_norm // ltr_pdivr_mulr //. | |
by rewrite -mulrA mulVf ?lt0r_neq0 // mulr1 [ltRHS]splitr ltr_addl. | |
Qed. | |
Lemma diff_unique (V W : normedModType R) (f : V -> W) | |
(df : {linear V -> W}) x : | |
continuous df -> f \o shift x = cst (f x) + df +o_ (0 : V) id -> | |
'd f x = df :> (V -> W). | |
Proof. | |
move=> dfc dxf; apply/subr0_eq; rewrite -[LHS]/(_ \- _). | |
apply/littleo_linear0/eqoP/eq_some_oP => /=; rewrite funeqE => y /=. | |
have hdf h : | |
(f \o shift x = cst (f x) + h +o_ (0 : V) id) -> | |
h = f \o shift x - cst (f x) +o_ (0 : V) id. | |
move=> hdf; apply: eqaddoE. | |
rewrite hdf addrAC (addrC _ h) addrK. | |
rewrite -[LHS]addr0 -addrA; congr (_ + _). | |
by apply/eqP; rewrite eq_sym addrC addr_eq0 oppo. | |
rewrite (hdf _ dxf). | |
suff /diff_locally /hdf -> : differentiable f x. | |
by rewrite opprD addrCA -(addrA (_ - _)) addKr oppox addox. | |
apply/diffP; apply: (@getPex _ (fun (df : {linear V -> W}) => continuous df /\ | |
forall y, f y = f (lim x) + df (y - lim x) +o_(y \near x) (y - lim x))). | |
exists df; split=> //; apply: eqaddoEx => z. | |
rewrite (hdf _ dxf) !addrA lim_id // /(_ \o _) /= subrK [f _ + _]addrC addrK. | |
rewrite -addrA -[LHS]addr0; congr (_ + _). | |
apply/eqP; rewrite eq_sym addrC addr_eq0 oppox; apply/eqP. | |
by rewrite littleo_center0 (comp_centerK x id) -[- _ in RHS](comp_centerK x). | |
Qed. | |
Lemma diff_cst (V W : normedModType R) a x : ('d (cst a) x : V -> W) = 0. | |
Proof. by apply/diff_unique; have [] := dcst a x. Qed. | |
Variables (V W : normedModType R). | |
Lemma differentiable_cst (W' : normedModType R) (a : W') (x : V) : | |
differentiable (cst a) x. | |
Proof. by apply/diff_locallyP; rewrite diff_cst; have := dcst a x. Qed. | |
Global Instance is_diff_cst (a : W) (x : V) : is_diff x (cst a) 0. | |
Proof. exact: DiffDef (differentiable_cst _ _) (diff_cst _ _). Qed. | |
Lemma diffD (f g : V -> W) x : | |
differentiable f x -> differentiable g x -> | |
'd (f + g) x = 'd f x \+ 'd g x :> (V -> W). | |
Proof. by move=> df dg; apply/diff_unique; have [] := dadd df dg. Qed. | |
Lemma differentiableD (f g : V -> W) x : | |
differentiable f x -> differentiable g x -> differentiable (f + g) x. | |
Proof. | |
by move=> df dg; apply/diff_locallyP; rewrite diffD //; have := dadd df dg. | |
Qed. | |
Global Instance is_diffD (f g df dg : V -> W) x : | |
is_diff x f df -> is_diff x g dg -> is_diff x (f + g) (df + dg). | |
Proof. | |
move=> dfx dgx; apply: DiffDef; first exact: differentiableD. | |
by rewrite diffD // !diff_val. | |
Qed. | |
Lemma differentiable_sum n (f : 'I_n -> V -> W) (x : V) : | |
(forall i, differentiable (f i) x) -> differentiable (\sum_(i < n) f i) x. | |
Proof. | |
elim: n f => [f _| n IH f H]; first by rewrite big_ord0. | |
rewrite big_ord_recr /=; apply/differentiableD; [apply/IH => ? |]; exact: H. | |
Qed. | |
Lemma diffN (f : V -> W) x : | |
differentiable f x -> 'd (- f) x = - ('d f x : V -> W) :> (V -> W). | |
Proof. | |
move=> df; rewrite -[RHS]/(@GRing.opp _ \o _); apply/diff_unique; | |
by have [] := dopp df. | |
Qed. | |
Lemma differentiableN (f : V -> W) x : | |
differentiable f x -> differentiable (- f) x. | |
Proof. | |
by move=> df; apply/diff_locallyP; rewrite diffN //; have := dopp df. | |
Qed. | |
Global Instance is_diffN (f df : V -> W) x : | |
is_diff x f df -> is_diff x (- f) (- df). | |
Proof. | |
move=> dfx; apply: DiffDef; first exact: differentiableN. | |
by rewrite diffN // diff_val. | |
Qed. | |
Global Instance is_diffB (f g df dg : V -> W) x : | |
is_diff x f df -> is_diff x g dg -> is_diff x (f - g) (df - dg). | |
Proof. by move=> dfx dgx; apply: is_diff_eq. Qed. | |
Lemma diffB (f g : V -> W) x : | |
differentiable f x -> differentiable g x -> | |
'd (f - g) x = 'd f x \- 'd g x :> (V -> W). | |
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed. | |
Lemma differentiableB (f g : V -> W) x : | |
differentiable f x -> differentiable g x -> differentiable (f \- g) x. | |
Proof. by move=> /differentiableP df /differentiableP dg. Qed. | |
Lemma diffZ (f : V -> W) k x : | |
differentiable f x -> 'd (k *: f) x = k \*: 'd f x :> (V -> W). | |
Proof. by move=> df; apply/diff_unique; have [] := dscale k df. Qed. | |
Lemma differentiableZ (f : V -> W) k x : | |
differentiable f x -> differentiable (k *: f) x. | |
Proof. | |
by move=> df; apply/diff_locallyP; rewrite diffZ //; have := dscale k df. | |
Qed. | |
Global Instance is_diffZ (f df : V -> W) k x : | |
is_diff x f df -> is_diff x (k *: f) (k *: df). | |
Proof. | |
move=> dfx; apply: DiffDef; first exact: differentiableZ. | |
by rewrite diffZ // diff_val. | |
Qed. | |
Lemma diffZl (k : V -> R) (f : W) x : differentiable k x -> | |
'd (fun z => k z *: f) x = (fun z => 'd k x z *: f) :> (_ -> _). | |
Proof. | |
move=> df; set g := RHS; have glin : linear g. | |
by move=> a u v; rewrite /g linearP /= scalerDl -scalerA. | |
by apply:(@diff_unique _ _ _ (Linear glin)); have [] := dscalel f df. | |
Qed. | |
Lemma differentiableZl (k : V -> R) (f : W) x : | |
differentiable k x -> differentiable (fun z => k z *: f) x. | |
Proof. | |
by move=> df; apply/diff_locallyP; rewrite diffZl //; have [] := dscalel f df. | |
Qed. | |
Lemma diff_lin (V' W' : normedModType R) (f : {linear V' -> W'}) x : | |
continuous f -> 'd f x = f :> (V' -> W'). | |
Proof. by move=> fcont; apply/diff_unique => //; apply: dlin. Qed. | |
Lemma linear_differentiable (V' W' : normedModType R) (f : {linear V' -> W'}) | |
x : continuous f -> differentiable f x. | |
Proof. | |
by move=> fcont; apply/diff_locallyP; rewrite diff_lin //; have := dlin x fcont. | |
Qed. | |
Global Instance is_diff_id (x : V) : is_diff x id id. | |
Proof. | |
apply: DiffDef. | |
by apply: (@linear_differentiable _ _ [linear of idfun]) => ? //. | |
by rewrite (@diff_lin _ _ [linear of idfun]) // => ? //. | |
Qed. | |
Global Instance is_diff_scaler (k : R) (x : V) : is_diff x ( *:%R k) ( *:%R k). | |
Proof. | |
apply: DiffDef; first exact/linear_differentiable/scaler_continuous. | |
