Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.2 kB
From mathcomp Require Import all_ssreflect all_fingroup all_algebra.
From mathcomp Require Import all_solvable all_field.
From Abel Require Import various.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory Order.TTheory Num.Theory.
Local Open Scope ring_scope.
Local Notation "p ^^ f" := (map_poly f p)
(at level 30, f at level 30, format "p ^^ f").
Record algR := in_algR {algRval : algC; algRvalP : algRval \is Num.real}.
Canonical algR_subType := [subType for algRval].
Definition algR_eqMixin := [eqMixin of algR by <:].
Canonical algR_eqType := EqType algR algR_eqMixin.
Definition algR_choiceMixin := [choiceMixin of algR by <:].
Canonical algR_choiceType := ChoiceType algR algR_choiceMixin.
Definition algR_countMixin := [countMixin of algR by <:].
Canonical algR_countType := CountType algR algR_countMixin.
Definition algR_zmodMixin := [zmodMixin of algR by <:].
Canonical algR_zmodType := ZmodType algR algR_zmodMixin.
Definition algR_ringMixin := [ringMixin of algR by <:].
Canonical algR_ringType := RingType algR algR_ringMixin.
Definition algR_comRingMixin := [comRingMixin of algR by <:].
Canonical algR_comRingType := ComRingType algR algR_comRingMixin.
Definition algR_unitRingMixin := [unitRingMixin of algR by <:].
Canonical algR_unitRingType := UnitRingType algR algR_unitRingMixin.
Canonical algR_comUnitRingType := [comUnitRingType of algR].
Definition algR_idomainMixin := [idomainMixin of algR by <:].
Canonical algR_idomainType := IdomainType algR algR_idomainMixin.
Definition algR_fieldMixin := [fieldMixin of algR by <:].
Canonical algR_fieldType := FieldType algR algR_fieldMixin.
Definition algR_porderMixin := [porderMixin of algR by <:].
Canonical algR_porderType := POrderType ring_display algR algR_porderMixin.
Lemma total_algR : totalPOrderMixin [porderType of algR].
Proof. by move=> x y; apply/real_leVge/valP/valP. Qed.
Canonical algR_latticeType := LatticeType algR total_algR.
Canonical algR_distrLatticeType := DistrLatticeType algR total_algR.
Canonical algR_orderType := OrderType algR total_algR.
Lemma algRval_is_rmorphism : rmorphism algRval. Proof. by []. Qed.
Canonical algRval_additive := Additive algRval_is_rmorphism.
Canonical algRval_rmorphism := RMorphism algRval_is_rmorphism.
Definition algR_norm (x : algR) : algR := in_algR (normr_real (val x)).
Lemma algR_ler_norm_add x y : algR_norm (x + y) <= (algR_norm x + algR_norm y).
Proof. exact: ler_norm_add. Qed.
Lemma algR_normr0_eq0 x : algR_norm x = 0 -> x = 0.
Proof. by move=> /(congr1 val)/normr0_eq0 ?; apply/val_inj. Qed.
Lemma algR_normrMn x n : algR_norm (x *+ n) = algR_norm x *+ n.
Proof. by apply/val_inj; rewrite /= !rmorphMn/= normrMn. Qed.
Lemma algR_normrN x : algR_norm (- x) = algR_norm x.
Proof. by apply/val_inj; apply: normrN. Qed.
Section Num.
Definition algR_normedMixin :=
Num.NormedMixin algR_ler_norm_add algR_normr0_eq0 algR_normrMn algR_normrN.
Section withz.
Let z : algR := 0.
Lemma algR_addr_gt0 (x y : algR) : z < x -> z < y -> z < x + y.
Proof. exact: addr_gt0. Qed.
Lemma algR_ger_leVge (x y : algR) : z <= x -> z <= y -> (x <= y) || (y <= x).
Proof. exact: ger_leVge. Qed.
Lemma algR_normrM : {morph algR_norm : x y / x * y}.
Proof. by move=> *; apply/val_inj; apply: normrM. Qed.
Lemma algR_ler_def (x y : algR) : (x <= y) = (algR_norm (y - x) == y - x).
Proof. by apply: ler_def. Qed.
End withz.
