Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Pseudofunctor | |
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2019 | |
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu> | |
*) | |
section "Pseudofunctors" | |
theory Pseudofunctor | |
imports MonoidalCategory.MonoidalFunctor Bicategory Subbicategory InternalEquivalence Coherence | |
begin | |
text \<open> | |
The traditional definition of a pseudofunctor \<open>F : C \<rightarrow> D\<close> between bicategories \<open>C\<close> and \<open>D\<close> | |
is in terms of two maps: an ``object map'' \<open>F\<^sub>o\<close> that takes objects of \<open>C\<close> to objects of \<open>D\<close> | |
and an ``arrow map'' \<open>F\<^sub>a\<close> that assigns to each pair of objects \<open>a\<close> and \<open>b\<close> of \<open>C\<close> | |
a functor \<open>F\<^sub>a a b\<close> from the hom-category \<open>hom\<^sub>C a b\<close> to the hom-category \<open>hom\<^sub>D (F\<^sub>o a) (F\<^sub>o b)\<close>. | |
In addition, there is assigned to each object \<open>a\<close> of \<open>C\<close> an invertible 2-cell | |
\<open>\<guillemotleft>\<Psi> a : F\<^sub>o a \<Rightarrow>\<^sub>D (F\<^sub>a a a) a\<guillemotright>\<close>, and to each pair \<open>(f, g)\<close> of composable 1-cells of C there | |
is assigned an invertible 2-cell \<open>\<guillemotleft>\<Phi> (f, g) : F g \<star> F f \<Rightarrow> F (g \<star> f)\<guillemotright>\<close>, all subject to | |
naturality and coherence conditions. | |
In keeping with the ``object-free'' style in which we have been working, we do not wish | |
to adopt a definition of pseudofunctor that distinguishes between objects and other | |
arrows. Instead, we would like to understand a pseudofunctor as an ordinary functor between | |
(vertical) categories that weakly preserves horizontal composition in a suitable sense. | |
So, we take as a starting point that a pseudofunctor \<open>F : C \<rightarrow> D\<close> is a functor from | |
\<open>C\<close> to \<open>D\<close>, when these are regarded as ordinary categories with respect to vertical | |
composition. Next, \<open>F\<close> should preserve source and target, but only ``weakly'' | |
(up to isomorphism, rather than ``on the nose''). | |
Weak preservation of horizontal composition is expressed by specifying, for each horizontally | |
composable pair of vertical identities \<open>(f, g)\<close> of \<open>C\<close>, a ``compositor'' | |
\<open>\<guillemotleft>\<Phi> (f, g) : F g \<star> F f \<Rightarrow> F (g \<star> f)\<guillemotright>\<close> in \<open>D\<close>, such that the \<open>\<Phi> (f, g)\<close> are the components | |
of a natural isomorphism. | |
Associators must also be weakly preserved by F; this is expressed by a coherence | |
condition that relates an associator \<open>\<a>\<^sub>C[f, g, h]\<close> in \<open>C\<close>, its image \<open>F \<a>\<^sub>C[f, g, h]\<close>, | |
the associator \<open>\<a>\<^sub>D[F f, F g, F h]\<close> in \<open>D\<close> and compositors involving \<open>f\<close>, \<open>g\<close>, and \<open>h\<close>. | |
As regards the weak preservation of unitors, just as for monoidal functors, | |
which are in fact pseudofunctors between one-object bicategories, it is only necessary | |
to assume that \<open>F \<i>\<^sub>C[a]\<close> and \<open>\<i>\<^sub>D[F a]\<close> are isomorphic in \<open>D\<close> for each object \<open>a\<close> of \<open>C\<close>, | |
for there is then a canonical way to obtain, for each \<open>a\<close>, an isomorphism | |
\<open>\<guillemotleft>\<Psi> a : src (F a) \<rightarrow> F a\<guillemotright>\<close> that satisfies the usual coherence conditions relating the | |
unitors and the associators. Note that the map \<open>a \<mapsto> src (F a)\<close> amounts to the traditional | |
``object map'' \<open>F\<^sub>o\<close>, so that this becomes a derived notion, rather than a primitive one. | |
\<close> | |
subsection "Weak Arrows of Homs" | |
text \<open> | |
We begin with a locale that defines a functor between ``horizontal homs'' that preserves | |
source and target up to isomorphism. | |
\<close> | |
locale weak_arrow_of_homs = | |
C: horizontal_homs C src\<^sub>C trg\<^sub>C + | |
D: horizontal_homs D src\<^sub>D trg\<^sub>D + | |
"functor" C D F | |
for C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55) | |
and src\<^sub>C :: "'c \<Rightarrow> 'c" | |
and trg\<^sub>C :: "'c \<Rightarrow> 'c" | |
and D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55) | |
and src\<^sub>D :: "'d \<Rightarrow> 'd" | |
and trg\<^sub>D :: "'d \<Rightarrow> 'd" | |
and F :: "'c \<Rightarrow> 'd" + | |
assumes weakly_preserves_src: "\<And>\<mu>. C.arr \<mu> \<Longrightarrow> D.isomorphic (F (src\<^sub>C \<mu>)) (src\<^sub>D (F \<mu>))" | |
and weakly_preserves_trg: "\<And>\<mu>. C.arr \<mu> \<Longrightarrow> D.isomorphic (F (trg\<^sub>C \<mu>)) (trg\<^sub>D (F \<mu>))" | |
begin | |
lemma isomorphic_src: | |
assumes "C.obj a" | |
shows "D.isomorphic (src\<^sub>D (F a)) (F a)" | |
using assms weakly_preserves_src [of a] D.isomorphic_symmetric by auto | |
lemma isomorphic_trg: | |
assumes "C.obj a" | |
shows "D.isomorphic (trg\<^sub>D (F a)) (F a)" | |
using assms weakly_preserves_trg [of a] D.isomorphic_symmetric by auto | |
abbreviation (input) hseq\<^sub>C | |
where "hseq\<^sub>C \<mu> \<nu> \<equiv> C.arr \<mu> \<and> C.arr \<nu> \<and> src\<^sub>C \<mu> = trg\<^sub>C \<nu>" | |
abbreviation (input) hseq\<^sub>D | |
where "hseq\<^sub>D \<mu> \<nu> \<equiv> D.arr \<mu> \<and> D.arr \<nu> \<and> src\<^sub>D \<mu> = trg\<^sub>D \<nu>" | |
lemma preserves_hseq: | |
assumes "hseq\<^sub>C \<mu> \<nu>" | |
shows "hseq\<^sub>D (F \<mu>) (F \<nu>)" | |
by (metis D.isomorphic_def D.src_src D.src_trg D.vconn_implies_hpar(3) | |
assms preserves_reflects_arr weakly_preserves_src weakly_preserves_trg) | |
text \<open> | |
Though \<open>F\<close> does not preserve objects ``on the nose'', we can recover from it the | |
usual ``object map'', which does. | |
It is slightly confusing at first to get used to the idea that applying the | |
object map of a weak arrow of homs to an object does not give the same thing | |
as applying the underlying functor, but rather only something isomorphic to it. | |
The following defines the object map associated with \<open>F\<close>. | |
\<close> | |
definition map\<^sub>0 | |
where "map\<^sub>0 a \<equiv> src\<^sub>D (F a)" | |
lemma map\<^sub>0_simps [simp]: | |
assumes "C.obj a" | |
shows "D.obj (map\<^sub>0 a)" | |
and "src\<^sub>D (map\<^sub>0 a) = map\<^sub>0 a" and "trg\<^sub>D (map\<^sub>0 a) = map\<^sub>0 a" | |
and "D.dom (map\<^sub>0 a) = map\<^sub>0 a" and "D.cod (map\<^sub>0 a) = map\<^sub>0 a" | |
using assms map\<^sub>0_def by auto | |
lemma preserves_src [simp]: | |
assumes "C.arr \<mu>" | |
shows "src\<^sub>D (F \<mu>) = map\<^sub>0 (src\<^sub>C \<mu>)" | |
using assms | |
by (metis C.src.preserves_arr C.src_src C.trg_src map\<^sub>0_def preserves_hseq) | |
lemma preserves_trg [simp]: | |
assumes "C.arr \<mu>" | |
shows "trg\<^sub>D (F \<mu>) = map\<^sub>0 (trg\<^sub>C \<mu>)" | |
using assms map\<^sub>0_def preserves_hseq C.src_trg C.trg.preserves_arr by presburger | |
lemma preserves_hhom [intro]: | |
assumes "C.arr \<mu>" | |
shows "D.in_hhom (F \<mu>) (map\<^sub>0 (src\<^sub>C \<mu>)) (map\<^sub>0 (trg\<^sub>C \<mu>))" | |
using assms by simp | |
text \<open> | |
We define here the lifting of \<open>F\<close> to a functor \<open>FF: CC \<rightarrow> DD\<close>. | |
We need this to define the domains and codomains of the compositors. | |
\<close> | |
definition FF | |
where "FF \<equiv> \<lambda>\<mu>\<nu>. if C.VV.arr \<mu>\<nu> then (F (fst \<mu>\<nu>), F (snd \<mu>\<nu>)) else D.VV.null" | |
sublocale FF: "functor" C.VV.comp D.VV.comp FF | |
proof - | |
have 1: "\<And>\<mu>\<nu>. C.VV.arr \<mu>\<nu> \<Longrightarrow> D.VV.arr (FF \<mu>\<nu>)" | |
unfolding FF_def using C.VV.arr_char D.VV.arr_char preserves_hseq by simp | |
show "functor C.VV.comp D.VV.comp FF" | |
proof | |
fix \<mu>\<nu> | |
show "\<not> C.VV.arr \<mu>\<nu> \<Longrightarrow> FF \<mu>\<nu> = D.VV.null" | |
using FF_def by simp | |
show "C.VV.arr \<mu>\<nu> \<Longrightarrow> D.VV.arr (FF \<mu>\<nu>)" | |
using 1 by simp | |
assume \<mu>\<nu>: "C.VV.arr \<mu>\<nu>" | |
show "D.VV.dom (FF \<mu>\<nu>) = FF (C.VV.dom \<mu>\<nu>)" | |
using \<mu>\<nu> 1 FF_def C.VV.arr_char D.VV.arr_char C.VV.dom_simp D.VV.dom_simp | |
by simp | |
show "D.VV.cod (FF \<mu>\<nu>) = FF (C.VV.cod \<mu>\<nu>)" | |
using \<mu>\<nu> 1 FF_def C.VV.arr_char D.VV.arr_char C.VV.cod_simp D.VV.cod_simp | |
by simp | |
next | |
fix \<mu>\<nu> \<tau>\<pi> | |
assume 2: "C.VV.seq \<mu>\<nu> \<tau>\<pi>" | |
show "FF (C.VV.comp \<mu>\<nu> \<tau>\<pi>) = D.VV.comp (FF \<mu>\<nu>) (FF \<tau>\<pi>)" | |
proof - | |
have "FF (C.VV.comp \<mu>\<nu> \<tau>\<pi>) = (F (fst \<mu>\<nu>) \<cdot>\<^sub>D F (fst \<tau>\<pi>), F (snd \<mu>\<nu>) \<cdot>\<^sub>D F (snd \<tau>\<pi>))" | |
using 1 2 FF_def C.VV.comp_char C.VxV.comp_char C.VV.arr_char | |
by (metis (no_types, lifting) C.VV.seq_char C.VxV.seqE fst_conv | |
as_nat_trans.preserves_comp_2 snd_conv) | |
also have "... = D.VV.comp (FF \<mu>\<nu>) (FF \<tau>\<pi>)" | |
using 1 2 FF_def D.VV.comp_char D.VxV.comp_char C.VV.arr_char D.VV.arr_char | |
C.VV.seq_char C.VxV.seqE preserves_seq | |
by (simp, meson) | |
finally show ?thesis by simp | |
qed | |
qed | |
qed | |
lemma functor_FF: | |
shows "functor C.VV.comp D.VV.comp FF" | |
.. | |
end | |
subsection "Definition of Pseudofunctors" | |
text \<open> | |
I don't much like the term "pseudofunctor", which is suggestive of something that | |
is ``not really'' a functor. In the development here we can see that a pseudofunctor | |
is really a \emph{bona fide} functor with respect to vertical composition, | |
which happens to have in addition a weak preservation property with respect to | |
horizontal composition. | |
This weak preservation of horizontal composition is captured by extra structure, | |
the ``compositors'', which are the components of a natural transformation. | |
So ``pseudofunctor'' is really a misnomer; it's an actual functor that has been equipped | |
with additional structure relating to horizontal composition. I would use the term | |
``bifunctor'' for such a thing, but it seems to not be generally accepted and also tends | |
to conflict with the usage of that term to refer to an ordinary functor of two | |
arguments; which I have called a ``binary functor''. Sadly, there seem to be no other | |
plausible choices of terminology, other than simply ``functor'' | |
(recommended on n-Lab @{url \<open>https://ncatlab.org/nlab/show/pseudofunctor\<close>}), | |
but that is not workable here because we need a name that does not clash with that | |
used for an ordinary functor between categories. | |
\<close> | |
locale pseudofunctor = | |
C: bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C + | |
D: bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D + | |
weak_arrow_of_homs V\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D src\<^sub>D trg\<^sub>D F + | |
FoH\<^sub>C: composite_functor C.VV.comp V\<^sub>C V\<^sub>D \<open>\<lambda>\<mu>\<nu>. H\<^sub>C (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> F + | |
H\<^sub>DoFF: composite_functor C.VV.comp D.VV.comp V\<^sub>D | |
FF \<open>\<lambda>\<mu>\<nu>. H\<^sub>D (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> + | |
\<Phi>: natural_isomorphism C.VV.comp V\<^sub>D H\<^sub>DoFF.map FoH\<^sub>C.map \<Phi> | |
for V\<^sub>C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55) | |
and H\<^sub>C :: "'c comp" (infixr "\<star>\<^sub>C" 53) | |
and \<a>\<^sub>C :: "'c \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" ("\<a>\<^sub>C[_, _, _]") | |
and \<i>\<^sub>C :: "'c \<Rightarrow> 'c" ("\<i>\<^sub>C[_]") | |
and src\<^sub>C :: "'c \<Rightarrow> 'c" | |
and trg\<^sub>C :: "'c \<Rightarrow> 'c" | |
and V\<^sub>D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55) | |
and H\<^sub>D :: "'d comp" (infixr "\<star>\<^sub>D" 53) | |
and \<a>\<^sub>D :: "'d \<Rightarrow> 'd \<Rightarrow> 'd \<Rightarrow> 'd" ("\<a>\<^sub>D[_, _, _]") | |
and \<i>\<^sub>D :: "'d \<Rightarrow> 'd" ("\<i>\<^sub>D[_]") | |
and src\<^sub>D :: "'d \<Rightarrow> 'd" | |
and trg\<^sub>D :: "'d \<Rightarrow> 'd" | |
and F :: "'c \<Rightarrow> 'd" | |
and \<Phi> :: "'c * 'c \<Rightarrow> 'd" + | |
assumes assoc_coherence: | |
"\<lbrakk> C.ide f; C.ide g; C.ide h; src\<^sub>C f = trg\<^sub>C g; src\<^sub>C g = trg\<^sub>C h \<rbrakk> \<Longrightarrow> | |
F \<a>\<^sub>C[f, g, h] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h) = | |
\<Phi> (f, g \<star>\<^sub>C h) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h]" | |
begin | |
no_notation C.in_hom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>C _\<guillemotright>") | |
no_notation D.in_hom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>D _\<guillemotright>") | |
notation C.in_hhom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>C _\<guillemotright>") | |
notation C.in_hom ("\<guillemotleft>_ : _ \<Rightarrow>\<^sub>C _\<guillemotright>") | |
notation D.in_hhom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>D _\<guillemotright>") | |
notation D.in_hom ("\<guillemotleft>_ : _ \<Rightarrow>\<^sub>D _\<guillemotright>") | |
notation C.lunit ("\<l>\<^sub>C[_]") | |
notation C.runit ("\<r>\<^sub>C[_]") | |
notation C.lunit' ("\<l>\<^sub>C\<^sup>-\<^sup>1[_]") | |
notation C.runit' ("\<r>\<^sub>C\<^sup>-\<^sup>1[_]") | |
notation C.\<a>' ("\<a>\<^sub>C\<^sup>-\<^sup>1[_, _, _]") | |
notation D.lunit ("\<l>\<^sub>D[_]") | |
notation D.runit ("\<r>\<^sub>D[_]") | |
notation D.lunit' ("\<l>\<^sub>D\<^sup>-\<^sup>1[_]") | |
notation D.runit' ("\<r>\<^sub>D\<^sup>-\<^sup>1[_]") | |
notation D.\<a>' ("\<a>\<^sub>D\<^sup>-\<^sup>1[_, _, _]") | |
lemma weakly_preserves_objects: | |
assumes "C.obj a" | |
shows "D.isomorphic (map\<^sub>0 a) (F a)" | |
using assms weakly_preserves_src [of a] D.isomorphic_symmetric by auto | |
lemma cmp_in_hom [intro]: | |
assumes "C.ide a" and "C.ide b" and "src\<^sub>C a = trg\<^sub>C b" | |
shows "\<guillemotleft>\<Phi> (a, b) : map\<^sub>0 (src\<^sub>C b) \<rightarrow>\<^sub>D map\<^sub>0 (trg\<^sub>C a)\<guillemotright>" | |
and "\<guillemotleft>\<Phi> (a, b) : F a \<star>\<^sub>D F b \<Rightarrow>\<^sub>D F (a \<star>\<^sub>C b)\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<Phi> (a, b) : F a \<star>\<^sub>D F b \<Rightarrow>\<^sub>D F (a \<star>\<^sub>C b)\<guillemotright>" | |
using assms C.VV.arr_char C.VV.dom_char C.VV.cod_char FF_def by auto | |
thus "\<guillemotleft>\<Phi> (a, b) : map\<^sub>0 (src\<^sub>C b) \<rightarrow>\<^sub>D map\<^sub>0 (trg\<^sub>C a)\<guillemotright>" | |
using assms D.vconn_implies_hpar by auto | |
qed | |
lemma cmp_simps [simp]: | |
assumes "C.ide f" and "C.ide g" and "src\<^sub>C f = trg\<^sub>C g" | |
shows "D.arr (\<Phi> (f, g))" | |
and "src\<^sub>D (\<Phi> (f, g)) = src\<^sub>D (F g)" and "trg\<^sub>D (\<Phi> (f, g)) = trg\<^sub>D (F f)" | |
and "D.dom (\<Phi> (f, g)) = F f \<star>\<^sub>D F g" and "D.cod (\<Phi> (f, g)) = F (f \<star>\<^sub>C g)" | |
using assms cmp_in_hom by simp_all blast+ | |
lemma cmp_in_hom': | |
assumes "C.arr \<mu>" and "C.arr \<nu>" and "src\<^sub>C \<mu> = trg\<^sub>C \<nu>" | |
shows "\<guillemotleft>\<Phi> (\<mu>, \<nu>) : map\<^sub>0 (src\<^sub>C \<nu>) \<rightarrow>\<^sub>D map\<^sub>0 (trg\<^sub>C \<mu>)\<guillemotright>" | |
and "\<guillemotleft>\<Phi> (\<mu>, \<nu>) : F (C.dom \<mu>) \<star>\<^sub>D F (C.dom \<nu>) \<Rightarrow>\<^sub>D F (C.cod \<mu> \<star>\<^sub>C C.cod \<nu>)\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<Phi> (\<mu>, \<nu>) : F (C.dom \<mu>) \<star>\<^sub>D F (C.dom \<nu>) \<Rightarrow>\<^sub>D F (C.cod \<mu> \<star>\<^sub>C C.cod \<nu>)\<guillemotright>" | |
using assms C.VV.arr_char C.VV.dom_char C.VV.cod_char FF_def by auto | |
thus "\<guillemotleft>\<Phi> (\<mu>, \<nu>) : map\<^sub>0 (src\<^sub>C \<nu>) \<rightarrow>\<^sub>D map\<^sub>0 (trg\<^sub>C \<mu>)\<guillemotright>" | |
using assms D.vconn_implies_hpar by auto | |
qed | |
lemma cmp_simps': | |
assumes "C.arr \<mu>" and "C.arr \<nu>" and "src\<^sub>C \<mu> = trg\<^sub>C \<nu>" | |
shows "D.arr (\<Phi> (\<mu>, \<nu>))" | |
and "src\<^sub>D (\<Phi> (\<mu>, \<nu>)) = map\<^sub>0 (src\<^sub>C \<nu>)" and "trg\<^sub>D (\<Phi> (\<mu>, \<nu>)) = map\<^sub>0 (trg\<^sub>C \<mu>)" | |
and "D.dom (\<Phi> (\<mu>, \<nu>)) = F (C.dom \<mu>) \<star>\<^sub>D F (C.dom \<nu>)" | |
and "D.cod (\<Phi> (\<mu>, \<nu>)) = F (C.cod \<mu> \<star>\<^sub>C C.cod \<nu>)" | |
using assms cmp_in_hom' by simp_all blast+ | |
lemma cmp_components_are_iso [simp]: | |
assumes "C.ide f" and "C.ide g" and "src\<^sub>C f = trg\<^sub>C g" | |
shows "D.iso (\<Phi> (f, g))" | |
using assms C.VV.ide_char C.VV.arr_char by simp | |
lemma weakly_preserves_hcomp: | |
assumes "C.ide f" and "C.ide g" and "src\<^sub>C f = trg\<^sub>C g" | |
shows "D.isomorphic (F f \<star>\<^sub>D F g) (F (f \<star>\<^sub>C g))" | |
using assms D.isomorphic_def by auto | |
end | |
context pseudofunctor | |
begin | |
text \<open> | |
The following defines the image of the unit isomorphism \<open>\<i>\<^sub>C[a]\<close> under \<open>F\<close>. | |
We will use \<open>(F a, \<i>[a])\<close> as an ``alternate unit'', to substitute for | |
\<open>(src\<^sub>D (F a), \<i>\<^sub>D[src\<^sub>D (F a)])\<close>. | |
\<close> | |
abbreviation (input) \<i> ("\<i>[_]") | |
where "\<i>[a] \<equiv> F \<i>\<^sub>C[a] \<cdot>\<^sub>D \<Phi> (a, a)" | |
lemma \<i>_in_hom [intro]: | |
assumes "C.obj a" | |
shows "\<guillemotleft>F \<i>\<^sub>C[a] \<cdot>\<^sub>D \<Phi> (a, a) : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 a\<guillemotright>" | |
and "\<guillemotleft>\<i>[a] : F a \<star>\<^sub>D F a \<Rightarrow>\<^sub>D F a\<guillemotright>" | |
proof (unfold map\<^sub>0_def) | |
show "\<guillemotleft>F \<i>\<^sub>C[a] \<cdot>\<^sub>D \<Phi> (a, a) : F a \<star>\<^sub>D F a \<Rightarrow>\<^sub>D F a\<guillemotright>" | |
using assms preserves_hom cmp_in_hom | |
by (intro D.comp_in_homI, auto) | |
