Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
65.5 kB
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
From mathcomp Require Import all_ssreflect ssralg ssrnum matrix interval.
Require Import boolp reals mathcomp_extra classical_sets signed functions.
Require Import topology prodnormedzmodule normedtype landau forms.
(******************************************************************************)
(* This file provides a theory of differentiation. It includes the standard *)
(* rules of differentiation (differential of a sum, of a product, of *)
(* exponentiation, of the inverse, etc.) as well as standard theorems (the *)
(* Extreme Value Theorem, Rolle's theorem, the Mean Value Theorem). *)
(* *)
(* Parsable notations (in all of the following, f is not supposed to be *)
(* differentiable): *)
(* 'd f x == the differential of a function f at a point x *)
(* differentiable f x == the function f is differentiable at a point x *)
(* 'J f x == the Jacobian of f at a point x *)
(* 'D_v f == the directional derivative of f along v *)
(* f^`() == the derivative of f of domain R *)
(* f^`(n) == the nth derivative of f of domain R *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.
Import numFieldNormedType.Exports.
Local Open Scope ring_scope.
Local Open Scope classical_set_scope.
Reserved Notation "''d' f x" (at level 0, f at level 0, x at level 0,
format "''d' f x").
Reserved Notation "'is_diff' F" (at level 0, F at level 0,
format "'is_diff' F").
Reserved Notation "''J' f p" (at level 10, p, f at next level,
format "''J' f p").
Reserved Notation "''D_' v f" (at level 10, v, f at next level,
format "''D_' v f").
Reserved Notation "''D_' v f c" (at level 10, v, f at next level,
format "''D_' v f c"). (* printing *)
Reserved Notation "f ^` ()" (at level 8, format "f ^` ()").
Reserved Notation "f ^` ( n )" (at level 8, format "f ^` ( n )").
Section Differential.
Context {K : numDomainType} {V W : normedModType K}.
Definition diff (F : filter_on V) (_ : phantom (set (set V)) F) (f : V -> W) :=
(get (fun (df : {linear V -> W}) => continuous df /\ forall x,
f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))).
Local Notation "''d' f x" := (@diff _ (Phantom _ [filter of x]) f).
Fact diff_key : forall T, T -> unit. Proof. by constructor. Qed.
CoInductive differentiable_def (f : V -> W) (x : filter_on V)
(phF : phantom (set (set V)) x) : Prop := DifferentiableDef of
(continuous ('d f x) /\
f = cst (f (lim x)) + 'd f x \o center (lim x) +o_x (center (lim x))).
Local Notation differentiable f F := (@differentiable_def f _ (Phantom _ [filter of F])).
Class is_diff_def (x : filter_on V) (Fph : phantom (set (set V)) x) (f : V -> W)
(df : V -> W) := DiffDef {
ex_diff : differentiable f x ;
diff_val : 'd f x = df :> (V -> W)
}.
Hint Mode is_diff_def - - ! - : typeclass_instances.
Lemma diffP (F : filter_on V) (f : V -> W) :
differentiable f F <->
continuous ('d f F) /\
(forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F)).
Proof. by split=> [[] |]; last constructor; rewrite funeqE. Qed.
Lemma diff_continuous (x : filter_on V) (f : V -> W) :
differentiable f x -> continuous ('d f x).
Proof. by move=> /diffP []. Qed.
(* We should have a continuous class or structure *)
Hint Extern 0 (continuous _) => exact: diff_continuous : core.
Lemma diffE (F : filter_on V) (f : V -> W) :
differentiable f F ->
forall x, f x = f (lim F) + 'd f F (x - lim F) +o_(x \near F) (x - lim F).
Proof. by move=> /diffP []. Qed.
Lemma littleo_center0 (x : V) (f : V -> W) (e : V -> V) :
[o_x e of f] = [o_ (0 : V) (e \o shift x) of f \o shift x] \o center x.
Proof.
rewrite /the_littleo /insubd /=; have [g /= _ <-{f}|/asboolP Nfe] /= := insubP.
rewrite insubT //= ?comp_shiftK //; apply/asboolP => _/posnumP[eps].
rewrite [\forall x \near _, _ <= _](near_shift x) sub0r; near=> y.
by rewrite /= subrK; near: y; have /eqoP := littleo_eqo g; apply.
rewrite insubF //; apply/asboolP => fe; apply: Nfe => _/posnumP[eps].
by rewrite [\forall x \near _, _ <= _](near_shift 0) subr0; apply: fe.
Unshelve. all: by end_near. Qed.
End Differential.
Section Differential_numFieldType.
Context {K : numFieldType (*TODO: to numDomainType?*)} {V W : normedModType K}.
(* duplicate from Section Differential *)
Local Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])).
Local Notation "''d' f x" := (@diff _ _ _ _ (Phantom _ [filter of x]) f).
Hint Extern 0 (continuous _) => exact: diff_continuous : core.
Lemma diff_locallyxP (x : V) (f : V -> W) :
differentiable f x <-> continuous ('d f x) /\
forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof.
split=> [dxf|[dfc dxf]].
split => //; apply: eqaddoEx => h; have /diffE -> := dxf.
rewrite lim_id // addrK; congr (_ + _); rewrite littleo_center0 /= addrK.
by congr ('o); rewrite funeqE => k /=; rewrite addrK.
apply/diffP; split=> //; apply: eqaddoEx; move=> y.
rewrite lim_id // -[in LHS](subrK x y) dxf; congr (_ + _).
rewrite -(comp_centerK x id) -[X in the_littleo _ _ _ X](comp_centerK x).
by rewrite -[_ (y - x)]/((_ \o (center x)) y) -littleo_center0.
Qed.
Lemma diff_locallyx (x : V) (f : V -> W) : differentiable f x ->
forall h, f (h + x) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof. by move=> /diff_locallyxP []. Qed.
Lemma diff_locallyxC (x : V) (f : V -> W) : differentiable f x ->
forall h, f (x + h) = f x + 'd f x h +o_(h \near 0 : V) h.
Proof. by move=> ?; apply/eqaddoEx => h; rewrite [x + h]addrC diff_locallyx. Qed.
Lemma diff_locallyP (x : V) (f : V -> W) :
differentiable f x <->
continuous ('d f x) /\ (f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id).
Proof. by apply: iff_trans (diff_locallyxP _ _) _; rewrite funeqE. Qed.
Lemma diff_locally (x : V) (f : V -> W) : differentiable f x ->
(f \o shift x = cst (f x) + 'd f x +o_ (0 : V) id).
Proof. by move=> /diff_locallyP []. Qed.
End Differential_numFieldType.
Notation "''d' f F" := (@diff _ _ _ _ (Phantom _ [filter of F]) f).
Notation differentiable f F := (@differentiable_def _ _ _ f _ (Phantom _ [filter of F])).
Notation "'is_diff' F" := (is_diff_def (Phantom _ [filter of F])).
#[global] Hint Extern 0 (differentiable _ _) => solve[apply: ex_diff] : core.
#[global] Hint Extern 0 ({for _, continuous _}) => exact: diff_continuous : core.
Lemma differentiableP (R : numDomainType) (V W : normedModType R) (f : V -> W) x :
differentiable f x -> is_diff x f ('d f x).
Proof. by move=> ?; apply: DiffDef. Qed.
Section jacobian.
Definition jacobian n m (R : numFieldType) (f : 'rV[R]_n.+1 -> 'rV[R]_m.+1) p :=
lin1_mx ('d f p).
End jacobian.
Notation "''J' f p" := (jacobian f p).
Section DifferentialR.
Context {R : numFieldType} {V W : normedModType R}.
(* split in multiple bits:
- a linear map which is locally bounded is a little o of 1
- the identity is a littleo of 1
*)
Lemma differentiable_continuous (x : V) (f : V -> W) :
differentiable f x -> {for x, continuous f}.
Proof.
move=> /diff_locallyP [dfc]; rewrite -addrA.
rewrite (littleo_bigO_eqo (cst (1 : R))); last first.
apply/eqOP; near=> k; rewrite /cst [`|1|]normr1 mulr1.
near=> y; rewrite ltW //; near: y; apply/nbhs_normP.
exists k; first by near: k; exists 0.
by move=> ? /=; rewrite -ball_normE /= sub0r normrN.
rewrite addfo; first by move=> /eqolim; rewrite cvg_comp_shift add0r.
by apply/eqolim0P; apply: (cvg_trans (dfc 0)); rewrite linear0.
Unshelve. all: by end_near. Qed.
Section littleo_lemmas.
Variables (X Y Z : normedModType R).
Lemma normm_littleo x (f : X -> Y) : `| [o_(x \near x) (1 : R) of f x]| = 0.
Proof.
rewrite /cst /=; have [e /(_ (`|e x|/2) _)/nbhs_singleton /=] := littleo.
rewrite pmulr_lgt0 // [`|1|]normr1 mulr1 [leLHS]splitr ger_addr pmulr_lle0 //.
by move=> /implyP; case : real_ltgtP; rewrite ?realE ?normrE //= lexx.
Qed.
Lemma littleo_lim0 (f : X -> Y) (h : _ -> Z) (x : X) :
f @ x --> (0 : Y) -> [o_x f of h] x = 0.
Proof.
move/eqolim0P => ->; have [k /(_ _ [gt0 of 1 : R])/=] := littleo.
by move=> /nbhs_singleton; rewrite mul1r normm_littleo normr_le0 => /eqP.
Qed.
End littleo_lemmas.
Section diff_locally_converse_tentative.
(* if there exist A and B s.t. f(a + h) = A + B h + o(h) then
f is differentiable at a, A = f(a) and B = f'(a) *)
(* this is a consequence of diff_continuous and eqolim0 *)
(* indeed the differential being b *: idfun is locally bounded *)
(* and thus a littleo of 1, and so is id *)
(* This can be generalized to any dimension *)
Lemma diff_locally_converse_part1 (f : R -> R) (a b x : R) :
f \o shift x = cst a + b *: idfun +o_ (0 : R) id -> f x = a.
Proof.
rewrite funeqE => /(_ 0) /=; rewrite add0r => ->.
by rewrite -[LHS]/(_ 0 + _ 0 + _ 0) /cst [X in a + X]scaler0 littleo_lim0 ?addr0.
Qed.
End diff_locally_converse_tentative.
Definition derive (f : V -> W) a v :=
lim ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^').
Local Notation "''D_' v f" := (derive f ^~ v).
Local Notation "''D_' v f c" := (derive f c v). (* printing *)
Definition derivable (f : V -> W) a v :=
cvg ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^').
Class is_derive (a v : V) (f : V -> W) (df : W) := DeriveDef {
ex_derive : derivable f a v;
derive_val : 'D_v f a = df
}.