by rewrite diff_lin //; apply: scaler_continuous. | |
Qed. | |
Global Instance is_diff_scalel (x k : R) : | |
is_diff k ( *:%R ^~ x) ( *:%R ^~ x). | |
Proof. | |
have -> : *:%R ^~ x = GRing.scale_linear R x. | |
by rewrite funeqE => ? /=; rewrite [_ *: _]mulrC. | |
apply: DiffDef; first exact/linear_differentiable/scaler_continuous. | |
by rewrite diff_lin //; apply: scaler_continuous. | |
Qed. | |
Lemma differentiable_coord m n (M : 'M[R]_(m.+1, n.+1)) i j : | |
differentiable (fun N : 'M[R]_(m.+1, n.+1) => N i j : R ) M. | |
Proof. | |
have @f : {linear 'M[R]_(m.+1, n.+1) -> R}. | |
by exists (fun N : 'M[R]_(_, _) => N i j); eexists; move=> ? ?; rewrite !mxE. | |
rewrite (_ : (fun _ => _) = f) //; exact/linear_differentiable/coord_continuous. | |
Qed. | |
Lemma linear_lipschitz (V' W' : normedModType R) (f : {linear V' -> W'}) : | |
continuous f -> exists2 k, k > 0 & forall x, `|f x| <= k * `|x|. | |
Proof. | |
move=> /(_ 0); rewrite linear0 => /(_ _ (nbhsx_ballx 0 1%:pos)). | |
move=> /nbhs_ballP [_ /posnumP[e] he]; exists (2 / e%:num) => // x. | |
have [|xn0] := real_le0P (normr_real x). | |
by rewrite normr_le0 => /eqP->; rewrite linear0 !normr0 mulr0. | |
set k := 2 / e%:num * (PosNum xn0)%:num. | |
have kn0 : k != 0 by rewrite /k. | |
have abskgt0 : `|k| > 0 by rewrite normr_gt0. | |
rewrite -[x in leLHS](scalerKV kn0) linearZZ normmZ -ler_pdivl_mull //. | |
suff /he : ball 0 e%:num (k^-1 *: x). | |
rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply. | |
by rewrite ger0_norm /k // mulVf. | |
rewrite -ball_normE /= distrC subr0 normmZ. | |
rewrite normfV ger0_norm /k // invrM ?unitfE // mulrAC mulVf //. | |
by rewrite invf_div mul1r [ltRHS]splitr; apply: ltr_spaddr. | |
Qed. | |
Lemma linear_eqO (V' W' : normedModType R) (f : {linear V' -> W'}) : | |
continuous f -> (f : V' -> W') =O_ (0 : V') id. | |
Proof. | |
move=> /linear_lipschitz [k kgt0 flip]; apply/eqO_exP; exists k => //. | |
exact: filterE. | |
Qed. | |
Lemma diff_eqO (V' W' : normedModType R) (x : filter_on V') (f : V' -> W') : | |
differentiable f x -> ('d f x : V' -> W') =O_ (0 : V') id. | |
Proof. by move=> /diff_continuous /linear_eqO; apply. Qed. | |
Lemma compOo_eqox (U V' W' : normedModType R) (f : U -> V') | |
(g : V' -> W') : forall x, | |
[O_ (0 : V') id of g] ([o_ (0 : U) id of f] x) =o_(x \near 0 : U) x. | |
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compOo_eqo. Qed. | |
Fact dcomp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x : | |
differentiable f x -> differentiable g (f x) -> | |
continuous ('d g (f x) \o 'd f x) /\ forall y, | |
g (f (y + x)) = g (f x) + ('d g (f x) \o 'd f x) y +o_(y \near 0 : U) y. | |
Proof. | |
move=> df dg; split; first by move=> ?; apply: continuous_comp. | |
apply: eqaddoEx => y; rewrite diff_locallyx// -addrA diff_locallyxC// linearD. | |
rewrite addrA -addrA; congr (_ + _ + _). | |
rewrite diff_eqO // ['d f x : _ -> _]diff_eqO //. | |
by rewrite {2}eqoO addOx compOo_eqox compoO_eqox addox. | |
Qed. | |
Lemma diff_comp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x : | |
differentiable f x -> differentiable g (f x) -> | |
'd (g \o f) x = 'd g (f x) \o 'd f x :> (U -> W'). | |
Proof. by move=> df dg; apply/diff_unique; have [? /funext] := dcomp df dg. Qed. | |
Lemma differentiable_comp (U V' W' : normedModType R) (f : U -> V') | |
(g : V' -> W') x : differentiable f x -> differentiable g (f x) -> | |
differentiable (g \o f) x. | |
Proof. | |
move=> df dg; apply/diff_locallyP; rewrite diff_comp //; | |
by have [? /funext]:= dcomp df dg. | |
Qed. | |
Global Instance is_diff_comp (U V' W' : normedModType R) (f df : U -> V') | |
(g dg : V' -> W') x : is_diff x f df -> is_diff (f x) g dg -> | |
is_diff x (g \o f) (dg \o df) | 99. | |
Proof. | |
move=> dfx dgfx; apply: DiffDef; first exact: differentiable_comp. | |
by rewrite diff_comp // !diff_val. | |
Qed. | |
Lemma bilinear_schwarz (U V' W' : normedModType R) | |
(f : {bilinear U -> V' -> W'}) : continuous (fun p => f p.1 p.2) -> | |
exists2 k, k > 0 & forall u v, `|f u v| <= k * `|u| * `|v|. | |
Proof. | |
move=> /(_ 0); rewrite linear0r => /(_ _ (nbhsx_ballx 0 1%:pos)). | |
move=> /nbhs_ballP [_ /posnumP[e] he]; exists ((2 / e%:num) ^+2) => // u v. | |
have [|un0] := real_le0P (normr_real u). | |
by rewrite normr_le0 => /eqP->; rewrite linear0l !normr0 mulr0 mul0r. | |
have [|vn0] := real_le0P (normr_real v). | |
by rewrite normr_le0 => /eqP->; rewrite linear0r !normr0 mulr0. | |
rewrite -[`|u|]/((PosNum un0)%:num) -[`|v|]/((PosNum vn0)%:num). | |
set ku := 2 / e%:num * (PosNum un0)%:num. | |
set kv := 2 / e%:num * (PosNum vn0)%:num. | |
rewrite -[X in f X](@scalerKV _ _ ku) /ku // linearZl_LR normmZ. | |
rewrite gtr0_norm // -ler_pdivl_mull //. | |
rewrite -[X in f _ X](@scalerKV _ _ kv) /kv // linearZr_LR normmZ. | |
rewrite gtr0_norm // -ler_pdivl_mull //. | |
suff /he : ball 0 e%:num (ku^-1 *: u, kv^-1 *: v). | |
rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply. | |
rewrite ler_pdivl_mull 1?pmulr_lgt0// mulr1 ler_pdivl_mull 1?pmulr_lgt0//. | |
by rewrite mulrA [ku * _]mulrAC expr2. | |
rewrite -ball_normE /= distrC subr0. | |
have -> : (ku^-1 *: u, kv^-1 *: v) = | |
(e%:num / 2) *: ((PosNum un0)%:num ^-1 *: u, (PosNum vn0)%:num ^-1 *: v). | |
rewrite invrM ?unitfE // [kv ^-1]invrM ?unitfE //. | |
rewrite mulrC -[_ *: u]scalerA [X in X *: v]mulrC -[_ *: v]scalerA. | |
by rewrite invf_div. | |
rewrite normmZ ger0_norm // -mulrA gtr_pmulr // ltr_pdivr_mull // mulr1. | |
by rewrite prod_normE/= !normmZ !normfV !normr_id !mulVf ?gt_eqF// maxxx ltr1n. | |
Qed. | |
Lemma bilinear_eqo (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) : | |
continuous (fun p => f p.1 p.2) -> (fun p => f p.1 p.2) =o_ (0 : U * V') id. | |
Proof. | |
move=> fc; have [_ /posnumP[k] fschwarz] := bilinear_schwarz fc. | |
apply/eqoP=> _ /posnumP[e]; near=> x; rewrite (le_trans (fschwarz _ _))//. | |
rewrite ler_pmul ?pmulr_rge0 //; last by rewrite num_le_maxr /= lexx orbT. | |