show "\<guillemotleft>F \<i>\<^sub>C[a] \<cdot>\<^sub>D \<Phi> (a, a) : src\<^sub>D (F a) \<rightarrow>\<^sub>D src\<^sub>D (F a)\<guillemotright>" | |
using assms C.VV.arr_char C.VV.dom_simp C.VV.cod_simp | |
by (intro D.vcomp_in_hhom D.seqI, auto) | |
qed | |
lemma \<i>_simps [simp]: | |
assumes "C.obj a" | |
shows "D.arr (\<i> a)" | |
and "src\<^sub>D \<i>[a] = map\<^sub>0 a" and "trg\<^sub>D \<i>[a] = map\<^sub>0 a" | |
and "D.dom \<i>[a] = F a \<star>\<^sub>D F a" and "D.cod \<i>[a] = F a" | |
using assms \<i>_in_hom by auto | |
lemma iso_\<i>: | |
assumes "C.obj a" | |
shows "D.iso \<i>[a]" | |
using assms C.iso_unit C.obj_self_composable(1) C.seq_if_composable | |
by (meson C.objE D.isos_compose \<i>_simps(1) cmp_components_are_iso preserves_iso) | |
text \<open> | |
If \<open>a\<close> is an object of \<open>C\<close> and we have an isomorphism \<open>\<guillemotleft>\<Phi> (a, a) : F a \<star>\<^sub>D F a \<Rightarrow>\<^sub>D F (a \<star>\<^sub>C a)\<guillemotright>\<close>, | |
then there is a canonical way to define a compatible isomorphism \<open>\<guillemotleft>\<Psi> a : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright>\<close>. | |
Specifically, we take \<open>\<Psi> a\<close> to be the unique isomorphism \<open>\<guillemotleft>\<psi> : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright>\<close> such that | |
\<open>\<psi> \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i>[a] \<cdot>\<^sub>D (\<psi> \<star>\<^sub>D \<psi>)\<close>. | |
\<close> | |
definition unit | |
where "unit a \<equiv> THE \<psi>. \<guillemotleft>\<psi> : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright> \<and> D.iso \<psi> \<and> | |
\<psi> \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i>[a] \<cdot>\<^sub>D (\<psi> \<star>\<^sub>D \<psi>)" | |
lemma unit_char: | |
assumes "C.obj a" | |
shows "\<guillemotleft>unit a : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright>" and "D.iso (unit a)" | |
and "unit a \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i>[a] \<cdot>\<^sub>D (unit a \<star>\<^sub>D unit a)" | |
and "\<exists>!\<psi>. \<guillemotleft>\<psi> : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright> \<and> D.iso \<psi> \<and> \<psi> \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i>[a] \<cdot>\<^sub>D (\<psi> \<star>\<^sub>D \<psi>)" | |
proof - | |
let ?P = "\<lambda>\<psi>. \<guillemotleft>\<psi> : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright> \<and> D.iso \<psi> \<and> \<psi> \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i>[a] \<cdot>\<^sub>D (\<psi> \<star>\<^sub>D \<psi>)" | |
show "\<exists>!\<psi>. ?P \<psi>" | |
proof - | |
have "D.obj (map\<^sub>0 a)" | |
using assms by simp | |
moreover have "D.isomorphic (map\<^sub>0 a) (F a)" | |
unfolding map\<^sub>0_def | |
using assms isomorphic_src by simp | |
ultimately show ?thesis | |
using assms D.unit_unique_upto_unique_iso \<Phi>.preserves_hom \<i>_in_hom iso_\<i> by simp | |
qed | |
hence 1: "?P (unit a)" | |
using assms unit_def the1I2 [of ?P ?P] by simp | |
show "\<guillemotleft>unit a : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright>" using 1 by simp | |
show "D.iso (unit a)" using 1 by simp | |
show "unit a \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i>[a] \<cdot>\<^sub>D (unit a \<star>\<^sub>D unit a)" | |
using 1 by simp | |
qed | |
lemma unit_simps [simp]: | |
assumes "C.obj a" | |
shows "D.arr (unit a)" | |
and "src\<^sub>D (unit a) = map\<^sub>0 a" and "trg\<^sub>D (unit a) = map\<^sub>0 a" | |
and "D.dom (unit a) = map\<^sub>0 a" and "D.cod (unit a) = F a" | |
using assms unit_char(1) | |
apply auto | |
apply (metis D.vconn_implies_hpar(1) map\<^sub>0_simps(2)) | |
by (metis D.vconn_implies_hpar(2) map\<^sub>0_simps(3)) | |
lemma unit_in_hom [intro]: | |
assumes "C.obj a" | |
shows "\<guillemotleft>unit a : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 a\<guillemotright>" | |
and "\<guillemotleft>unit a : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright>" | |
using assms by auto | |
lemma unit_eqI: | |
assumes "C.obj a" and "\<guillemotleft>\<mu>: map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright>" and "D.iso \<mu>" | |
and "\<mu> \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i> a \<cdot>\<^sub>D (\<mu> \<star>\<^sub>D \<mu>)" | |
shows "\<mu> = unit a" | |
using assms unit_def unit_char | |
the1_equality [of "\<lambda>\<mu>. \<guillemotleft>\<mu> : map\<^sub>0 a \<Rightarrow>\<^sub>D F a\<guillemotright> \<and> D.iso \<mu> \<and> | |
\<mu> \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = \<i>[a] \<cdot>\<^sub>D (\<mu> \<star>\<^sub>D \<mu>)" \<mu>] | |
by simp | |
text \<open> | |
The following defines the unique isomorphism satisfying the characteristic conditions | |
for the left unitor \<open>\<l>\<^sub>D[trg\<^sub>D (F f)]\<close>, but using the ``alternate unit'' \<open>\<i>[trg\<^sub>C f]\<close> | |
instead of \<open>\<i>\<^sub>D[trg\<^sub>D (F f)]\<close>, which is used to define \<open>\<l>\<^sub>D[trg\<^sub>D (F f)]\<close>. | |
\<close> | |
definition lF | |
where "lF f \<equiv> THE \<mu>. \<guillemotleft>\<mu> : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright> \<and> | |
F (trg\<^sub>C f) \<star>\<^sub>D \<mu> =(\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" | |
lemma lF_char: | |
assumes "C.ide f" | |
shows "\<guillemotleft>lF f : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright>" | |
and "F (trg\<^sub>C f) \<star>\<^sub>D lF f = (\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" | |
and "\<exists>!\<mu>. \<guillemotleft>\<mu> : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright> \<and> | |
F (trg\<^sub>C f) \<star>\<^sub>D \<mu> = (\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" | |
proof - | |
let ?P = "\<lambda>\<mu>. \<guillemotleft>\<mu> : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright> \<and> | |
F (trg\<^sub>C f) \<star>\<^sub>D \<mu> = (\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" | |
show "\<exists>!\<mu>. ?P \<mu>" | |
proof - | |
interpret Df: prebicategory \<open>(\<cdot>\<^sub>D)\<close> \<open>(\<star>\<^sub>D)\<close> \<a>\<^sub>D | |
using D.is_prebicategory by simp | |
interpret S: subcategory \<open>(\<cdot>\<^sub>D)\<close> \<open>Df.left (F (trg\<^sub>C f))\<close> | |
using assms Df.left_hom_is_subcategory by simp | |
interpret Df: left_hom \<open>(\<cdot>\<^sub>D)\<close> \<open>(\<star>\<^sub>D)\<close> \<open>F (trg\<^sub>C f)\<close> | |
using assms D.weak_unit_char | |
by unfold_locales simp | |
interpret Df: left_hom_with_unit \<open>(\<cdot>\<^sub>D)\<close> \<open>(\<star>\<^sub>D)\<close> \<a>\<^sub>D \<open>\<i>[trg\<^sub>C f]\<close> \<open>F (trg\<^sub>C f)\<close> | |
using assms \<i>_in_hom iso_\<i> D.weak_unit_char(1) assms weakly_preserves_trg | |
by unfold_locales auto | |
have "\<exists>!\<mu>. \<guillemotleft>\<mu> : Df.L (F f) \<Rightarrow>\<^sub>S F f\<guillemotright> \<and> | |
Df.L \<mu> = (\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>S \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" | |
proof - | |
have "Df.left (F (trg\<^sub>C f)) (F f)" | |
using assms weakly_preserves_src D.isomorphic_def D.hseq_char D.hseq_char' | |
Df.left_def | |
by fastforce | |
thus ?thesis | |
using assms Df.lunit_char(3) S.ide_char S.arr_char by simp | |
qed | |
moreover have "Df.L (F f) = F (trg\<^sub>C f) \<star>\<^sub>D F f" | |
using assms by (simp add: Df.H\<^sub>L_def) | |
moreover have "\<And>\<mu>. Df.L \<mu> = F (trg\<^sub>C f) \<star>\<^sub>D \<mu>" | |
using Df.H\<^sub>L_def by simp | |
moreover have "(\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>S \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f] = | |
(\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" | |
by (metis (no_types, lifting) D.arrI D.ext D.hseqI' D.hseq_char' D.seqE | |
D.seq_if_composable D.vconn_implies_hpar(1) D.vconn_implies_hpar(2-3) | |
D.vconn_implies_hpar(4) Df.\<iota>_in_hom Df.arr_\<omega> S.comp_char S.in_hom_char | |
calculation(1,3)) | |
moreover have "\<And>\<mu>. \<guillemotleft>\<mu> : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright> \<longleftrightarrow> | |
\<guillemotleft>\<mu> : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>S F f\<guillemotright>" | |
using assms S.in_hom_char S.arr_char | |
by (metis D.in_homE Df.hom_connected(2) Df.left_def calculation(1-2)) | |
ultimately show ?thesis by simp | |
qed | |
hence 1: "?P (lF f)" | |
using lF_def the1I2 [of ?P ?P] by simp | |
show "\<guillemotleft>lF f : F (trg\<^sub>C f) \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F f\<guillemotright>" | |
using 1 by simp | |
show "F (trg\<^sub>C f) \<star>\<^sub>D lF f = (\<i>[trg\<^sub>C f] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F (trg\<^sub>C f), F (trg\<^sub>C f), F f]" | |
using 1 by simp | |
qed | |
lemma lF_simps [simp]: | |
assumes "C.ide f" | |
shows "D.arr (lF f)" | |
and "src\<^sub>D (lF f) = map\<^sub>0 (src\<^sub>C f)" and "trg\<^sub>D (lF f) = map\<^sub>0 (trg\<^sub>C f)" | |
and "D.dom (lF f) = F (trg\<^sub>C f) \<star>\<^sub>D F f" and "D.cod (lF f) = F f" | |
using assms lF_char(1) | |
apply auto[5] | |
unfolding map\<^sub>0_def | |
using assms | |
apply (metis C.ideD(1) D.vconn_implies_hpar(1,3) map\<^sub>0_def preserves_src) | |
by (metis C.ideD(1) C.src_trg C.trg.preserves_arr D.in_homE D.trg_cod | |
preserves_src preserves_trg) | |
text \<open> | |
\sloppypar | |
The next two lemmas generalize the eponymous results from | |
@{theory MonoidalCategory.MonoidalFunctor}. See the proofs of those results for diagrams. | |
\<close> | |
lemma lunit_coherence1: | |
assumes "C.ide f" | |
shows "\<l>\<^sub>D[F f] \<cdot>\<^sub>D D.inv (unit (trg\<^sub>C f) \<star>\<^sub>D F f) = lF f" | |
proof - | |
let ?b = "trg\<^sub>C f" | |
have 1: "trg\<^sub>D (F f) = map\<^sub>0 ?b" | |
using assms by simp | |
have "lF f \<cdot>\<^sub>D (unit ?b \<star>\<^sub>D F f) = \<l>\<^sub>D[F f]" | |
proof - | |
have "D.par (lF f \<cdot>\<^sub>D (unit ?b \<star>\<^sub>D F f)) \<l>\<^sub>D[F f]" | |
using assms 1 D.lunit_in_hom unit_char(1-2) lF_char(1) D.ideD(1) by auto | |
moreover have "map\<^sub>0 ?b \<star>\<^sub>D (lF f \<cdot>\<^sub>D (unit ?b \<star>\<^sub>D F f)) = map\<^sub>0 ?b \<star>\<^sub>D \<l>\<^sub>D[F f]" | |
proof - | |
have "map\<^sub>0 ?b \<star>\<^sub>D (lF f \<cdot>\<^sub>D (unit ?b \<star>\<^sub>D F f)) = | |
(map\<^sub>0 ?b \<star>\<^sub>D lF f) \<cdot>\<^sub>D (map\<^sub>0 ?b \<star>\<^sub>D unit ?b \<star>\<^sub>D F f)" | |
using assms D.objE [of "map\<^sub>0 (trg\<^sub>C f)"] | |
D.whisker_left [of "map\<^sub>0 ?b" "lF f" "unit ?b \<star>\<^sub>D F f"] | |
by auto | |
also have "... = (map\<^sub>0 ?b \<star>\<^sub>D lF f) \<cdot>\<^sub>D | |
(D.inv (unit ?b) \<star>\<^sub>D F ?b \<star>\<^sub>D F f) \<cdot>\<^sub>D (unit ?b \<star>\<^sub>D unit ?b \<star>\<^sub>D F f)" | |
proof - | |
have "(D.inv (unit ?b) \<star>\<^sub>D F ?b \<star>\<^sub>D F f) \<cdot>\<^sub>D (unit ?b \<star>\<^sub>D unit ?b \<star>\<^sub>D F f) = | |
D.inv (unit ?b) \<cdot>\<^sub>D unit ?b \<star>\<^sub>D F ?b \<cdot>\<^sub>D unit ?b \<star>\<^sub>D F f \<cdot>\<^sub>D F f" | |
using assms unit_char(1-2) | |
D.interchange [of "F ?b" "unit ?b" "F f" "F f"] | |
D.interchange [of "D.inv (unit ?b)" "unit ?b" "F ?b \<star>\<^sub>D F f" "unit ?b \<star>\<^sub>D F f"] | |
by simp | |
also have "... = map\<^sub>0 ?b \<star>\<^sub>D unit ?b \<star>\<^sub>D F f" | |
using assms unit_char(1-2) [of ?b] D.comp_arr_dom D.comp_cod_arr D.comp_inv_arr | |
by (simp add: D.inv_is_inverse) | |
finally show ?thesis by simp | |
qed | |
also have "... = | |
(D.inv (unit ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D lF f) \<cdot>\<^sub>D (unit ?b \<star>\<^sub>D unit ?b \<star>\<^sub>D F f)" | |
proof - | |
have "(map\<^sub>0 ?b \<star>\<^sub>D lF f) \<cdot>\<^sub>D (D.inv (unit ?b) \<star>\<^sub>D F ?b \<star>\<^sub>D F f) = | |
(D.inv (unit ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D lF f)" | |
proof - | |
have "(map\<^sub>0 ?b \<star>\<^sub>D lF f) \<cdot>\<^sub>D (D.inv (unit ?b) \<star>\<^sub>D F ?b \<star>\<^sub>D F f) = | |
D.inv (unit ?b) \<star>\<^sub>D lF f" | |
using assms unit_char(1-2) lF_char(1) D.comp_arr_dom D.comp_cod_arr | |
D.interchange [of "map\<^sub>0 ?b" "D.inv (unit ?b)" "lF f" "F ?b \<star>\<^sub>D F f"] | |
by simp | |
also have "... = D.inv (unit ?b) \<cdot>\<^sub>D F ?b \<star>\<^sub>D F f \<cdot>\<^sub>D lF f" | |
using assms unit_char(1-2) lF_char(1) D.comp_arr_dom D.comp_cod_arr | |
D.inv_in_hom | |
by auto | |
also have "... = (D.inv (unit ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D lF f)" | |
using assms unit_char(1-2) lF_char(1) D.inv_in_hom | |
D.interchange [of "D.inv (unit ?b)" "F ?b" "F f" "lF f"] | |
by simp | |
finally show ?thesis by simp | |
qed | |
thus ?thesis | |
using assms unit_char(1-2) D.inv_in_hom D.comp_assoc by metis | |
qed | |
also have "... = (D.inv (unit ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<i> ?b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f] \<cdot>\<^sub>D | |
(unit ?b \<star>\<^sub>D unit ?b \<star>\<^sub>D F f)" | |
using assms unit_char(1-2) lF_char(2) D.comp_assoc by auto | |
also have "... = ((D.inv (unit ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<i> ?b \<star>\<^sub>D F f) \<cdot>\<^sub>D | |
((unit ?b \<star>\<^sub>D unit ?b) \<star>\<^sub>D F f)) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[map\<^sub>0 ?b, map\<^sub>0 ?b, F f]" | |
using assms unit_char(1-2) D.assoc'_naturality [of "unit ?b" "unit ?b" "F f"] D.comp_assoc | |
by (simp add: \<open>trg\<^sub>D (F f) = map\<^sub>0 (trg\<^sub>C f)\<close>) | |
also have "... = (\<i>\<^sub>D[map\<^sub>0 ?b] \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[map\<^sub>0 ?b, map\<^sub>0 ?b, F f]" | |
proof - | |
have "((D.inv (unit ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<i> ?b \<star>\<^sub>D F f) \<cdot>\<^sub>D ((unit ?b \<star>\<^sub>D unit ?b) \<star>\<^sub>D F f)) = | |
\<i>\<^sub>D[map\<^sub>0 ?b] \<star>\<^sub>D F f" | |
proof - | |
have "((D.inv (unit ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<i> ?b \<star>\<^sub>D F f) \<cdot>\<^sub>D ((unit ?b \<star>\<^sub>D unit ?b) \<star>\<^sub>D F f)) = | |
D.inv (unit ?b) \<cdot>\<^sub>D unit ?b \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 ?b] \<star>\<^sub>D F f" | |
using assms 1 D.unit_in_hom D.whisker_right [of "F f"] unit_char(2-3) | |
D.invert_side_of_triangle(1) | |
by (metis C.ideD(1) C.obj_trg D.seqI' map\<^sub>0_simps(1) unit_in_hom(2) preserves_ide) | |
also have "... = \<i>\<^sub>D[map\<^sub>0 ?b] \<star>\<^sub>D F f" | |
proof - | |
have "(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D unit (trg\<^sub>C f)) \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 ?b] = \<i>\<^sub>D[map\<^sub>0 ?b]" | |
by (simp add: D.comp_cod_arr D.comp_inv_arr D.inv_is_inverse unit_char(2) | |
assms) | |
thus ?thesis | |
by (simp add: D.comp_assoc) | |
qed | |
finally show ?thesis by blast | |
qed | |
thus ?thesis by simp | |
qed | |
also have "... = map\<^sub>0 ?b \<star>\<^sub>D \<l>\<^sub>D[F f]" | |
using assms D.lunit_char [of "F f"] \<open>trg\<^sub>D (F f) = map\<^sub>0 ?b\<close> by simp | |
finally show ?thesis by blast | |
qed | |
ultimately show ?thesis | |
using assms D.L.is_faithful | |
by (metis D.trg_cod D.trg_vcomp D.vseq_implies_hpar(2) lF_simps(3)) | |
qed | |
thus ?thesis | |
using assms 1 unit_char(1-2) C.ideD(1) C.obj_trg D.inverse_arrows_hcomp(1) | |
D.invert_side_of_triangle(2) D.lunit_simps(1) unit_simps(2) preserves_ide | |
D.iso_hcomp as_nat_iso.components_are_iso | |
by metis | |
qed | |
lemma lunit_coherence2: | |
assumes "C.ide f" | |
shows "lF f = F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C f, f)" | |
proof - | |
let ?b = "trg\<^sub>C f" | |
have "D.par (F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (?b, f)) (lF f)" | |
using assms cmp_simps'(1) cmp_simps(4-5) by force | |
moreover have "F ?b \<star>\<^sub>D F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (?b, f) = F ?b \<star>\<^sub>D lF f" | |
proof - | |
have "F ?b \<star>\<^sub>D F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (?b, f) = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D \<Phi> (?b, f))" | |
using assms cmp_in_hom D.whisker_left [of "F ?b" "F \<l>\<^sub>C[f]" "\<Phi> (?b, f)"] | |
by (simp add: calculation) | |
also have "... = F ?b \<star>\<^sub>D lF f" | |
proof - | |
have "(F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D \<Phi> (?b, f)) | |
= (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D F \<a>\<^sub>C[?b, ?b, f] \<cdot>\<^sub>D | |
\<Phi> (?b \<star>\<^sub>C ?b, f) \<cdot>\<^sub>D (\<Phi> (?b, ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f]" | |
proof - | |
have 1: "D.seq (F \<a>\<^sub>C[trg\<^sub>C f, trg\<^sub>C f, f]) | |
(\<Phi> (trg\<^sub>C f \<star>\<^sub>C trg\<^sub>C f, f) \<cdot>\<^sub>D (\<Phi> (trg\<^sub>C f, trg\<^sub>C f) \<star>\<^sub>D F f))" | |
using assms by fastforce | |
hence 2: "D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D F \<a>\<^sub>C[?b, ?b, f] \<cdot>\<^sub>D \<Phi> (?b \<star>\<^sub>C ?b, f) \<cdot>\<^sub>D | |
(\<Phi> (?b, ?b) \<star>\<^sub>D F f) | |
= (F ?b \<star>\<^sub>D \<Phi> (?b, f)) \<cdot>\<^sub>D \<a>\<^sub>D[F ?b, F ?b, F f]" | |
using assms cmp_in_hom assoc_coherence cmp_components_are_iso | |
D.invert_side_of_triangle(1) | |
[of "F \<a>\<^sub>C[?b, ?b, f] \<cdot>\<^sub>D \<Phi> (?b \<star>\<^sub>C ?b, f) \<cdot>\<^sub>D (\<Phi> (?b, ?b) \<star>\<^sub>D F f)" | |
"\<Phi> (?b, ?b \<star>\<^sub>C f)" | |
"(F ?b \<star>\<^sub>D \<Phi> (?b, f)) \<cdot>\<^sub>D \<a>\<^sub>D[F ?b, F ?b, F f]"] | |
C.ideD(1) C.ide_hcomp C.trg_hcomp C.trg_trg C.src_trg C.trg.preserves_ide | |
by metis | |
hence "F ?b \<star>\<^sub>D \<Phi> (?b, f) | |
= (D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D F \<a>\<^sub>C[?b, ?b, f] \<cdot>\<^sub>D \<Phi> (?b \<star>\<^sub>C ?b, f) \<cdot>\<^sub>D | |
(\<Phi> (?b, ?b) \<star>\<^sub>D F f)) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f]" | |
proof - | |
have "D.seq (D.inv (\<Phi> (trg\<^sub>C f, trg\<^sub>C f \<star>\<^sub>C f))) | |