Lemma derivable_nbhs (f : V -> W) a v :
derivable f a v ->
(fun h => (f \o shift a) (h *: v)) = (cst (f a)) +
(fun h => h *: ('D_v f a)) +o_ (nbhs (0 :R)) id.
Proof.
move=> df; apply/eqaddoP => _/posnumP[e].
rewrite -nbhs_nearE nbhs_simpl /= dnbhsE; split; last first.
rewrite /at_point opprD -![(_ + _ : _ -> _) _]/(_ + _) scale0r add0r.
by rewrite addrA subrr add0r normrN scale0r !normr0 mulr0.
have /eqolimP := df; rewrite -[lim _]/(derive _ _ _).
move=> /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]).
apply: filter_app; rewrite /= !near_simpl near_withinE; near=> h => hN0.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /cst /= [`|1|]normr1 mulr1 => dfv.
rewrite addrA -[X in X + _]scale1r -(@mulVf _ h) //.
rewrite mulrC -scalerA -scalerBr normmZ.
rewrite -ler_pdivl_mull; last by rewrite normr_gt0.
by rewrite mulrCA mulVf ?mulr1; last by rewrite normr_eq0.
Unshelve. all: by end_near. Qed.
Lemma derivable_nbhsP (f : V -> W) a v :
derivable f a v <->
(fun h => (f \o shift a) (h *: v)) = (cst (f a)) +
(fun h => h *: ('D_v f a)) +o_ (nbhs (0 : R)) id.
Proof.
split; first exact: derivable_nbhs.
move=> df; apply/cvg_ex; exists ('D_v f a).
apply/(@eqolimP _ _ _ (dnbhs_filter_on _))/eqaddoP => _/posnumP[e].
have /eqaddoP /(_ e%:num) /(_ [gt0 of e%:num]) := df.
rewrite /= !(near_simpl, near_withinE); apply: filter_app; near=> h.
rewrite /= opprD -![(_ + _ : _ -> _) _]/(_ + _) -![(- _ : _ -> _) _]/(- _).
rewrite /cst /= [`|1|]normr1 mulr1 addrA => dfv hN0.
rewrite -[X in _ - X]scale1r -(@mulVf _ h) //.
rewrite -scalerA -scalerBr normmZ normfV ler_pdivr_mull ?normr_gt0 //.
by rewrite mulrC.
Unshelve. all: by end_near. Qed.
Lemma derivable_nbhsx (f : V -> W) a v :
derivable f a v -> forall h, f (a + h *: v) = f a + h *: 'D_v f a
+o_(h \near (nbhs (0 : R))) h.
Proof.
move=> /derivable_nbhs; rewrite funeqE => df.
by apply: eqaddoEx => h; have /= := (df h); rewrite addrC => ->.
Qed.
Lemma derivable_nbhsxP (f : V -> W) a v :
derivable f a v <-> forall h, f (a + h *: v) = f a + h *: 'D_v f a
+o_(h \near (nbhs (0 :R))) h.
Proof.
split; first exact: derivable_nbhsx.
move=> df; apply/derivable_nbhsP; apply/eqaddoE; rewrite funeqE => h.
by rewrite /= addrC df.
Qed.
End DifferentialR.
Notation "''D_' v f" := (derive f ^~ v).
Notation "''D_' v f c" := (derive f c v). (* printing *)
#[global] Hint Extern 0 (derivable _ _ _) => solve[apply: ex_derive] : core.
Section DifferentialR_numFieldType.
Context {R : numFieldType} {V W : normedModType R}.
Lemma deriveE (f : V -> W) (a v : V) :
differentiable f a -> 'D_v f a = 'd f a v.
Proof.
rewrite /derive => /diff_locally -> /=; set k := 'o _.
evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
rewrite funeqE=> h; rewrite !scalerDr scalerN /cst /=.
by rewrite addrC !addrA addNr add0r linearZ /= scalerA /g.
apply: cvg_map_lim => //.
pose g1 : R -> W := fun h => (h^-1 * h) *: 'd f a v.
pose g2 : R -> W := fun h : R => h^-1 *: k (h *: v ).
rewrite (_ : g = g1 + g2) ?funeqE // -(addr0 (_ _ v)); apply: cvgD.
rewrite -(scale1r (_ _ v)); apply: cvgZl => /= X [e e0].
rewrite /ball_ /= => eX.
apply/nbhs_ballP.
by exists e => //= x _ x0; apply eX; rewrite mulVr // ?unitfE //= subrr normr0.
rewrite /g2.
have [/eqP ->|v0] := boolP (v == 0).
rewrite (_ : (fun _ => _) = cst 0); first exact: cvg_cst.
by rewrite funeqE => ?; rewrite scaler0 /k littleo_lim0 // scaler0.
apply/cvg_distP => e e0.
rewrite nearE /=; apply/nbhs_ballP.
have /(littleoP [littleo of k]) /nbhs_ballP[i i0 Hi] : 0 < e / (2 * `|v|).
by rewrite divr_gt0 // pmulr_rgt0 // normr_gt0.
exists (i / `|v|); first by rewrite /= divr_gt0 // normr_gt0.
move=> /= j; rewrite /ball /= /ball_ add0r normrN.
rewrite ltr_pdivl_mulr ?normr_gt0 // => jvi j0.
rewrite add0r normrN normmZ -ltr_pdivl_mull ?normr_gt0 ?invr_neq0 //.
have /Hi/le_lt_trans -> // : ball 0 i (j *: v).
by rewrite -ball_normE /ball_/= add0r normrN (le_lt_trans _ jvi) // normmZ.
rewrite -(mulrC e) -mulrA -ltr_pdivl_mull // mulrA mulVr ?unitfE ?gt_eqF //.
rewrite normrV ?unitfE // div1r invrK ltr_pdivr_mull; last first.
by rewrite pmulr_rgt0 // normr_gt0.
rewrite normmZ mulrC -mulrA.
by rewrite ltr_pmull ?ltr1n // pmulr_rgt0 ?normm_gt0 // normr_gt0.
Qed.
End DifferentialR_numFieldType.
Section DifferentialR2.
Variable R : numFieldType.
Implicit Type (V : normedModType R).
Lemma derivemxE m n (f : 'rV[R]_m.+1 -> 'rV[R]_n.+1) (a v : 'rV[R]_m.+1) :
differentiable f a -> 'D_ v f a = v *m jacobian f a.
Proof. by move=> /deriveE->; rewrite /jacobian mul_rV_lin1. Qed.
Definition derive1 V (f : R -> V) (a : R) :=
lim ((fun h => h^-1 *: (f (h + a) - f a)) @ 0^').
Local Notation "f ^` ()" := (derive1 f).
Lemma derive1E V (f : R -> V) a : f^`() a = 'D_1 f a.
Proof.
rewrite /derive1 /derive; set d := (fun _ : R => _); set d' := (fun _ : R => _).
by suff -> : d = d' by []; rewrite funeqE=> h; rewrite /d /d' /= [h%:A](mulr1).
Qed.
(* Is it necessary? *)
Lemma derive1E' V f a : differentiable (f : R -> V) a ->
f^`() a = 'd f a 1.
Proof. by move=> ?; rewrite derive1E deriveE. Qed.
Definition derive1n V n (f : R -> V) := iter n (@derive1 V) f.
Local Notation "f ^` ( n )" := (derive1n n f).
Lemma derive1n0 V (f : R -> V) : f^`(0) = f.
Proof. by []. Qed.
Lemma derive1n1 V (f : R -> V) : f^`(1) = f^`().
Proof. by []. Qed.
Lemma derive1nS V (f : R -> V) n : f^`(n.+1) = f^`(n)^`().
Proof. by []. Qed.
Lemma derive1Sn V (f : R -> V) n : f^`(n.+1) = f^`()^`(n).
Proof. exact: iterSr. Qed.
End DifferentialR2.
Notation "f ^` ()" := (derive1 f).
Notation "f ^` ( n )" := (derive1n n f).
Section DifferentialR3.
Variable R : numFieldType.
Fact dcst (V W : normedModType R) (a : W) (x : V) : continuous (0 : V -> W) /\
cst a \o shift x = cst (cst a x) + \0 +o_ (0 : V) id.
Proof.
split; first exact: cst_continuous.
apply/eqaddoE; rewrite addr0 funeqE => ? /=; rewrite -[LHS]addr0; congr (_ + _).
by rewrite littleoE; last exact: littleo0_subproof.
Qed.
Variables (V W : normedModType R).
Fact dadd (f g : V -> W) x :
differentiable f x -> differentiable g x ->
continuous ('d f x \+ 'd g x) /\
(f + g) \o shift x = cst ((f + g) x) + ('d f x \+ 'd g x) +o_ (0 : V) id.
Proof.
move=> df dg; split => [?|]; do ?exact: continuousD.
apply/(@eqaddoE R); rewrite funeqE => y /=; rewrite -[(f + g) _]/(_ + _).
by rewrite ![_ (_ + x)]diff_locallyx// addrACA addox addrACA.
Qed.
Fact dopp (f : V -> W) x :
differentiable f x -> continuous (- ('d f x : V -> W)) /\
(- f) \o shift x = cst (- f x) \- 'd f x +o_ (0 : V) id.
Proof.
move=> df; split; first by move=> ?; apply: continuousN.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite -[(- f) _]/(- (_ _)) diff_locallyx// !opprD oppox.
Qed.
Lemma is_diff_eq (V' W' : normedModType R) (f f' g : V' -> W') (x : V') :
is_diff x f f' -> f' = g -> is_diff x f g.
Proof. by move=> ? <-. Qed.
Fact dscale (f : V -> W) k x :
differentiable f x -> continuous (k \*: 'd f x) /\
(k *: f) \o shift x = cst ((k *: f) x) + k \*: 'd f x +o_ (0 : V) id.
Proof.
move=> df; split; first by move=> ?; apply: continuousZr.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite -[(k *: f) _]/(_ *: _) diff_locallyx // !scalerDr scaleox.
Qed.
(* NB: could be generalized with K : absRingType instead of R; DONE? *)
Fact dscalel (k : V -> R) (f : W) x :
differentiable k x ->
continuous (fun z : V => 'd k x z *: f) /\
(fun z => k z *: f) \o shift x =
cst (k x *: f) + (fun z => 'd k x z *: f) +o_ (0 : V) id.
Proof.
move=> df; split.
move=> ?; exact/continuousZl/diff_continuous.
apply/eqaddoE; rewrite funeqE => y /=.
by rewrite diff_locallyx //= !scalerDl scaleolx.
Qed.
Fact dlin (V' W' : normedModType R) (f : {linear V' -> W'}) x :
continuous f -> f \o shift x = cst (f x) + f +o_ (0 : V') id.