rewrite -ler_pdivl_mull //. | |
suff : `|x| <= k%:num ^-1 * e%:num by apply: le_trans; rewrite num_le_maxr /= lexx. | |
near: x; rewrite !near_simpl; apply/nbhs_le_nbhs_norm. | |
by exists (k%:num ^-1 * e%:num) => //= ? /=; rewrite -ball_normE /= distrC subr0 => /ltW. | |
Unshelve. all: by end_near. Qed. | |
Fact dbilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p : | |
continuous (fun p => f p.1 p.2) -> | |
continuous (fun q => (f p.1 q.2 + f q.1 p.2)) /\ | |
(fun q => f q.1 q.2) \o shift p = cst (f p.1 p.2) + | |
(fun q => f p.1 q.2 + f q.1 p.2) +o_ (0 : U * V') id. | |
Proof. | |
move=> fc; split=> [q|]. | |
by apply: (@continuousD _ _ _ (fun q => f p.1 q.2) (fun q => f q.1 p.2)); | |
move=> A /(fc (_.1, _.2)) /= /nbhs_ballP [_ /posnumP[e] fpqe_A]; | |
apply/nbhs_ballP; exists e%:num => //= r [? ?]; exact: (fpqe_A (_.1, _.2)). | |
apply/eqaddoE; rewrite funeqE => q /=. | |
rewrite linearDl !linearDr addrA addrC. | |
rewrite -[f q.1 _ + _ + _]addrA [f q.1 _ + _]addrC addrA [f q.1 _ + _]addrC. | |
by congr (_ + _); rewrite -[LHS]/((fun p => f p.1 p.2) q) bilinear_eqo. | |
Qed. | |
Lemma diff_bilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p : | |
continuous (fun p => f p.1 p.2) -> 'd (fun q => f q.1 q.2) p = | |
(fun q => f p.1 q.2 + f q.1 p.2) :> (U * V' -> W'). | |
Proof. | |
move=> fc; have lind : linear (fun q => f p.1 q.2 + f q.1 p.2). | |
by move=> ???; rewrite linearPr linearPl scalerDr addrACA. | |
have -> : (fun q => f p.1 q.2 + f q.1 p.2) = Linear lind by []. | |
by apply/diff_unique; have [] := dbilin p fc. | |
Qed. | |
Lemma differentiable_bilin (U V' W' : normedModType R) | |
(f : {bilinear U -> V' -> W'}) p : | |
continuous (fun p => f p.1 p.2) -> differentiable (fun p => f p.1 p.2) p. | |
Proof. | |
by move=> fc; apply/diff_locallyP; rewrite diff_bilin //; apply: dbilin p fc. | |
Qed. | |
Definition Rmult_rev (y x : R) := x * y. | |
Canonical rev_Rmult := @RevOp _ _ _ Rmult_rev (@GRing.mul [ringType of R]) | |
(fun _ _ => erefl). | |
Lemma Rmult_is_linear x : linear (@GRing.mul [ringType of R] x : R -> R). | |
Proof. by move=> ???; rewrite mulrDr scalerAr. Qed. | |
Canonical Rmult_linear x := Linear (Rmult_is_linear x). | |
Lemma Rmult_rev_is_linear y : linear (Rmult_rev y : R -> R). | |
Proof. by move=> ???; rewrite /Rmult_rev mulrDl scalerAl. Qed. | |
Canonical Rmult_rev_linear y := Linear (Rmult_rev_is_linear y). | |
Canonical Rmult_bilinear := | |
[bilinear of (@GRing.mul [ringType of [lmodType R of R]])]. | |
Global Instance is_diff_Rmult (p : R*R ) : | |
is_diff p (fun q => q.1 * q.2) (fun q => p.1 * q.2 + q.1 * p.2). | |
Proof. | |
apply: DiffDef; last by rewrite diff_bilin // => ?; apply: mul_continuous. | |
by apply: differentiable_bilin =>?; apply: mul_continuous. | |
Qed. | |
Lemma eqo_pair (U V' W' : normedModType R) (F : filter_on U) | |
(f : U -> V') (g : U -> W') : | |
(fun t => ([o_F id of f] t, [o_F id of g] t)) =o_F id. | |
Proof. | |
apply/eqoP => _/posnumP[e]; near=> x; rewrite num_le_maxl /=. | |
by apply/andP; split; near: x; apply: littleoP. | |
Unshelve. all: by end_near. Qed. | |
Fact dpair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x : | |
differentiable f x -> differentiable g x -> | |
continuous (fun y => ('d f x y, 'd g x y)) /\ | |
(fun y => (f y, g y)) \o shift x = cst (f x, g x) + | |
(fun y => ('d f x y, 'd g x y)) +o_ (0 : U) id. | |
Proof. | |
move=> df dg; split=> [?|]; first by apply: cvg_pair; apply: diff_continuous. | |
apply/eqaddoE; rewrite funeqE => y /=. | |
rewrite ![_ (_ + x)]diff_locallyx//. | |
(* fixme *) | |
have -> : forall h e, (f x + 'd f x y + [o_ (0 : U) id of h] y, | |
g x + 'd g x y + [o_ (0 : U) id of e] y) = | |
(f x, g x) + ('d f x y, 'd g x y) + | |
([o_ (0 : U) id of h] y, [o_ (0 : U) id of e] y) by []. | |
by congr (_ + _); rewrite -[LHS]/((fun y => (_ y, _ y)) y) eqo_pair. | |
Qed. | |
Lemma diff_pair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x : | |
differentiable f x -> differentiable g x -> 'd (fun y => (f y, g y)) x = | |
(fun y => ('d f x y, 'd g x y)) :> (U -> V' * W'). | |
Proof. | |
move=> df dg. | |
have lin_pair : linear (fun y => ('d f x y, 'd g x y)). | |
by move=> ???; rewrite !linearPZ. | |
have -> : (fun y => ('d f x y, 'd g x y)) = Linear lin_pair by []. | |
by apply: diff_unique; have [] := dpair df dg. | |
Qed. | |
Lemma differentiable_pair (U V' W' : normedModType R) (f : U -> V') | |
(g : U -> W') x : differentiable f x -> differentiable g x -> | |
differentiable (fun y => (f y, g y)) x. | |
Proof. | |
by move=> df dg; apply/diff_locallyP; rewrite diff_pair //; apply: dpair. | |
Qed. | |
Global Instance is_diff_pair (U V' W' : normedModType R) (f df : U -> V') | |
(g dg : U -> W') x : is_diff x f df -> is_diff x g dg -> | |
is_diff x (fun y => (f y, g y)) (fun y => (df y, dg y)). | |
Proof. | |
move=> dfx dgx; apply: DiffDef; first exact: differentiable_pair. | |
by rewrite diff_pair // !diff_val. | |
Qed. | |
Global Instance is_diffM (f g df dg : V -> R) x : | |
is_diff x f df -> is_diff x g dg -> is_diff x (f * g) (f x *: dg + g x *: df). | |
Proof. | |
move=> dfx dgx. | |
have -> : f * g = (fun p => p.1 * p.2) \o (fun y => (f y, g y)) by []. | |
(* TODO: type class inference should succeed or fail, not leave an evar *) | |
apply: is_diff_eq; do ?exact: is_diff_comp. | |
by rewrite funeqE => ?; rewrite /= [_ * g _]mulrC. | |
Qed. | |
Lemma diffM (f g : V -> R) x : | |
differentiable f x -> differentiable g x -> | |
'd (f * g) x = f x \*: 'd g x + g x \*: 'd f x :> (V -> R). | |
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed. | |
Lemma differentiableM (f g : V -> R) x : | |
differentiable f x -> differentiable g x -> differentiable (f * g) x. | |
Proof. by move=> /differentiableP df /differentiableP dg. Qed. | |
(* fixme using *) | |
(* (1 / (h + x) - 1 / x) / h = - 1 / (h + x) x = -1/x^2 + o(1) *) | |
Fact dinv (x : R) : | |
x != 0 -> continuous (fun h : R => - x ^- 2 *: h) /\ | |
(fun x => x^-1)%R \o shift x = cst (x^-1)%R + | |