(F \<a>\<^sub>C[trg\<^sub>C f, trg\<^sub>C f, f] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C f \<star>\<^sub>C trg\<^sub>C f, f) \<cdot>\<^sub>D | |
(\<Phi> (trg\<^sub>C f, trg\<^sub>C f) \<star>\<^sub>D F f))" | |
using assms 1 D.hseq_char by auto | |
moreover have "(F (trg\<^sub>C f) \<star>\<^sub>D \<Phi> (trg\<^sub>C f, f)) \<cdot>\<^sub>D \<a>\<^sub>D[F (trg\<^sub>C f), F (trg\<^sub>C f), F f] = | |
D.inv (\<Phi> (trg\<^sub>C f, trg\<^sub>C f \<star>\<^sub>C f)) \<cdot>\<^sub>D | |
F \<a>\<^sub>C[trg\<^sub>C f, trg\<^sub>C f, f] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C f \<star>\<^sub>C trg\<^sub>C f, f) \<cdot>\<^sub>D | |
(\<Phi> (trg\<^sub>C f, trg\<^sub>C f) \<star>\<^sub>D F f)" | |
using assms 2 by simp | |
ultimately show ?thesis | |
using assms | |
D.invert_side_of_triangle(2) | |
[of "D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D F \<a>\<^sub>C[?b, ?b, f] \<cdot>\<^sub>D \<Phi> (?b \<star>\<^sub>C ?b, f) \<cdot>\<^sub>D | |
(\<Phi> (?b, ?b) \<star>\<^sub>D F f)" | |
"F ?b \<star>\<^sub>D \<Phi> (?b, f)" "\<a>\<^sub>D[F ?b, F ?b, F f]"] | |
by fastforce | |
qed | |
thus ?thesis | |
using D.comp_assoc by simp | |
qed | |
also have "... = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D | |
(D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D F (\<i>\<^sub>C[?b] \<star>\<^sub>C f)) \<cdot>\<^sub>D | |
\<Phi> (?b \<star>\<^sub>C ?b, f) \<cdot>\<^sub>D (\<Phi> (?b, ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D | |
\<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f]" | |
proof - | |
have 1: "F (?b \<star>\<^sub>C \<l>\<^sub>C[f]) = F (\<i>\<^sub>C[?b] \<star>\<^sub>C f) \<cdot>\<^sub>D D.inv (F \<a>\<^sub>C[?b, ?b, f])" | |
using assms C.lunit_char(1-2) C.unit_in_hom preserves_inv by auto | |
have "F \<a>\<^sub>C[?b, ?b, f] = D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D F (\<i>\<^sub>C[?b] \<star>\<^sub>C f)" | |
proof - | |
have "F \<a>\<^sub>C[?b, ?b, f] \<cdot>\<^sub>D D.inv (F (\<i>\<^sub>C[?b] \<star>\<^sub>C f)) = | |
D.inv (F (\<i>\<^sub>C[?b] \<star>\<^sub>C f) \<cdot>\<^sub>D D.inv (F \<a>\<^sub>C[?b, ?b, f]))" | |
using assms by (simp add: C.iso_unit D.inv_comp) | |
thus ?thesis | |
using assms 1 D.invert_side_of_triangle D.iso_inv_iso | |
by (metis C.iso_hcomp C.ideD(1) C.ide_is_iso C.iso_lunit C.iso_unit | |
C.lunit_simps(3) C.obj_trg C.src_trg C.trg.as_nat_iso.components_are_iso | |
C.unit_simps(2) D.arr_inv D.inv_inv preserves_iso) | |
qed | |
thus ?thesis by argo | |
qed | |
also have "... = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D (F (\<i>\<^sub>C[?b] \<star>\<^sub>C f) \<cdot>\<^sub>D \<Phi> (?b \<star>\<^sub>C ?b, f)) \<cdot>\<^sub>D | |
(\<Phi> (?b, ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f]" | |
using D.comp_assoc by auto | |
also have "... = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D (\<Phi> (?b, f) \<cdot>\<^sub>D (F \<i>\<^sub>C[?b] \<star>\<^sub>D F f)) \<cdot>\<^sub>D | |
(\<Phi> (?b, ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f]" | |
using assms \<Phi>.naturality [of "(\<i>\<^sub>C[?b], f)"] FF_def C.VV.arr_char C.VV.cod_char | |
C.VV.dom_char | |
by simp | |
also have "... = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D \<Phi> (?b, f) \<cdot>\<^sub>D | |
((F \<i>\<^sub>C[?b] \<star>\<^sub>D F f)) \<cdot>\<^sub>D (\<Phi> (?b, ?b) \<star>\<^sub>D F f) \<cdot>\<^sub>D | |
\<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f]" | |
using D.comp_assoc by auto | |
also have "... = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D \<Phi> (?b, f) \<cdot>\<^sub>D (\<i> ?b \<star>\<^sub>D F f) \<cdot>\<^sub>D | |
\<a>\<^sub>D\<^sup>-\<^sup>1[F ?b, F ?b, F f]" | |
using assms by (simp add: D.comp_assoc D.whisker_right) | |
also have "... = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D | |
(D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D \<Phi> (?b, f)) \<cdot>\<^sub>D | |
(F ?b \<star>\<^sub>D lF f)" | |
using D.comp_assoc assms lF_char(2) by presburger | |
also have "... = (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D lF f)" | |
proof - | |
have "D.inv (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) = | |
D.inv (((F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f))) \<cdot>\<^sub>D \<Phi> (?b, ?b \<star>\<^sub>C f))" | |
using assms D.comp_inv_arr D.comp_inv_arr' cmp_simps(4) | |
D.comp_arr_dom D.comp_assoc | |
by simp | |
also have "... = D.inv (D.inv (\<Phi> (?b, f)) \<cdot>\<^sub>D F (?b \<star>\<^sub>C \<l>\<^sub>C[f]) \<cdot>\<^sub>D \<Phi> (?b, ?b \<star>\<^sub>C f))" | |
proof - | |
have 1: "\<Phi> (?b, f) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) = F (?b \<star>\<^sub>C \<l>\<^sub>C[f]) \<cdot>\<^sub>D \<Phi> (?b, ?b \<star>\<^sub>C f)" | |
using assms \<Phi>.naturality [of "(?b, \<l>\<^sub>C[f])"] FF_def C.VV.arr_char | |
C.VV.cod_char D.VV.null_char C.VV.dom_simp | |
by simp | |
have "(F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) = | |
D.inv (\<Phi> (?b, f)) \<cdot>\<^sub>D F (?b \<star>\<^sub>C \<l>\<^sub>C[f])" | |
proof - | |
have "D.seq (\<Phi> (?b, f)) (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f])" | |
using assms cmp_in_hom(2) [of ?b f] by auto | |
moreover have "D.iso (\<Phi> (?b, f)) \<and> D.iso (\<Phi> (?b, ?b \<star>\<^sub>C f))" | |
using assms by simp | |
ultimately show ?thesis | |
using 1 D.invert_opposite_sides_of_square by simp | |
qed | |
thus ?thesis | |
using D.comp_assoc by auto | |
qed | |
also have "... = D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f]) \<cdot>\<^sub>D \<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D \<Phi> (?b, f)" | |
proof - | |
have "D.iso (F (?b \<star>\<^sub>C \<l>\<^sub>C[f]) \<cdot>\<^sub>D \<Phi> (?b, ?b \<star>\<^sub>C f))" | |
using assms D.isos_compose C.VV.arr_char C.iso_lunit C.VV.dom_simp | |
C.VV.cod_simp | |
by simp | |
moreover have "D.iso (D.inv (\<Phi> (?b, f)))" | |
using assms by simp | |
moreover have "D.seq (D.inv (\<Phi> (?b, f))) (F (?b \<star>\<^sub>C \<l>\<^sub>C[f]) \<cdot>\<^sub>D \<Phi> (?b, ?b \<star>\<^sub>C f))" | |
using assms C.VV.arr_char C.VV.dom_simp C.VV.cod_simp by simp | |
ultimately show ?thesis | |
using assms D.inv_comp by simp | |
qed | |
also have "... = D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D \<Phi> (?b, f)" | |
using D.comp_assoc D.inv_comp assms cmp_simps'(1) cmp_simps(5) by force | |
finally have "D.inv (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) | |
= D.inv (\<Phi> (?b, ?b \<star>\<^sub>C f)) \<cdot>\<^sub>D D.inv (F (?b \<star>\<^sub>C \<l>\<^sub>C[f])) \<cdot>\<^sub>D \<Phi> (?b, f)" | |
by blast | |
thus ?thesis by argo | |
qed | |
also have "... = ((F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]) \<cdot>\<^sub>D D.inv (F ?b \<star>\<^sub>D F \<l>\<^sub>C[f])) \<cdot>\<^sub>D (F ?b \<star>\<^sub>D lF f)" | |
using D.comp_assoc by simp | |
also have "... = F ?b \<star>\<^sub>D lF f" | |
using assms D.comp_arr_inv' [of "F ?b \<star>\<^sub>D F \<l>\<^sub>C[f]"] D.comp_cod_arr by simp | |
finally show ?thesis by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
ultimately show ?thesis | |
using assms D.L.is_faithful | |
by (metis D.in_homI lF_char(2-3) lF_simps(4-5)) | |
qed | |
lemma lunit_coherence: | |
assumes "C.ide f" | |
shows "\<l>\<^sub>D[F f] = F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f)" | |
proof - | |
have "\<l>\<^sub>D[F f] = (F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C f, f)) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f)" | |
by (metis C.ideD(1) C.obj_trg D.inv_inv D.invert_side_of_triangle(2) | |
D.iso_hcomp D.iso_inv_iso as_nat_iso.components_are_iso assms lF_simps(1) | |
lunit_coherence1 lunit_coherence2 preserves_trg unit_char(2) unit_simps(2)) | |
thus ?thesis | |
using assms D.comp_assoc by simp | |
qed | |
text \<open> | |
We postpone proving the dual version of this result until after we have developed | |
the notion of the ``op bicategory'' in the next section. | |
\<close> | |
end | |
subsection "Pseudofunctors and Opposite Bicategories" | |
text \<open> | |
There are three duals to a bicategory: | |
\begin{enumerate} | |
\item ``op'': sources and targets are exchanged; | |
\item ``co'': domains and codomains are exchanged; | |
\item ``co-op'': both sources and targets and domains and codomains are exchanged. | |
\end{enumerate} | |
Here we consider the "op" case. | |
\<close> | |
locale op_bicategory = | |
B: bicategory V H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B | |
for V :: "'a comp" (infixr "\<cdot>" 55) | |
and H\<^sub>B :: "'a comp" (infixr "\<star>\<^sub>B" 53) | |
and \<a>\<^sub>B :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>\<^sub>B[_, _, _]") | |
and \<i>\<^sub>B :: "'a \<Rightarrow> 'a" ("\<i>\<^sub>B[_]") | |
and src\<^sub>B :: "'a \<Rightarrow> 'a" | |
and trg\<^sub>B :: "'a \<Rightarrow> 'a" | |
begin | |
abbreviation H (infixr "\<star>" 53) | |
where "H f g \<equiv> H\<^sub>B g f" | |
abbreviation \<i> ("\<i>[_]") | |
where "\<i> \<equiv> \<i>\<^sub>B" | |
abbreviation src | |
where "src \<equiv> trg\<^sub>B" | |
abbreviation trg | |
where "trg \<equiv> src\<^sub>B" | |
interpretation horizontal_homs V src trg | |
by (unfold_locales, auto) | |
interpretation H: "functor" VV.comp V \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> | |
using VV.arr_char VV.dom_simp VV.cod_simp | |
apply unfold_locales | |
apply (metis (no_types, lifting) B.hseqE B.hseq_char') | |
apply auto[3] | |
using VV.comp_char VV.seq_char VV.arr_char B.VxV.comp_char B.interchange | |
by (metis (no_types, lifting) B.VxV.seqE fst_conv snd_conv) | |
interpretation horizontal_composition V H src trg | |
by (unfold_locales, auto) | |
abbreviation UP | |
where "UP \<mu>\<nu>\<tau> \<equiv> if B.VVV.arr \<mu>\<nu>\<tau> then | |
(snd (snd \<mu>\<nu>\<tau>), fst (snd \<mu>\<nu>\<tau>), fst \<mu>\<nu>\<tau>) | |
else VVV.null" | |
abbreviation DN | |
where "DN \<mu>\<nu>\<tau> \<equiv> if VVV.arr \<mu>\<nu>\<tau> then | |
(snd (snd \<mu>\<nu>\<tau>), fst (snd \<mu>\<nu>\<tau>), fst \<mu>\<nu>\<tau>) | |
else B.VVV.null" | |
lemma VVV_arr_char: | |
shows "VVV.arr \<mu>\<nu>\<tau> \<longleftrightarrow> B.VVV.arr (DN \<mu>\<nu>\<tau>)" | |
using VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char B.VVV.not_arr_null | |
by auto | |
lemma VVV_ide_char: | |
shows "VVV.ide \<mu>\<nu>\<tau> \<longleftrightarrow> B.VVV.ide (DN \<mu>\<nu>\<tau>)" | |
proof - | |
have "VVV.ide \<mu>\<nu>\<tau> \<longleftrightarrow> VVV.arr \<mu>\<nu>\<tau> \<and> B.VxVxV.ide \<mu>\<nu>\<tau>" | |
using VVV.ide_char by simp | |
also have "... \<longleftrightarrow> B.VVV.arr (DN \<mu>\<nu>\<tau>) \<and> B.VxVxV.ide (DN \<mu>\<nu>\<tau>)" | |
using VVV_arr_char B.VxVxV.ide_char by auto | |
also have "... \<longleftrightarrow> B.VVV.ide (DN \<mu>\<nu>\<tau>)" | |
using B.VVV.ide_char [of "DN \<mu>\<nu>\<tau>"] by blast | |
finally show ?thesis by fast | |
qed | |
lemma VVV_dom_char: | |
shows "VVV.dom \<mu>\<nu>\<tau> = UP (B.VVV.dom (DN \<mu>\<nu>\<tau>))" | |
proof (cases "VVV.arr \<mu>\<nu>\<tau>") | |
show "\<not> VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> VVV.dom \<mu>\<nu>\<tau> = UP (B.VVV.dom (DN \<mu>\<nu>\<tau>))" | |
using VVV.dom_def VVV.has_domain_iff_arr VVV_arr_char B.VVV.dom_null | |
by auto | |
show "VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> VVV.dom \<mu>\<nu>\<tau> = UP (B.VVV.dom (DN \<mu>\<nu>\<tau>))" | |
proof - | |
assume \<mu>\<nu>\<tau>: "VVV.arr \<mu>\<nu>\<tau>" | |
have "VVV.dom \<mu>\<nu>\<tau> = | |
(B.dom (fst \<mu>\<nu>\<tau>), B.dom (fst (snd \<mu>\<nu>\<tau>)), B.dom (snd (snd \<mu>\<nu>\<tau>)))" | |
using \<mu>\<nu>\<tau> VVV.dom_char VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char | |
by simp | |
also have "... = UP (B.dom (snd (snd \<mu>\<nu>\<tau>)), B.dom (fst (snd \<mu>\<nu>\<tau>)), B.dom (fst \<mu>\<nu>\<tau>))" | |
by (metis (no_types, lifting) B.VV.arrI B.VVV.arr_char B.arr_dom VV.arrE VVV.arrE | |
\<mu>\<nu>\<tau> fst_conv snd_conv src_dom trg_dom) | |
also have "... = UP (B.VVV.dom (DN \<mu>\<nu>\<tau>))" | |
using \<mu>\<nu>\<tau> B.VVV.dom_char B.VVV.arr_char B.VV.arr_char VVV.arr_char VV.arr_char | |
by simp | |
finally show ?thesis by blast | |
qed | |
qed | |
lemma VVV_cod_char: | |
shows "VVV.cod \<mu>\<nu>\<tau> = UP (B.VVV.cod (DN \<mu>\<nu>\<tau>))" | |
proof (cases "VVV.arr \<mu>\<nu>\<tau>") | |
show "\<not> VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> VVV.cod \<mu>\<nu>\<tau> = UP (B.VVV.cod (DN \<mu>\<nu>\<tau>))" | |
using VVV.cod_def VVV.has_codomain_iff_arr VVV_arr_char B.VVV.cod_null | |
by auto | |
show "VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> VVV.cod \<mu>\<nu>\<tau> = UP (B.VVV.cod (DN \<mu>\<nu>\<tau>))" | |
proof - | |
assume \<mu>\<nu>\<tau>: "VVV.arr \<mu>\<nu>\<tau>" | |
have "VVV.cod \<mu>\<nu>\<tau> = (B.cod (fst \<mu>\<nu>\<tau>), B.cod (fst (snd \<mu>\<nu>\<tau>)), B.cod (snd (snd \<mu>\<nu>\<tau>)))" | |
using \<mu>\<nu>\<tau> VVV.cod_char VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char | |
by simp | |
also have "... = UP (B.cod (snd (snd \<mu>\<nu>\<tau>)), B.cod (fst (snd \<mu>\<nu>\<tau>)), B.cod (fst \<mu>\<nu>\<tau>))" | |
by (metis (no_types, lifting) B.VV.arrI B.VVV.arr_char B.arr_cod VV.arrE VVV.arrE | |
\<mu>\<nu>\<tau> fst_conv snd_conv src_cod trg_cod) | |
also have "... = UP (B.VVV.cod (DN \<mu>\<nu>\<tau>))" | |
using \<mu>\<nu>\<tau> B.VVV.cod_char B.VVV.arr_char B.VV.arr_char VVV.arr_char VV.arr_char | |
by simp | |
finally show ?thesis by blast | |
qed | |
qed | |
lemma HoHV_char: | |
shows "HoHV \<mu>\<nu>\<tau> = B.HoVH (DN \<mu>\<nu>\<tau>)" | |
using HoHV_def B.HoVH_def VVV_arr_char by simp | |
lemma HoVH_char: | |
shows "HoVH \<mu>\<nu>\<tau> = B.HoHV (DN \<mu>\<nu>\<tau>)" | |
using HoVH_def B.HoHV_def VVV_arr_char by simp | |
definition \<a> ("\<a>[_, _, _]") | |
where "\<a>[\<mu>, \<nu>, \<tau>] \<equiv> B.\<alpha>' (DN (\<mu>, \<nu>, \<tau>))" | |
interpretation natural_isomorphism VVV.comp \<open>(\<cdot>)\<close> HoHV HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)]\<close> | |
proof | |
fix \<mu>\<nu>\<tau> | |
show "\<not> VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> \<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)] = B.null" | |
using VVV.arr_char B.VVV.arr_char \<a>_def B.\<alpha>'.is_extensional by auto | |
assume \<mu>\<nu>\<tau>: "VVV.arr \<mu>\<nu>\<tau>" | |
show "B.dom \<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)] = HoHV (VVV.dom \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> \<a>_def HoHV_def B.\<alpha>'.preserves_dom VVV.arr_char VVV.dom_char VV.arr_char | |
B.HoVH_def B.VVV.arr_char B.VV.arr_char B.VVV.dom_char | |
by auto | |
show "B.cod \<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)] = HoVH (VVV.cod \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> \<a>_def HoVH_def B.\<alpha>'.preserves_cod VVV.arr_char VVV.cod_char VV.arr_char | |
B.HoHV_def B.VVV.arr_char B.VV.arr_char B.VVV.cod_char | |
by auto | |
show "HoVH \<mu>\<nu>\<tau> \<cdot> | |
\<a>[fst (VVV.dom \<mu>\<nu>\<tau>), fst (snd (VVV.dom \<mu>\<nu>\<tau>)), snd (snd (VVV.dom \<mu>\<nu>\<tau>))] = | |
\<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)]" | |
proof - | |
have "HoVH \<mu>\<nu>\<tau> \<cdot> | |
\<a>[fst (VVV.dom \<mu>\<nu>\<tau>), fst (snd (VVV.dom \<mu>\<nu>\<tau>)), snd (snd (VVV.dom \<mu>\<nu>\<tau>))] = | |
HoVH \<mu>\<nu>\<tau> \<cdot> B.\<alpha>' (B.VVV.dom (snd (snd \<mu>\<nu>\<tau>), fst (snd \<mu>\<nu>\<tau>), fst \<mu>\<nu>\<tau>))" | |
unfolding \<a>_def | |
using \<mu>\<nu>\<tau> VVV.arr_char VV.arr_char VVV.dom_char B.VVV.arr_char B.VVV.dom_char | |
by auto | |
also have "... = B.\<alpha>' (snd (snd \<mu>\<nu>\<tau>), fst (snd \<mu>\<nu>\<tau>), fst \<mu>\<nu>\<tau>)" | |
using B.\<alpha>'.is_natural_1 VVV_arr_char \<mu>\<nu>\<tau> HoVH_char by presburger | |
also have "... = \<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)]" | |
using \<mu>\<nu>\<tau> \<a>_def by simp | |
finally show ?thesis by blast | |
qed | |
show "\<a>[fst (VVV.cod \<mu>\<nu>\<tau>), fst (snd (VVV.cod \<mu>\<nu>\<tau>)), snd (snd (VVV.cod \<mu>\<nu>\<tau>))] \<cdot> | |
HoHV \<mu>\<nu>\<tau> = | |
\<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))" | |
proof - | |
have "\<a>[fst (VVV.cod \<mu>\<nu>\<tau>), fst (snd (VVV.cod \<mu>\<nu>\<tau>)), snd (snd (VVV.cod \<mu>\<nu>\<tau>))] \<cdot> | |
HoHV \<mu>\<nu>\<tau> = | |
B.\<alpha>' (B.VVV.cod (snd (snd \<mu>\<nu>\<tau>), fst (snd \<mu>\<nu>\<tau>), fst \<mu>\<nu>\<tau>)) \<cdot> HoHV \<mu>\<nu>\<tau>" | |
unfolding \<a>_def | |
using \<mu>\<nu>\<tau> VVV.arr_char VV.arr_char VVV.cod_char B.VVV.arr_char B.VVV.cod_char | |
by auto | |
also have "... = B.\<alpha>' (snd (snd \<mu>\<nu>\<tau>), fst (snd \<mu>\<nu>\<tau>), fst \<mu>\<nu>\<tau>)" | |
using B.\<alpha>'.is_natural_2 VVV_arr_char \<mu>\<nu>\<tau> HoHV_char by presburger | |
also have "... = \<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)]" | |
using \<mu>\<nu>\<tau> \<a>_def by simp | |
finally show ?thesis by blast | |
qed | |
next | |
fix \<mu>\<nu>\<tau> | |
assume \<mu>\<nu>\<tau>: "VVV.ide \<mu>\<nu>\<tau>" | |
show "B.iso \<a>[fst \<mu>\<nu>\<tau>, fst (snd \<mu>\<nu>\<tau>), snd (snd \<mu>\<nu>\<tau>)]" | |
proof - | |
have "B.VVV.ide (DN \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> VVV_ide_char by blast | |
thus ?thesis | |
using \<mu>\<nu>\<tau> \<a>_def B.\<alpha>'.components_are_iso by force | |
qed | |
qed | |
sublocale bicategory V H \<a> \<i> src trg | |
proof | |
show "\<And>a. obj a \<Longrightarrow> \<guillemotleft>\<i> a : H a a \<rightarrow>\<^sub>B a\<guillemotright>" | |
using obj_def objE B.obj_def B.objE B.unit_in_hom by meson | |
show "\<And>a. obj a \<Longrightarrow> B.iso (\<i> a)" | |
using obj_def objE B.obj_def B.objE B.iso_unit by meson | |
show "\<And>f g h k. \<lbrakk> B.ide f; B.ide g; B.ide h; B.ide k; | |
src f = trg g; src g = trg h; src h = trg k \<rbrakk> \<Longrightarrow> | |
(f \<star> \<a>[g, h, k]) \<cdot> \<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k) = \<a>[f, g, h \<star> k] \<cdot> \<a>[f \<star> g, h, k]" | |
unfolding \<a>_def | |