Proof.
move=> df; apply: eqaddoE; rewrite funeqE => y /=.
rewrite linearD addrC -[LHS]addr0; congr (_ + _).
by rewrite littleoE; last exact: littleo0_subproof. (*fixme*)
Qed.
(* TODO: generalize *)
Lemma compoO_eqo (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') :
[o_ (0 : V') id of g] \o [O_ (0 : U) id of f] =o_ (0 : U) id.
Proof.
apply/eqoP => _ /posnumP[e].
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : U) id of f]].
have := littleoP [littleo of [o_ (0 : V') id of g]].
move=> /(_ (e%:num / k%:num)) /(_ _) /nbhs_ballP [//|_ /posnumP[d] hd].
apply: filter_app; near=> x => leOxkx; apply: le_trans (hd _ _) _; last first.
rewrite -ler_pdivl_mull //; apply: le_trans leOxkx _.
by rewrite invf_div mulrA -[_ / _ * _]mulrA mulVf // mulr1.
rewrite -ball_normE /= distrC subr0 (le_lt_trans leOxkx) //.
rewrite -ltr_pdivl_mull //; near: x; rewrite /= !nbhs_simpl.
apply/nbhs_ballP; exists (k%:num ^-1 * d%:num) => //= x.
by rewrite -ball_normE /= distrC subr0.
Unshelve. all: by end_near. Qed.
Lemma compoO_eqox (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') :
forall x : U, [o_ (0 : V') id of g] ([O_ (0 : U) id of f] x) =o_(x \near 0 : U) x.
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compoO_eqo. Qed.
(* TODO: generalize *)
Lemma compOo_eqo (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') :
[O_ (0 : V') id of g] \o [o_ (0 : U) id of f] =o_ (0 : U) id.
Proof.
apply/eqoP => _ /posnumP[e].
have /bigO_exP [_ /posnumP[k]] := bigOP [bigO of [O_ (0 : V') id of g]].
move=> /nbhs_ballP [_ /posnumP[d] hd].
have ekgt0 : e%:num / k%:num > 0 by [].
have /(_ _ ekgt0) := littleoP [littleo of [o_ (0 : U) id of f]].
apply: filter_app; near=> x => leoxekx; apply: le_trans (hd _ _) _; last first.
by rewrite -ler_pdivl_mull // mulrA [_^-1 * _]mulrC.
rewrite -ball_normE /= distrC subr0; apply: le_lt_trans leoxekx _.
rewrite -ltr_pdivl_mull //; near: x; rewrite /= nbhs_simpl.
apply/nbhs_ballP; exists ((e%:num / k%:num) ^-1 * d%:num) => //= x.
by rewrite -ball_normE /= distrC subr0.
Unshelve. all: by end_near. Qed.
End DifferentialR3.
Section DifferentialR3_numFieldType.
Variable R : numFieldType.
Lemma littleo_linear0 (V W : normedModType R) (f : {linear V -> W}) :
(f : V -> W) =o_ (0 : V) id -> f = cst 0 :> (V -> W).
Proof.
move/eqoP => oid.
rewrite funeqE => x; apply/eqP; have [|xn0] := real_le0P (normr_real x).
by rewrite normr_le0 => /eqP ->; rewrite linear0.
rewrite -normr_le0 -(mul0r `|x|) -ler_pdivr_mulr //.
apply/ler0_addgt0P => _ /posnumP[e]; rewrite ler_pdivr_mulr //.
have /oid /nbhs_ballP [_ /posnumP[d] dfe] := !! gt0 e.
set k := ((d%:num / 2) / (PosNum xn0)%:num)^-1.
rewrite -{1}(@scalerKV _ _ k _ x) /k // linearZZ normmZ.
rewrite -ler_pdivl_mull; last by rewrite gtr0_norm.
rewrite mulrCA (@le_trans _ _ (e%:num * `|k^-1 *: x|)) //; last first.
by rewrite ler_pmul // normmZ normfV.
apply: dfe.
rewrite -ball_normE /ball_/= sub0r normrN normmZ.
rewrite invrK -ltr_pdivl_mulr // ger0_norm // ltr_pdivr_mulr //.
by rewrite -mulrA mulVf ?lt0r_neq0 // mulr1 [ltRHS]splitr ltr_addl.
Qed.
Lemma diff_unique (V W : normedModType R) (f : V -> W)
(df : {linear V -> W}) x :
continuous df -> f \o shift x = cst (f x) + df +o_ (0 : V) id ->
'd f x = df :> (V -> W).
Proof.
move=> dfc dxf; apply/subr0_eq; rewrite -[LHS]/(_ \- _).
apply/littleo_linear0/eqoP/eq_some_oP => /=; rewrite funeqE => y /=.
have hdf h :
(f \o shift x = cst (f x) + h +o_ (0 : V) id) ->
h = f \o shift x - cst (f x) +o_ (0 : V) id.
move=> hdf; apply: eqaddoE.
rewrite hdf addrAC (addrC _ h) addrK.
rewrite -[LHS]addr0 -addrA; congr (_ + _).
by apply/eqP; rewrite eq_sym addrC addr_eq0 oppo.
rewrite (hdf _ dxf).
suff /diff_locally /hdf -> : differentiable f x.
by rewrite opprD addrCA -(addrA (_ - _)) addKr oppox addox.
apply/diffP; apply: (@getPex _ (fun (df : {linear V -> W}) => continuous df /\
forall y, f y = f (lim x) + df (y - lim x) +o_(y \near x) (y - lim x))).
exists df; split=> //; apply: eqaddoEx => z.
rewrite (hdf _ dxf) !addrA lim_id // /(_ \o _) /= subrK [f _ + _]addrC addrK.
rewrite -addrA -[LHS]addr0; congr (_ + _).
apply/eqP; rewrite eq_sym addrC addr_eq0 oppox; apply/eqP.
by rewrite littleo_center0 (comp_centerK x id) -[- _ in RHS](comp_centerK x).
Qed.
Lemma diff_cst (V W : normedModType R) a x : ('d (cst a) x : V -> W) = 0.
Proof. by apply/diff_unique; have [] := dcst a x. Qed.
Variables (V W : normedModType R).
Lemma differentiable_cst (W' : normedModType R) (a : W') (x : V) :
differentiable (cst a) x.
Proof. by apply/diff_locallyP; rewrite diff_cst; have := dcst a x. Qed.
Global Instance is_diff_cst (a : W) (x : V) : is_diff x (cst a) 0.
Proof. exact: DiffDef (differentiable_cst _ _) (diff_cst _ _). Qed.
Lemma diffD (f g : V -> W) x :
differentiable f x -> differentiable g x ->
'd (f + g) x = 'd f x \+ 'd g x :> (V -> W).
Proof. by move=> df dg; apply/diff_unique; have [] := dadd df dg. Qed.
Lemma differentiableD (f g : V -> W) x :
differentiable f x -> differentiable g x -> differentiable (f + g) x.
Proof.
by move=> df dg; apply/diff_locallyP; rewrite diffD //; have := dadd df dg.
Qed.
Global Instance is_diffD (f g df dg : V -> W) x :
is_diff x f df -> is_diff x g dg -> is_diff x (f + g) (df + dg).
Proof.
move=> dfx dgx; apply: DiffDef; first exact: differentiableD.
by rewrite diffD // !diff_val.
Qed.
Lemma differentiable_sum n (f : 'I_n -> V -> W) (x : V) :
(forall i, differentiable (f i) x) -> differentiable (\sum_(i < n) f i) x.
Proof.
elim: n f => [f _| n IH f H]; first by rewrite big_ord0.
rewrite big_ord_recr /=; apply/differentiableD; [apply/IH => ? |]; exact: H.
Qed.
Lemma diffN (f : V -> W) x :
differentiable f x -> 'd (- f) x = - ('d f x : V -> W) :> (V -> W).
Proof.
move=> df; rewrite -[RHS]/(@GRing.opp _ \o _); apply/diff_unique;
by have [] := dopp df.
Qed.
Lemma differentiableN (f : V -> W) x :
differentiable f x -> differentiable (- f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffN //; have := dopp df.
Qed.
Global Instance is_diffN (f df : V -> W) x :
is_diff x f df -> is_diff x (- f) (- df).
Proof.
move=> dfx; apply: DiffDef; first exact: differentiableN.
by rewrite diffN // diff_val.
Qed.
Global Instance is_diffB (f g df dg : V -> W) x :
is_diff x f df -> is_diff x g dg -> is_diff x (f - g) (df - dg).
Proof. by move=> dfx dgx; apply: is_diff_eq. Qed.
Lemma diffB (f g : V -> W) x :
differentiable f x -> differentiable g x ->
'd (f - g) x = 'd f x \- 'd g x :> (V -> W).
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed.
Lemma differentiableB (f g : V -> W) x :
differentiable f x -> differentiable g x -> differentiable (f \- g) x.
Proof. by move=> /differentiableP df /differentiableP dg. Qed.
Lemma diffZ (f : V -> W) k x :
differentiable f x -> 'd (k *: f) x = k \*: 'd f x :> (V -> W).
Proof. by move=> df; apply/diff_unique; have [] := dscale k df. Qed.
Lemma differentiableZ (f : V -> W) k x :
differentiable f x -> differentiable (k *: f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffZ //; have := dscale k df.
Qed.
Global Instance is_diffZ (f df : V -> W) k x :
is_diff x f df -> is_diff x (k *: f) (k *: df).
Proof.
move=> dfx; apply: DiffDef; first exact: differentiableZ.
by rewrite diffZ // diff_val.
Qed.
Lemma diffZl (k : V -> R) (f : W) x : differentiable k x ->
'd (fun z => k z *: f) x = (fun z => 'd k x z *: f) :> (_ -> _).
Proof.
move=> df; set g := RHS; have glin : linear g.
by move=> a u v; rewrite /g linearP /= scalerDl -scalerA.
by apply:(@diff_unique _ _ _ (Linear glin)); have [] := dscalel f df.
Qed.
Lemma differentiableZl (k : V -> R) (f : W) x :
differentiable k x -> differentiable (fun z => k z *: f) x.
Proof.
by move=> df; apply/diff_locallyP; rewrite diffZl //; have [] := dscalel f df.
Qed.
Lemma diff_lin (V' W' : normedModType R) (f : {linear V' -> W'}) x :
continuous f -> 'd f x = f :> (V' -> W').
Proof. by move=> fcont; apply/diff_unique => //; apply: dlin. Qed.
Lemma linear_differentiable (V' W' : normedModType R) (f : {linear V' -> W'})
x : continuous f -> differentiable f x.
Proof.
by move=> fcont; apply/diff_locallyP; rewrite diff_lin //; have := dlin x fcont.
Qed.
Global Instance is_diff_id (x : V) : is_diff x id id.