Let algR_ring := (GRing.Ring.Pack (GRing.ComRing.base
(GRing.ComUnitRing.base (GRing.IntegralDomain.base
(GRing.IntegralDomain.class [idomainType of algR]))))).
Definition algR_numMixin : @Num.mixin_of algR_ring _ _ :=
@Num.Mixin _ _ algR_normedMixin
algR_addr_gt0 algR_ger_leVge algR_normrM algR_ler_def.
Canonical algR_numDomainType := NumDomainType algR algR_numMixin.
Canonical algR_normedZmodType := NormedZmodType algR algR algR_normedMixin.
Canonical algR_numFieldType := [numFieldType of algR].
Canonical algR_realDomainType := [realDomainType of algR].
Canonical algR_realFieldType := [realFieldType of algR].
End Num.
Definition algR_archiFieldMixin : Num.archimedean_axiom [numDomainType of algR].
Proof.
move=> /= x; have /andP[/= _] := floorC_itv (valP `|x|).
set n := floorC _; have [n_lt0|n_ge0] := ltP n 0.
move=> /(@lt_le_trans _ _ _ _ 0); rewrite lerz0 lez_addr1.
by move=> /(_ n_lt0); rewrite normr_lt0.
move=> x_lt; exists (`|(n + 1)%R|%N); apply: lt_le_trans x_lt _.
by rewrite /= rmorphMn/= pmulrn gez0_abs// addr_ge0.
Qed.
Canonical algR_archiFieldType := ArchiFieldType algR algR_archiFieldMixin.
Definition algRpfactor (x : algC) : {poly algR} :=
if x \is Num.real =P true is ReflectT xR then 'X - (in_algR xR)%:P else
'X^2 - (in_algR (Creal_Re x) *+ 2) *: 'X + ((in_algR (normr_real x))^+2)%:P.
Notation algCpfactor x := (algRpfactor x ^^ algRval).
Lemma algRpfactorRE (x : algC) (xR : x \is Num.real) :
algRpfactor x = 'X - (in_algR xR)%:P.
Proof.
rewrite /algRpfactor; case: eqP xR => //= p1 p2.
by rewrite (bool_irrelevance p1 p2).
Qed.
Lemma algCpfactorRE (x : algC) : x \is Num.real ->
algCpfactor x = 'X - x%:P.
Proof. by move=> xR; rewrite algRpfactorRE map_polyXsubC. Qed.
Lemma algRpfactorCE (x : algC) : x \isn't Num.real ->
algRpfactor x =
'X^2 - (in_algR (Creal_Re x) *+ 2) *: 'X + ((in_algR (normr_real x))^+2)%:P.
Proof. by rewrite /algRpfactor; case: eqP => // p; rewrite p. Qed.
Lemma algCpfactorCE (x : algC) : x \isn't Num.real ->
algCpfactor x = ('X - x%:P) * ('X - x^*%:P).
Proof.
move=> xNR; rewrite algRpfactorCE//=.
rewrite rmorphD rmorphB/= !map_polyZ !map_polyXn/= map_polyX.
rewrite (map_polyC [rmorphism of algRval])/=.
rewrite mulrBl !mulrBr -!addrA; congr (_ + _).
rewrite opprD addrA opprK -opprD -rmorphM/= -normCK; congr (- _ + _).
rewrite mulrC !mul_polyC -scalerDl.
rewrite [x in RHS]algCrect conjC_rect ?Creal_Re ?Creal_Im//.
by rewrite addrACA addNr addr0.
Qed.
Lemma algCpfactorE x :
algCpfactor x = ('X - x%:P) * ('X - x^*%:P) ^+ (x \isn't Num.real).
Proof.
by have [/algCpfactorRE|/algCpfactorCE] := boolP (_ \is _); rewrite ?mulr1.
Qed.
Lemma size_algCpfactor x : size (algCpfactor x) = (x \isn't Num.real).+2.
Proof.
have [xR|xNR] := boolP (_ \is _); first by rewrite algCpfactorRE// size_XsubC.
by rewrite algCpfactorCE// size_mul ?size_XsubC ?polyXsubC_eq0.
Qed.
Lemma size_algRpfactor x : size (algRpfactor x) = (x \isn't Num.real).+2.
Proof. by have := size_algCpfactor x; rewrite size_map_poly. Qed.