using B.\<a>'_def B.comp_assoc B.pentagon' VVV.arr_char VV.arr_char by simp | |
qed | |
proposition is_bicategory: | |
shows "bicategory V H \<a> \<i> src trg" | |
.. | |
lemma assoc_ide_simp: | |
assumes "B.ide f" and "B.ide g" and "B.ide h" | |
and "src f = trg g" and "src g = trg h" | |
shows "\<a>[f, g, h] = B.\<a>' h g f" | |
using assms \<a>_def B.\<a>'_def by fastforce | |
lemma lunit_ide_simp: | |
assumes "B.ide f" | |
shows "lunit f = B.runit f" | |
proof (intro B.runit_eqI) | |
show "B.ide f" by fact | |
show "\<guillemotleft>lunit f : H (trg f) f \<rightarrow>\<^sub>B f\<guillemotright>" | |
using assms by simp | |
show "trg f \<star> lunit f = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sub>B[f, trg f, trg f]" | |
proof - | |
have "trg f \<star> lunit f = (\<i>[trg f] \<star> f) \<cdot> \<a>' (trg f) (trg f) f" | |
using assms lunit_char(1-2) [of f] by simp | |
moreover have "\<a>' (trg f) (trg f) f = \<a>\<^sub>B[f, trg f, trg f]" | |
proof (unfold \<a>'_def) | |
have 1: "VVV.ide (trg f, trg f, f)" | |
using assms VVV.ide_char VVV.arr_char VV.arr_char by simp | |
have "\<alpha>' (trg f, trg f, f) = B.inv \<a>[trg f, trg f, f]" | |
using 1 B.\<alpha>'.inverts_components by simp | |
also have "... = B.inv (B.\<alpha>' (f, trg f, trg f))" | |
unfolding \<a>_def using 1 by simp | |
also have "... = \<a>\<^sub>B[f, trg f, trg f]" | |
using 1 B.VVV.ide_char B.VVV.arr_char B.VV.arr_char VVV.ide_char | |
VVV.arr_char VV.arr_char B.\<alpha>'.inverts_components B.\<alpha>_def | |
by force | |
finally show "\<alpha>' (trg f, trg f, f) = \<a>\<^sub>B[f, trg f, trg f]" | |
by blast | |
qed | |
ultimately show ?thesis by simp | |
qed | |
qed | |
lemma runit_ide_simp: | |
assumes "B.ide f" | |
shows "runit f = B.lunit f" | |
using assms runit_char(1-2) [of f] B.\<a>'_def assoc_ide_simp | |
by (intro B.lunit_eqI) auto | |
end | |
context pseudofunctor | |
begin | |
interpretation C': op_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C .. | |
interpretation D': op_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D .. | |
notation C'.H (infixr "\<star>\<^sub>C\<^sup>o\<^sup>p" 53) | |
notation D'.H (infixr "\<star>\<^sub>D\<^sup>o\<^sup>p" 53) | |
interpretation F': weak_arrow_of_homs V\<^sub>C C'.src C'.trg V\<^sub>D D'.src D'.trg F | |
apply unfold_locales | |
using weakly_preserves_src weakly_preserves_trg by simp_all | |
interpretation H\<^sub>D'oFF: composite_functor C'.VV.comp D'.VV.comp V\<^sub>D F'.FF | |
\<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>D\<^sup>o\<^sup>p snd \<mu>\<nu>\<close> .. | |
interpretation FoH\<^sub>C': composite_functor C'.VV.comp V\<^sub>C V\<^sub>D | |
\<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>C\<^sup>o\<^sup>p snd \<mu>\<nu>\<close> F | |
.. | |
interpretation \<Phi>': natural_isomorphism C'.VV.comp V\<^sub>D H\<^sub>D'oFF.map FoH\<^sub>C'.map | |
\<open>\<lambda>f. \<Phi> (snd f, fst f)\<close> | |
using C.VV.arr_char C'.VV.arr_char C'.VV.ide_char C.VV.ide_char FF_def F'.FF_def | |
\<Phi>.is_extensional \<Phi>.is_natural_1 \<Phi>.is_natural_2 | |
C.VV.dom_simp C.VV.cod_simp C'.VV.dom_simp C'.VV.cod_simp | |
by unfold_locales auto | |
interpretation F': pseudofunctor V\<^sub>C C'.H C'.\<a> \<i>\<^sub>C C'.src C'.trg | |
V\<^sub>D D'.H D'.\<a> \<i>\<^sub>D D'.src D'.trg | |
F \<open>\<lambda>f. \<Phi> (snd f, fst f)\<close> | |
proof | |
fix f g h | |
assume f: "C.ide f" and g: "C.ide g" and h: "C.ide h" | |
and fg: "C'.src f = C'.trg g" and gh: "C'.src g = C'.trg h" | |
show "F (C'.\<a> f g h) \<cdot>\<^sub>D \<Phi> (snd (f \<star>\<^sub>C\<^sup>o\<^sup>p g, h), fst (f \<star>\<^sub>C\<^sup>o\<^sup>p g, h)) \<cdot>\<^sub>D | |
(\<Phi> (snd (f, g), fst (f, g)) \<star>\<^sub>D\<^sup>o\<^sup>p F h) = | |
\<Phi> (snd (f, g \<star>\<^sub>C\<^sup>o\<^sup>p h), fst (f, g \<star>\<^sub>C\<^sup>o\<^sup>p h)) \<cdot>\<^sub>D (F f \<star>\<^sub>D\<^sup>o\<^sup>p \<Phi> (snd (g, h), fst (g, h))) \<cdot>\<^sub>D | |
D'.\<a> (F f) (F g) (F h)" | |
using f g h fg gh C.VV.in_hom_char FF_def C.VV.arr_char C.VV.dom_simp C.VV.cod_simp | |
C'.assoc_ide_simp D'.assoc_ide_simp preserves_inv assoc_coherence | |
D.invert_opposite_sides_of_square | |
[of "F (\<a>\<^sub>C h g f)" "\<Phi> (g \<star>\<^sub>C\<^sup>o\<^sup>p h, f) \<cdot>\<^sub>D (F f \<star>\<^sub>D\<^sup>o\<^sup>p \<Phi> (h, g))" | |
"\<Phi> (h, f \<star>\<^sub>C\<^sup>o\<^sup>p g) \<cdot>\<^sub>D (\<Phi> (g, f) \<star>\<^sub>D\<^sup>o\<^sup>p F h)" "\<a>\<^sub>D (F h) (F g) (F f)"] | |
D.comp_assoc | |
by auto | |
qed | |
lemma induces_pseudofunctor_between_opposites: | |
shows "pseudofunctor (\<cdot>\<^sub>C) (\<star>\<^sub>C\<^sup>o\<^sup>p) C'.\<a> \<i>\<^sub>C C'.src C'.trg | |
(\<cdot>\<^sub>D) (\<star>\<^sub>D\<^sup>o\<^sup>p) D'.\<a> \<i>\<^sub>D D'.src D'.trg | |
F (\<lambda>f. \<Phi> (snd f, fst f))" | |
.. | |
text \<open> | |
It is now easy to dualize the coherence condition for \<open>F\<close> with respect to | |
left unitors to obtain the corresponding condition for right unitors. | |
\<close> | |
lemma runit_coherence: | |
assumes "C.ide f" | |
shows "\<r>\<^sub>D[F f] = F \<r>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f))" | |
proof - | |
have "C'.lunit f = \<r>\<^sub>C[f]" | |
using assms C'.lunit_ide_simp by simp | |
moreover have "D'.lunit (F f) = \<r>\<^sub>D[F f]" | |
using assms D'.lunit_ide_simp by simp | |
moreover have "F'.unit (src\<^sub>C f) = unit (src\<^sub>C f)" | |
using assms F'.unit_char F'.preserves_trg | |
by (intro unit_eqI) auto | |
moreover have "D'.lunit (F f) = | |
F (C'.lunit f) \<cdot>\<^sub>D \<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D F'.unit (src\<^sub>C f))" | |
using assms F'.lunit_coherence by simp | |
ultimately show ?thesis by simp | |
qed | |
end | |
subsection "Preservation Properties" | |
text \<open> | |
The objective of this section is to establish explicit formulas for the result | |
of applying a pseudofunctor to expressions of various forms. | |
\<close> | |
context pseudofunctor | |
begin | |
lemma preserves_lunit: | |
assumes "C.ide f" | |
shows "F \<l>\<^sub>C[f] = \<l>\<^sub>D[F f] \<cdot>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f))" | |
and "F \<l>\<^sub>C\<^sup>-\<^sup>1[f] = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f]" | |
proof - | |
show 1: "F \<l>\<^sub>C[f] = \<l>\<^sub>D[F f] \<cdot>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f))" | |
proof - | |
have "\<l>\<^sub>D[F f] \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f)) = F \<l>\<^sub>C[f]" | |
proof - | |
have "D.arr \<l>\<^sub>D[F f]" | |
using assms by simp | |
moreover have "\<l>\<^sub>D[F f] = F \<l>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f)" | |
using assms lunit_coherence by simp | |
moreover have "D.iso (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f))" | |
using assms unit_char cmp_components_are_iso | |
by (intro D.isos_compose D.seqI) auto | |
ultimately show ?thesis | |
using assms D.invert_side_of_triangle(2) by metis | |
qed | |
moreover have "D.inv (\<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f)) = | |
(D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f))" | |
using assms C.VV.arr_char unit_char FF_def D.inv_comp C.VV.dom_simp by simp | |
ultimately show ?thesis by simp | |
qed | |
show "F \<l>\<^sub>C\<^sup>-\<^sup>1[f] = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f]" | |
proof - | |
have "F \<l>\<^sub>C\<^sup>-\<^sup>1[f] = | |
D.inv (\<l>\<^sub>D[F f] \<cdot>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<star>\<^sub>D F f) \<cdot>\<^sub>D D.inv (\<Phi> (trg\<^sub>C f, f)))" | |
using assms 1 preserves_inv by simp | |
also have "... = \<Phi> (trg\<^sub>C f, f) \<cdot>\<^sub>D (unit (trg\<^sub>C f) \<star>\<^sub>D F f) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f]" | |
using assms unit_char D.comp_assoc D.isos_compose | |
by (auto simp add: D.inv_comp) | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma preserves_runit: | |
assumes "C.ide f" | |
shows "F \<r>\<^sub>C[f] = \<r>\<^sub>D[F f] \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (unit (src\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))" | |
and "F \<r>\<^sub>C\<^sup>-\<^sup>1[f] = \<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f)) \<cdot>\<^sub>D \<r>\<^sub>D\<^sup>-\<^sup>1[F f]" | |
proof - | |
show 1: "F \<r>\<^sub>C[f] = \<r>\<^sub>D[F f] \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (unit (src\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))" | |
proof - | |
have "F \<r>\<^sub>C[f] = \<r>\<^sub>D[F f] \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f)))" | |
proof - | |
have "\<r>\<^sub>D[F f] = F \<r>\<^sub>C[f] \<cdot>\<^sub>D \<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f))" | |
using assms runit_coherence by simp | |
moreover have "D.iso (\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f)))" | |
using assms unit_char D.iso_hcomp FF_def | |
apply (intro D.isos_compose D.seqI) by auto | |
moreover have "D.arr \<r>\<^sub>D[F f]" | |
using assms by simp | |
ultimately show ?thesis | |
using assms D.invert_side_of_triangle(2) by metis | |
qed | |
moreover have "D.inv (\<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f))) = | |
(F f \<star>\<^sub>D D.inv (unit (src\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f))" | |
using assms C.VV.arr_char unit_char D.iso_hcomp FF_def D.inv_comp C.VV.dom_simp | |
by simp | |
ultimately show ?thesis by simp | |
qed | |
show "F \<r>\<^sub>C\<^sup>-\<^sup>1[f] = \<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f)) \<cdot>\<^sub>D \<r>\<^sub>D\<^sup>-\<^sup>1[F f]" | |
proof - | |
have "F \<r>\<^sub>C\<^sup>-\<^sup>1[f] = | |
D.inv (\<r>\<^sub>D[F f] \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv (unit (src\<^sub>C f))) \<cdot>\<^sub>D D.inv (\<Phi> (f, src\<^sub>C f)))" | |
using assms 1 preserves_inv C.iso_runit by simp | |
also have "... = \<Phi> (f, src\<^sub>C f) \<cdot>\<^sub>D (F f \<star>\<^sub>D unit (src\<^sub>C f)) \<cdot>\<^sub>D \<r>\<^sub>D\<^sup>-\<^sup>1[F f]" | |
using assms unit_char D.comp_assoc D.isos_compose | |
by (auto simp add: D.inv_comp) | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma preserves_assoc: | |
assumes "C.ide f" and "C.ide g" and "C.ide h" | |
and "src\<^sub>C f = trg\<^sub>C g" and "src\<^sub>C g = trg\<^sub>C h" | |
shows "F \<a>\<^sub>C[f, g, h] = \<Phi> (f, g \<star>\<^sub>C h) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h] \<cdot>\<^sub>D | |
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F h) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, h))" | |
and "F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, h] = \<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F h] \<cdot>\<^sub>D | |
(F f \<star>\<^sub>D D.inv (\<Phi> (g, h))) \<cdot>\<^sub>D D.inv (\<Phi> (f, g \<star>\<^sub>C h))" | |
proof - | |
show 1: "F \<a>\<^sub>C[f, g, h] = | |
\<Phi> (f, g \<star>\<^sub>C h) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h] \<cdot>\<^sub>D | |
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F h) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, h))" | |
proof - | |
have "F \<a>\<^sub>C[f, g, h] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h) = | |
\<Phi> (f, g \<star>\<^sub>C h) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h]" | |
using assms assoc_coherence [of f g h] by simp | |
moreover have "D.seq (\<Phi> (f, g \<star>\<^sub>C h)) ((F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h])" | |
using assms C.VV.arr_char FF_def C.VV.dom_simp C.VV.cod_simp by auto | |
moreover have 2: "D.iso (\<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h))" | |
using assms C.VV.arr_char FF_def C.VV.dom_simp C.VV.cod_simp by auto | |
moreover have "D.inv (\<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h)) = | |
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F h) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, h))" | |
using assms 2 C.VV.arr_char FF_def D.inv_comp C.VV.dom_simp C.VV.cod_simp | |
by simp | |
ultimately show ?thesis | |
using D.invert_side_of_triangle(2) | |
[of "\<Phi> (f, g \<star>\<^sub>C h) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h]" | |
"F \<a>\<^sub>C[f, g, h]" "\<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h)"] | |
D.comp_assoc | |
by simp | |
qed | |
show "F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, h] = | |
\<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F h] \<cdot>\<^sub>D | |
(F f \<star>\<^sub>D D.inv (\<Phi> (g, h))) \<cdot>\<^sub>D D.inv (\<Phi> (f, g \<star>\<^sub>C h))" | |
proof - | |
have "F \<a>\<^sub>C\<^sup>-\<^sup>1[f, g, h] = | |
D.inv (\<Phi> (f, g \<star>\<^sub>C h) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h] \<cdot>\<^sub>D | |
(D.inv (\<Phi> (f, g)) \<star>\<^sub>D F h) \<cdot>\<^sub>D D.inv (\<Phi> (f \<star>\<^sub>C g, h)))" | |
using assms 1 preserves_inv by simp | |
also have "... = \<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, F g, F h] \<cdot>\<^sub>D | |
(F f \<star>\<^sub>D D.inv (\<Phi> (g, h))) \<cdot>\<^sub>D D.inv (\<Phi> (f, g \<star>\<^sub>C h))" | |
proof - | |
have "\<guillemotleft>\<Phi> (f, g \<star>\<^sub>C h) : F f \<star>\<^sub>D F (g \<star>\<^sub>C h) \<Rightarrow>\<^sub>D F (f \<star>\<^sub>C g \<star>\<^sub>C h)\<guillemotright> \<and> D.iso (\<Phi> (f, g \<star>\<^sub>C h))" | |
using assms by auto | |
moreover have "\<guillemotleft>F f \<star>\<^sub>D \<Phi> (g, h) : F f \<star>\<^sub>D F g \<star>\<^sub>D F h \<Rightarrow>\<^sub>D F f \<star>\<^sub>D F (g \<star>\<^sub>C h)\<guillemotright> \<and> | |
D.iso (F f \<star>\<^sub>D \<Phi> (g, h))" | |
using assms | |
by (intro conjI D.hcomp_in_vhom, auto) | |
ultimately show ?thesis | |
using assms D.isos_compose D.comp_assoc | |
by (elim conjE D.in_homE) (auto simp add: D.inv_comp) | |
qed | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma preserves_hcomp: | |
assumes "C.hseq \<mu> \<nu>" | |
shows "F (\<mu> \<star>\<^sub>C \<nu>) = | |
\<Phi> (C.cod \<mu>, C.cod \<nu>) \<cdot>\<^sub>D (F \<mu> \<star>\<^sub>D F \<nu>) \<cdot>\<^sub>D D.inv (\<Phi> (C.dom \<mu>, C.dom \<nu>))" | |
proof - | |
have "F (\<mu> \<star>\<^sub>C \<nu>) \<cdot>\<^sub>D \<Phi> (C.dom \<mu>, C.dom \<nu>) = \<Phi> (C.cod \<mu>, C.cod \<nu>) \<cdot>\<^sub>D (F \<mu> \<star>\<^sub>D F \<nu>)" | |
using assms \<Phi>.naturality C.VV.arr_char C.VV.cod_char FF_def C.VV.dom_simp | |
by auto | |
thus ?thesis | |
by (metis (no_types) assms C.hcomp_simps(3) C.hseqE C.ide_dom C.src_dom C.trg_dom | |
D.comp_arr_inv' D.comp_assoc cmp_components_are_iso cmp_simps(5) | |
as_nat_trans.is_natural_1) | |
qed | |
lemma preserves_adjunction_data: | |
assumes "adjunction_data_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>" | |
shows "adjunction_data_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D | |
(F f) (F g) (D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) | |
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))" | |
proof | |
interpret adjunction_data_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon> | |
using assms by auto | |
show "D.ide (F f)" | |
using preserves_ide by simp | |
show "D.ide (F g)" | |
using preserves_ide by simp | |
show "\<guillemotleft>D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) : src\<^sub>D (F f) \<Rightarrow>\<^sub>D F g \<star>\<^sub>D F f\<guillemotright>" | |
using antipar C.VV.ide_char C.VV.arr_char cmp_in_hom(2) unit_in_hom FF_def by auto | |
show "\<guillemotleft>D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) : F f \<star>\<^sub>D F g \<Rightarrow>\<^sub>D src\<^sub>D (F g)\<guillemotright>" | |
using antipar C.VV.ide_char C.VV.arr_char FF_def cmp_in_hom(2) unit_in_hom(2) | |
unit_char(2) | |
by auto | |
qed | |
lemma preserves_equivalence: | |
assumes "equivalence_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>" | |
shows "equivalence_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D | |
(F f) (F g) (D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) | |
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))" | |
proof - | |
interpret equivalence_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon> | |
using assms by auto | |
show "equivalence_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D | |
(F f) (F g) (D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) | |
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))" | |
using antipar unit_is_iso preserves_iso unit_char(2) C.VV.ide_char C.VV.arr_char | |
FF_def D.isos_compose | |
by (unfold_locales) auto | |
qed | |
lemma preserves_equivalence_maps: | |
assumes "C.equivalence_map f" | |
shows "D.equivalence_map (F f)" | |
proof - | |
obtain g \<eta> \<epsilon> where E: "equivalence_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>" | |
using assms C.equivalence_map_def by auto | |
interpret E: equivalence_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon> | |
using E by auto | |
show ?thesis | |
using E preserves_equivalence C.equivalence_map_def D.equivalence_map_def map\<^sub>0_simps | |
by blast | |
qed | |
lemma preserves_equivalent_objects: | |
assumes "C.equivalent_objects a b" | |
shows "D.equivalent_objects (map\<^sub>0 a) (map\<^sub>0 b)" | |
using assms D.equivalent_objects_def preserves_equivalence_maps | |
unfolding C.equivalent_objects_def by fast | |
lemma preserves_isomorphic: | |
assumes "C.isomorphic f g" | |
shows "D.isomorphic (F f) (F g)" | |
using assms C.isomorphic_def D.isomorphic_def preserves_iso by auto | |
lemma preserves_quasi_inverses: | |
assumes "C.quasi_inverses f g" | |
shows "D.quasi_inverses (F f) (F g)" | |
using assms C.quasi_inverses_def D.quasi_inverses_def preserves_equivalence by blast | |
lemma preserves_quasi_inverse: | |
assumes "C.equivalence_map f" | |
shows "D.isomorphic (F (C.some_quasi_inverse f)) (D.some_quasi_inverse (F f))" | |
using assms preserves_quasi_inverses C.quasi_inverses_some_quasi_inverse | |
D.quasi_inverse_unique D.quasi_inverses_some_quasi_inverse | |
preserves_equivalence_maps | |
by blast | |
end | |
subsection "Identity Pseudofunctors" | |
locale identity_pseudofunctor = | |
B: bicategory V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B | |