Proof.
apply: DiffDef.
by apply: (@linear_differentiable _ _ [linear of idfun]) => ? //.
by rewrite (@diff_lin _ _ [linear of idfun]) // => ? //.
Qed.
Global Instance is_diff_scaler (k : R) (x : V) : is_diff x ( *:%R k) ( *:%R k).
Proof.
apply: DiffDef; first exact/linear_differentiable/scaler_continuous.
by rewrite diff_lin //; apply: scaler_continuous.
Qed.
Global Instance is_diff_scalel (x k : R) :
is_diff k ( *:%R ^~ x) ( *:%R ^~ x).
Proof.
have -> : *:%R ^~ x = GRing.scale_linear R x.
by rewrite funeqE => ? /=; rewrite [_ *: _]mulrC.
apply: DiffDef; first exact/linear_differentiable/scaler_continuous.
by rewrite diff_lin //; apply: scaler_continuous.
Qed.
Lemma differentiable_coord m n (M : 'M[R]_(m.+1, n.+1)) i j :
differentiable (fun N : 'M[R]_(m.+1, n.+1) => N i j : R ) M.
Proof.
have @f : {linear 'M[R]_(m.+1, n.+1) -> R}.
by exists (fun N : 'M[R]_(_, _) => N i j); eexists; move=> ? ?; rewrite !mxE.
rewrite (_ : (fun _ => _) = f) //; exact/linear_differentiable/coord_continuous.
Qed.
Lemma linear_lipschitz (V' W' : normedModType R) (f : {linear V' -> W'}) :
continuous f -> exists2 k, k > 0 & forall x, `|f x| <= k * `|x|.
Proof.
move=> /(_ 0); rewrite linear0 => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists (2 / e%:num) => // x.
have [|xn0] := real_le0P (normr_real x).
by rewrite normr_le0 => /eqP->; rewrite linear0 !normr0 mulr0.
set k := 2 / e%:num * (PosNum xn0)%:num.
have kn0 : k != 0 by rewrite /k.
have abskgt0 : `|k| > 0 by rewrite normr_gt0.
rewrite -[x in leLHS](scalerKV kn0) linearZZ normmZ -ler_pdivl_mull //.
suff /he : ball 0 e%:num (k^-1 *: x).
rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply.
by rewrite ger0_norm /k // mulVf.
rewrite -ball_normE /= distrC subr0 normmZ.
rewrite normfV ger0_norm /k // invrM ?unitfE // mulrAC mulVf //.
by rewrite invf_div mul1r [ltRHS]splitr; apply: ltr_spaddr.
Qed.
Lemma linear_eqO (V' W' : normedModType R) (f : {linear V' -> W'}) :
continuous f -> (f : V' -> W') =O_ (0 : V') id.
Proof.
move=> /linear_lipschitz [k kgt0 flip]; apply/eqO_exP; exists k => //.
exact: filterE.
Qed.
Lemma diff_eqO (V' W' : normedModType R) (x : filter_on V') (f : V' -> W') :
differentiable f x -> ('d f x : V' -> W') =O_ (0 : V') id.
Proof. by move=> /diff_continuous /linear_eqO; apply. Qed.
Lemma compOo_eqox (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') : forall x,
[O_ (0 : V') id of g] ([o_ (0 : U) id of f] x) =o_(x \near 0 : U) x.
Proof. by move=> x; rewrite -[LHS]/((_ \o _) x) compOo_eqo. Qed.
Fact dcomp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x :
differentiable f x -> differentiable g (f x) ->
continuous ('d g (f x) \o 'd f x) /\ forall y,
g (f (y + x)) = g (f x) + ('d g (f x) \o 'd f x) y +o_(y \near 0 : U) y.
Proof.
move=> df dg; split; first by move=> ?; apply: continuous_comp.
apply: eqaddoEx => y; rewrite diff_locallyx// -addrA diff_locallyxC// linearD.
rewrite addrA -addrA; congr (_ + _ + _).
rewrite diff_eqO // ['d f x : _ -> _]diff_eqO //.
by rewrite {2}eqoO addOx compOo_eqox compoO_eqox addox.
Qed.
Lemma diff_comp (U V' W' : normedModType R) (f : U -> V') (g : V' -> W') x :
differentiable f x -> differentiable g (f x) ->
'd (g \o f) x = 'd g (f x) \o 'd f x :> (U -> W').
Proof. by move=> df dg; apply/diff_unique; have [? /funext] := dcomp df dg. Qed.
Lemma differentiable_comp (U V' W' : normedModType R) (f : U -> V')
(g : V' -> W') x : differentiable f x -> differentiable g (f x) ->
differentiable (g \o f) x.
Proof.
move=> df dg; apply/diff_locallyP; rewrite diff_comp //;
by have [? /funext]:= dcomp df dg.
Qed.
Global Instance is_diff_comp (U V' W' : normedModType R) (f df : U -> V')
(g dg : V' -> W') x : is_diff x f df -> is_diff (f x) g dg ->
is_diff x (g \o f) (dg \o df) | 99.
Proof.
move=> dfx dgfx; apply: DiffDef; first exact: differentiable_comp.
by rewrite diff_comp // !diff_val.
Qed.
Lemma bilinear_schwarz (U V' W' : normedModType R)
(f : {bilinear U -> V' -> W'}) : continuous (fun p => f p.1 p.2) ->
exists2 k, k > 0 & forall u v, `|f u v| <= k * `|u| * `|v|.
Proof.
move=> /(_ 0); rewrite linear0r => /(_ _ (nbhsx_ballx 0 1%:pos)).
move=> /nbhs_ballP [_ /posnumP[e] he]; exists ((2 / e%:num) ^+2) => // u v.
have [|un0] := real_le0P (normr_real u).
by rewrite normr_le0 => /eqP->; rewrite linear0l !normr0 mulr0 mul0r.
have [|vn0] := real_le0P (normr_real v).
by rewrite normr_le0 => /eqP->; rewrite linear0r !normr0 mulr0.
rewrite -[`|u|]/((PosNum un0)%:num) -[`|v|]/((PosNum vn0)%:num).
set ku := 2 / e%:num * (PosNum un0)%:num.
set kv := 2 / e%:num * (PosNum vn0)%:num.
rewrite -[X in f X](@scalerKV _ _ ku) /ku // linearZl_LR normmZ.
rewrite gtr0_norm // -ler_pdivl_mull //.
rewrite -[X in f _ X](@scalerKV _ _ kv) /kv // linearZr_LR normmZ.
rewrite gtr0_norm // -ler_pdivl_mull //.
suff /he : ball 0 e%:num (ku^-1 *: u, kv^-1 *: v).
rewrite -ball_normE /= distrC subr0 => /ltW /le_trans; apply.
rewrite ler_pdivl_mull 1?pmulr_lgt0// mulr1 ler_pdivl_mull 1?pmulr_lgt0//.
by rewrite mulrA [ku * _]mulrAC expr2.
rewrite -ball_normE /= distrC subr0.
have -> : (ku^-1 *: u, kv^-1 *: v) =
(e%:num / 2) *: ((PosNum un0)%:num ^-1 *: u, (PosNum vn0)%:num ^-1 *: v).
rewrite invrM ?unitfE // [kv ^-1]invrM ?unitfE //.
rewrite mulrC -[_ *: u]scalerA [X in X *: v]mulrC -[_ *: v]scalerA.
by rewrite invf_div.
rewrite normmZ ger0_norm // -mulrA gtr_pmulr // ltr_pdivr_mull // mulr1.
by rewrite prod_normE/= !normmZ !normfV !normr_id !mulVf ?gt_eqF// maxxx ltr1n.
Qed.
Lemma bilinear_eqo (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) :
continuous (fun p => f p.1 p.2) -> (fun p => f p.1 p.2) =o_ (0 : U * V') id.
Proof.
move=> fc; have [_ /posnumP[k] fschwarz] := bilinear_schwarz fc.
apply/eqoP=> _ /posnumP[e]; near=> x; rewrite (le_trans (fschwarz _ _))//.
rewrite ler_pmul ?pmulr_rge0 //; last by rewrite num_le_maxr /= lexx orbT.
rewrite -ler_pdivl_mull //.
suff : `|x| <= k%:num ^-1 * e%:num by apply: le_trans; rewrite num_le_maxr /= lexx.
near: x; rewrite !near_simpl; apply/nbhs_le_nbhs_norm.
by exists (k%:num ^-1 * e%:num) => //= ? /=; rewrite -ball_normE /= distrC subr0 => /ltW.
Unshelve. all: by end_near. Qed.
Fact dbilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p :
continuous (fun p => f p.1 p.2) ->
continuous (fun q => (f p.1 q.2 + f q.1 p.2)) /\
(fun q => f q.1 q.2) \o shift p = cst (f p.1 p.2) +
(fun q => f p.1 q.2 + f q.1 p.2) +o_ (0 : U * V') id.
Proof.
move=> fc; split=> [q|].
by apply: (@continuousD _ _ _ (fun q => f p.1 q.2) (fun q => f q.1 p.2));
move=> A /(fc (_.1, _.2)) /= /nbhs_ballP [_ /posnumP[e] fpqe_A];
apply/nbhs_ballP; exists e%:num => //= r [? ?]; exact: (fpqe_A (_.1, _.2)).
apply/eqaddoE; rewrite funeqE => q /=.
rewrite linearDl !linearDr addrA addrC.
rewrite -[f q.1 _ + _ + _]addrA [f q.1 _ + _]addrC addrA [f q.1 _ + _]addrC.
by congr (_ + _); rewrite -[LHS]/((fun p => f p.1 p.2) q) bilinear_eqo.
Qed.
Lemma diff_bilin (U V' W' : normedModType R) (f : {bilinear U -> V' -> W'}) p :
continuous (fun p => f p.1 p.2) -> 'd (fun q => f q.1 q.2) p =
(fun q => f p.1 q.2 + f q.1 p.2) :> (U * V' -> W').
Proof.
move=> fc; have lind : linear (fun q => f p.1 q.2 + f q.1 p.2).
by move=> ???; rewrite linearPr linearPl scalerDr addrACA.
have -> : (fun q => f p.1 q.2 + f q.1 p.2) = Linear lind by [].
by apply/diff_unique; have [] := dbilin p fc.
Qed.
Lemma differentiable_bilin (U V' W' : normedModType R)
(f : {bilinear U -> V' -> W'}) p :
continuous (fun p => f p.1 p.2) -> differentiable (fun p => f p.1 p.2) p.
Proof.
by move=> fc; apply/diff_locallyP; rewrite diff_bilin //; apply: dbilin p fc.
Qed.
Definition Rmult_rev (y x : R) := x * y.
Canonical rev_Rmult := @RevOp _ _ _ Rmult_rev (@GRing.mul [ringType of R])
(fun _ _ => erefl).