Lemma algCpfactor_eq0 x : (algCpfactor x == 0) = false.
Proof. by rewrite -size_poly_eq0 size_algCpfactor. Qed.
Lemma algRpfactor_eq0 x : (algRpfactor x == 0) = false.
Proof. by rewrite -size_poly_eq0 size_algRpfactor. Qed.
Lemma algCpfactorCgt0 x y : x \isn't Num.real -> y \is Num.real ->
(algCpfactor x).[y] > 0.
Proof.
move=> xNR yR; rewrite algCpfactorCE// hornerM !hornerXsubC.
rewrite [x]algCrect conjC_rect ?Creal_Re ?Creal_Im// !opprD !addrA opprK.
rewrite -subr_sqr exprMn sqrCi mulN1r opprK ltr_paddl//.
- by rewrite real_exprn_even_ge0// ?rpredB// ?Creal_Re.
by rewrite real_exprn_even_gt0 ?Creal_Im ?orTb//=; apply/eqP/Creal_ImP.
Qed.
Lemma algRpfactorR_mul_gt0 (x a b : algC) :
x \is Num.real -> a \is Num.real -> b \is Num.real ->
a <= b ->
((algCpfactor x).[a] * (algCpfactor x).[b] <= 0) =
(a <= x <= b).
Proof.
move=> xR aR bR ab; rewrite !algCpfactorRE// !hornerXsubC.
have [lt_xa|lt_ax|->]/= := real_ltgtP xR aR; last first.
- by rewrite subrr mul0r lexx ab.
- by rewrite nmulr_rle0 ?subr_lt0 ?subr_ge0.
rewrite pmulr_rle0 ?subr_gt0// subr_le0.
by apply: negbTE; rewrite -real_ltNge// (lt_le_trans lt_xa).
Qed.
Lemma monic_algCpfactor x : algCpfactor x \is monic.
Proof. by rewrite algCpfactorE rpredM ?rpredX ?monicXsubC. Qed.
Lemma monic_algRpfactor x : algRpfactor x \is monic.
Proof. by have := monic_algCpfactor x; rewrite map_monic. Qed.
Lemma poly_algR_pfactor (p : {poly algR}) :
{ r : seq algC |
p ^^ algRval = val (lead_coef p) *: \prod_(z <- r) algCpfactor z }.
Proof.
wlog p_monic : p / p \is monic => [hwlog|].
have [->|pN0] := eqVneq p 0.
by exists [::]; rewrite lead_coef0/= rmorph0 scale0r.
have [|r] := hwlog ((lead_coef p)^-1 *: p).
by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0//.
rewrite !lead_coefZ mulVf ?lead_coef_eq0//= scale1r.
rewrite map_polyZ/= => /(canRL (scalerKV _))->; first by exists r.
by rewrite fmorph_eq0 lead_coef_eq0.
suff: {r : seq algC | p ^^ algRval = \prod_(z <- r) algCpfactor z}.
by move=> [r rP]; exists r; rewrite rP (monicP _)// scale1r.
have [/= r pr] := closed_field_poly_normal (p ^^ algRval).
rewrite (monicP _) ?monic_map ?scale1r// {p_monic} in pr *.
have [n] := ubnP (size r).
elim: n r => // n IHn [|x r]/= in p pr *.
by exists [::]; rewrite pr !big_nil.
rewrite ltnS => r_lt.
have xJxr : x^* \in x :: r.
rewrite -root_prod_XsubC -pr.
have /eq_map_poly-> : algRval =1 conjC \o algRval.
by move=> a /=; rewrite (CrealP (algRvalP _)).
by rewrite map_poly_comp mapf_root pr root_prod_XsubC mem_head.
have xJr : (x \isn't Num.real) ==> (x^* \in r) by rewrite implyNb CrealE.
have pxdvdC : algCpfactor x %| p ^^ algRval.
rewrite pr algCpfactorE big_cons/= dvdp_mul2l ?polyXsubC_eq0//.
by case: (_ \is _) xJr; rewrite ?dvd1p// dvdp_XsubCl root_prod_XsubC.
pose pr'x := p %/ algRpfactor x.
have [||r'] := IHn (if x \is Num.real then r else rem x^* r) pr'x; last 2 first.