for V\<^sub>B :: "'b comp" (infixr "\<cdot>\<^sub>B" 55) | |
and H\<^sub>B :: "'b comp" (infixr "\<star>\<^sub>B" 53) | |
and \<a>\<^sub>B :: "'b \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b" ("\<a>\<^sub>B[_, _, _]") | |
and \<i>\<^sub>B :: "'b \<Rightarrow> 'b" ("\<i>\<^sub>B[_]") | |
and src\<^sub>B :: "'b \<Rightarrow> 'b" | |
and trg\<^sub>B :: "'b \<Rightarrow> 'b" | |
begin | |
text\<open> | |
The underlying vertical functor is just the identity functor on the vertical category, | |
which is already available as \<open>B.map\<close>. | |
\<close> | |
abbreviation map | |
where "map \<equiv> B.map" | |
interpretation I: weak_arrow_of_homs V\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>B src\<^sub>B trg\<^sub>B map | |
using B.isomorphic_reflexive by unfold_locales auto | |
interpretation II: "functor" B.VV.comp B.VV.comp I.FF | |
using I.functor_FF by simp | |
interpretation H\<^sub>BoII: composite_functor B.VV.comp B.VV.comp V\<^sub>B I.FF | |
\<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>B snd \<mu>\<nu>\<close> | |
.. | |
interpretation IoH\<^sub>B: composite_functor B.VV.comp V\<^sub>B V\<^sub>B \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>B snd \<mu>\<nu>\<close> map | |
.. | |
text\<open> | |
The horizontal composition provides the compositor. | |
\<close> | |
abbreviation cmp | |
where "cmp \<equiv> \<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>B snd \<mu>\<nu>" | |
interpretation cmp: natural_transformation B.VV.comp V\<^sub>B H\<^sub>BoII.map IoH\<^sub>B.map cmp | |
using B.VV.arr_char B.VV.dom_simp B.VV.cod_simp B.H.as_nat_trans.is_natural_1 | |
B.H.as_nat_trans.is_natural_2 I.FF_def | |
apply unfold_locales | |
apply auto | |
by (meson B.hseqE B.hseq_char')+ | |
interpretation cmp: natural_isomorphism B.VV.comp V\<^sub>B H\<^sub>BoII.map IoH\<^sub>B.map cmp | |
by unfold_locales simp | |
sublocale pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B map cmp | |
apply unfold_locales | |
by (metis B.assoc_is_natural_2 B.assoc_naturality B.assoc_simps(1) B.comp_ide_self | |
B.hcomp_simps(1) B.ide_char B.ide_hcomp B.map_simp fst_conv snd_conv) | |
lemma is_pseudofunctor: | |
shows "pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B map cmp" | |
.. | |
lemma unit_char': | |
assumes "B.obj a" | |
shows "unit a = a" | |
proof - | |
have "src\<^sub>B a = a \<and> B.ide a" | |
using assms by auto | |
hence "a = unit a" | |
using assms B.comp_arr_dom B.comp_cod_arr I.map\<^sub>0_def map_def | |
B.ide_in_hom(2) B.objE [of a] B.ide_is_iso [of a] | |
by (intro unit_eqI) auto | |
thus ?thesis by simp | |
qed | |
end | |
lemma (in identity_pseudofunctor) map\<^sub>0_simp [simp]: | |
assumes "B.obj a" | |
shows "map\<^sub>0 a = a" | |
using assms map\<^sub>0_def by auto | |
(* TODO: Does not recognize map\<^sub>0_def unless the context is closed, then re-opened. *) | |
subsection "Embedding Pseudofunctors" | |
text \<open> | |
In this section, we construct the embedding pseudofunctor of a sub-bicategory | |
into the ambient bicategory. | |
\<close> | |
locale embedding_pseudofunctor = | |
B: bicategory V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B + | |
S: subbicategory | |
begin | |
no_notation B.in_hom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>B _\<guillemotright>") | |
notation B.in_hhom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>B _\<guillemotright>") | |
definition map | |
where "map \<mu> = (if S.arr \<mu> then \<mu> else B.null)" | |
lemma map_in_hom [intro]: | |
assumes "S.arr \<mu>" | |
shows "\<guillemotleft>map \<mu> : src\<^sub>B (map (S.src \<mu>)) \<rightarrow>\<^sub>B src\<^sub>B (map (S.trg \<mu>))\<guillemotright>" | |
and "\<guillemotleft>map \<mu> : map (S.dom \<mu>) \<Rightarrow>\<^sub>B map (S.cod \<mu>)\<guillemotright>" | |
proof - | |
show 1: "\<guillemotleft>map \<mu> : map (S.dom \<mu>) \<Rightarrow>\<^sub>B map (S.cod \<mu>)\<guillemotright>" | |
using assms map_def S.in_hom_char by fastforce | |
show "\<guillemotleft>map \<mu> : src\<^sub>B (map (S.src \<mu>)) \<rightarrow>\<^sub>B src\<^sub>B (map (S.trg \<mu>))\<guillemotright>" | |
using assms 1 map_def S.arr_char S.src_def S.trg_def S.obj_char S.obj_src S.obj_trg | |
by auto | |
qed | |
lemma map_simps [simp]: | |
assumes "S.arr \<mu>" | |
shows "B.arr (map \<mu>)" | |
and "src\<^sub>B (map \<mu>) = src\<^sub>B (map (S.src \<mu>))" and "trg\<^sub>B (map \<mu>) = src\<^sub>B (map (S.trg \<mu>))" | |
and "B.dom (map \<mu>) = map (S.dom \<mu>)" and "B.cod (map \<mu>) = map (S.cod \<mu>)" | |
using assms map_in_hom by blast+ | |
interpretation "functor" S.comp V map | |
apply unfold_locales | |
apply auto | |
using map_def S.comp_char S.seq_char S.arr_char | |
apply auto[1] | |
using map_def S.comp_simp by auto | |
interpretation weak_arrow_of_homs S.comp S.src S.trg V src\<^sub>B trg\<^sub>B map | |
using S.arr_char map_def S.src_def S.trg_def S.src_closed S.trg_closed B.isomorphic_reflexive | |
preserves_ide S.ide_src S.ide_trg | |
apply unfold_locales | |
by presburger+ | |
interpretation HoFF: composite_functor S.VV.comp B.VV.comp V FF | |
\<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>B snd \<mu>\<nu>\<close> | |
.. | |
interpretation FoH: composite_functor S.VV.comp S.comp V \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> map | |
.. | |
no_notation B.in_hom ("\<guillemotleft>_ : _ \<rightarrow>\<^sub>B _\<guillemotright>") | |
definition cmp | |
where "cmp \<mu>\<nu> = (if S.VV.arr \<mu>\<nu> then fst \<mu>\<nu> \<star>\<^sub>B snd \<mu>\<nu> else B.null)" | |
lemma cmp_in_hom [intro]: | |
assumes "S.VV.arr \<mu>\<nu>" | |
shows "\<guillemotleft>cmp \<mu>\<nu> : src\<^sub>B (snd \<mu>\<nu>) \<rightarrow>\<^sub>B trg\<^sub>B (fst \<mu>\<nu>)\<guillemotright>" | |
and "\<guillemotleft>cmp \<mu>\<nu> : map (S.dom (fst \<mu>\<nu>)) \<star>\<^sub>B map (S.dom (snd \<mu>\<nu>)) | |
\<Rightarrow>\<^sub>B map (S.cod (fst \<mu>\<nu>) \<star> S.cod (snd \<mu>\<nu>))\<guillemotright>" | |
proof - | |
show "\<guillemotleft>cmp \<mu>\<nu> : map (S.dom (fst \<mu>\<nu>)) \<star>\<^sub>B map (S.dom (snd \<mu>\<nu>)) | |
\<Rightarrow>\<^sub>B map (S.cod (fst \<mu>\<nu>) \<star> S.cod (snd \<mu>\<nu>))\<guillemotright>" | |
proof | |
show 1: "B.arr (cmp \<mu>\<nu>)" | |
unfolding cmp_def | |
using assms S.arr_char S.VV.arr_char S.inclusion S.src_def S.trg_def by auto | |
show "B.dom (cmp \<mu>\<nu>) = map (S.dom (fst \<mu>\<nu>)) \<star>\<^sub>B map (S.dom (snd \<mu>\<nu>))" | |
unfolding cmp_def map_def | |
using assms 1 cmp_def S.dom_simp S.cod_simp S.VV.arr_char S.arr_char S.hcomp_def | |
S.inclusion S.dom_closed | |
by auto | |
show "B.cod (cmp \<mu>\<nu>) = map (S.cod (fst \<mu>\<nu>) \<star> S.cod (snd \<mu>\<nu>))" | |
unfolding cmp_def map_def | |
using assms 1 S.H.preserves_arr S.cod_simp S.hcomp_eqI S.hcomp_simps(4) S.hseq_char' | |
by auto | |
qed | |
thus "\<guillemotleft>cmp \<mu>\<nu> : src\<^sub>B (snd \<mu>\<nu>) \<rightarrow>\<^sub>B trg\<^sub>B (fst \<mu>\<nu>)\<guillemotright>" | |
using cmp_def by auto | |
qed | |
lemma cmp_simps [simp]: | |
assumes "S.VV.arr \<mu>\<nu>" | |
shows "B.arr (cmp \<mu>\<nu>)" | |
and "src\<^sub>B (cmp \<mu>\<nu>) = S.src (snd \<mu>\<nu>)" and "trg\<^sub>B (cmp \<mu>\<nu>) = S.trg (fst \<mu>\<nu>)" | |
and "B.dom (cmp \<mu>\<nu>) = map (S.dom (fst \<mu>\<nu>)) \<star>\<^sub>B map (S.dom (snd \<mu>\<nu>))" | |
and "B.cod (cmp \<mu>\<nu>) = map (S.cod (fst \<mu>\<nu>) \<star> S.cod (snd \<mu>\<nu>))" | |
using assms cmp_in_hom S.src_def S.trg_def S.VV.arr_char | |
by simp_all blast+ | |
lemma iso_cmp: | |
assumes "S.VV.ide \<mu>\<nu>" | |
shows "B.iso (cmp \<mu>\<nu>)" | |
using assms S.VV.ide_char S.VV.arr_char S.arr_char cmp_def S.ide_char S.src_def S.trg_def | |
by auto | |
interpretation \<Phi>\<^sub>E: natural_isomorphism S.VV.comp V HoFF.map FoH.map cmp | |
proof | |
show "\<And>\<mu>\<nu>. \<not> S.VV.arr \<mu>\<nu> \<Longrightarrow> cmp \<mu>\<nu> = B.null" | |
using cmp_def by simp | |
fix \<mu>\<nu> | |
assume \<mu>\<nu>: "S.VV.arr \<mu>\<nu>" | |
have 1: "S.arr (fst \<mu>\<nu>) \<and> S.arr (snd \<mu>\<nu>) \<and> S.src (fst \<mu>\<nu>) = S.trg (snd \<mu>\<nu>)" | |
using \<mu>\<nu> S.VV.arr_char by simp | |
show "B.dom (cmp \<mu>\<nu>) = HoFF.map (S.VV.dom \<mu>\<nu>)" | |
using \<mu>\<nu> FF_def S.VV.arr_char S.VV.dom_char S.arr_dom S.src_def S.trg_def | |
S.dom_char S.src.preserves_dom S.trg.preserves_dom | |
apply simp | |
by (metis (no_types, lifting)) | |
show "B.cod (cmp \<mu>\<nu>) = FoH.map (S.VV.cod \<mu>\<nu>)" | |
using \<mu>\<nu> 1 map_def S.hseq_char S.hcomp_def S.cod_char S.arr_cod S.VV.cod_simp | |
by simp | |
show "cmp (S.VV.cod \<mu>\<nu>) \<cdot>\<^sub>B HoFF.map \<mu>\<nu> = cmp \<mu>\<nu>" | |
using \<mu>\<nu> 1 cmp_def S.VV.arr_char S.VV.cod_char FF_def S.arr_cod S.cod_simp | |
S.src_def S.trg_def map_def | |
apply simp | |
by (metis (no_types, lifting) B.comp_cod_arr B.hcomp_simps(4) cmp_simps(1) \<mu>\<nu>) | |
show "FoH.map \<mu>\<nu> \<cdot>\<^sub>B cmp (S.VV.dom \<mu>\<nu>) = cmp \<mu>\<nu>" | |
unfolding cmp_def map_def | |
using \<mu>\<nu> S.VV.arr_char B.VV.arr_char S.VV.dom_char S.VV.cod_char B.comp_arr_dom | |
S.hcomp_def | |
apply simp | |
by (metis (no_types, lifting) B.hcomp_simps(3) cmp_def cmp_simps(1) S.arr_char | |
S.dom_char S.hcomp_closed S.src_def S.trg_def) | |
next | |
show "\<And>fg. S.VV.ide fg \<Longrightarrow> B.iso (cmp fg)" | |
using iso_cmp by simp | |
qed | |
sublocale pseudofunctor S.comp S.hcomp S.\<a> \<i> S.src S.trg V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B map cmp | |
proof | |
fix f g h | |
assume f: "S.ide f" and g: "S.ide g" and h: "S.ide h" | |
and fg: "S.src f = S.trg g" and gh: "S.src g = S.trg h" | |
have 1: "B.ide f \<and> B.ide g \<and> B.ide h \<and> src\<^sub>B f = trg\<^sub>B g \<and> src\<^sub>B g = trg\<^sub>B h" | |
using f g h fg gh S.ide_char S.arr_char S.src_def S.trg_def by simp | |
show "map (S.\<a> f g h) \<cdot>\<^sub>B cmp (f \<star> g, h) \<cdot>\<^sub>B cmp (f, g) \<star>\<^sub>B map h = | |
cmp (f, g \<star> h) \<cdot>\<^sub>B (map f \<star>\<^sub>B cmp (g, h)) \<cdot>\<^sub>B \<a>\<^sub>B[map f, map g, map h]" | |
proof - | |
have "map (S.\<a> f g h) \<cdot>\<^sub>B cmp (f \<star> g, h) \<cdot>\<^sub>B cmp (f, g) \<star>\<^sub>B map h = | |
\<a>\<^sub>B[f, g, h] \<cdot>\<^sub>B ((f \<star>\<^sub>B g) \<star>\<^sub>B h) \<cdot>\<^sub>B ((f \<star>\<^sub>B g) \<star>\<^sub>B h)" | |
unfolding map_def cmp_def | |
using 1 f g h fg gh S.VVV.arr_char S.VV.arr_char B.VVV.arr_char B.VV.arr_char | |
B.comp_arr_dom S.arr_char S.comp_char S.hcomp_closed S.hcomp_def | |
S.ideD(1) S.src_def | |
by (simp add: S.assoc_closed) | |
also have "... = cmp (f, g \<star> h) \<cdot>\<^sub>B (map f \<star>\<^sub>B cmp (g, h)) \<cdot>\<^sub>B \<a>\<^sub>B[map f, map g, map h]" | |
unfolding cmp_def map_def | |
using 1 f g h fg gh S.VV.arr_char B.VVV.arr_char B.VV.arr_char | |
B.comp_arr_dom B.comp_cod_arr S.hcomp_def S.comp_char | |
S.arr_char S.assoc_closed S.hcomp_closed S.ideD(1) S.trg_def | |
by auto | |
finally show ?thesis by blast | |
qed | |
qed | |
lemma is_pseudofunctor: | |
shows "pseudofunctor S.comp S.hcomp S.\<a> \<i> S.src S.trg V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B map cmp" | |
.. | |
lemma map\<^sub>0_simp [simp]: | |
assumes "S.obj a" | |
shows "map\<^sub>0 a = a" | |
using assms map\<^sub>0_def map_def S.obj_char by auto | |
lemma unit_char': | |
assumes "S.obj a" | |
shows "unit a = a" | |
proof - | |
have a: "S.arr a" | |
using assms by auto | |
have 1: "B.ide a" | |
using assms S.obj_char by auto | |
have 2: "src\<^sub>B a = a" | |
using assms S.obj_char by auto | |
have "a = unit a" | |
proof (intro unit_eqI) | |
show "S.obj a" by fact | |
show "\<guillemotleft>a : map\<^sub>0 a \<Rightarrow>\<^sub>B map a\<guillemotright>" | |
using assms a 2 map\<^sub>0_def map_def S.src_def S.dom_char S.cod_char S.obj_char | |
by auto | |
show "B.iso a" | |
using assms 1 by simp | |
show "a \<cdot>\<^sub>B \<i>[map\<^sub>0 a] = (map \<i>[a] \<cdot>\<^sub>B cmp (a, a)) \<cdot>\<^sub>B (a \<star>\<^sub>B a)" | |
proof - | |
have "a \<cdot>\<^sub>B \<i>[a] = \<i>[a] \<cdot>\<^sub>B cmp (a, a) \<cdot>\<^sub>B (a \<star>\<^sub>B a)" | |
proof - | |
have "a \<cdot>\<^sub>B \<i>[a] = \<i>[a]" | |
using assms 1 2 S.comp_cod_arr S.unitor_coincidence S.lunit_in_hom | |
S.obj_char S.comp_simp | |
by auto | |
moreover have "(a \<star>\<^sub>B a) \<cdot>\<^sub>B (a \<star>\<^sub>B a) = a \<star>\<^sub>B a" | |
using assms S.obj_char S.comp_ide_self by auto | |
moreover have "B.dom \<i>[a] = a \<star>\<^sub>B a" | |
using assms S.obj_char by simp | |
moreover have "\<i>[a] \<cdot>\<^sub>B (a \<star>\<^sub>B a) = \<i>[a]" | |
using assms S.obj_char B.comp_arr_dom by simp | |
ultimately show ?thesis | |
using assms cmp_def S.VV.arr_char by auto | |
qed | |
thus ?thesis | |
using assms a 2 map\<^sub>0_def map_def S.src_def B.comp_assoc by simp | |
qed | |
qed | |
thus ?thesis by simp | |
qed | |
end | |
subsection "Composition of Pseudofunctors" | |
text \<open> | |
In this section, we show how pseudofunctors may be composed. The main work is to | |
establish the coherence condition for associativity. | |
\<close> | |
locale composite_pseudofunctor = | |
B: bicategory V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B + | |
C: bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C + | |
D: bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D + | |
F: pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C F \<Phi>\<^sub>F + | |
G: pseudofunctor V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D G \<Phi>\<^sub>G | |
for V\<^sub>B :: "'b comp" (infixr "\<cdot>\<^sub>B" 55) | |
and H\<^sub>B :: "'b comp" (infixr "\<star>\<^sub>B" 53) | |
and \<a>\<^sub>B :: "'b \<Rightarrow> 'b \<Rightarrow> 'b \<Rightarrow> 'b" ("\<a>\<^sub>B[_, _, _]") | |
and \<i>\<^sub>B :: "'b \<Rightarrow> 'b" ("\<i>\<^sub>B[_]") | |
and src\<^sub>B :: "'b \<Rightarrow> 'b" | |
and trg\<^sub>B :: "'b \<Rightarrow> 'b" | |
and V\<^sub>C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55) | |
and H\<^sub>C :: "'c comp" (infixr "\<star>\<^sub>C" 53) | |
and \<a>\<^sub>C :: "'c \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" ("\<a>\<^sub>C[_, _, _]") | |
and \<i>\<^sub>C :: "'c \<Rightarrow> 'c" ("\<i>\<^sub>C[_]") | |
and src\<^sub>C :: "'c \<Rightarrow> 'c" | |
and trg\<^sub>C :: "'c \<Rightarrow> 'c" | |
and V\<^sub>D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55) | |
and H\<^sub>D :: "'d comp" (infixr "\<star>\<^sub>D" 53) | |
and \<a>\<^sub>D :: "'d \<Rightarrow> 'd \<Rightarrow> 'd \<Rightarrow> 'd" ("\<a>\<^sub>D[_, _, _]") | |
and \<i>\<^sub>D :: "'d \<Rightarrow> 'd" ("\<i>\<^sub>D[_]") | |
and src\<^sub>D :: "'d \<Rightarrow> 'd" | |
and trg\<^sub>D :: "'d \<Rightarrow> 'd" | |
and F :: "'b \<Rightarrow> 'c" | |
and \<Phi>\<^sub>F :: "'b * 'b \<Rightarrow> 'c" | |
and G :: "'c \<Rightarrow> 'd" | |
and \<Phi>\<^sub>G :: "'c * 'c \<Rightarrow> 'd" | |
begin | |
sublocale composite_functor V\<^sub>B V\<^sub>C V\<^sub>D F G .. | |
sublocale weak_arrow_of_homs V\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>D src\<^sub>D trg\<^sub>D \<open>G o F\<close> | |
proof | |
show "\<And>\<mu>. B.arr \<mu> \<Longrightarrow> D.isomorphic ((G o F) (src\<^sub>B \<mu>)) (src\<^sub>D ((G o F) \<mu>))" | |
proof - | |
fix \<mu> | |
assume \<mu>: "B.arr \<mu>" | |
show "D.isomorphic ((G o F) (src\<^sub>B \<mu>)) (src\<^sub>D ((G o F) \<mu>))" | |
proof - | |
have "(G o F) (src\<^sub>B \<mu>) = G (F (src\<^sub>B \<mu>))" | |
using \<mu> by simp | |
also have "D.isomorphic ... (G (src\<^sub>C (F \<mu>)))" | |
using \<mu> F.weakly_preserves_src G.preserves_iso | |
by (meson C.isomorphicE D.isomorphic_def G.preserves_hom) | |
also have "D.isomorphic ... (src\<^sub>D (G (F \<mu>)))" | |
using \<mu> G.weakly_preserves_src by blast | |
also have "... = src\<^sub>D ((G o F) \<mu>)" | |
by simp | |
finally show ?thesis by blast | |
qed | |
qed | |
show "\<And>\<mu>. B.arr \<mu> \<Longrightarrow> D.isomorphic ((G o F) (trg\<^sub>B \<mu>)) (trg\<^sub>D ((G o F) \<mu>))" | |
proof - | |
fix \<mu> | |
assume \<mu>: "B.arr \<mu>" | |
show "D.isomorphic ((G o F) (trg\<^sub>B \<mu>)) (trg\<^sub>D ((G o F) \<mu>))" | |
proof - | |
have "(G o F) (trg\<^sub>B \<mu>) = G (F (trg\<^sub>B \<mu>))" | |
using \<mu> by simp | |
also have "D.isomorphic ... (G (trg\<^sub>C (F \<mu>)))" | |
using \<mu> F.weakly_preserves_trg G.preserves_iso | |
by (meson C.isomorphicE D.isomorphic_def G.preserves_hom) | |
also have "D.isomorphic ... (trg\<^sub>D (G (F \<mu>)))" | |
using \<mu> G.weakly_preserves_trg by blast | |
also have "... = trg\<^sub>D ((G o F) \<mu>)" | |
by simp | |
finally show ?thesis by blast | |
qed | |
qed | |
qed | |
interpretation H\<^sub>DoGF_GF: composite_functor B.VV.comp D.VV.comp V\<^sub>D FF | |
\<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>D snd \<mu>\<nu>\<close> | |
.. | |
interpretation GFoH\<^sub>B: composite_functor B.VV.comp V\<^sub>B V\<^sub>D \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>B snd \<mu>\<nu>\<close> | |
\<open>G o F\<close> | |
.. | |
definition cmp | |
where "cmp \<mu>\<nu> = (if B.VV.arr \<mu>\<nu> then | |
G (F (H\<^sub>B (fst \<mu>\<nu>) (snd \<mu>\<nu>))) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (B.VV.dom \<mu>\<nu>)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.dom (fst \<mu>\<nu>)), F (B.dom (snd \<mu>\<nu>))) | |
else D.null)" | |
lemma cmp_in_hom [intro]: | |
assumes "B.VV.arr \<mu>\<nu>" | |
shows "\<guillemotleft>cmp \<mu>\<nu> : H\<^sub>DoGF_GF.map (B.VV.dom \<mu>\<nu>) \<Rightarrow>\<^sub>D GFoH\<^sub>B.map (B.VV.cod \<mu>\<nu>)\<guillemotright>" | |
proof - | |
have "cmp \<mu>\<nu> = G (F (H\<^sub>B (fst \<mu>\<nu>) (snd \<mu>\<nu>))) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (B.VV.dom \<mu>\<nu>)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.dom (fst \<mu>\<nu>)), F (B.dom (snd \<mu>\<nu>)))" | |
using assms cmp_def by simp | |
moreover have "\<guillemotleft> ... : H\<^sub>DoGF_GF.map (B.VV.dom \<mu>\<nu>) | |