(fun h : R => - x ^- 2 *: h) +o_ (0 : R) id. | |
Proof. | |
move=> xn0; suff: continuous (fun h : R => - (1 / x) ^+ 2 *: h) /\ | |
(fun x => 1 / x ) \o shift x = cst (1 / x) + | |
(fun h : R => - (1 / x) ^+ 2 *: h) +o_ (0 : R) id. | |
rewrite !mul1r !GRing.exprVn. | |
rewrite (_ : (fun x => x^-1) = (fun x => 1 / x ))//. | |
by rewrite funeqE => y; rewrite mul1r. | |
split; first by move=> ?; apply: continuousZr. | |
apply/eqaddoP => _ /posnumP[e]; near=> h. | |
rewrite -[(_ + _ : R -> R) h]/(_ + _) -[(- _ : R -> R) h]/(- _) /=. | |
rewrite opprD scaleNr opprK /cst /=. | |
rewrite -[- _]mulr1 -[X in - _ * X](mulfVK xn0) mulrA mulNr -expr2 mulNr. | |
rewrite [- _ + _]addrC -mulrBr. | |
rewrite -[X in X + _]mulr1 -[X in 1 / _ * X](@mulfVK _ (x ^+ 2)); last first. | |
by rewrite sqrf_eq0. | |
rewrite mulrA mulf_div mulr1. | |
have hDx_neq0 : h + x != 0. | |
near: h; rewrite !nbhs_simpl; apply/nbhs_normP. | |
exists `|x|; first by rewrite /= normr_gt0. | |
move=> h /=; rewrite -ball_normE /= distrC subr0 -subr_gt0 => lthx. | |
rewrite -(normr_gt0 (h + x)) addrC -[h]opprK. | |
apply: lt_le_trans (ler_dist_dist _ _). | |
by rewrite ger0_norm normrN //; apply: ltW. | |
rewrite addrC -[X in X * _]mulr1 -{2}[1](@mulfVK _ (h + x)) //. | |
rewrite mulrA expr_div_n expr1n mulf_div mulr1 [_ ^+ 2 * _]mulrC -mulrA. | |
rewrite -mulrDr mulrBr [1 / _ * _]mulrC normrM. | |
rewrite mulrDl mulrDl opprD addrACA addrA [x * _]mulrC expr2. | |
do 2 ?[rewrite -addrA [- _ + _]addrC subrr addr0]. | |
rewrite div1r normfV [X in _ / X]normrM invfM [X in _ * X]mulrC. | |
rewrite mulrA mulrAC ler_pdivr_mulr ?normr_gt0 ?mulf_neq0 //. | |
rewrite mulrAC ler_pdivr_mulr ?normr_gt0 //. | |
have : `|h * h| <= `|x / 2| * (e%:num * `|x * x| * `|h|). | |
rewrite !mulrA; near: h; exists (`|x / 2| * e%:num * `|x * x|). | |
by rewrite /= !pmulr_rgt0 // normr_gt0 mulf_neq0. | |
by move=> h /ltW; rewrite distrC subr0 [`|h * _|]normrM => /ler_pmul; apply. | |
move=> /le_trans-> //; rewrite [leLHS]mulrC ler_pmul ?mulr_ge0 //. | |
near: h; exists (`|x| / 2); first by rewrite /= divr_gt0 ?normr_gt0. | |
move=> h; rewrite /= distrC subr0 => lthhx; rewrite addrC -[h]opprK. | |
apply: le_trans (@ler_dist_dist _ R _ _). | |
rewrite normrN [leRHS]ger0_norm; last first. | |
rewrite subr_ge0; apply: ltW; apply: lt_le_trans lthhx _. | |
by rewrite ler_pdivr_mulr // -{1}(mulr1 `|x|) ler_pmul // ler1n. | |
rewrite ler_subr_addr -ler_subr_addl (splitr `|x|). | |
by rewrite normrM normfV (@ger0_norm _ 2) // -addrA subrr addr0; apply: ltW. | |
Unshelve. all: by end_near. Qed. | |
Lemma diff_Rinv (x : R) : x != 0 -> | |
'd GRing.inv x = (fun h : R => - x ^- 2 *: h) :> (R -> R). | |
Proof. | |
move=> xn0; have -> : (fun h : R => - x ^- 2 *: h) = | |
GRing.scale_linear _ (- x ^- 2) by []. | |
by apply: diff_unique; have [] := dinv xn0. | |
Qed. | |
Lemma differentiable_Rinv (x : R) : x != 0 -> | |
differentiable (GRing.inv : R -> R) x. | |
Proof. | |
by move=> xn0; apply/diff_locallyP; rewrite diff_Rinv //; apply: dinv. | |
Qed. | |
Lemma diffV (f : V -> R) x : differentiable f x -> f x != 0 -> | |
'd (fun y => (f y)^-1) x = - (f x) ^- 2 \*: 'd f x :> (V -> R). | |
Proof. | |
move=> df fxn0. | |
by rewrite [LHS](diff_comp df (differentiable_Rinv fxn0)) diff_Rinv. | |
Qed. | |
Lemma differentiableV (f : V -> R) x : | |
differentiable f x -> f x != 0 -> differentiable (fun y => (f y)^-1) x. | |
Proof. | |
by move=> df fxn0; apply: differentiable_comp _ (differentiable_Rinv fxn0). | |
Qed. | |
Global Instance is_diffX (f df : V -> R) n x : | |
is_diff x f df -> is_diff x (f ^+ n.+1) (n.+1%:R * f x ^+ n *: df). | |
Proof. | |
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r. | |
rewrite exprS; apply: is_diff_eq. | |
rewrite scalerA mulrCA -exprS -scalerDl. | |
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl. | |
Qed. | |
Lemma differentiableX (f : V -> R) n x : | |
differentiable f x -> differentiable (f ^+ n.+1) x. | |
Proof. by move=> /differentiableP. Qed. | |
Lemma diffX (f : V -> R) n x : | |
differentiable f x -> | |
'd (f ^+ n.+1) x = n.+1%:R * f x ^+ n \*: 'd f x :> (V -> R). | |
Proof. by move=> /differentiableP df; rewrite diff_val. Qed. | |
End DifferentialR3_numFieldType. | |
Section Derive. | |
Variables (R : numFieldType) (V W : normedModType R). | |
Let der1 (U : normedModType R) (f : R -> U) x : derivable f x 1 -> | |
f \o shift x = cst (f x) + ( *:%R^~ (f^`() x)) +o_ (0 : R) id. | |
Proof. | |
move=> df; apply/eqaddoE; have /derivable_nbhsP := df. | |
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x. | |
by rewrite funeqE=> ?; rewrite [_%:A]mulr1. | |
by rewrite derive1E =>->. | |
Qed. | |
Lemma deriv1E (U : normedModType R) (f : R -> U) x : | |
derivable f x 1 -> 'd f x = ( *:%R^~ (f^`() x)) :> (R -> U). | |
Proof. | |
move=> df; have lin_scal : linear (fun h : R => h *: f^`() x). | |
by move=> ???; rewrite scalerDl scalerA. | |
have -> : (fun h => h *: f^`() x) = Linear lin_scal by []. | |
by apply: diff_unique; [apply: scalel_continuous|apply: der1]. | |
Qed. | |
Lemma diff1E (U : normedModType R) (f : R -> U) x : | |
differentiable f x -> 'd f x = (fun h => h *: f^`() x) :> (R -> U). | |
Proof. | |
move=> df; have lin_scal : linear (fun h : R => h *: 'd f x 1). | |
by move=> ???; rewrite scalerDl scalerA. | |
have -> : (fun h => h *: f^`() x) = Linear lin_scal. | |
by rewrite derive1E'. | |
apply: diff_unique; first exact: scalel_continuous. | |
apply/eqaddoE; have /diff_locally -> := df; congr (_ + _ + _). | |
by rewrite funeqE => h /=; rewrite -{1}[h]mulr1 linearZ. | |
Qed. | |
Lemma derivable1_diffP (U : normedModType R) (f : R -> U) x : | |
derivable f x 1 <-> differentiable f x. | |
Proof. | |
split=> dfx. | |
by apply/diff_locallyP; rewrite deriv1E //; split; | |
[apply: scalel_continuous|apply: der1]. | |
apply/derivable_nbhsP/eqaddoE. | |
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x. | |
by rewrite funeqE=> ?; rewrite [_%:A]mulr1. | |
by have /diff_locally := dfx; rewrite diff1E // derive1E =>->. | |