Lemma Rmult_is_linear x : linear (@GRing.mul [ringType of R] x : R -> R).
Proof. by move=> ???; rewrite mulrDr scalerAr. Qed.
Canonical Rmult_linear x := Linear (Rmult_is_linear x).
Lemma Rmult_rev_is_linear y : linear (Rmult_rev y : R -> R).
Proof. by move=> ???; rewrite /Rmult_rev mulrDl scalerAl. Qed.
Canonical Rmult_rev_linear y := Linear (Rmult_rev_is_linear y).
Canonical Rmult_bilinear :=
[bilinear of (@GRing.mul [ringType of [lmodType R of R]])].
Global Instance is_diff_Rmult (p : R*R ) :
is_diff p (fun q => q.1 * q.2) (fun q => p.1 * q.2 + q.1 * p.2).
Proof.
apply: DiffDef; last by rewrite diff_bilin // => ?; apply: mul_continuous.
by apply: differentiable_bilin =>?; apply: mul_continuous.
Qed.
Lemma eqo_pair (U V' W' : normedModType R) (F : filter_on U)
(f : U -> V') (g : U -> W') :
(fun t => ([o_F id of f] t, [o_F id of g] t)) =o_F id.
Proof.
apply/eqoP => _/posnumP[e]; near=> x; rewrite num_le_maxl /=.
by apply/andP; split; near: x; apply: littleoP.
Unshelve. all: by end_near. Qed.
Fact dpair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x :
differentiable f x -> differentiable g x ->
continuous (fun y => ('d f x y, 'd g x y)) /\
(fun y => (f y, g y)) \o shift x = cst (f x, g x) +
(fun y => ('d f x y, 'd g x y)) +o_ (0 : U) id.
Proof.
move=> df dg; split=> [?|]; first by apply: cvg_pair; apply: diff_continuous.
apply/eqaddoE; rewrite funeqE => y /=.
rewrite ![_ (_ + x)]diff_locallyx//.
(* fixme *)
have -> : forall h e, (f x + 'd f x y + [o_ (0 : U) id of h] y,
g x + 'd g x y + [o_ (0 : U) id of e] y) =
(f x, g x) + ('d f x y, 'd g x y) +
([o_ (0 : U) id of h] y, [o_ (0 : U) id of e] y) by [].
by congr (_ + _); rewrite -[LHS]/((fun y => (_ y, _ y)) y) eqo_pair.
Qed.
Lemma diff_pair (U V' W' : normedModType R) (f : U -> V') (g : U -> W') x :
differentiable f x -> differentiable g x -> 'd (fun y => (f y, g y)) x =
(fun y => ('d f x y, 'd g x y)) :> (U -> V' * W').
Proof.
move=> df dg.
have lin_pair : linear (fun y => ('d f x y, 'd g x y)).
by move=> ???; rewrite !linearPZ.
have -> : (fun y => ('d f x y, 'd g x y)) = Linear lin_pair by [].
by apply: diff_unique; have [] := dpair df dg.
Qed.
Lemma differentiable_pair (U V' W' : normedModType R) (f : U -> V')
(g : U -> W') x : differentiable f x -> differentiable g x ->
differentiable (fun y => (f y, g y)) x.
Proof.
by move=> df dg; apply/diff_locallyP; rewrite diff_pair //; apply: dpair.
Qed.
Global Instance is_diff_pair (U V' W' : normedModType R) (f df : U -> V')
(g dg : U -> W') x : is_diff x f df -> is_diff x g dg ->
is_diff x (fun y => (f y, g y)) (fun y => (df y, dg y)).
Proof.
move=> dfx dgx; apply: DiffDef; first exact: differentiable_pair.
by rewrite diff_pair // !diff_val.
Qed.
Global Instance is_diffM (f g df dg : V -> R) x :
is_diff x f df -> is_diff x g dg -> is_diff x (f * g) (f x *: dg + g x *: df).
Proof.
move=> dfx dgx.
have -> : f * g = (fun p => p.1 * p.2) \o (fun y => (f y, g y)) by [].
(* TODO: type class inference should succeed or fail, not leave an evar *)
apply: is_diff_eq; do ?exact: is_diff_comp.
by rewrite funeqE => ?; rewrite /= [_ * g _]mulrC.
Qed.
Lemma diffM (f g : V -> R) x :
differentiable f x -> differentiable g x ->
'd (f * g) x = f x \*: 'd g x + g x \*: 'd f x :> (V -> R).
Proof. by move=> /differentiableP df /differentiableP dg; rewrite diff_val. Qed.
Lemma differentiableM (f g : V -> R) x :
differentiable f x -> differentiable g x -> differentiable (f * g) x.
Proof. by move=> /differentiableP df /differentiableP dg. Qed.
(* fixme using *)
(* (1 / (h + x) - 1 / x) / h = - 1 / (h + x) x = -1/x^2 + o(1) *)
Fact dinv (x : R) :
x != 0 -> continuous (fun h : R => - x ^- 2 *: h) /\
(fun x => x^-1)%R \o shift x = cst (x^-1)%R +
(fun h : R => - x ^- 2 *: h) +o_ (0 : R) id.
Proof.
move=> xn0; suff: continuous (fun h : R => - (1 / x) ^+ 2 *: h) /\
(fun x => 1 / x ) \o shift x = cst (1 / x) +
(fun h : R => - (1 / x) ^+ 2 *: h) +o_ (0 : R) id.
rewrite !mul1r !GRing.exprVn.
rewrite (_ : (fun x => x^-1) = (fun x => 1 / x ))//.
by rewrite funeqE => y; rewrite mul1r.
split; first by move=> ?; apply: continuousZr.
apply/eqaddoP => _ /posnumP[e]; near=> h.
rewrite -[(_ + _ : R -> R) h]/(_ + _) -[(- _ : R -> R) h]/(- _) /=.
rewrite opprD scaleNr opprK /cst /=.
rewrite -[- _]mulr1 -[X in - _ * X](mulfVK xn0) mulrA mulNr -expr2 mulNr.
rewrite [- _ + _]addrC -mulrBr.
rewrite -[X in X + _]mulr1 -[X in 1 / _ * X](@mulfVK _ (x ^+ 2)); last first.
by rewrite sqrf_eq0.
rewrite mulrA mulf_div mulr1.
have hDx_neq0 : h + x != 0.
near: h; rewrite !nbhs_simpl; apply/nbhs_normP.
exists `|x|; first by rewrite /= normr_gt0.
move=> h /=; rewrite -ball_normE /= distrC subr0 -subr_gt0 => lthx.
rewrite -(normr_gt0 (h + x)) addrC -[h]opprK.
apply: lt_le_trans (ler_dist_dist _ _).
by rewrite ger0_norm normrN //; apply: ltW.
rewrite addrC -[X in X * _]mulr1 -{2}[1](@mulfVK _ (h + x)) //.
rewrite mulrA expr_div_n expr1n mulf_div mulr1 [_ ^+ 2 * _]mulrC -mulrA.
rewrite -mulrDr mulrBr [1 / _ * _]mulrC normrM.
rewrite mulrDl mulrDl opprD addrACA addrA [x * _]mulrC expr2.
do 2 ?[rewrite -addrA [- _ + _]addrC subrr addr0].
rewrite div1r normfV [X in _ / X]normrM invfM [X in _ * X]mulrC.
rewrite mulrA mulrAC ler_pdivr_mulr ?normr_gt0 ?mulf_neq0 //.
rewrite mulrAC ler_pdivr_mulr ?normr_gt0 //.
have : `|h * h| <= `|x / 2| * (e%:num * `|x * x| * `|h|).
rewrite !mulrA; near: h; exists (`|x / 2| * e%:num * `|x * x|).
by rewrite /= !pmulr_rgt0 // normr_gt0 mulf_neq0.
by move=> h /ltW; rewrite distrC subr0 [`|h * _|]normrM => /ler_pmul; apply.
move=> /le_trans-> //; rewrite [leLHS]mulrC ler_pmul ?mulr_ge0 //.
near: h; exists (`|x| / 2); first by rewrite /= divr_gt0 ?normr_gt0.
move=> h; rewrite /= distrC subr0 => lthhx; rewrite addrC -[h]opprK.
apply: le_trans (@ler_dist_dist _ R _ _).
rewrite normrN [leRHS]ger0_norm; last first.
rewrite subr_ge0; apply: ltW; apply: lt_le_trans lthhx _.
by rewrite ler_pdivr_mulr // -{1}(mulr1 `|x|) ler_pmul // ler1n.
rewrite ler_subr_addr -ler_subr_addl (splitr `|x|).
by rewrite normrM normfV (@ger0_norm _ 2) // -addrA subrr addr0; apply: ltW.
Unshelve. all: by end_near. Qed.
Lemma diff_Rinv (x : R) : x != 0 ->
'd GRing.inv x = (fun h : R => - x ^- 2 *: h) :> (R -> R).
Proof.
move=> xn0; have -> : (fun h : R => - x ^- 2 *: h) =
GRing.scale_linear _ (- x ^- 2) by [].
by apply: diff_unique; have [] := dinv xn0.
Qed.
Lemma differentiable_Rinv (x : R) : x != 0 ->
differentiable (GRing.inv : R -> R) x.
Proof.
by move=> xn0; apply/diff_locallyP; rewrite diff_Rinv //; apply: dinv.
Qed.
Lemma diffV (f : V -> R) x : differentiable f x -> f x != 0 ->
'd (fun y => (f y)^-1) x = - (f x) ^- 2 \*: 'd f x :> (V -> R).
Proof.
move=> df fxn0.
by rewrite [LHS](diff_comp df (differentiable_Rinv fxn0)) diff_Rinv.
Qed.
Lemma differentiableV (f : V -> R) x :
differentiable f x -> f x != 0 -> differentiable (fun y => (f y)^-1) x.
Proof.
by move=> df fxn0; apply: differentiable_comp _ (differentiable_Rinv fxn0).
Qed.
Global Instance is_diffX (f df : V -> R) n x :
is_diff x f df -> is_diff x (f ^+ n.+1) (n.+1%:R * f x ^+ n *: df).
Proof.
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r.
rewrite exprS; apply: is_diff_eq.
rewrite scalerA mulrCA -exprS -scalerDl.
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl.
Qed.
Lemma differentiableX (f : V -> R) n x :
differentiable f x -> differentiable (f ^+ n.+1) x.
Proof. by move=> /differentiableP. Qed.
Lemma diffX (f : V -> R) n x :
differentiable f x ->
'd (f ^+ n.+1) x = n.+1%:R * f x ^+ n \*: 'd f x :> (V -> R).
Proof. by move=> /differentiableP df; rewrite diff_val. Qed.
End DifferentialR3_numFieldType.
Section Derive.
Variables (R : numFieldType) (V W : normedModType R).