\<Rightarrow>\<^sub>D GFoH\<^sub>B.map (B.VV.cod \<mu>\<nu>)\<guillemotright>" | |
proof (intro D.comp_in_homI) | |
show "\<guillemotleft>\<Phi>\<^sub>G (F (B.dom (fst \<mu>\<nu>)), F (B.dom (snd \<mu>\<nu>))) : | |
H\<^sub>DoGF_GF.map (B.VV.dom \<mu>\<nu>) | |
\<Rightarrow>\<^sub>D G (F (B.dom (fst \<mu>\<nu>)) \<star>\<^sub>C F (B.dom (snd \<mu>\<nu>)))\<guillemotright>" | |
using assms F.FF_def FF_def B.VV.arr_char B.VV.dom_simp by auto | |
show "\<guillemotleft>G (\<Phi>\<^sub>F (B.VV.dom \<mu>\<nu>)) : | |
G (F (B.dom (fst \<mu>\<nu>)) \<star>\<^sub>C F (B.dom (snd \<mu>\<nu>))) | |
\<Rightarrow>\<^sub>D GFoH\<^sub>B.map (B.VV.dom \<mu>\<nu>)\<guillemotright>" | |
using assms B.VV.arr_char F.FF_def B.VV.dom_simp B.VV.cod_simp by auto | |
show "\<guillemotleft>G (F (fst \<mu>\<nu> \<star>\<^sub>B snd \<mu>\<nu>)) : | |
GFoH\<^sub>B.map (B.VV.dom \<mu>\<nu>) \<Rightarrow>\<^sub>D GFoH\<^sub>B.map (B.VV.cod \<mu>\<nu>)\<guillemotright>" | |
proof - | |
have "B.VV.in_hom \<mu>\<nu> (B.VV.dom \<mu>\<nu>) (B.VV.cod \<mu>\<nu>)" | |
using assms by auto | |
thus ?thesis by auto | |
qed | |
qed | |
ultimately show ?thesis by argo | |
qed | |
lemma cmp_simps [simp]: | |
assumes "B.VV.arr \<mu>\<nu>" | |
shows "D.arr (cmp \<mu>\<nu>)" | |
and "D.dom (cmp \<mu>\<nu>) = H\<^sub>DoGF_GF.map (B.VV.dom \<mu>\<nu>)" | |
and "D.cod (cmp \<mu>\<nu>) = GFoH\<^sub>B.map (B.VV.cod \<mu>\<nu>)" | |
using assms cmp_in_hom by blast+ | |
interpretation \<Phi>: natural_transformation | |
B.VV.comp V\<^sub>D H\<^sub>DoGF_GF.map GFoH\<^sub>B.map cmp | |
proof | |
show "\<And>\<mu>\<nu>. \<not> B.VV.arr \<mu>\<nu> \<Longrightarrow> cmp \<mu>\<nu> = D.null" | |
unfolding cmp_def by simp | |
fix \<mu>\<nu> | |
assume \<mu>\<nu>: "B.VV.arr \<mu>\<nu>" | |
show "D.dom (cmp \<mu>\<nu>) = H\<^sub>DoGF_GF.map (B.VV.dom \<mu>\<nu>)" | |
using \<mu>\<nu> cmp_in_hom by blast | |
show "D.cod (cmp \<mu>\<nu>) = GFoH\<^sub>B.map (B.VV.cod \<mu>\<nu>)" | |
using \<mu>\<nu> cmp_in_hom by blast | |
show "GFoH\<^sub>B.map \<mu>\<nu> \<cdot>\<^sub>D cmp (B.VV.dom \<mu>\<nu>) = cmp \<mu>\<nu>" | |
unfolding cmp_def | |
using \<mu>\<nu> B.VV.ide_char B.VV.arr_char D.comp_ide_arr B.VV.dom_char D.comp_assoc | |
as_nat_trans.is_natural_1 | |
apply simp | |
by (metis (no_types, lifting) B.H.preserves_arr B.hcomp_simps(3)) | |
show "cmp (B.VV.cod \<mu>\<nu>) \<cdot>\<^sub>D H\<^sub>DoGF_GF.map \<mu>\<nu> = cmp \<mu>\<nu>" | |
proof - | |
have "cmp (B.VV.cod \<mu>\<nu>) \<cdot>\<^sub>D H\<^sub>DoGF_GF.map \<mu>\<nu> = | |
(G (F (B.cod (fst \<mu>\<nu>) \<star>\<^sub>B B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.cod (fst \<mu>\<nu>)), F (B.cod (snd \<mu>\<nu>)))) \<cdot>\<^sub>D | |
(fst (FF \<mu>\<nu>) \<star>\<^sub>D snd (FF \<mu>\<nu>))" | |
unfolding cmp_def | |
using \<mu>\<nu> B.VV.arr_char B.VV.dom_simp B.VV.cod_simp by simp | |
also have "... = (G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.cod (fst \<mu>\<nu>)), F (B.cod (snd \<mu>\<nu>)))) \<cdot>\<^sub>D | |
(fst (FF \<mu>\<nu>) \<star>\<^sub>D snd (FF \<mu>\<nu>))" | |
proof - | |
have "D.ide (G (F (B.cod (fst \<mu>\<nu>) \<star>\<^sub>B B.cod (snd \<mu>\<nu>))))" | |
using \<mu>\<nu> B.VV.arr_char by simp | |
moreover have "D.seq (G (F (B.cod (fst \<mu>\<nu>) \<star>\<^sub>B B.cod (snd \<mu>\<nu>)))) | |
(G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.cod (fst \<mu>\<nu>)), F (B.cod (snd \<mu>\<nu>))))" | |
using \<mu>\<nu> B.VV.arr_char B.VV.dom_char B.VV.cod_char F.FF_def | |
apply (intro D.seqI) | |
apply auto | |
proof - | |
show "G (F (B.cod (fst \<mu>\<nu>) \<star>\<^sub>B B.cod (snd \<mu>\<nu>))) = | |
D.cod (G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.cod (fst \<mu>\<nu>)), F (B.cod (snd \<mu>\<nu>))))" | |
proof - | |
have "D.seq (G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>)))) | |
(\<Phi>\<^sub>G (F (B.cod (fst \<mu>\<nu>)), F (B.cod (snd \<mu>\<nu>))))" | |
using \<mu>\<nu> B.VV.arr_char F.FF_def B.VV.arr_char B.VV.dom_char B.VV.cod_char | |
by (intro D.seqI) auto | |
thus ?thesis | |
using \<mu>\<nu> B.VV.arr_char B.VV.cod_simp by simp | |
qed | |
qed | |
ultimately show ?thesis | |
using \<mu>\<nu> D.comp_ide_arr [of "G (F (B.cod (fst \<mu>\<nu>) \<star>\<^sub>B B.cod (snd \<mu>\<nu>)))" | |
"G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.cod (fst \<mu>\<nu>)), F (B.cod (snd \<mu>\<nu>)))"] | |
by simp | |
qed | |
also have "... = G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F (B.cod (fst \<mu>\<nu>)), F (B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
(fst (FF \<mu>\<nu>) \<star>\<^sub>D snd (FF \<mu>\<nu>)))" | |
using D.comp_assoc by simp | |
also have "... = G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (C.VV.cod (F.FF \<mu>\<nu>)) \<cdot>\<^sub>D G.H\<^sub>DoFF.map (F.FF \<mu>\<nu>)" | |
using \<mu>\<nu> B.VV.arr_char F.FF_def G.FF_def FF_def C.VV.cod_simp by auto | |
also have "... = G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
G.FoH\<^sub>C.map (F.FF \<mu>\<nu>) \<cdot>\<^sub>D \<Phi>\<^sub>G (C.VV.dom (F.FF \<mu>\<nu>))" | |
using \<mu>\<nu> B.VV.arr_char G.\<Phi>.naturality C.VV.dom_simp C.VV.cod_simp by simp | |
also have "... = (G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D | |
G.FoH\<^sub>C.map (F.FF \<mu>\<nu>)) \<cdot>\<^sub>D \<Phi>\<^sub>G (C.VV.dom (F.FF \<mu>\<nu>))" | |
using D.comp_assoc by simp | |
also have "... = (G (\<Phi>\<^sub>F (B.VV.cod \<mu>\<nu>) \<cdot>\<^sub>C F.H\<^sub>DoFF.map \<mu>\<nu>)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (C.VV.dom (F.FF \<mu>\<nu>))" | |
proof - | |
have "(B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>)) = B.VV.cod \<mu>\<nu>" | |
using \<mu>\<nu> B.VV.arr_char B.VV.cod_simp by simp | |
moreover have "G.FoH\<^sub>C.map (F.FF \<mu>\<nu>) = G (F.H\<^sub>DoFF.map \<mu>\<nu>)" | |
using \<mu>\<nu> F.FF_def by simp | |
moreover have "G (\<Phi>\<^sub>F (B.cod (fst \<mu>\<nu>), B.cod (snd \<mu>\<nu>))) \<cdot>\<^sub>D G (F.H\<^sub>DoFF.map \<mu>\<nu>) = | |
G (\<Phi>\<^sub>F (B.VV.cod \<mu>\<nu>) \<cdot>\<^sub>C F.H\<^sub>DoFF.map \<mu>\<nu>)" | |
using \<mu>\<nu> B.VV.arr_char | |
by (metis (no_types, lifting) F.\<Phi>.is_natural_2 F.\<Phi>.preserves_reflects_arr | |
G.preserves_comp calculation(1)) | |
ultimately show ?thesis by argo | |
qed | |
also have "... = G (F.FoH\<^sub>C.map \<mu>\<nu> \<cdot>\<^sub>C \<Phi>\<^sub>F (B.VV.dom \<mu>\<nu>)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (C.VV.dom (F.FF \<mu>\<nu>))" | |
using \<mu>\<nu> F.\<Phi>.naturality [of \<mu>\<nu>] F.FF_def by simp | |
also have "... = G (F.FoH\<^sub>C.map \<mu>\<nu>) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (B.VV.dom \<mu>\<nu>)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (C.VV.dom (F.FF \<mu>\<nu>))" | |
proof - | |
have "G (F.FoH\<^sub>C.map \<mu>\<nu> \<cdot>\<^sub>C \<Phi>\<^sub>F (B.VV.dom \<mu>\<nu>)) = | |
G (F.FoH\<^sub>C.map \<mu>\<nu>) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (B.VV.dom \<mu>\<nu>))" | |
using \<mu>\<nu> | |
by (metis (mono_tags, lifting) F.\<Phi>.is_natural_1 F.\<Phi>.preserves_reflects_arr | |
G.preserves_comp) | |
thus ?thesis | |
using \<mu>\<nu> D.comp_assoc by simp | |
qed | |
also have "... = cmp \<mu>\<nu>" | |
using \<mu>\<nu> B.VV.arr_char cmp_def F.FF_def F.FF.preserves_dom B.VV.dom_simp | |
by auto | |
finally show ?thesis by simp | |
qed | |
qed | |
interpretation \<Phi>: natural_isomorphism B.VV.comp V\<^sub>D H\<^sub>DoGF_GF.map GFoH\<^sub>B.map cmp | |
proof | |
show "\<And>hk. B.VV.ide hk \<Longrightarrow> D.iso (cmp hk)" | |
proof - | |
fix hk | |
assume hk: "B.VV.ide hk" | |
have "D.iso (G (F (fst hk \<star>\<^sub>B snd hk)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (B.VV.dom hk)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (B.dom (fst hk)), F (B.dom (snd hk))))" | |
proof (intro D.isos_compose) | |
show "D.iso (\<Phi>\<^sub>G (F (B.dom (fst hk)), F (B.dom (snd hk))))" | |
using hk G.\<Phi>.components_are_iso [of "(F (B.dom (fst hk)), F (B.dom (snd hk)))"] | |
C.VV.ide_char B.VV.arr_char B.VV.dom_char | |
by (metis (no_types, lifting) B.VV.ideD(1) B.VV.ideD(2) B.VxV.dom_char | |
F.FF_def F.FF.as_nat_iso.components_are_iso G.\<Phi>.preserves_iso fst_conv snd_conv) | |
show "D.iso (G (\<Phi>\<^sub>F (B.VV.dom hk)))" | |
using hk F.\<Phi>.components_are_iso B.VV.arr_char B.VV.dom_char B.VV.ideD(2) | |
by auto | |
show "D.seq (G (\<Phi>\<^sub>F (B.VV.dom hk))) (\<Phi>\<^sub>G (F (B.dom (fst hk)), F (B.dom (snd hk))))" | |
using hk B.VV.arr_char B.VV.ide_char B.VV.dom_char C.VV.arr_char F.FF_def | |
C.VV.dom_simp C.VV.cod_simp | |
by auto | |
show "D.iso (G (F (fst hk \<star>\<^sub>B snd hk)))" | |
using hk F.\<Phi>.components_are_iso B.VV.arr_char by simp | |
show "D.seq (G (F (fst hk \<star>\<^sub>B snd hk))) | |
(G (\<Phi>\<^sub>F (B.VV.dom hk)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F (B.dom (fst hk)), F (B.dom (snd hk))))" | |
using hk B.VV.arr_char B.VV.dom_char | |
by (metis (no_types, lifting) B.VV.ideD(1) cmp_def cmp_simps(1)) | |
qed | |
thus "D.iso (cmp hk)" | |
unfolding cmp_def using hk by simp | |
qed | |
qed | |
sublocale pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>G o F\<close> cmp | |
proof | |
fix f g h | |
assume f: "B.ide f" and g: "B.ide g" and h: "B.ide h" | |
assume fg: "src\<^sub>B f = trg\<^sub>B g" and gh: "src\<^sub>B g = trg\<^sub>B h" | |
show "map \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>D cmp (f \<star>\<^sub>B g, h) \<cdot>\<^sub>D (cmp (f, g) \<star>\<^sub>D map h) = | |
cmp (f, g \<star>\<^sub>B h) \<cdot>\<^sub>D (map f \<star>\<^sub>D cmp (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[map f, map g, map h]" | |
proof - | |
have "map \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>D cmp (f \<star>\<^sub>B g, h) \<cdot>\<^sub>D (cmp (f, g) \<star>\<^sub>D map h) = | |
G (F \<a>\<^sub>B[f, g, h]) \<cdot>\<^sub>D | |
(G (F ((f \<star>\<^sub>B g) \<star>\<^sub>B h)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h)) \<cdot>\<^sub>D | |
(G (F (f \<star>\<^sub>B g)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (f, g)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
unfolding cmp_def | |
using f g h fg gh B.VV.arr_char B.VV.dom_simp by simp | |
also have "... = G (F \<a>\<^sub>B[f, g, h]) \<cdot>\<^sub>D | |
(G (\<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h)) \<cdot>\<^sub>D | |
(G (F (f \<star>\<^sub>B g)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (f, g)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using f g h fg gh D.comp_ide_arr D.comp_assoc | |
by (metis B.ideD(1) B.ide_hcomp B.src_hcomp F.cmp_simps(1) F.cmp_simps(5) | |
G.as_nat_trans.is_natural_2) | |
also have "... = G (F \<a>\<^sub>B[f, g, h]) \<cdot>\<^sub>D | |
(G (\<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h)) \<cdot>\<^sub>D | |
(G (\<Phi>\<^sub>F (f, g)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using f g fg | |
by (metis (no_types) D.comp_assoc F.cmp_simps(1) F.cmp_simps(5) | |
G.as_nat_trans.is_natural_2) | |
also have "... = (G (F \<a>\<^sub>B[f, g, h]) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (f \<star>\<^sub>B g, h))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h) \<cdot>\<^sub>D (G (\<Phi>\<^sub>F (f, g)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using D.comp_assoc by simp | |
also have "... = G (F \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>C \<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h) \<cdot>\<^sub>D (G (\<Phi>\<^sub>F (f, g)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using f g h fg gh B.VV.arr_char B.VV.cod_simp by simp | |
also have "... = G (F \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>C \<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h) \<cdot>\<^sub>D (G (\<Phi>\<^sub>F (f, g)) \<star>\<^sub>D G (F h)) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using f g h fg gh B.VV.arr_char C.VV.arr_char F.FF_def D.whisker_right | |
B.VV.dom_simp C.VV.cod_simp | |
by auto | |
also have "... = G (F \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>C \<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h) \<cdot>\<^sub>D (G (\<Phi>\<^sub>F (f, g)) \<star>\<^sub>D G (F h))) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using D.comp_assoc by simp | |
also have "... = G (F \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>C \<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D | |
(G (\<Phi>\<^sub>F (f, g) \<star>\<^sub>C F h) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h)) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
proof - | |
have "\<Phi>\<^sub>G (F (f \<star>\<^sub>B g), F h) = \<Phi>\<^sub>G (C.VV.cod (\<Phi>\<^sub>F (f, g), F h))" | |
using f g h fg gh B.VV.arr_char C.VV.arr_char B.VV.cod_simp C.VV.cod_simp | |
by simp | |
moreover have "G (\<Phi>\<^sub>F (f, g)) \<star>\<^sub>D G (F h) = G.H\<^sub>DoFF.map (\<Phi>\<^sub>F (f, g), F h)" | |
using f g h fg gh B.VV.arr_char C.VV.arr_char G.FF_def by simp | |
moreover have "G.FoH\<^sub>C.map (\<Phi>\<^sub>F (f, g), F h) = G (\<Phi>\<^sub>F (f, g) \<star>\<^sub>C F h)" | |
using f g h fg gh B.VV.arr_char by simp | |
moreover have "\<Phi>\<^sub>G (C.VV.dom (\<Phi>\<^sub>F (f, g), F h)) = \<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h)" | |
using f g h fg gh C.VV.arr_char F.cmp_in_hom [of f g] C.VV.dom_simp by auto | |
ultimately show ?thesis | |
using f g h fg gh B.VV.arr_char G.\<Phi>.naturality | |
by (metis (mono_tags, lifting) C.VV.arr_cod_iff_arr C.VV.arr_dom_iff_arr | |
G.FoH\<^sub>C.is_extensional G.H\<^sub>DoFF.is_extensional G.\<Phi>.is_extensional) | |
qed | |
also have "... = (G (F \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>C \<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>D (G (\<Phi>\<^sub>F (f, g) \<star>\<^sub>C F h))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h) \<cdot>\<^sub>D (\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using D.comp_assoc by simp | |
also have "... = G ((F \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>C \<Phi>\<^sub>F (f \<star>\<^sub>B g, h)) \<cdot>\<^sub>C (\<Phi>\<^sub>F (f, g) \<star>\<^sub>C F h)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h) \<cdot>\<^sub>D (\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using f g h fg gh B.VV.arr_char F.FF_def B.VV.dom_simp B.VV.cod_simp by auto | |
also have "... = G (F \<a>\<^sub>B[f, g, h] \<cdot>\<^sub>C \<Phi>\<^sub>F (f \<star>\<^sub>B g, h) \<cdot>\<^sub>C (\<Phi>\<^sub>F (f, g) \<star>\<^sub>C F h)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h) \<cdot>\<^sub>D (\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using C.comp_assoc by simp | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h)) \<cdot>\<^sub>C \<a>\<^sub>C[F f, F g, F h]) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h) \<cdot>\<^sub>D (\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using f g h fg gh F.assoc_coherence [of f g h] by simp | |
also have "... = G ((\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>C \<a>\<^sub>C[F f, F g, F h]) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h) \<cdot>\<^sub>D (\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using C.comp_assoc by simp | |
also have "... = (G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>D G \<a>\<^sub>C[F f, F g, F h]) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h) \<cdot>\<^sub>D (\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using f g h fg gh B.VV.arr_char F.FF_def B.VV.dom_simp B.VV.cod_simp by auto | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>D | |
G \<a>\<^sub>C[F f, F g, F h] \<cdot>\<^sub>D \<Phi>\<^sub>G (F f \<star>\<^sub>C F g, F h) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F f, F g) \<star>\<^sub>D G (F h))" | |
using D.comp_assoc by simp | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f, F g \<star>\<^sub>C F h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h)) \<cdot>\<^sub>D | |
\<a>\<^sub>D[G (F f), G (F g), G (F h)]" | |
using f g h fg gh G.assoc_coherence [of "F f" "F g" "F h"] by simp | |
also have "... = (G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f, F g \<star>\<^sub>C F h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h))) \<cdot>\<^sub>D | |
\<a>\<^sub>D[G (F f), G (F g), G (F h)]" | |
using D.comp_assoc by simp | |
also have "... = (cmp (f, g \<star>\<^sub>B h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D cmp (g, h))) \<cdot>\<^sub>D | |
\<a>\<^sub>D[G (F f), G (F g), G (F h)]" | |
proof - | |
have "G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f, F g \<star>\<^sub>C F h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h)) = | |
cmp (f, g \<star>\<^sub>B h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D cmp (g, h))" | |
proof - | |
have "cmp (f, g \<star>\<^sub>B h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D cmp (g, h)) = | |
(G (F (f \<star>\<^sub>B g \<star>\<^sub>B h)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F (g \<star>\<^sub>B h))) \<cdot>\<^sub>D | |
(G (F f) \<star>\<^sub>D G (F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
unfolding cmp_def | |
using f g h fg gh B.VV.arr_char B.VV.dom_simp B.VV.cod_simp by simp | |
also have "... = (G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F (g \<star>\<^sub>B h))) \<cdot>\<^sub>D | |
(G (F f) \<star>\<^sub>D G (F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
proof - | |
have "G (F (f \<star>\<^sub>B g \<star>\<^sub>B h)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h))" | |
using f g h fg gh B.VV.arr_char D.comp_ide_arr B.VV.dom_simp B.VV.cod_simp | |
by simp | |
thus ?thesis | |
using D.comp_assoc by metis | |
qed | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D | |
(G (F f) \<star>\<^sub>D G (F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
using D.comp_assoc by simp | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D | |
(G (F f) \<star>\<^sub>D G (\<Phi>\<^sub>F (g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
proof - | |
have "G (F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (g, h)) = G (\<Phi>\<^sub>F (g, h))" | |
using f g h fg gh B.VV.arr_char D.comp_ide_arr B.VV.dom_simp B.VV.cod_simp | |