- by case: (_ \is _) in xJr *; rewrite ?size_rem// (leq_ltn_trans (leq_pred _)).
- move=> /eqP; rewrite map_divp -dvdp_eq_mul ?algCpfactor_eq0//= => /eqP->.
by exists (x :: r'); rewrite big_cons mulrC.
rewrite map_divp/= pr big_cons algCpfactorE/=.
rewrite divp_pmul2l ?expf_neq0 ?polyXsubC_eq0//.
case: (_ \is _) => /= in xJr *; first by rewrite divp1//.
by rewrite (big_rem _ xJr)/= mulKp ?polyXsubC_eq0.
Qed.
Definition algR_rcfMixin : Num.real_closed_axiom [numDomainType of algR].
Proof.
move=> p a b le_ab /andP[pa_le0 pb_ge0]/=.
case: ltgtP pa_le0 => //= pa0 _; last first.
by exists a; rewrite ?lexx// rootE pa0.
case: ltgtP pb_ge0 => //= pb0 _; last first.
by exists b; rewrite ?lexx ?andbT// rootE -pb0.
have p_neq0 : p != 0 by apply: contraTneq pa0 => ->; rewrite horner0 ltxx.
have {pa0 pb0} pab0 : p.[a] * p.[b] < 0 by rewrite pmulr_llt0.
wlog p_monic : p p_neq0 pab0 / p \is monic => [hwlog|].
have [|||x axb] := hwlog ((lead_coef p)^-1 *: p).
- by rewrite scaler_eq0 invr_eq0 lead_coef_eq0 (negPf p_neq0).
- rewrite !hornerE/= -mulrA mulrACA -expr2 pmulr_rlt0//.
by rewrite exprn_even_gt0//= invr_eq0 lead_coef_eq0.
- by rewrite monicE lead_coefZ mulVf ?lead_coef_eq0 ?eqxx.
by rewrite rootZ ?invr_eq0 ?lead_coef_eq0//; exists x.
have /= [rs prs] := poly_algR_pfactor p.
rewrite (monicP _) ?monic_map// scale1r {p_monic} in prs.
pose ab := [pred x | val a <= x <= val b].
have abR : {subset ab <= Num.real}.
move=> x /andP[+ _].
by rewrite -subr_ge0 => /ger0_real; rewrite rpredBr// algRvalP.
wlog : p pab0 {p_neq0 prs} /
p ^^ algRval = \prod_(x <- rs | x \in ab) ('X - x%:P) => [hw|].
move: prs; rewrite -!rmorph_prod => /map_poly_inj.
rewrite (bigID ab)/=; set q := (X in X * _); set u := (X in _ * X) => pqu.
have [||] := hw q; last first.
- by move=> x; exists x => //; rewrite pqu rootM q0.
- by rewrite rmorph_prod/=; under eq_bigr do rewrite algCpfactorRE ?abR//.
have := pab0; rewrite pqu !hornerM mulrACA [_ * _ * _ < 0]pmulr_llt0//.
rewrite !horner_prod -big_split/= prodr_gt0// => x.
have [xR|xNR] := boolP (x \is Num.real); last first.
by rewrite ?ltEsub/= -!horner_map/= mulr_gt0 ?algCpfactorCgt0 ?algRvalP.
apply: contraNT; rewrite -leNgt ?leEsub/= -!horner_map/=.
by rewrite algRpfactorR_mul_gt0 ?algRvalP.
rewrite -big_filter; have := filter_all ab rs.
set rsab := filter _ _.
have: all (mem Num.real) rsab.
by apply/allP => x; rewrite mem_filter => /andP[/abR].
case: rsab => [_ _|x rsab]/=; rewrite (big_nil, big_cons).
move=> pval1; move: pab0.
have /map_poly_inj-> : p ^^ algRval = 1 ^^ algRval by rewrite rmorph1.
by rewrite !hornerE ltr10.
move=> /andP[xR rsabR] /andP[axb arsb] prsab.
exists (in_algR xR) => //=.
by rewrite -(mapf_root [rmorphism of algRval])//= prsab rootM root_XsubC eqxx.
Qed.
Canonical algR_rcfType := RcfType algR algR_rcfMixin.