Let der1 (U : normedModType R) (f : R -> U) x : derivable f x 1 ->
f \o shift x = cst (f x) + ( *:%R^~ (f^`() x)) +o_ (0 : R) id.
Proof.
move=> df; apply/eqaddoE; have /derivable_nbhsP := df.
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x.
by rewrite funeqE=> ?; rewrite [_%:A]mulr1.
by rewrite derive1E =>->.
Qed.
Lemma deriv1E (U : normedModType R) (f : R -> U) x :
derivable f x 1 -> 'd f x = ( *:%R^~ (f^`() x)) :> (R -> U).
Proof.
move=> df; have lin_scal : linear (fun h : R => h *: f^`() x).
by move=> ???; rewrite scalerDl scalerA.
have -> : (fun h => h *: f^`() x) = Linear lin_scal by [].
by apply: diff_unique; [apply: scalel_continuous|apply: der1].
Qed.
Lemma diff1E (U : normedModType R) (f : R -> U) x :
differentiable f x -> 'd f x = (fun h => h *: f^`() x) :> (R -> U).
Proof.
move=> df; have lin_scal : linear (fun h : R => h *: 'd f x 1).
by move=> ???; rewrite scalerDl scalerA.
have -> : (fun h => h *: f^`() x) = Linear lin_scal.
by rewrite derive1E'.
apply: diff_unique; first exact: scalel_continuous.
apply/eqaddoE; have /diff_locally -> := df; congr (_ + _ + _).
by rewrite funeqE => h /=; rewrite -{1}[h]mulr1 linearZ.
Qed.
Lemma derivable1_diffP (U : normedModType R) (f : R -> U) x :
derivable f x 1 <-> differentiable f x.
Proof.
split=> dfx.
by apply/diff_locallyP; rewrite deriv1E //; split;
[apply: scalel_continuous|apply: der1].
apply/derivable_nbhsP/eqaddoE.
have -> : (fun h => (f \o shift x) h%:A) = f \o shift x.
by rewrite funeqE=> ?; rewrite [_%:A]mulr1.
by have /diff_locally := dfx; rewrite diff1E // derive1E =>->.
Qed.
Lemma derivable1P (U : normedModType R) (f : V -> U) x v :
derivable f x v <-> derivable (fun h : R => f (h *: v + x)) 0 1.
Proof.
rewrite /derivable; set g1 := fun h => h^-1 *: _; set g2 := fun h => h^-1 *: _.
suff -> : g1 = g2 by [].
by rewrite funeqE /g1 /g2 => h /=; rewrite addr0 scale0r add0r [_%:A]mulr1.
Qed.
Lemma derivableP (U : normedModType R) (f : V -> U) x v :
derivable f x v -> is_derive x v f ('D_v f x).
Proof. by move=> df; apply: DeriveDef. Qed.
Global Instance is_derive_cst (U : normedModType R) (a : U) (x v : V) :
is_derive x v (cst a) 0.
Proof.
apply: DeriveDef; last by rewrite deriveE // diff_val.
apply/derivable1P/derivable1_diffP.
by have -> : (fun h => cst a (h *: v + x)) = cst a by rewrite funeqE.
Qed.
Fact der_add (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
(fun h => h^-1 *: (((f + g) \o shift x) (h *: v) - (f + g) x)) @
0^' --> 'D_v f x + 'D_v g x.
Proof.
move=> df dg.
evar (fg : R -> W); rewrite [X in X @ _](_ : _ = fg) /=; last first.
rewrite funeqE => h.
by rewrite !scalerDr scalerN scalerDr opprD addrACA -!scalerBr /fg.
exact: cvgD.
Qed.
Lemma deriveD (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
'D_v (f + g) x = 'D_v f x + 'D_v g x.
Proof. by move=> df dg; apply: cvg_map_lim (der_add df dg). Qed.
Lemma derivableD (f g : V -> W) (x v : V) :
derivable f x v -> derivable g x v -> derivable (f + g) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (derive f x v + derive g x v).
exact: der_add.
Qed.
Global Instance is_deriveD (f g : V -> W) (x v : V) (df dg : W) :
is_derive x v f df -> is_derive x v g dg -> is_derive x v (f + g) (df + dg).
Proof.
move=> dfx dgx; apply: DeriveDef; first exact: derivableD.
by rewrite deriveD // !derive_val.
Qed.
Global Instance is_derive_sum n (f : 'I_n -> V -> W) (x v : V)
(df : 'I_n -> W) : (forall i, is_derive x v (f i) (df i)) ->
is_derive x v (\sum_(i < n) f i) (\sum_(i < n) df i).
Proof.
elim: n f df => [f df dfx|f df dfx n ihn].
by rewrite !big_ord0 //; apply: is_derive_cst.
by rewrite !big_ord_recr /=; apply: is_deriveD.
Qed.
Lemma derivable_sum n (f : 'I_n -> V -> W) (x v : V) :
(forall i, derivable (f i) x v) -> derivable (\sum_(i < n) f i) x v.
Proof.
move=> df; suff : forall i, is_derive x v (f i) ('D_v (f i) x) by [].
by move=> ?; apply: derivableP.
Qed.
Lemma derive_sum n (f : 'I_n -> V -> W) (x v : V) :
(forall i, derivable (f i) x v) ->
'D_v (\sum_(i < n) f i) x = \sum_(i < n) 'D_v (f i) x.
Proof.
move=> df; suff dfx : forall i, is_derive x v (f i) ('D_v (f i) x).
by rewrite derive_val.
by move=> ?; apply: derivableP.
Qed.
Fact der_opp (f : V -> W) (x v : V) : derivable f x v ->
(fun h => h^-1 *: (((- f) \o shift x) (h *: v) - (- f) x)) @
0^' --> - 'D_v f x.
Proof.
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
by rewrite funeqE => h; rewrite !scalerDr !scalerN -opprD -scalerBr /g.
exact: cvgN.
Qed.
Lemma deriveN (f : V -> W) (x v : V) : derivable f x v ->
'D_v (- f) x = - 'D_v f x.
Proof. by move=> df; apply: cvg_map_lim (der_opp df). Qed.
Lemma derivableN (f : V -> W) (x v : V) :
derivable f x v -> derivable (- f) x v.
Proof. by move=> df; apply/cvg_ex; exists (- 'D_v f x); apply: der_opp. Qed.
Global Instance is_deriveN (f : V -> W) (x v : V) (df : W) :
is_derive x v f df -> is_derive x v (- f) (- df).
Proof.
move=> dfx; apply: DeriveDef; first exact: derivableN.
by rewrite deriveN // derive_val.
Qed.
Lemma is_derive_eq (V' W' : normedModType R) (f : V' -> W') (x v : V')
(df f' : W') : is_derive x v f f' -> f' = df -> is_derive x v f df.
Proof. by move=> ? <-. Qed.
Global Instance is_deriveB (f g : V -> W) (x v : V) (df dg : W) :
is_derive x v f df -> is_derive x v g dg -> is_derive x v (f - g) (df - dg).
Proof. by move=> ??; apply: is_derive_eq. Qed.
Lemma deriveB (f g : V -> W) (x v : V) : derivable f x v -> derivable g x v ->
'D_v (f - g) x = 'D_v f x - 'D_v g x.
Proof. by move=> /derivableP df /derivableP dg; rewrite derive_val. Qed.
Lemma derivableB (f g : V -> W) (x v : V) :
derivable f x v -> derivable g x v -> derivable (f - g) x v.
Proof. by move=> /derivableP df /derivableP dg. Qed.
Fact der_scal (f : V -> W) (k : R) (x v : V) : derivable f x v ->
(fun h => h^-1 *: ((k \*: f \o shift x) (h *: v) - (k \*: f) x)) @
(0 : R)^' --> k *: 'D_v f x.
Proof.
move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first.
rewrite funeqE => h.
by rewrite scalerBr !scalerA mulrC -!scalerA -!scalerBr /g.
exact: cvgZr.
Qed.
Lemma deriveZ (f : V -> W) (k : R) (x v : V) : derivable f x v ->
'D_v (k \*: f) x = k *: 'D_v f x.
Proof. by move=> df; apply: cvg_map_lim (der_scal df). Qed.
Lemma derivableZ (f : V -> W) (k : R) (x v : V) :
derivable f x v -> derivable (k \*: f) x v.
Proof.
by move=> df; apply/cvg_ex; exists (k *: 'D_v f x); apply: der_scal.
Qed.
Global Instance is_deriveZ (f : V -> W) (k : R) (x v : V) (df : W) :
is_derive x v f df -> is_derive x v (k \*: f) (k *: df).
Proof.
move=> dfx; apply: DeriveDef; first exact: derivableZ.
by rewrite deriveZ // derive_val.
Qed.
Fact der_mult (f g : V -> R) (x v : V) :
derivable f x v -> derivable g x v ->
(fun h => h^-1 *: (((f * g) \o shift x) (h *: v) - (f * g) x)) @
(0 : R)^' --> f x *: 'D_v g x + g x *: 'D_v f x.
Proof.
move=> df dg.
evar (fg : R -> R); rewrite [X in X @ _](_ : _ = fg) /=; last first.
rewrite funeqE => h.
have -> : (f * g) (h *: v + x) - (f * g) x =
f (h *: v + x) *: (g (h *: v + x) - g x) + g x *: (f (h *: v + x) - f x).
by rewrite !scalerBr -addrA ![g x *: _]mulrC addKr.
rewrite scalerDr scalerA mulrC -scalerA.
by rewrite [_ *: (g x *: _)]scalerA mulrC -scalerA /fg.
apply: cvgD; last exact: cvgZr df.
apply: cvg_comp2 (@mul_continuous _ (_, _)) => /=; last exact: dg.
suff : {for 0, continuous (fun h : R => f(h *: v + x))}.
by move=> /continuous_withinNx; rewrite scale0r add0r.
exact/differentiable_continuous/derivable1_diffP/derivable1P.
Qed.
Lemma deriveM (f g : V -> R) (x v : V) :
derivable f x v -> derivable g x v ->
'D_v (f * g) x = f x *: 'D_v g x + g x *: 'D_v f x.
Proof. by move=> df dg; apply: cvg_map_lim (der_mult df dg). Qed.
Lemma derivableM (f g : V -> R) (x v : V) :
derivable f x v -> derivable g x v -> derivable (f * g) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (f x *: 'D_v g x + g x *: 'D_v f x).
exact: der_mult.
Qed.
Global Instance is_deriveM (f g : V -> R) (x v : V) (df dg : R) :
is_derive x v f df -> is_derive x v g dg ->
is_derive x v (f * g) (f x *: dg + g x *: df).
Proof.
move=> dfx dgx; apply: DeriveDef; first exact: derivableM.
by rewrite deriveM // !derive_val.