by simp | |
thus ?thesis | |
using D.comp_assoc by metis | |
qed | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D | |
(G (F f) \<star>\<^sub>D G (\<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
using f g h fg gh | |
D.whisker_left [of "G (F f)" "G (\<Phi>\<^sub>F (g, h))" "\<Phi>\<^sub>G (F g, F h)"] | |
by fastforce | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F f, F (g \<star>\<^sub>B h)) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D G (\<Phi>\<^sub>F (g, h)))) \<cdot>\<^sub>D | |
(G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
using D.comp_assoc by simp | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D | |
(G (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F f, F g \<star>\<^sub>C F h)) \<cdot>\<^sub>D | |
(G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
proof - | |
have "\<Phi>\<^sub>G (C.VV.cod (F f, \<Phi>\<^sub>F (g, h))) = \<Phi>\<^sub>G (F f, F (g \<star>\<^sub>B h))" | |
using f g h fg gh B.VV.arr_char C.VV.cod_char B.VV.dom_simp B.VV.cod_simp | |
by auto | |
moreover have "G.H\<^sub>DoFF.map (F f, \<Phi>\<^sub>F (g, h)) = G (F f) \<star>\<^sub>D G (\<Phi>\<^sub>F (g, h))" | |
using f g h fg gh B.VV.arr_char G.FF_def by auto | |
moreover have "G.FoH\<^sub>C.map (F f, \<Phi>\<^sub>F (g, h)) = G (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))" | |
using f g h fg gh B.VV.arr_char C.VV.arr_char by simp | |
moreover have "C.VV.dom (F f, \<Phi>\<^sub>F (g, h)) = (F f, F g \<star>\<^sub>C F h)" | |
using f g h fg gh B.VV.arr_char C.VV.arr_char C.VV.dom_char | |
F.cmp_in_hom [of g h] | |
by auto | |
ultimately show ?thesis | |
using f g h fg gh B.VV.arr_char C.VV.arr_char | |
G.\<Phi>.naturality [of "(F f, \<Phi>\<^sub>F (g, h))"] | |
by simp | |
qed | |
also have "... = (G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h)) \<cdot>\<^sub>D (G (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h)))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f, F g \<star>\<^sub>C F h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
using D.comp_assoc by simp | |
also have "... = G (\<Phi>\<^sub>F (f, g \<star>\<^sub>B h) \<cdot>\<^sub>C (F f \<star>\<^sub>C \<Phi>\<^sub>F (g, h))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F f, F g \<star>\<^sub>C F h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D \<Phi>\<^sub>G (F g, F h))" | |
using f g h fg gh B.VV.arr_char | |
by (metis (no_types, lifting) B.assoc_simps(1) C.comp_assoc C.seqE | |
F.preserves_assoc(1) F.preserves_reflects_arr G.preserves_comp) | |
finally show ?thesis by simp | |
qed | |
thus ?thesis by simp | |
qed | |
also have "... = cmp (f, g \<star>\<^sub>B h) \<cdot>\<^sub>D (G (F f) \<star>\<^sub>D cmp (g, h)) \<cdot>\<^sub>D | |
\<a>\<^sub>D[G (F f), G (F g), G (F h)]" | |
using D.comp_assoc by simp | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma is_pseudofunctor: | |
shows "pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (G o F) cmp" | |
.. | |
lemma map\<^sub>0_simp [simp]: | |
assumes "B.obj a" | |
shows "map\<^sub>0 a = G.map\<^sub>0 (F.map\<^sub>0 a)" | |
using assms map\<^sub>0_def by auto | |
lemma unit_char': | |
assumes "B.obj a" | |
shows "unit a = G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a)" | |
proof - | |
have "G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a) = unit a" | |
proof (intro unit_eqI [of a "G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a)"]) | |
show "B.obj a" by fact | |
show "\<guillemotleft>G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a) : map\<^sub>0 a \<Rightarrow>\<^sub>D map a\<guillemotright>" | |
using assms by auto | |
show "D.iso (G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a))" | |
by (simp add: D.isos_compose F.unit_char(2) G.unit_char(2) assms) | |
show "(G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a)) \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a] = | |
(map \<i>\<^sub>B[a] \<cdot>\<^sub>D cmp (a, a)) \<cdot>\<^sub>D | |
(G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a) \<star>\<^sub>D G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a))" | |
proof - | |
have 1: "cmp (a, a) = G (\<Phi>\<^sub>F (a, a)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F a, F a)" | |
proof - | |
have "cmp (a, a) = (G (F (a \<star>\<^sub>B a)) \<cdot>\<^sub>D G (\<Phi>\<^sub>F (a, a))) \<cdot>\<^sub>D \<Phi>\<^sub>G (F a, F a)" | |
using assms cmp_def B.VV.ide_char B.VV.arr_char B.VV.dom_char B.VV.cod_char | |
B.VxV.dom_char B.objE D.comp_assoc B.obj_simps | |
by simp | |
also have "... = G (\<Phi>\<^sub>F (a, a)) \<cdot>\<^sub>D \<Phi>\<^sub>G (F a, F a)" | |
using assms D.comp_cod_arr B.VV.arr_char B.VV.ide_char by auto | |
finally show ?thesis by blast | |
qed | |
have "(map \<i>\<^sub>B[a] \<cdot>\<^sub>D cmp (a, a)) \<cdot>\<^sub>D | |
(G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a) \<star>\<^sub>D G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a)) = | |
map \<i>\<^sub>B[a] \<cdot>\<^sub>D G (\<Phi>\<^sub>F (a, a)) \<cdot>\<^sub>D | |
(\<Phi>\<^sub>G (F a, F a) \<cdot>\<^sub>D (G (F.unit a) \<star>\<^sub>D G (F.unit a))) \<cdot>\<^sub>D | |
(G.unit (F.map\<^sub>0 a) \<star>\<^sub>D G.unit (F.map\<^sub>0 a))" | |
using assms 1 D.comp_assoc D.interchange by simp | |
also have "... = (map \<i>\<^sub>B[a] \<cdot>\<^sub>D G (\<Phi>\<^sub>F (a, a)) \<cdot>\<^sub>D G (F.unit a \<star>\<^sub>C F.unit a)) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F.map\<^sub>0 a, F.map\<^sub>0 a) \<cdot>\<^sub>D | |
(G.unit (F.map\<^sub>0 a) \<star>\<^sub>D G.unit (F.map\<^sub>0 a))" | |
using assms G.\<Phi>.naturality [of "(F.unit a, F.unit a)"] | |
C.VV.arr_char C.VV.dom_char C.VV.cod_char G.FF_def D.comp_assoc | |
by simp | |
also have "... = (G (F \<i>\<^sub>B[a] \<cdot>\<^sub>C \<Phi>\<^sub>F (a, a) \<cdot>\<^sub>C (F.unit a \<star>\<^sub>C F.unit a))) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F.map\<^sub>0 a, F.map\<^sub>0 a) \<cdot>\<^sub>D | |
(G.unit (F.map\<^sub>0 a) \<star>\<^sub>D G.unit (F.map\<^sub>0 a))" | |
proof - | |
have "C.arr (F \<i>\<^sub>B[a] \<cdot>\<^sub>C \<Phi>\<^sub>F (a, a) \<cdot>\<^sub>C (F.unit a \<star>\<^sub>C F.unit a))" | |
using assms B.VV.ide_char B.VV.arr_char F.cmp_in_hom(2) | |
by (intro C.seqI' C.comp_in_homI) auto | |
hence "map \<i>\<^sub>B[a] \<cdot>\<^sub>D G (\<Phi>\<^sub>F (a, a)) \<cdot>\<^sub>D G (F.unit a \<star>\<^sub>C F.unit a) = | |
G (F \<i>\<^sub>B[a] \<cdot>\<^sub>C \<Phi>\<^sub>F (a, a) \<cdot>\<^sub>C (F.unit a \<star>\<^sub>C F.unit a))" | |
by auto | |
thus ?thesis by argo | |
qed | |
also have "... = G (F.unit a \<cdot>\<^sub>C \<i>\<^sub>C[F.map\<^sub>0 a]) \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F.map\<^sub>0 a, F.map\<^sub>0 a) \<cdot>\<^sub>D | |
(G.unit (F.map\<^sub>0 a) \<star>\<^sub>D G.unit (F.map\<^sub>0 a))" | |
using assms F.unit_char C.comp_assoc by simp | |
also have "... = G (F.unit a) \<cdot>\<^sub>D (G \<i>\<^sub>C[F.map\<^sub>0 a] \<cdot>\<^sub>D | |
\<Phi>\<^sub>G (F.map\<^sub>0 a, F.map\<^sub>0 a)) \<cdot>\<^sub>D | |
(G.unit (F.map\<^sub>0 a) \<star>\<^sub>D G.unit (F.map\<^sub>0 a))" | |
using assms D.comp_assoc by simp | |
also have "... = (G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a)) \<cdot>\<^sub>D \<i>\<^sub>D[G.map\<^sub>0 (F.map\<^sub>0 a)]" | |
using assms G.unit_char D.comp_assoc by simp | |
also have "... = (G (F.unit a) \<cdot>\<^sub>D G.unit (F.map\<^sub>0 a)) \<cdot>\<^sub>D \<i>\<^sub>D[map\<^sub>0 a]" | |
using assms map\<^sub>0_def by auto | |
finally show ?thesis by simp | |
qed | |
qed | |
thus ?thesis by simp | |
qed | |
end | |
subsection "Restriction of Pseudofunctors" | |
text \<open> | |
In this section, we construct the restriction and corestriction of a pseudofunctor to | |
a subbicategory of its domain and codomain, respectively. | |
\<close> | |
locale restricted_pseudofunctor = | |
C: bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C + | |
D: bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D + | |
F: pseudofunctor V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi> + | |
C': subbicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C Arr | |
for V\<^sub>C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55) | |
and H\<^sub>C :: "'c comp" (infixr "\<star>\<^sub>C" 53) | |
and \<a>\<^sub>C :: "'c \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" ("\<a>\<^sub>C[_, _, _]") | |
and \<i>\<^sub>C :: "'c \<Rightarrow> 'c" ("\<i>\<^sub>C[_]") | |
and src\<^sub>C :: "'c \<Rightarrow> 'c" | |
and trg\<^sub>C :: "'c \<Rightarrow> 'c" | |
and V\<^sub>D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55) | |
and H\<^sub>D :: "'d comp" (infixr "\<star>\<^sub>D" 53) | |
and \<a>\<^sub>D :: "'d \<Rightarrow> 'd \<Rightarrow> 'd \<Rightarrow> 'd" ("\<a>\<^sub>D[_, _, _]") | |
and \<i>\<^sub>D :: "'d \<Rightarrow> 'd" ("\<i>\<^sub>D[_]") | |
and src\<^sub>D :: "'d \<Rightarrow> 'd" | |
and trg\<^sub>D :: "'d \<Rightarrow> 'd" | |
and F :: "'c \<Rightarrow> 'd" | |
and \<Phi> :: "'c * 'c \<Rightarrow> 'd" | |
and Arr :: "'c \<Rightarrow> bool" | |
begin | |
abbreviation map | |
where "map \<equiv> \<lambda>\<mu>. if C'.arr \<mu> then F \<mu> else D.null" | |
abbreviation cmp | |
where "cmp \<equiv> \<lambda>\<mu>\<nu>. if C'.VV.arr \<mu>\<nu> then \<Phi> \<mu>\<nu> else D.null" | |
interpretation "functor" C'.comp V\<^sub>D map | |
using C'.inclusion C'.arr_char C'.dom_char C'.cod_char C'.seq_char C'.comp_char | |
C'.arr_dom C'.arr_cod | |
apply (unfold_locales) | |
apply auto | |
by presburger | |
interpretation weak_arrow_of_homs C'.comp C'.src C'.trg V\<^sub>D src\<^sub>D trg\<^sub>D map | |
using C'.arrE C'.ide_src C'.ide_trg C'.inclusion C'.src_def C'.trg_def | |
F.weakly_preserves_src F.weakly_preserves_trg | |
by unfold_locales auto | |
interpretation H\<^sub>D\<^sub>'oFF: composite_functor C'.VV.comp D.VV.comp V\<^sub>D FF | |
\<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>D snd \<mu>\<nu>\<close> | |
.. | |
interpretation FoH\<^sub>C\<^sub>': composite_functor C'.VV.comp C'.comp V\<^sub>D | |
\<open>\<lambda>\<mu>\<nu>. C'.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> map | |
.. | |
interpretation \<Phi>: natural_transformation C'.VV.comp V\<^sub>D H\<^sub>D\<^sub>'oFF.map FoH\<^sub>C\<^sub>'.map cmp | |
using C'.arr_char C'.dom_char C'.cod_char C'.VV.arr_char C'.VV.dom_char C'.VV.cod_char | |
FF_def C'.inclusion C'.dom_closed C'.cod_closed C'.src_def C'.trg_def | |
C'.hcomp_def C'.hcomp_closed F.\<Phi>.is_natural_1 F.\<Phi>.is_natural_2 | |
C.VV.arr_char C.VV.dom_char C.VV.cod_char F.FF_def | |
by unfold_locales auto | |
interpretation \<Phi>: natural_isomorphism C'.VV.comp V\<^sub>D H\<^sub>D\<^sub>'oFF.map FoH\<^sub>C\<^sub>'.map cmp | |
using C.VV.ide_char C.VV.arr_char C'.VV.ide_char C'.VV.arr_char C'.arr_char | |
C'.src_def C'.trg_def C'.ide_char F.\<Phi>.components_are_iso | |
by unfold_locales auto | |
sublocale pseudofunctor C'.comp C'.hcomp C'.\<a> \<i>\<^sub>C C'.src C'.trg V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D | |
map cmp | |
using F.assoc_coherence C'.VVV.arr_char C'.VV.arr_char C'.arr_char C'.hcomp_def | |
C'.src_def C'.trg_def C'.assoc_closed C'.hcomp_closed C'.ide_char | |
by unfold_locales (simp add: C'.ide_char C'.src_def C'.trg_def) | |
lemma is_pseudofunctor: | |
shows "pseudofunctor C'.comp C'.hcomp C'.\<a> \<i>\<^sub>C C'.src C'.trg V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D map cmp" | |
.. | |
lemma map\<^sub>0_simp [simp]: | |
assumes "C'.obj a" | |
shows "map\<^sub>0 a = F.map\<^sub>0 a" | |
using assms map\<^sub>0_def C'.obj_char by auto | |
lemma unit_char': | |
assumes "C'.obj a" | |
shows "F.unit a = unit a" | |
using assms map\<^sub>0_simp C'.obj_char F.unit_in_hom(2) [of a] F.unit_char(2-3) \<i>_simps(1) | |
apply (intro unit_eqI) | |
apply auto | |
by blast | |
end | |
text \<open> | |
We define the corestriction construction only for the case of sub-bicategories | |
determined by a set of objects of the ambient bicategory. | |
There are undoubtedly more general constructions, but this one is adequate for our | |
present needs. | |
\<close> | |
locale corestricted_pseudofunctor = | |
C: bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C + | |
D: bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D + | |
F: pseudofunctor V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi> + | |
D': subbicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>\<lambda>\<mu>. D.arr \<mu> \<and> Obj (src\<^sub>D \<mu>) \<and> Obj (trg\<^sub>D \<mu>)\<close> | |
for V\<^sub>C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55) | |
and H\<^sub>C :: "'c comp" (infixr "\<star>\<^sub>C" 53) | |
and \<a>\<^sub>C :: "'c \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" ("\<a>\<^sub>C[_, _, _]") | |
and \<i>\<^sub>C :: "'c \<Rightarrow> 'c" ("\<i>\<^sub>C[_]") | |
and src\<^sub>C :: "'c \<Rightarrow> 'c" | |
and trg\<^sub>C :: "'c \<Rightarrow> 'c" | |
and V\<^sub>D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55) | |
and H\<^sub>D :: "'d comp" (infixr "\<star>\<^sub>D" 53) | |
and \<a>\<^sub>D :: "'d \<Rightarrow> 'd \<Rightarrow> 'd \<Rightarrow> 'd" ("\<a>\<^sub>D[_, _, _]") | |
and \<i>\<^sub>D :: "'d \<Rightarrow> 'd" ("\<i>\<^sub>D[_]") | |
and src\<^sub>D :: "'d \<Rightarrow> 'd" | |
and trg\<^sub>D :: "'d \<Rightarrow> 'd" | |
and F :: "'c \<Rightarrow> 'd" | |
and \<Phi> :: "'c * 'c \<Rightarrow> 'd" | |
and Obj :: "'d \<Rightarrow> bool" + | |
assumes preserves_arr: "\<And>\<mu>. C.arr \<mu> \<Longrightarrow> D'.arr (F \<mu>)" | |
begin | |
abbreviation map | |
where "map \<equiv> F" | |
abbreviation cmp | |
where "cmp \<equiv> \<Phi>" | |
interpretation "functor" V\<^sub>C D'.comp F | |
using preserves_arr F.is_extensional D'.arr_char D'.dom_char D'.cod_char D'.comp_char | |
by (unfold_locales) auto | |
interpretation weak_arrow_of_homs V\<^sub>C src\<^sub>C trg\<^sub>C D'.comp D'.src D'.trg F | |
proof | |
fix \<mu> | |
assume \<mu>: "C.arr \<mu>" | |
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : F (src\<^sub>C \<mu>) \<Rightarrow>\<^sub>D src\<^sub>D (F \<mu>)\<guillemotright> \<and> D.iso \<phi>" | |
using \<mu> F.weakly_preserves_src by auto | |
have 2: "D'.in_hom \<phi> (F (src\<^sub>C \<mu>)) (D'.src (F \<mu>))" | |
using \<mu> \<phi> D'.arr_char D'.dom_char D'.cod_char D'.src_def D.vconn_implies_hpar(1-2) | |
preserves_arr | |
by (metis (no_types, lifting) C.src.preserves_arr D'.in_hom_char D'.src.preserves_arr | |
D.arrI) | |
moreover have "D'.iso \<phi>" | |
using 2 \<phi> D'.iso_char D'.arr_char by fastforce | |
ultimately show "D'.isomorphic (F (src\<^sub>C \<mu>)) (D'.src (F \<mu>))" | |
using D'.isomorphic_def by auto | |
obtain \<psi> where \<psi>: "\<guillemotleft>\<psi> : F (trg\<^sub>C \<mu>) \<Rightarrow>\<^sub>D trg\<^sub>D (F \<mu>)\<guillemotright> \<and> D.iso \<psi>" | |
using \<mu> F.weakly_preserves_trg by auto | |
have 2: "D'.in_hom \<psi> (F (trg\<^sub>C \<mu>)) (D'.trg (F \<mu>))" | |
using \<mu> \<psi> D'.arr_char D'.dom_char D'.cod_char D'.trg_def D.vconn_implies_hpar(1-2) | |
preserves_arr | |
by (metis (no_types, lifting) C.trg.preserves_arr D'.in_hom_char D'.trg.preserves_arr | |
D.arrI) | |
moreover have "D'.iso \<psi>" | |
using 2 \<psi> D'.iso_char D'.arr_char by fastforce | |
ultimately show "D'.isomorphic (F (trg\<^sub>C \<mu>)) (D'.trg (F \<mu>))" | |
using D'.isomorphic_def by auto | |
qed | |
interpretation H\<^sub>D\<^sub>'oFF: composite_functor C.VV.comp D'.VV.comp D'.comp FF | |
\<open>\<lambda>\<mu>\<nu>. D'.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> | |
.. | |
interpretation FoH\<^sub>C: composite_functor C.VV.comp V\<^sub>C D'.comp \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star>\<^sub>C snd \<mu>\<nu>\<close> | |
F | |
.. | |
interpretation natural_transformation C.VV.comp D'.comp H\<^sub>D\<^sub>'oFF.map FoH\<^sub>C.map \<Phi> | |
proof | |
show "\<And>\<mu>\<nu>. \<not> C.VV.arr \<mu>\<nu> \<Longrightarrow> \<Phi> \<mu>\<nu> = D'.null" | |
by (simp add: F.\<Phi>.is_extensional) | |
fix \<mu>\<nu> | |
assume \<mu>\<nu>: "C.VV.arr \<mu>\<nu>" | |
have 1: "D'.arr (\<Phi> \<mu>\<nu>)" | |
using \<mu>\<nu> D'.arr_char F.\<Phi>.is_natural_1 F.\<Phi>.components_are_iso | |
by (metis (no_types, lifting) D.src_vcomp D.trg_vcomp FoH\<^sub>C.preserves_arr | |
F.\<Phi>.preserves_reflects_arr) | |
show "D'.dom (\<Phi> \<mu>\<nu>) = H\<^sub>D\<^sub>'oFF.map (C.VV.dom \<mu>\<nu>)" | |
using 1 \<mu>\<nu> D'.dom_char C.VV.arr_char C.VV.dom_char F.FF_def FF_def D'.hcomp_def | |
by simp | |
show "D'.cod (\<Phi> \<mu>\<nu>) = FoH\<^sub>C.map (C.VV.cod \<mu>\<nu>)" | |
using 1 \<mu>\<nu> D'.cod_char C.VV.arr_char F.FF_def FF_def D'.hcomp_def by simp | |
show "D'.comp (FoH\<^sub>C.map \<mu>\<nu>) (\<Phi> (C.VV.dom \<mu>\<nu>)) = \<Phi> \<mu>\<nu>" | |
using 1 \<mu>\<nu> D'.arr_char D'.comp_char C.VV.dom_char F.\<Phi>.is_natural_1 | |
C.VV.arr_dom D.src_vcomp D.trg_vcomp FoH\<^sub>C.preserves_arr F.\<Phi>.preserves_reflects_arr | |
by (metis (mono_tags, lifting)) | |
show "D'.comp (\<Phi> (C.VV.cod \<mu>\<nu>)) (H\<^sub>D\<^sub>'oFF.map \<mu>\<nu>) = \<Phi> \<mu>\<nu>" | |
proof - | |
have "Obj (F.map\<^sub>0 (trg\<^sub>C (fst \<mu>\<nu>))) \<and> Obj (F.map\<^sub>0 (trg\<^sub>C (snd \<mu>\<nu>)))" | |
using \<mu>\<nu> C.VV.arr_char | |
by (metis (no_types, lifting) C.src_trg C.trg.preserves_reflects_arr D'.arr_char | |
F.map\<^sub>0_def preserves_hseq) | |
moreover have "Obj (F.map\<^sub>0 (src\<^sub>C (snd \<mu>\<nu>)))" | |
using \<mu>\<nu> C.VV.arr_char | |
by (metis (no_types, lifting) C.src.preserves_reflects_arr C.trg_src D'.arr_char | |
F.map\<^sub>0_def preserves_hseq) | |
ultimately show ?thesis | |
using \<mu>\<nu> 1 D'.arr_char D'.comp_char D'.hseq_char C.VV.arr_char C.VV.cod_char | |
C.VxV.cod_char FF_def F.FF_def D'.hcomp_char preserves_hseq | |
apply simp | |
using F.\<Phi>.is_natural_2 by force | |
qed | |
qed | |
interpretation natural_isomorphism C.VV.comp D'.comp H\<^sub>D\<^sub>'oFF.map FoH\<^sub>C.map \<Phi> | |
apply unfold_locales | |
using D'.iso_char D'.arr_char by fastforce | |
sublocale pseudofunctor V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C D'.comp D'.hcomp D'.\<a> \<i>\<^sub>D D'.src D'.trg | |