Qed. | |
Lemma derivable1P (U : normedModType R) (f : V -> U) x v : | |
derivable f x v <-> derivable (fun h : R => f (h *: v + x)) 0 1. | |
Proof. | |
rewrite /derivable; set g1 := fun h => h^-1 *: _; set g2 := fun h => h^-1 *: _. | |
suff -> : g1 = g2 by []. | |
by rewrite funeqE /g1 /g2 => h /=; rewrite addr0 scale0r add0r [_%:A]mulr1. | |
Qed. | |
Lemma derivableP (U : normedModType R) (f : V -> U) x v : | |
derivable f x v -> is_derive x v f ('D_v f x). | |
Proof. by move=> df; apply: DeriveDef. Qed. | |
Global Instance is_derive_cst (U : normedModType R) (a : U) (x v : V) : | |
is_derive x v (cst a) 0. | |
Proof. | |
apply: DeriveDef; last by rewrite deriveE // diff_val. | |
apply/derivable1P/derivable1_diffP. | |
by have -> : (fun h => cst a (h *: v + x)) = cst a by rewrite funeqE. | |
Qed. | |
Fact der_add (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v -> | |
(fun h => h^-1 *: (((f + g) \o shift x) (h *: v) - (f + g) x)) @ | |
0^' --> 'D_v f x + 'D_v g x. | |
Proof. | |
move=> df dg. | |
evar (fg : R -> W); rewrite [X in X @ _](_ : _ = fg) /=; last first. | |
rewrite funeqE => h. | |
by rewrite !scalerDr scalerN scalerDr opprD addrACA -!scalerBr /fg. | |
exact: cvgD. | |
Qed. | |
Lemma deriveD (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v -> | |
'D_v (f + g) x = 'D_v f x + 'D_v g x. | |
Proof. by move=> df dg; apply: cvg_map_lim (der_add df dg). Qed. | |
Lemma derivableD (f g : V -> W) (x v : V) : | |
derivable f x v -> derivable g x v -> derivable (f + g) x v. | |
Proof. | |
move=> df dg; apply/cvg_ex; exists (derive f x v + derive g x v). | |
exact: der_add. | |
Qed. | |
Global Instance is_deriveD (f g : V -> W) (x v : V) (df dg : W) : | |
is_derive x v f df -> is_derive x v g dg -> is_derive x v (f + g) (df + dg). | |
Proof. | |
move=> dfx dgx; apply: DeriveDef; first exact: derivableD. | |
by rewrite deriveD // !derive_val. | |
Qed. | |
Global Instance is_derive_sum n (f : 'I_n -> V -> W) (x v : V) | |
(df : 'I_n -> W) : (forall i, is_derive x v (f i) (df i)) -> | |
is_derive x v (\sum_(i < n) f i) (\sum_(i < n) df i). | |
Proof. | |
elim: n f df => [f df dfx|f df dfx n ihn]. | |
by rewrite !big_ord0 //; apply: is_derive_cst. | |
by rewrite !big_ord_recr /=; apply: is_deriveD. | |
Qed. | |
Lemma derivable_sum n (f : 'I_n -> V -> W) (x v : V) : | |
(forall i, derivable (f i) x v) -> derivable (\sum_(i < n) f i) x v. | |
Proof. | |
move=> df; suff : forall i, is_derive x v (f i) ('D_v (f i) x) by []. | |
by move=> ?; apply: derivableP. | |
Qed. | |
Lemma derive_sum n (f : 'I_n -> V -> W) (x v : V) : | |
(forall i, derivable (f i) x v) -> | |
'D_v (\sum_(i < n) f i) x = \sum_(i < n) 'D_v (f i) x. | |
Proof. | |
move=> df; suff dfx : forall i, is_derive x v (f i) ('D_v (f i) x). | |
by rewrite derive_val. | |
by move=> ?; apply: derivableP. | |
Qed. | |
Fact der_opp (f : V -> W) (x v : V) : derivable f x v -> | |
(fun h => h^-1 *: (((- f) \o shift x) (h *: v) - (- f) x)) @ | |
0^' --> - 'D_v f x. | |
Proof. | |
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first. | |
by rewrite funeqE => h; rewrite !scalerDr !scalerN -opprD -scalerBr /g. | |
exact: cvgN. | |
Qed. | |
Lemma deriveN (f : V -> W) (x v : V) : derivable f x v -> | |
'D_v (- f) x = - 'D_v f x. | |
Proof. by move=> df; apply: cvg_map_lim (der_opp df). Qed. | |
Lemma derivableN (f : V -> W) (x v : V) : | |
derivable f x v -> derivable (- f) x v. | |
Proof. by move=> df; apply/cvg_ex; exists (- 'D_v f x); apply: der_opp. Qed. | |
Global Instance is_deriveN (f : V -> W) (x v : V) (df : W) : | |
is_derive x v f df -> is_derive x v (- f) (- df). | |
Proof. | |
move=> dfx; apply: DeriveDef; first exact: derivableN. | |
by rewrite deriveN // derive_val. | |
Qed. | |
Lemma is_derive_eq (V' W' : normedModType R) (f : V' -> W') (x v : V') | |
(df f' : W') : is_derive x v f f' -> f' = df -> is_derive x v f df. | |
Proof. by move=> ? <-. Qed. | |
Global Instance is_deriveB (f g : V -> W) (x v : V) (df dg : W) : | |
is_derive x v f df -> is_derive x v g dg -> is_derive x v (f - g) (df - dg). | |
Proof. by move=> ??; apply: is_derive_eq. Qed. | |
Lemma deriveB (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v -> | |
'D_v (f - g) x = 'D_v f x - 'D_v g x. | |
Proof. by move=> /derivableP df /derivableP dg; rewrite derive_val. Qed. | |
Lemma derivableB (f g : V -> W) (x v : V) : | |
derivable f x v -> derivable g x v -> derivable (f - g) x v. | |
Proof. by move=> /derivableP df /derivableP dg. Qed. | |
Fact der_scal (f : V -> W) (k : R) (x v : V) : derivable f x v -> | |
(fun h => h^-1 *: ((k \*: f \o shift x) (h *: v) - (k \*: f) x)) @ | |
(0 : R)^' --> k *: 'D_v f x. | |
Proof. | |
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first. | |
rewrite funeqE => h. | |
by rewrite scalerBr !scalerA mulrC -!scalerA -!scalerBr /g. | |
exact: cvgZr. | |
Qed. | |
Lemma deriveZ (f : V -> W) (k : R) (x v : V) : derivable f x v -> | |
'D_v (k \*: f) x = k *: 'D_v f x. | |
Proof. by move=> df; apply: cvg_map_lim (der_scal df). Qed. | |
Lemma derivableZ (f : V -> W) (k : R) (x v : V) : | |
derivable f x v -> derivable (k \*: f) x v. | |
Proof. | |
by move=> df; apply/cvg_ex; exists (k *: 'D_v f x); apply: der_scal. | |
Qed. | |
Global Instance is_deriveZ (f : V -> W) (k : R) (x v : V) (df : W) : | |
is_derive x v f df -> is_derive x v (k \*: f) (k *: df). | |
Proof. | |
move=> dfx; apply: DeriveDef; first exact: derivableZ. | |
by rewrite deriveZ // derive_val. | |
Qed. | |
Fact der_mult (f g : V -> R) (x v : V) : | |
derivable f x v -> derivable g x v -> | |
(fun h => h^-1 *: (((f * g) \o shift x) (h *: v) - (f * g) x)) @ | |
(0 : R)^' --> f x *: 'D_v g x + g x *: 'D_v f x. | |
Proof. | |
move=> df dg. | |
evar (fg : R -> R); rewrite [X in X @ _](_ : _ = fg) /=; last first. | |
rewrite funeqE => h. | |
have -> : (f * g) (h *: v + x) - (f * g) x = | |
f (h *: v + x) *: (g (h *: v + x) - g x) + g x *: (f (h *: v + x) - f x). | |
by rewrite !scalerBr -addrA ![g x *: _]mulrC addKr. | |