Qed.
Global Instance is_deriveX (f : V -> R) n (x v : V) (df : R) :
is_derive x v f df -> is_derive x v (f ^+ n.+1) ((n.+1%:R * f x ^+n) *: df).
Proof.
move=> dfx; elim: n => [|n ihn]; first by rewrite expr1 expr0 mulr1 scale1r.
rewrite exprS; apply: is_derive_eq.
rewrite scalerA -scalerDl mulrCA -[f x * _]exprS.
by rewrite [in LHS]mulr_natl exprfctE -mulrSr mulr_natl.
Qed.
Lemma derivableX (f : V -> R) n (x v : V) :
derivable f x v -> derivable (f ^+ n.+1) x v.
Proof. by move/derivableP. Qed.
Lemma deriveX (f : V -> R) n (x v : V) :
derivable f x v ->
'D_v (f ^+ n.+1) x = (n.+1%:R * f x ^+ n) *: 'D_v f x.
Proof. by move=> /derivableP df; rewrite derive_val. Qed.
Fact der_inv (f : V -> R) (x v : V) :
f x != 0 -> derivable f x v ->
(fun h => h^-1 *: (((fun y => (f y)^-1) \o shift x) (h *: v) - (f x)^-1)) @
(0 : R)^' --> - (f x) ^-2 *: 'D_v f x.
Proof.
move=> fxn0 df.
have /derivable1P/derivable1_diffP/differentiable_continuous := df.
move=> /continuous_withinNx; rewrite scale0r add0r => fc.
have fn0 : (0 : R)^' [set h | f (h *: v + x) != 0].
apply: (fc [set x | x != 0]); exists `|f x|; first by rewrite /= normr_gt0.
move=> y; rewrite /= => yltfx.
by apply/eqP => y0; move: yltfx; rewrite y0 subr0 ltxx.
have : (fun h => - ((f x)^-1 * (f (h *: v + x))^-1) *:
(h^-1 *: (f (h *: v + x) - f x))) @ (0 : R)^' -->
- (f x) ^- 2 *: 'D_v f x.
by apply: cvgM => //; apply: cvgN; rewrite expr2 invfM; apply: cvgM;
[exact: cvg_cst| exact: cvgV].
apply: cvg_trans => A [_/posnumP[e] /= Ae].
move: fn0; apply: filter_app; near=> h => /= fhvxn0.
have he : ball 0 e%:num (h : R) by near: h; exists e%:num => /=.
have hn0 : h != 0 by near: h; exists e%:num => /=.
suff <- :
- ((f x)^-1 * (f (h *: v + x))^-1) *: (h^-1 *: (f (h *: v + x) - f x)) =
h^-1 *: ((f (h *: v + x))^-1 - (f x)^-1) by exact: Ae.
rewrite scalerA mulrC -scalerA; congr (_ *: _).
apply/eqP; rewrite scaleNr eqr_oppLR opprB scalerBr.
rewrite -scalerA [_ *: f _]mulVf // [_%:A]mulr1.
by rewrite mulrC -scalerA [_ *: f _]mulVf // [_%:A]mulr1.
Unshelve. all: by end_near. Qed.
Lemma deriveV (f : V -> R) x v : f x != 0 -> derivable f x v ->
'D_v (fun y => (f y)^-1) x = - (f x) ^- 2 *: 'D_v f x.
Proof. by move=> fxn0 df; apply: cvg_map_lim (der_inv fxn0 df). Qed.
Lemma derivableV (f : V -> R) (x v : V) :
f x != 0 -> derivable f x v -> derivable (fun y => (f y)^-1) x v.
Proof.
move=> df dg; apply/cvg_ex; exists (- (f x) ^- 2 *: 'D_v f x).
exact: der_inv.
Qed.
End Derive.
Lemma derive1_cst (R : numFieldType) (V : normedModType R) (k : V) t :
(cst k)^`() t = 0.
Proof. by rewrite derive1E derive_val. Qed.
Lemma EVT_max (R : realType) (f : R -> R) (a b : R) : (* TODO : Filter not infered *)
a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R &
forall t, t \in `[a, b]%R -> f t <= f c.
Proof.
move=> leab fcont; set imf := f @` `[a, b].
have imf_sup : has_sup imf.
split; first by exists (f a); apply/imageP; rewrite /= in_itv /= lexx.
have [M [Mreal imfltM]] : bounded_set (f @` `[a, b]).
by apply/compact_bounded/continuous_compact => //; exact: segment_compact.
exists (M + 1) => y /imfltM yleM.
by rewrite (le_trans _ (yleM _ _)) ?ler_norm ?ltr_addl.
have [|imf_ltsup] := pselect (exists2 c, c \in `[a, b]%R & f c = sup imf).
move=> [c cab fceqsup]; exists c => // t tab; rewrite fceqsup.
by apply/sup_upper_bound => //; exact/imageP.
have {}imf_ltsup t : t \in `[a, b]%R -> f t < sup imf.
move=> tab; case: (ltrP (f t) (sup imf)) => // supleft.
rewrite falseE; apply: imf_ltsup; exists t => //; apply/eqP.
by rewrite eq_le supleft andbT sup_upper_bound//; exact/imageP.
pose g t : R := (sup imf - f t)^-1.
have invf_continuous : {within `[a, b], continuous g}.
rewrite continuous_subspace_in => t tab; apply: cvgV => //=.
by rewrite subr_eq0 gt_eqF // imf_ltsup //; rewrite inE in tab.
by apply: cvgD; [exact: cst_continuous | apply: cvgN; exact: (fcont t)].
have /ex_strict_bound_gt0 [k k_gt0 /= imVfltk] : bounded_set (g @` `[a, b]).
apply/compact_bounded/continuous_compact; last exact: segment_compact.
exact: invf_continuous.
have [_ [t tab <-]] : exists2 y, imf y & sup imf - k^-1 < y.
by apply: sup_adherent => //; rewrite invr_gt0.
rewrite ltr_subl_addr -ltr_subl_addl.
suff : sup imf - f t > k^-1 by move=> /ltW; rewrite leNgt => /negbTE ->.
rewrite -[ltRHS]invrK ltf_pinv// ?qualifE ?invr_gt0 ?subr_gt0 ?imf_ltsup//.
by rewrite (le_lt_trans (ler_norm _) _) ?imVfltk//; exact: imageP.
Qed.
Lemma EVT_min (R : realType) (f : R -> R) (a b : R) :
a <= b -> {within `[a, b], continuous f} -> exists2 c, c \in `[a, b]%R &
forall t, t \in `[a, b]%R -> f c <= f t.
Proof.
move=> leab fcont.
have /(EVT_max leab) [c clr fcmax] : {within `[a, b], continuous (- f)}.
by move=> ?; apply: continuousN => ?; exact: fcont.
by exists c => // ? /fcmax; rewrite ler_opp2.
Qed.
Lemma cvg_at_rightE (R : numFieldType) (V : normedModType R) (f : R -> V) x :
cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_right x).
Proof.
move=> cvfx; apply/Logic.eq_sym.
(* should be inferred *)
have atrF := at_right_proper_filter x.
apply: (@cvg_map_lim _ _ _ (at_right _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
by exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _]; apply: xe_A.
Qed.
Arguments cvg_at_rightE {R V} f x.
Lemma cvg_at_leftE (R : numFieldType) (V : normedModType R) (f : R -> V) x :
cvg (f @ x^') -> lim (f @ x^') = lim (f @ at_left x).
Proof.
move=> cvfx; apply/Logic.eq_sym.
(* should be inferred *)
have atrF := at_left_proper_filter x.
apply: (@cvg_map_lim _ _ _ (at_left _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _].
by apply: xe_A => //; rewrite eq_sym.
Qed.
Arguments cvg_at_leftE {R V} f x.
Lemma le0r_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
(FF : ProperFilter F) (f : T -> R) :
(\forall x \near F, 0 <= f x) -> cvg (f @ F) -> 0 <= lim (f @ F).
Proof.
move=> fge0 fcv; case: (lerP 0 (lim (f @ F))) => // limlt0; near F => x.
have := near fge0 x; rewrite leNgt => /(_ _) /negbTE<- //; near: x.
have normlimgt0 : `|lim (f @ F)| > 0 by rewrite normr_gt0 ltr0_neq0.
have /fcv := nbhs_ball_norm (lim (f @ F)) (PosNum normlimgt0).
rewrite /= !near_simpl; apply: filterS => x.
rewrite /= distrC => /(le_lt_trans (ler_norm _)).
rewrite ltr_subl_addr => /lt_le_trans; apply.
by rewrite ltr0_norm // addrC subrr.
Unshelve. all: by end_near. Qed.
Lemma ler0_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
(FF : ProperFilter F) (f : T -> R) :
(\forall x \near F, f x <= 0) -> cvg (f @ F) -> lim (f @ F) <= 0.
Proof.
move=> fle0 fcv; rewrite -oppr_ge0.
have limopp : - lim (f @ F) = lim (- f @ F).
apply: Logic.eq_sym; apply: cvg_map_lim; first by apply: Rhausdorff.
by apply: cvgN.
rewrite limopp; apply: le0r_cvg_map; last by rewrite -limopp; apply: cvgN.
by move: fle0; apply: filterS => x; rewrite oppr_ge0.
Qed.
Lemma ler_cvg_map (R : realFieldType) (T : topologicalType) (F : set (set T))
(FF : ProperFilter F) (f g : T -> R) :
(\forall x \near F, f x <= g x) -> cvg (f @ F) -> cvg (g @ F) ->
lim (f @ F) <= lim (g @ F).
Proof.
move=> lefg fcv gcv; rewrite -subr_ge0.
have eqlim : lim (g @ F) - lim (f @ F) = lim ((g - f) @ F).
by apply/esym; apply: cvg_map_lim => //; apply: cvgD => //; apply: cvgN.
rewrite eqlim; apply: le0r_cvg_map; last first.
by rewrite /(cvg _) -eqlim /=; apply: cvgD => //; apply: cvgN.
by move: lefg; apply: filterS => x; rewrite subr_ge0.
Qed.
Lemma derive1_at_max (R : realFieldType) (f : R -> R) (a b c : R) :
a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R ->
(forall t, t \in `]a, b[%R -> f t <= f c) -> is_derive c 1 f 0.