rewrite scalerDr scalerA mulrC -scalerA. | |
by rewrite [_ *: (g x *: _)]scalerA mulrC -scalerA /fg. | |
apply: cvgD; last exact: cvgZr df. | |
apply: cvg_comp2 (@mul_continuous _ (_, _)) => /=; last exact: dg. | |
suff : {for 0, continuous (fun h : R => f(h *: v + x))}. | |
by move=> /continuous_withinNx; rewrite scale0r add0r. | |
exact/differentiable_continuous/derivable1_diffP/derivable1P. | |
Qed. | |
Lemma deriveM (f g : V -> R) (x v : V) : | |
derivable f x v -> derivable g x v -> | |
'D_v (f * g) x = f x *: 'D_v g x + g x *: 'D_v f x. | |
Proof. by move=> df dg; apply: cvg_map_lim (der_mult df dg). Qed. | |
Lemma derivableM (f g : V -> R) (x v : V) : | |
derivable f x v -> derivable g x v -> derivable (f * g) x v. | |
Proof. | |
move=> df dg; apply/cvg_ex; exists (f x *: 'D_v g x + g x *: 'D_v f x). | |
exact: der_mult. | |
Qed. | |
Global Instance is_deriveM (f g : V -> R) (x v : V) (df dg : R) : | |
is_derive x v f df -> is_derive x v g dg -> | |
is_derive x v (f * g) (f x *: dg + g x *: df). | |
Proof. | |
move=> dfx dgx; apply: DeriveDef; first exact: derivableM. | |
by rewrite deriveM // !derive_val. | |
Qed. | |
Global Instance is_deriveX (f : V -> R) n (x v : V) (df : R) : | |
is_derive x v f df -> is_derive x v (f ^+ n.+1) ((n.+1%:R * f x ^+n) *: df). | |
Proof. | |
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r. | |
rewrite exprS; apply: is_derive_eq. | |
rewrite scalerA -scalerDl mulrCA -[f x * _]exprS. | |
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl. | |
Qed. | |
Lemma derivableX (f : V -> R) n (x v : V) : | |
derivable f x v -> derivable (f ^+ n.+1) x v. | |
Proof. by move/derivableP. Qed. | |
Lemma deriveX (f : V -> R) n (x v : V) : | |
derivable f x v -> | |
'D_v (f ^+ n.+1) x = (n.+1%:R * f x ^+ n) *: 'D_v f x. | |
Proof. by move=> /derivableP df; rewrite derive_val. Qed. | |
Fact der_inv (f : V -> R) (x v : V) : | |
f x != 0 -> derivable f x v -> | |
(fun h => h^-1 *: (((fun y => (f y)^-1) \o shift x) (h *: v) - (f x)^-1)) @ | |
(0 : R)^' --> - (f x) ^-2 *: 'D_v f x. | |
Proof. | |
move=> fxn0 df. | |
have /derivable1P/derivable1_diffP/differentiable_continuous := df. | |
move=> /continuous_withinNx; rewrite scale0r add0r => fc. | |
have fn0 : (0 : R)^' [set h | f (h *: v + x) != 0]. | |
apply: (fc [set x | x != 0]); exists `|f x|; first by rewrite /= normr_gt0. | |
move=> y; rewrite /= => yltfx. | |
by apply/eqP => y0; move: yltfx; rewrite y0 subr0 ltxx. | |
have : (fun h => - ((f x)^-1 * (f (h *: v + x))^-1) *: | |
(h^-1 *: (f (h *: v + x) - f x))) @ (0 : R)^' --> | |
- (f x) ^- 2 *: 'D_v f x. | |
by apply: cvgM => //; apply: cvgN; rewrite expr2 invfM; apply: cvgM; | |
[exact: cvg_cst| exact: cvgV]. | |
apply: cvg_trans => A [_/posnumP[e] /= Ae]. | |
move: fn0; apply: filter_app; near=> h => /= fhvxn0. | |
have he : ball 0 e%:num (h : R) by near: h; exists e%:num => /=. | |
have hn0 : h != 0 by near: h; exists e%:num => /=. | |
suff <- : | |
- ((f x)^-1 * (f (h *: v + x))^-1) *: (h^-1 *: (f (h *: v + x) - f x)) = | |
h^-1 *: ((f (h *: v + x))^-1 - (f x)^-1) by exact: Ae. | |
rewrite scalerA mulrC -scalerA; congr (_ *: _). | |
apply/eqP; rewrite scaleNr eqr_oppLR opprB scalerBr. | |
rewrite -scalerA [_ *: f _]mulVf // [_%:A]mulr1. | |
by rewrite mulrC -scalerA [_ *: f _]mulVf // [_%:A]mulr1. | |
Unshelve. all: by end_near. Qed. | |
Lemma deriveV (f : V -> R) x v : f x != 0 -> derivable f x v -> | |
'D_v (fun y => (f y)^-1) x = - (f x) ^- 2 *: 'D_v f x. | |
Proof. by move=> fxn0 df; apply: cvg_map_lim (der_inv fxn0 df). Qed. | |
Lemma derivableV (f : V -> R) (x v : V) : | |
f x != 0 -> derivable f x v -> derivable (fun y => (f y)^-1) x v. | |
Proof. | |
move=> df dg; apply/cvg_ex; exists (- (f x) ^- 2 *: 'D_v f x). | |
exact: der_inv. | |
Qed. | |
End Derive. | |
Lemma derive1_cst (R : numFieldType) (V : normedModType R) (k : V) t : | |
(cst k)^`() t = 0. | |
Proof. by rewrite derive1E derive_val. Qed. | |
Lemma EVT_max (R : realType) (f : R -> R) (a b : R) : (* TODO : Filter not infered *) | |
a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R & | |
forall t, t \in `[a, b]%R -> f t <= f c. | |
Proof. | |
move=> leab fcont; set imf := f @` `[a, b]. | |
have imf_sup : has_sup imf. | |
split; first by exists (f a); apply/imageP; rewrite /= in_itv /= lexx. | |
have [M [Mreal imfltM]] : bounded_set (f @` `[a, b]). | |
by apply/compact_bounded/continuous_compact => //; exact: segment_compact. | |
exists (M + 1) => y /imfltM yleM. | |
by rewrite (le_trans _ (yleM _ _)) ?ler_norm ?ltr_addl. | |
have [|imf_ltsup] := pselect (exists2 c, c \in `[a, b]%R & f c = sup imf). | |
move=> [c cab fceqsup]; exists c => // t tab; rewrite fceqsup. | |
by apply/sup_upper_bound => //; exact/imageP. | |
have {}imf_ltsup t : t \in `[a, b]%R -> f t < sup imf. | |
move=> tab; case: (ltrP (f t) (sup imf)) => // supleft. | |
rewrite falseE; apply: imf_ltsup; exists t => //; apply/eqP. | |
by rewrite eq_le supleft andbT sup_upper_bound//; exact/imageP. | |
pose g t : R := (sup imf - f t)^-1. | |
have invf_continuous : {within `[a, b], continuous g}. | |
rewrite continuous_subspace_in => t tab; apply: cvgV => //=. | |
by rewrite subr_eq0 gt_eqF // imf_ltsup //; rewrite inE in tab. | |
by apply: cvgD; [exact: cst_continuous | apply: cvgN; exact: (fcont t)]. | |
have /ex_strict_bound_gt0 [k k_gt0 /= imVfltk] : bounded_set (g @` `[a, b]). | |
apply/compact_bounded/continuous_compact; last exact: segment_compact. | |
exact: invf_continuous. | |
have [_ [t tab <-]] : exists2 y, imf y & sup imf - k^-1 < y. | |
by apply: sup_adherent => //; rewrite invr_gt0. | |
rewrite ltr_subl_addr -ltr_subl_addl. | |
suff : sup imf - f t > k^-1 by move=> /ltW; rewrite leNgt => /negbTE ->. | |
rewrite -[ltRHS]invrK ltf_pinv// ?qualifE ?invr_gt0 ?subr_gt0 ?imf_ltsup//. | |
by rewrite (le_lt_trans (ler_norm _) _) ?imVfltk//; exact: imageP. | |
Qed. | |
Lemma EVT_min (R : realType) (f : R -> R) (a b : R) : | |
a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R & | |