Proof.
move=> leab fdrvbl cab cmax; apply: DeriveDef; first exact: fdrvbl.
apply/eqP; rewrite eq_le; apply/andP; split.
rewrite ['D_1 f c]cvg_at_rightE; last exact: fdrvbl.
apply: ler0_cvg_map; last first.
have /fdrvbl dfc := cab.
rewrite -(cvg_at_rightE (fun h : R => h^-1 *: ((f \o shift c) _ - f c))) //.
apply: cvg_trans dfc; apply: cvg_app.
move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //.
exact/lt0r_neq0.
near=> h; apply: mulr_ge0_le0.
by rewrite invr_ge0; apply: ltW; near: h; exists 1 => /=.
rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h.
exists (b - c); first by rewrite /= subr_gt0 (itvP cab).
move=> h; rewrite /= distrC subr0 /= in_itv /= -ltr_subr_addr.
move=> /(le_lt_trans (ler_norm _)) -> /ltr_spsaddl -> //.
by rewrite (itvP cab).
rewrite ['D_1 f c]cvg_at_leftE; last exact: fdrvbl.
apply: le0r_cvg_map; last first.
have /fdrvbl dfc := cab; rewrite -(cvg_at_leftE (fun h => h^-1 *: ((f \o shift c) _ - f c))) //.
apply: cvg_trans dfc; apply: cvg_app.
move=> A [e egt0 Ae]; exists e => // x xe xgt0; apply: Ae => //.
exact/ltr0_neq0.
near=> h; apply: mulr_le0.
by rewrite invr_le0; apply: ltW; near: h; exists 1 => /=.
rewrite subr_le0 [_%:A]mulr1; apply: cmax; near: h.
exists (c - a); first by rewrite /= subr_gt0 (itvP cab).
move=> h; rewrite /= distrC subr0.
move=> /ltr_normlP []; rewrite ltr_subr_addl ltr_subl_addl in_itv /= => -> _.
by move=> /ltr_snsaddl -> //; rewrite (itvP cab).
Unshelve. all: by end_near. Qed.
Lemma derive1_at_min (R : realFieldType) (f : R -> R) (a b c : R) :
a <= b -> (forall t, t \in `]a, b[%R -> derivable f t 1) -> c \in `]a, b[%R ->
(forall t, t \in `]a, b[%R -> f c <= f t) -> is_derive c 1 f 0.
Proof.
move=> leab fdrvbl cab cmin; apply: DeriveDef; first exact: fdrvbl.
apply/eqP; rewrite -oppr_eq0; apply/eqP.
rewrite -deriveN; last exact: fdrvbl.
suff df : is_derive c 1 (- f) 0 by rewrite derive_val.
apply: derive1_at_max leab _ (cab) _ => t tab; first exact/derivableN/fdrvbl.
by rewrite ler_opp2; apply: cmin.
Qed.
Lemma Rolle (R : realType) (f : R -> R) (a b : R) :
a < b -> (forall x, x \in `]a, b[%R -> derivable f x 1) ->
{within `[a, b], continuous f} -> f a = f b ->
exists2 c, c \in `]a, b[%R & is_derive c 1 f 0.
Proof.
move=> ltab fdrvbl fcont faefb.
have [cmax cmaxab fcmax] := EVT_max (ltW ltab) fcont.
have [cmaxeaVb|] := boolP (cmax \in [set a; b]); last first.
rewrite notin_set => /not_orP[/eqP cnea /eqP cneb].
have {}cmaxab : cmax \in `]a, b[%R.
by rewrite in_itv /= !lt_def !(itvP cmaxab) cnea eq_sym cneb.
exists cmax => //; apply: derive1_at_max (ltW ltab) fdrvbl cmaxab _ => t tab.
by apply: fcmax; rewrite in_itv /= !ltW // (itvP tab).
have [cmin cminab fcmin] := EVT_min (ltW ltab) fcont.
have [cmineaVb|] := boolP (cmin \in [set a; b]); last first.
rewrite notin_set => /not_orP[/eqP cnea /eqP cneb].
have {}cminab : cmin \in `]a, b[%R.
by rewrite in_itv /= !lt_def !(itvP cminab) cnea eq_sym cneb.
exists cmin => //; apply: derive1_at_min (ltW ltab) fdrvbl cminab _ => t tab.
by apply: fcmin; rewrite in_itv /= !ltW // (itvP tab).
have midab : (a + b) / 2 \in `]a, b[%R by apply: mid_in_itvoo.
exists ((a + b) / 2) => //; apply: derive1_at_max (ltW ltab) fdrvbl (midab) _.
move=> t tab.
suff fcst s : s \in `]a, b[%R -> f s = f cmax by rewrite !fcst.
move=> sab.
apply/eqP; rewrite eq_le fcmax; last by rewrite in_itv /= !ltW ?(itvP sab).
suff -> : f cmax = f cmin by rewrite fcmin // in_itv /= !ltW ?(itvP sab).
by move: cmaxeaVb cmineaVb; rewrite 2!inE => -[|] -> [|] ->.
Qed.
Lemma MVT (R : realType) (f df : R -> R) (a b : R) :
a < b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) ->
{within `[a, b], continuous f} ->
exists2 c, c \in `]a, b[%R & f b - f a = df c * (b - a).
Proof.
move=> altb fdrvbl fcont.
set g := f + (- ( *:%R^~ ((f b - f a) / (b - a)) : R -> R)).
have gdrvbl x : x \in `]a, b[%R -> derivable g x 1.
by move=> /fdrvbl dfx; apply: derivableB => //; exact/derivable1_diffP.
have gcont : {within `[a, b], continuous g}.
move=> x; apply: continuousD _ ; first by move=>?; exact: fcont.
by apply/continuousN/continuous_subspaceT => ? ?; exact: scalel_continuous.
have gaegb : g a = g b.
rewrite /g -![(_ - _ : _ -> _) _]/(_ - _).
apply/eqP; rewrite -subr_eq /= opprK addrAC -addrA -scalerBl.
rewrite [_ *: _]mulrA mulrC mulrA mulVf.
by rewrite mul1r addrCA subrr addr0.
by apply: lt0r_neq0; rewrite subr_gt0.
have [c cab dgc0] := Rolle altb gdrvbl gcont gaegb.
exists c; first exact: cab.
have /fdrvbl dfc := cab; move/@derive_val: dgc0; rewrite deriveB //; last first.
exact/derivable1_diffP.
move/eqP; rewrite [X in _ - X]deriveE // derive_val diff_val scale1r subr_eq0.
move/eqP->; rewrite -mulrA mulVf ?mulr1 //; apply: lt0r_neq0.
by rewrite subr_gt0.
Qed.
(* Weakens MVT to work when the interval is a single point. *)
Lemma MVT_segment (R : realType) (f df : R -> R) (a b : R) :
a <= b -> (forall x, x \in `]a, b[%R -> is_derive x 1 f (df x)) ->
{within `[a, b], continuous f} ->
exists2 c, c \in `[a, b]%R & f b - f a = df c * (b - a).
Proof.
move=> leab fdrvbl fcont; case: ltgtP leab => // [altb|aeb]; last first.
by exists a; [rewrite inE/= aeb lexx|rewrite aeb !subrr mulr0].
have [c cab D] := MVT altb fdrvbl fcont.
by exists c => //; rewrite in_itv /= ltW (itvP cab).
Qed.
Lemma ler0_derive1_nincr (R : realType) (f : R -> R) (a b : R) :
(forall x, x \in `]a, b[%R -> derivable f x 1) ->
(forall x, x \in `]a, b[%R -> f^`() x <= 0) ->
{within `[a,b], continuous f} ->
forall x y, a <= x -> x <= y -> y <= b -> f y <= f x.
Proof.
move=> fdrvbl dfle0 ctsf x y leax lexy leyb; rewrite -subr_ge0.
case: ltgtP lexy => // [xlty|->]; last by rewrite subrr.
have itvW : {subset `[x, y]%R <= `[a, b]%R}.
by apply/subitvP; rewrite /<=%O /= /<=%O /= leyb leax.
have itvWlt : {subset `]x, y[%R <= `]a, b[%R}.
by apply subitvP; rewrite /<=%O /= /<=%O /= leyb leax.
have fdrv z : z \in `]x, y[%R -> is_derive z 1 f (f^`()z).
rewrite in_itv/= => /andP[xz zy]; apply: DeriveDef; last by rewrite derive1E.
by apply: fdrvbl; rewrite in_itv/= (le_lt_trans _ xz)// (lt_le_trans zy).
have [] := @MVT _ f (f^`()) x y xlty fdrv.
apply: (@continuous_subspaceW _ _ _ `[a,b]); first exact: itvW.
by rewrite continuous_subspace_in.
move=> t /itvWlt dft dftxy _; rewrite -oppr_le0 opprB dftxy.
by apply: mulr_le0_ge0 => //; [exact: dfle0|by rewrite subr_ge0 ltW].
Qed.
Lemma le0r_derive1_ndecr (R : realType) (f : R -> R) (a b : R) :
(forall x, x \in `]a, b[%R -> derivable f x 1) ->
(forall x, x \in `]a, b[%R -> 0 <= f^`() x) ->
{within `[a,b], continuous f} ->
forall x y, a <= x -> x <= y -> y <= b -> f x <= f y.
Proof.
move=> fdrvbl dfge0 fcont x y; rewrite -[f _ <= _]ler_opp2.
apply (@ler0_derive1_nincr _ (- f)) => t tab; first exact/derivableN/fdrvbl.
rewrite derive1E deriveN; last exact: fdrvbl.
by rewrite oppr_le0 -derive1E; apply: dfge0.
by apply: continuousN; exact: fcont.
Qed.
Lemma derive1_comp (R : realFieldType) (f g : R -> R) x :
derivable f x 1 -> derivable g (f x) 1 ->
(g \o f)^`() x = g^`() (f x) * f^`() x.
Proof.
move=> /derivable1_diffP df /derivable1_diffP dg.
rewrite derive1E'; last exact/differentiable_comp.
rewrite diff_comp // !derive1E' //= -[X in 'd _ _ X = _]mulr1.
by rewrite [LHS]linearZ mulrC.
Qed.
Section is_derive_instances.
Variables (R : numFieldType) (V : normedModType R).
Lemma derivable_cst (x : V) : derivable (fun=> x) 0 1.
Proof. exact/derivable1_diffP/differentiable_cst. Qed.
Lemma derivable_id (x v : V) : derivable id x v.
Proof.
apply/derivable1P/derivableD; last exact/derivable_cst.
exact/derivable1_diffP/differentiableZl.
Qed.
Global Instance is_derive_id (x v : V) : is_derive x v id v.
Proof.
apply: (DeriveDef (@derivable_id _ _)).
by rewrite deriveE// (@diff_lin _ _ _ [linear of idfun]).
Qed.
Global Instance is_deriveNid (x v : V) : is_derive x v -%R (- v).
Proof. by apply: is_deriveN. Qed.
End is_derive_instances.
(* Trick to trigger type class resolution *)
Lemma trigger_derive (R : realType) (f : R -> R) x x1 y1 :
is_derive x 1 f x1 -> x1 = y1 -> is_derive x 1 f y1.
Proof. by move=> Hi <-. Qed.