forall t, t \in `[a, b]%R -> f c <= f t. | |
Proof. | |
move=> leab fcont. | |
have /(EVT_max leab) [c clr fcmax] : {within `[a, b], continuous (- f)}. | |
by move=> ?; apply: continuousN => ?; exact: fcont. | |
by exists c => // ? /fcmax; rewrite ler_opp2. | |
Qed. | |
Lemma cvg_at_rightE (R : numFieldType) (V : normedModType R) (f : R -> V) x : | |
cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_right x). | |
Proof. | |
move=> cvfx; apply/Logic.eq_sym. | |
(* should be inferred *) | |
have atrF := at_right_proper_filter x. | |
apply: (@cvg_map_lim _ _ _ (at_right _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A]. | |
by exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _]; apply: xe_A. | |
Qed. | |
Arguments cvg_at_rightE {R V} f x. | |
Lemma cvg_at_leftE (R : numFieldType) (V : normedModType R) (f : R -> V) x : | |
cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_left x). | |
Proof. | |
move=> cvfx; apply/Logic.eq_sym. | |
(* should be inferred *) | |
have atrF := at_left_proper_filter x. | |
apply: (@cvg_map_lim _ _ _ (at_left _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A]. | |
exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _]. | |
by apply: xe_A => //; rewrite eq_sym. | |
Qed. | |
Arguments cvg_at_leftE {R V} f x. | |
Lemma le0r_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T)) | |
(FF : ProperFilter F) (f : T -> R) : | |
(\forall x \near F, 0 <= f x) -> cvg (f @ F) -> 0 <= lim (f @ F). | |
Proof. | |
move=> fge0 fcv; case: (lerP 0 (lim (f @ F))) => // limlt0; near F => x. | |
have := near fge0 x; rewrite leNgt => /(_ _) /negbTE<- //; near: x. | |
have normlimgt0 : `|lim (f @ F)| > 0 by rewrite normr_gt0 ltr0_neq0. | |
have /fcv := nbhs_ball_norm (lim (f @ F)) (PosNum normlimgt0). | |
rewrite /= !near_simpl; apply: filterS => x. | |
rewrite /= distrC => /(le_lt_trans (ler_norm _)). | |
rewrite ltr_subl_addr => /lt_le_trans; apply. | |
by rewrite ltr0_norm // addrC subrr. | |
Unshelve. all: by end_near. Qed. | |
Lemma ler0_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T)) | |
(FF : ProperFilter F) (f : T -> R) : | |
(\forall x \near F, f x <= 0) -> cvg (f @ F) -> lim (f @ F) <= 0. | |
Proof. | |
move=> fle0 fcv; rewrite -oppr_ge0. | |
have limopp : - lim (f @ F) = lim (- f @ F). | |
apply: Logic.eq_sym; apply: cvg_map_lim; first by apply: Rhausdorff. | |
by apply: cvgN. | |
rewrite limopp; apply: le0r_cvg_map; last by rewrite -limopp; apply: cvgN. | |
by move: fle0; apply: filterS => x; rewrite oppr_ge0. | |
Qed. | |
Lemma ler_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T)) | |
(FF : ProperFilter F) (f g : T -> R) : | |
(\forall x \near F, f x <= g x) -> cvg (f @ F) -> cvg (g @ F) -> | |
lim (f @ F) <= lim (g @ F). | |
Proof. | |
move=> lefg fcv gcv; rewrite -subr_ge0. | |
have eqlim : lim (g @ F) - lim (f @ F) = lim ((g - f) @ F). | |
by apply/esym; apply: cvg_map_lim => //; apply: cvgD => //; apply: cvgN. | |
rewrite eqlim; apply: le0r_cvg_map; last first. | |
by rewrite /(cvg _) -eqlim /=; apply: cvgD => //; apply: cvgN. | |
by move: lefg; apply: filterS => x; rewrite subr_ge0. | |
Qed. | |
Lemma derive1_at_max (R : realFieldType) (f : R -> R) (a b c : R) : | |
a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R -> | |
(forall t, t \in `]a, b[%R -> f t <= f c) -> is_derive c 1 f 0. | |
Proof. | |
move=> leab fdrvbl cab cmax; apply: DeriveDef; first exact: fdrvbl. | |
apply/eqP; rewrite eq_le; apply/andP; split. | |
rewrite ['D_1 f c]cvg_at_rightE; last exact: fdrvbl. | |
apply: ler0_cvg_map; last first. | |
have /fdrvbl dfc := cab. | |
rewrite -(cvg_at_rightE (fun h : R => h^-1 *: ((f \o shift c) _ - f c))) //. | |
apply: cvg_trans dfc; apply: cvg_app. | |
move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //. | |
exact/lt0r_neq0. | |
near=> h; apply: mulr_ge0_le0. | |
by rewrite invr_ge0; apply: ltW; near: h; exists 1 => /=. | |
rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h. | |
exists (b - c); first by rewrite /= subr_gt0 (itvP cab). | |
move=> h; rewrite /= distrC subr0 /= in_itv /= -ltr_subr_addr. | |
move=> /(le_lt_trans (ler_norm _)) -> /ltr_spsaddl -> //. | |
by rewrite (itvP cab). | |
rewrite ['D_1 f c]cvg_at_leftE; last exact: fdrvbl. | |
apply: le0r_cvg_map; last first. | |
have /fdrvbl dfc := cab; rewrite -(cvg_at_leftE (fun h => h^-1 *: ((f \o shift c) _ - f c))) //. | |
apply: cvg_trans dfc; apply: cvg_app. | |
move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //. | |
exact/ltr0_neq0. | |
near=> h; apply: mulr_le0. | |
by rewrite invr_le0; apply: ltW; near: h; exists 1 => /=. | |
rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h. | |
exists (c - a); first by rewrite /= subr_gt0 (itvP cab). | |
move=> h; rewrite /= distrC subr0. | |
move=> /ltr_normlP []; rewrite ltr_subr_addl ltr_subl_addl in_itv /= => -> _. | |
by move=> /ltr_snsaddl -> //; rewrite (itvP cab). | |
Unshelve. all: by end_near. Qed. | |
Lemma derive1_at_min (R : realFieldType) (f : R -> R) (a b c : R) : | |
a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R -> | |
(forall t, t \in `]a, b[%R -> f c <= f t) -> is_derive c 1 f 0. | |
Proof. | |
move=> leab fdrvbl cab cmin; apply: DeriveDef; first exact: fdrvbl. | |
apply/eqP; rewrite -oppr_eq0; apply/eqP. | |
rewrite -deriveN; last exact: fdrvbl. | |
suff df : is_derive c 1 (- f) 0 by rewrite derive_val. | |
apply: derive1_at_max leab _ (cab) _ => t tab; first exact/derivableN/fdrvbl. | |
by rewrite ler_opp2; apply: cmin. | |
Qed. | |
Lemma Rolle (R : realType) (f : R -> R) (a b : R) : | |
a < b -> (forall x, x \in `]a, b[%R -> derivable f x 1) -> | |
{within `[a, b], continuous f} -> f a = f b -> | |
exists2 c, c \in `]a, b[%R & is_derive c 1 f 0. | |
Proof. | |
move=> ltab fdrvbl fcont faefb. | |
have [cmax cmaxab fcmax] := EVT_max (ltW ltab) fcont. | |
have [cmaxeaVb|] := boolP (cmax \in [set a; b]); last first. | |
rewrite notin_set => /not_orP[/eqP cnea /eqP cneb]. | |
have {}cmaxab : cmax \in `]a, b[%R. | |
by rewrite in_itv /= !lt_def !(itvP cmaxab) cnea eq_sym cneb. | |
exists cmax => //; apply: derive1_at_max (ltW ltab) fdrvbl cmaxab _ => t tab. | |
by apply: fcmax; rewrite in_itv /= !ltW // (itvP tab). | |
have [cmin cminab fcmin] := EVT_min (ltW ltab) fcont. | |
have [cmineaVb|] := boolP (cmin \in [set a; b]); last first. | |
rewrite notin_set => /not_orP[/eqP cnea /eqP cneb]. | |
have {}cminab : cmin \in `]a, b[%R. | |
by rewrite in_itv /= !lt_def !(itvP cminab) cnea eq_sym cneb. | |
exists cmin => //; apply: derive1_at_min (ltW ltab) fdrvbl cminab _ => t tab. | |
by apply: fcmin; rewrite in_itv /= !ltW // (itvP tab). | |
have midab : (a + b) / 2 \in `]a, b[%R by apply: mid_in_itvoo. | |
exists ((a + b) / 2) => //; apply: derive1_at_max (ltW ltab) fdrvbl (midab) _. | |
move=> t tab. | |
suff fcst s : s \in `]a, b[%R -> f s = f cmax by rewrite !fcst. | |
move=> sab. | |
apply/eqP; rewrite eq_le fcmax; last by rewrite in_itv /= !ltW ?(itvP sab). | |
suff -> : f cmax = f cmin by rewrite fcmin // in_itv /= !ltW ?(itvP sab). | |
by move: cmaxeaVb cmineaVb; rewrite 2!inE => -[|] -> [|] ->. | |
Qed. | |
Lemma MVT (R : realType) (f df : R -> R) (a b : R) : | |
a < b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) -> | |
{within `[a, b], continuous f} -> | |
exists2 c, c \in `]a, b[%R & f b - f a = df c * (b - a). | |
Proof. | |
move=> altb fdrvbl fcont. | |
set g := f + (- ( *:%R^~ ((f b - f a) / (b - a)) : R -> R)). | |
have gdrvbl x : x \in `]a, b[%R -> derivable g x 1. | |
by move=> /fdrvbl dfx; apply: derivableB => //; exact/derivable1_diffP. | |
have gcont : {within `[a, b], continuous g}. | |
move=> x; apply: continuousD _ ; first by move=>?; exact: fcont. | |
by apply/continuousN/continuous_subspaceT => ? ?; exact: scalel_continuous. | |
have gaegb : g a = g b. | |
rewrite /g -![(_ - _ : _ -> _) _]/(_ - _). | |
apply/eqP; rewrite -subr_eq /= opprK addrAC -addrA -scalerBl. | |
rewrite [_ *: _]mulrA mulrC mulrA mulVf. | |
by rewrite mul1r addrCA subrr addr0. | |
by apply: lt0r_neq0; rewrite subr_gt0. | |
have [c cab dgc0] := Rolle altb gdrvbl gcont gaegb. | |
exists c; first exact: cab. | |
have /fdrvbl dfc := cab; move/@derive_val: dgc0; rewrite deriveB //; last first. | |
exact/derivable1_diffP. | |
move/eqP; rewrite [X in _ - X]deriveE // derive_val diff_val scale1r subr_eq0. | |
move/eqP->; rewrite -mulrA mulVf ?mulr1 //; apply: lt0r_neq0. | |
by rewrite subr_gt0. | |
Qed. | |
(* Weakens MVT to work when the interval is a single point. *) | |
Lemma MVT_segment (R : realType) (f df : R -> R) (a b : R) : | |
a <= b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) -> | |
{within `[a, b], continuous f} -> | |
exists2 c, c \in `[a, b]%R & f b - f a = df c * (b - a). | |
Proof. | |
move=> leab fdrvbl fcont; case: ltgtP leab => // [altb|aeb]; last first. | |
by exists a; [rewrite inE/= aeb lexx|rewrite aeb !subrr mulr0]. | |
have [c cab D] := MVT altb fdrvbl fcont. | |
by exists c => //; rewrite in_itv /= ltW (itvP cab). | |
Qed. | |
Lemma ler0_derive1_nincr (R : realType) (f : R -> R) (a b : R) : | |
(forall x, x \in `]a, b[%R -> derivable f x 1) -> | |
(forall x, x \in `]a, b[%R -> f^`() x <= 0) -> | |
{within `[a,b], continuous f} -> | |
forall x y, a <= x -> x <= y -> y <= b -> f y <= f x. | |
Proof. | |
move=> fdrvbl dfle0 ctsf x y leax lexy leyb; rewrite -subr_ge0. | |
case: ltgtP lexy => // [xlty|->]; last by rewrite subrr. | |
have itvW : {subset `[x, y]%R <= `[a, b]%R}. | |
by apply/subitvP; rewrite /<=%O /= /<=%O /= leyb leax. | |
have itvWlt : {subset `]x, y[%R <= `]a, b[%R}. | |
by apply subitvP; rewrite /<=%O /= /<=%O /= leyb leax. | |
have fdrv z : z \in `]x, y[%R -> is_derive z 1 f (f^`()z). | |
rewrite in_itv/= => /andP[xz zy]; apply: DeriveDef; last by rewrite derive1E. | |
by apply: fdrvbl; rewrite in_itv/= (le_lt_trans _ xz)// (lt_le_trans zy). | |
have [] := @MVT _ f (f^`()) x y xlty fdrv. | |
apply: (@continuous_subspaceW _ _ _ `[a,b]); first exact: itvW. | |
by rewrite continuous_subspace_in. | |
move=> t /itvWlt dft dftxy _; rewrite -oppr_le0 opprB dftxy. | |
by apply: mulr_le0_ge0 => //; [exact: dfle0|by rewrite subr_ge0 ltW]. | |
Qed. | |
Lemma le0r_derive1_ndecr (R : realType) (f : R -> R) (a b : R) : | |
(forall x, x \in `]a, b[%R -> derivable f x 1) -> | |
(forall x, x \in `]a, b[%R -> 0 <= f^`() x) -> | |
{within `[a,b], continuous f} -> | |
forall x y, a <= x -> x <= y -> y <= b -> f x <= f y. | |
Proof. | |
move=> fdrvbl dfge0 fcont x y; rewrite -[f _ <= _]ler_opp2. | |
apply (@ler0_derive1_nincr _ (- f)) => t tab; first exact/derivableN/fdrvbl. | |
rewrite derive1E deriveN; last exact: fdrvbl. | |
by rewrite oppr_le0 -derive1E; apply: dfge0. | |
by apply: continuousN; exact: fcont. | |
Qed. | |
Lemma derive1_comp (R : realFieldType) (f g : R -> R) x : | |
derivable f x 1 -> derivable g (f x) 1 -> | |
(g \o f)^`() x = g^`() (f x) * f^`() x. | |
Proof. | |
move=> /derivable1_diffP df /derivable1_diffP dg. | |
rewrite derive1E'; last exact/differentiable_comp. | |
rewrite diff_comp // !derive1E' //= -[X in 'd _ _ X = _]mulr1. | |
by rewrite [LHS]linearZ mulrC. | |
Qed. | |
Section is_derive_instances. | |
Variables (R : numFieldType) (V : normedModType R). | |
Lemma derivable_cst (x : V) : derivable (fun=> x) 0 1. | |
Proof. exact/derivable1_diffP/differentiable_cst. Qed. | |
Lemma derivable_id (x v : V) : derivable id x v. | |
Proof. | |
apply/derivable1P/derivableD; last exact/derivable_cst. | |
exact/derivable1_diffP/differentiableZl. | |
Qed. | |
Global Instance is_derive_id (x v : V) : is_derive x v id v. | |
Proof. | |
apply: (DeriveDef (@derivable_id _ _)). | |
by rewrite deriveE// (@diff_lin _ _ _ [linear of idfun]). | |
Qed. | |
Global Instance is_deriveNid (x v : V) : is_derive x v -%R (- v). | |
Proof. by apply: is_deriveN. Qed. | |
End is_derive_instances. | |
(* Trick to trigger type class resolution *) | |
Lemma trigger_derive (R : realType) (f : R -> R) x x1 y1 : | |
is_derive x 1 f x1 -> x1 = y1 -> is_derive x 1 f y1. | |
Proof. by move=> Hi <-. Qed. | |