F \<Phi> | |
proof | |
fix f g h | |
assume f: "C.ide f" and g: "C.ide g" and h: "C.ide h" | |
and fg: "src\<^sub>C f = trg\<^sub>C g" and gh: "src\<^sub>C g = trg\<^sub>C h" | |
have "D'.comp (F \<a>\<^sub>C[f, g, h]) (D'.comp (\<Phi> (f \<star>\<^sub>C g, h)) (D'.hcomp (\<Phi> (f, g)) (F h))) = | |
F \<a>\<^sub>C[f, g, h] \<cdot>\<^sub>D \<Phi> (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (\<Phi> (f, g) \<star>\<^sub>D F h)" | |
proof - | |
have 1: "D'.arr (cmp (f, g) \<star>\<^sub>D map h)" | |
by (metis (mono_tags, lifting) C.ideD(1) D'.arr_char D'.hcomp_closed | |
F.\<Phi>.preserves_reflects_arr F.cmp_simps(1-2) F.preserves_hseq | |
f fg g gh h preserves_reflects_arr) | |
moreover have 2: "D.seq (cmp (f \<star>\<^sub>C g, h)) (cmp (f, g) \<star>\<^sub>D map h)" | |
using 1 f g h fg gh D'.arr_char C.VV.arr_char C.VV.dom_char C.VV.cod_char F.FF_def | |
by (intro D.seqI) auto | |
moreover have "D'.arr (cmp (f \<star>\<^sub>C g, h) \<cdot>\<^sub>D (cmp (f, g) \<star>\<^sub>D map h))" | |
using 1 2 D'.arr_char | |
by (metis (no_types, lifting) D'.comp_char D'.seq_char D.seqE F.\<Phi>.preserves_reflects_arr | |
preserves_reflects_arr) | |
ultimately show ?thesis | |
using f g h fg gh D'.dom_char D'.cod_char D'.comp_char D'.hcomp_def C.VV.arr_char | |
apply simp | |
by force | |
qed | |
also have "... = \<Phi> (f, g \<star>\<^sub>C h) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<Phi> (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[F f, F g, F h]" | |
using f g h fg gh F.assoc_coherence [of f g h] by blast | |
also have "... = D'.comp (\<Phi> (f, g \<star>\<^sub>C h)) | |
(D'.comp (D'.hcomp (F f) (\<Phi> (g, h))) (D'.\<a> (F f) (F g) (F h)))" | |
proof - | |
have "D.seq (map f \<star>\<^sub>D cmp (g, h)) \<a>\<^sub>D[map f, map g, map h]" | |
using f g h fg gh C.VV.arr_char C.VV.dom_char C.VV.cod_char F.FF_def | |
by (intro D.seqI) auto | |
moreover have "D'.arr \<a>\<^sub>D[map f, map g, map h]" | |
using f g h fg gh D'.arr_char preserves_arr by auto | |
moreover have "D'.arr (map f \<star>\<^sub>D cmp (g, h))" | |
using f g h fg gh | |
by (metis (no_types, lifting) D'.arr_char D.seqE D.vseq_implies_hpar(1) | |
D.vseq_implies_hpar(2) calculation(1-2)) | |
moreover have "D'.arr ((map f \<star>\<^sub>D cmp (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[map f, map g, map h])" | |
using f g h fg gh | |
by (metis (no_types, lifting) D'.arr_char D'.comp_closed D.seqE | |
calculation(1-3)) | |
moreover have "D.seq (cmp (f, g \<star>\<^sub>C h)) | |
((map f \<star>\<^sub>D cmp (g, h)) \<cdot>\<^sub>D \<a>\<^sub>D[map f, map g, map h])" | |
using f g h fg gh F.cmp_simps'(1) F.cmp_simps(4) F.cmp_simps(5) by auto | |
ultimately show ?thesis | |
using f g h fg gh C.VV.arr_char D'.VVV.arr_char D'.VV.arr_char D'.comp_char | |
D'.hcomp_def | |
by simp | |
qed | |
finally show "D'.comp (F \<a>\<^sub>C[f, g, h]) | |
(D'.comp (\<Phi> (f \<star>\<^sub>C g, h)) (D'.hcomp (\<Phi> (f, g)) (F h))) = | |
D'.comp (\<Phi> (f, g \<star>\<^sub>C h)) | |
(D'.comp (D'.hcomp (F f) (\<Phi> (g, h))) (D'.\<a> (F f) (F g) (F h)))" | |
by blast | |
qed | |
lemma is_pseudofunctor: | |
shows "pseudofunctor V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C D'.comp D'.hcomp D'.\<a> \<i>\<^sub>D D'.src D'.trg F \<Phi>" | |
.. | |
lemma map\<^sub>0_simp [simp]: | |
assumes "C.obj a" | |
shows "map\<^sub>0 a = F.map\<^sub>0 a" | |
using assms map\<^sub>0_def D'.src_def by auto | |
lemma unit_char': | |
assumes "C.obj a" | |
shows "F.unit a = unit a" | |
proof (intro unit_eqI) | |
show "C.obj a" by fact | |
show 1: "D'.in_hom (F.unit a) (map\<^sub>0 a) (map a)" | |
using D'.arr_char D'.in_hom_char assms unit_in_hom(2) by force | |
show "D'.iso (F.unit a)" | |
using assms D'.iso_char D'.arr_char F.unit_char(2) | |
\<open>D'.in_hom (F.unit a) (map\<^sub>0 a) (map a)\<close> | |
by auto | |
show "D'.comp (F.unit a) \<i>\<^sub>D[map\<^sub>0 a] = | |
D'.comp (D'.comp (map \<i>\<^sub>C[a]) (cmp (a, a))) | |
(D'.hcomp (F.unit a) (F.unit a))" | |
proof - | |
have "D'.comp (F.unit a) \<i>\<^sub>D[map\<^sub>0 a] = F.unit a \<cdot>\<^sub>D \<i>\<^sub>D[src\<^sub>D (map a)]" | |
using assms D'.comp_char D'.arr_char | |
apply simp | |
by (metis (no_types, lifting) C.obj_simps(1-2) F.preserves_src preserves_arr) | |
also have "... = (map \<i>\<^sub>C[a] \<cdot>\<^sub>D cmp (a, a)) \<cdot>\<^sub>D (F.unit a \<star>\<^sub>D F.unit a)" | |
using assms F.unit_char(3) [of a] by auto | |
also have "... = D'.comp (D'.comp (map \<i>\<^sub>C[a]) (cmp (a, a))) | |
(D'.hcomp (F.unit a) (F.unit a))" | |
proof - | |
have "D'.arr (map \<i>\<^sub>C[a] \<cdot>\<^sub>D cmp (a, a))" | |
using assms D'.comp_simp by auto | |
moreover have "D.seq (map \<i>\<^sub>C[a] \<cdot>\<^sub>D cmp (a, a)) (F.unit a \<star>\<^sub>D F.unit a)" | |
using assms C.VV.arr_char F.cmp_simps(4-5) | |
by (intro D.seqI) auto | |
ultimately show ?thesis | |
by (metis (no_types, lifting) "1" D'.comp_eqI' D'.hcomp_eqI' D'.hseqI' | |
D'.iso_is_arr D'.seq_char D'.vconn_implies_hpar(1-2) | |
\<i>_simps(1) \<open>D'.iso (F.unit a)\<close> assms map\<^sub>0_simps(2-3)) | |
qed | |
finally show ?thesis by blast | |
qed | |
qed | |
end | |
subsection "Equivalence Pseudofunctors" | |
text \<open> | |
In this section, we define ``equivalence pseudofunctors'', which are pseudofunctors | |
that are locally fully faithful, locally essentially surjective, and biessentially | |
surjective on objects. In a later section, we will show that a pseudofunctor is | |
an equivalence pseudofunctor if and only if it can be extended to an equivalence | |
of bicategories. | |
The definition below requires that an equivalence pseudofunctor be (globally) faithful | |
with respect to vertical composition. Traditional formulations do not consider a | |
pseudofunctor as a single global functor, so we have to consider whether this condition | |
is too strong. In fact, a pseudofunctor (as defined here) is locally faithful if and | |
only if it is globally faithful. | |
\<close> | |
context pseudofunctor | |
begin | |
definition locally_faithful | |
where "locally_faithful \<equiv> | |
\<forall>f g \<mu> \<mu>'. \<guillemotleft>\<mu> : f \<Rightarrow>\<^sub>C g\<guillemotright> \<and> \<guillemotleft>\<mu>' : f \<Rightarrow>\<^sub>C g\<guillemotright> \<and> F \<mu> = F \<mu>' \<longrightarrow> \<mu> = \<mu>'" | |
lemma locally_faithful_iff_faithful: | |
shows "locally_faithful \<longleftrightarrow> faithful_functor V\<^sub>C V\<^sub>D F" | |
proof | |
show "faithful_functor V\<^sub>C V\<^sub>D F \<Longrightarrow> locally_faithful" | |
by (metis category.in_homE faithful_functor.is_faithful functor_axioms | |
functor_def locally_faithful_def) | |
show "locally_faithful \<Longrightarrow> faithful_functor V\<^sub>C V\<^sub>D F" | |
proof - | |
assume 1: "locally_faithful" | |
show "faithful_functor V\<^sub>C V\<^sub>D F" | |
proof | |
fix \<mu> \<mu>' | |
assume par: "C.par \<mu> \<mu>'" and eq: "F \<mu> = F \<mu>'" | |
obtain f g where fg: "\<guillemotleft>\<mu> : f \<Rightarrow>\<^sub>C g\<guillemotright> \<and> \<guillemotleft>\<mu>' : f \<Rightarrow>\<^sub>C g\<guillemotright>" | |
using par by auto | |
show "\<mu> = \<mu>'" | |
using 1 fg locally_faithful_def eq by simp | |
qed | |
qed | |
qed | |
end | |
text \<open> | |
In contrast, it is not true that a pseudofunctor that is locally full is also | |
globally full, because we can have \<open>\<guillemotleft>\<nu> : F h \<Rightarrow>\<^sub>D F k\<guillemotright>\<close> even if \<open>h\<close> and \<open>k\<close> | |
are not in the same hom-category. So it would be a mistake to require that an | |
equivalence functor be globally full. | |
\<close> | |
locale equivalence_pseudofunctor = | |
pseudofunctor + | |
faithful_functor V\<^sub>C V\<^sub>D F + | |
assumes biessentially_surjective_on_objects: | |
"D.obj a' \<Longrightarrow> \<exists>a. C.obj a \<and> D.equivalent_objects (map\<^sub>0 a) a'" | |
and locally_essentially_surjective: | |
"\<lbrakk> C.obj a; C.obj b; \<guillemotleft>g : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 b\<guillemotright>; D.ide g \<rbrakk> \<Longrightarrow> | |
\<exists>f. \<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright> \<and> C.ide f \<and> D.isomorphic (F f) g" | |
and locally_full: | |
"\<lbrakk> C.ide f; C.ide f'; src\<^sub>C f = src\<^sub>C f'; trg\<^sub>C f = trg\<^sub>C f'; \<guillemotleft>\<nu> : F f \<Rightarrow>\<^sub>D F f'\<guillemotright> \<rbrakk> \<Longrightarrow> | |
\<exists>\<mu>. \<guillemotleft>\<mu> : f \<Rightarrow>\<^sub>C f'\<guillemotright> \<and> F \<mu> = \<nu>" | |
begin | |
lemma reflects_ide: | |
assumes "C.endo \<mu>" and "D.ide (F \<mu>)" | |
shows "C.ide \<mu>" | |
using assms is_faithful [of "C.dom \<mu>" \<mu>] C.ide_char' | |
by (metis C.arr_dom C.cod_dom C.dom_dom C.seqE D.ide_char preserves_dom) | |
lemma reflects_iso: | |
assumes "C.arr \<mu>" and "D.iso (F \<mu>)" | |
shows "C.iso \<mu>" | |
proof - | |
obtain \<mu>' where \<mu>': "\<guillemotleft>\<mu>' : C.cod \<mu> \<Rightarrow>\<^sub>C C.dom \<mu>\<guillemotright> \<and> F \<mu>' = D.inv (F \<mu>)" | |
using assms locally_full [of "C.cod \<mu>" "C.dom \<mu>" "D.inv (F \<mu>)"] | |
D.inv_in_hom C.in_homE preserves_hom C.in_homI | |
by auto | |
have "C.inverse_arrows \<mu> \<mu>'" | |
using assms \<mu>' reflects_ide | |
apply (intro C.inverse_arrowsI) | |
apply (metis C.cod_comp C.dom_comp C.ide_dom C.in_homE C.seqI D.comp_inv_arr' | |
faithful_functor_axioms faithful_functor_def functor.preserves_ide | |
as_nat_trans.preserves_comp_2 preserves_dom) | |
by (metis C.cod_comp C.dom_comp C.ide_cod C.in_homE C.seqI D.comp_arr_inv' | |
faithful_functor_axioms faithful_functor_def functor.preserves_ide | |
preserves_cod as_nat_trans.preserves_comp_2) | |
thus ?thesis by auto | |
qed | |
lemma reflects_isomorphic: | |
assumes "C.ide f" and "C.ide f'" and "src\<^sub>C f = src\<^sub>C f'" and "trg\<^sub>C f = trg\<^sub>C f'" | |
and "D.isomorphic (F f) (F f')" | |
shows "C.isomorphic f f'" | |
using assms C.isomorphic_def D.isomorphic_def locally_full reflects_iso C.arrI | |
by metis | |
lemma reflects_equivalence: | |
assumes "C.ide f" and "C.ide g" | |
and "\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright>" and "\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright>" | |
and "equivalence_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (F f) (F g) | |
(D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) | |
(D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g))" | |
shows "equivalence_in_bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>" | |
proof - | |
interpret E': equivalence_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>F f\<close> \<open>F g\<close> | |
\<open>D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)\<close> | |
\<open>D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)\<close> | |
using assms by auto | |
show ?thesis | |
proof | |
show "C.ide f" | |
using assms(1) by simp | |
show "C.ide g" | |
using assms(2) by simp | |
show "\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright>" | |
using assms(3) by simp | |
show "\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright>" | |
using assms(4) by simp | |
have 0: "src\<^sub>C f = trg\<^sub>C g \<and> src\<^sub>C g = trg\<^sub>C f" | |
using \<open>\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright>\<close> | |
by (metis C.hseqE C.ideD(1) C.ide_cod C.ide_dom C.in_homE assms(4)) | |
show "C.iso \<eta>" | |
proof - | |
have "D.iso (F \<eta>)" | |
proof - | |
have 1: "\<guillemotleft>D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f) : map\<^sub>0 (src\<^sub>C f) \<Rightarrow>\<^sub>D F g \<star>\<^sub>D F f\<guillemotright>" | |
using \<open>C.ide f\<close> \<open>C.ide g\<close> \<open>\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright>\<close> | |
unit_char cmp_in_hom cmp_components_are_iso | |
by (metis (mono_tags, lifting) C.ideD(1) E'.unit_in_vhom preserves_src) | |
have 2: "D.iso (\<Phi> (g, f)) \<and> \<guillemotleft>\<Phi> (g, f) : F g \<star>\<^sub>D F f \<Rightarrow>\<^sub>D F (g \<star>\<^sub>C f)\<guillemotright>" | |
using 0 \<open>C.ide f\<close> \<open>C.ide g\<close> cmp_in_hom by simp | |
have 3: "D.iso (D.inv (unit (src\<^sub>C f))) \<and> | |
\<guillemotleft>D.inv (unit (src\<^sub>C f)) : F (src\<^sub>C f) \<Rightarrow>\<^sub>D map\<^sub>0 (src\<^sub>C f)\<guillemotright>" | |
using \<open>C.ide f\<close> unit_char by simp | |
have "D.iso (\<Phi> (g, f) \<cdot>\<^sub>D (D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (unit (src\<^sub>C f)))" | |
using 1 2 3 E'.unit_is_iso D.isos_compose by blast | |
moreover have "\<Phi> (g, f) \<cdot>\<^sub>D (D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (unit (src\<^sub>C f)) = | |
F \<eta>" | |
proof - | |
have "\<Phi> (g, f) \<cdot>\<^sub>D (D.inv (\<Phi> (g, f)) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D unit (src\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (unit (src\<^sub>C f)) | |
= (\<Phi> (g, f) \<cdot>\<^sub>D (D.inv (\<Phi> (g, f))) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D (unit (src\<^sub>C f)) \<cdot>\<^sub>D | |
D.inv (unit (src\<^sub>C f)))" | |
using D.comp_assoc by simp | |
also have "... = F (g \<star>\<^sub>C f) \<cdot>\<^sub>D F \<eta> \<cdot>\<^sub>D F (src\<^sub>C f)" | |
using 2 3 D.comp_arr_inv D.comp_inv_arr D.inv_is_inverse | |
by (metis C.ideD(1) C.obj_src D.comp_assoc D.dom_inv D.in_homE unit_char(2) | |
assms(1)) | |
also have "... = F \<eta>" | |
using \<open>\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright>\<close> D.comp_arr_dom D.comp_cod_arr by auto | |
finally show ?thesis by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
thus ?thesis | |
using assms reflects_iso by auto | |
qed | |
show "C.iso \<epsilon>" | |
proof - | |
have "D.iso (F \<epsilon>)" | |
proof - | |
have 1: "\<guillemotleft>D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g) : F f \<star>\<^sub>D F g \<Rightarrow>\<^sub>D map\<^sub>0 (src\<^sub>C g)\<guillemotright>" | |
using \<open>C.ide f\<close> \<open>C.ide g\<close> \<open>\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright>\<close> | |
unit_char cmp_in_hom cmp_components_are_iso | |
by (metis (mono_tags, lifting) C.ideD(1) E'.counit_in_vhom preserves_src) | |
have 2: "D.iso (D.inv (\<Phi> (f, g))) \<and> | |
\<guillemotleft>D.inv (\<Phi> (f, g)) : F (f \<star>\<^sub>C g) \<Rightarrow>\<^sub>D F f \<star>\<^sub>D F g\<guillemotright>" | |
using 0 \<open>C.ide f\<close> \<open>C.ide g\<close> \<open>\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright>\<close> cmp_in_hom(2) D.inv_in_hom | |
by simp | |
have 3: "D.iso (unit (trg\<^sub>C f)) \<and> \<guillemotleft>unit (trg\<^sub>C f) : map\<^sub>0 (trg\<^sub>C f) \<Rightarrow>\<^sub>D F (trg\<^sub>C f)\<guillemotright>" | |
using \<open>C.ide f\<close> unit_char by simp | |
have "D.iso (unit (trg\<^sub>C f) \<cdot>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D | |
D.inv (\<Phi> (f, g)))" | |
using 0 1 2 3 E'.counit_is_iso D.isos_compose | |
by (metis D.arrI D.cod_comp D.cod_inv D.seqI D.seqI') | |
moreover have "unit (trg\<^sub>C f) \<cdot>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D | |
D.inv (\<Phi> (f, g)) = | |
F \<epsilon>" | |
proof - | |
have "unit (trg\<^sub>C f) \<cdot>\<^sub>D (D.inv (unit (trg\<^sub>C f)) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D \<Phi> (f, g)) \<cdot>\<^sub>D | |
D.inv (\<Phi> (f, g)) = | |
(unit (trg\<^sub>C f) \<cdot>\<^sub>D D.inv (unit (trg\<^sub>C f))) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D (\<Phi> (f, g) \<cdot>\<^sub>D D.inv (\<Phi> (f, g)))" | |
using D.comp_assoc by simp | |
also have "... = F (trg\<^sub>C f) \<cdot>\<^sub>D F \<epsilon> \<cdot>\<^sub>D F (f \<star>\<^sub>C g)" | |
using 0 3 D.comp_arr_inv' D.comp_inv_arr' | |
by (simp add: C.VV.arr_char C.VV.ide_char assms(1-2)) | |
also have "... = F \<epsilon>" | |
using 0 \<open>\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright>\<close> D.comp_arr_dom D.comp_cod_arr by auto | |
finally show ?thesis by simp | |
qed | |
ultimately show ?thesis by simp | |
qed | |
thus ?thesis | |
using assms reflects_iso by auto | |
qed | |
qed | |
qed | |
lemma reflects_equivalence_map: | |
assumes "C.ide f" and "D.equivalence_map (F f)" | |
shows "C.equivalence_map f" | |
proof - | |
obtain g' \<phi> \<psi> where E': "equivalence_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D (F f) g' \<phi> \<psi>" | |
using assms D.equivalence_map_def by auto | |
interpret E': equivalence_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>F f\<close> g' \<phi> \<psi> | |
using E' by auto | |
obtain g where g: "\<guillemotleft>g : trg\<^sub>C f \<rightarrow>\<^sub>C src\<^sub>C f\<guillemotright> \<and> C.ide g \<and> D.isomorphic (F g) g'" | |
using assms E'.antipar locally_essentially_surjective [of "trg\<^sub>C f" "src\<^sub>C f" g'] | |
by auto | |
obtain \<mu> where \<mu>: "\<guillemotleft>\<mu> : g' \<Rightarrow>\<^sub>D F g\<guillemotright> \<and> D.iso \<mu>" | |
using g D.isomorphic_def D.isomorphic_symmetric by blast | |
interpret E'': equivalence_in_bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>F f\<close> \<open>F g\<close> | |
\<open>(F g \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<mu> \<star>\<^sub>D F f) \<cdot>\<^sub>D \<phi>\<close> | |
\<open>\<psi> \<cdot>\<^sub>D (D.inv (F f) \<star>\<^sub>D g') \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv \<mu>)\<close> | |
using assms \<mu> E'.equivalence_in_bicategory_axioms D.ide_is_iso | |
D.equivalence_respects_iso [of "F f" g' \<phi> \<psi> "F f" "F f" \<mu> "F g"] | |
by auto | |
let ?\<eta>' = "\<Phi> (g, f) \<cdot>\<^sub>D (F g \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<mu> \<star>\<^sub>D F f) \<cdot>\<^sub>D \<phi> \<cdot>\<^sub>D D.inv (unit (src\<^sub>C f))" | |
have \<eta>': "\<guillemotleft>?\<eta>' : F (src\<^sub>C f) \<Rightarrow>\<^sub>D F (g \<star>\<^sub>C f)\<guillemotright>" | |
using assms \<mu> g unit_char E'.unit_in_hom(2) E'.antipar E''.antipar cmp_in_hom | |
apply (intro D.comp_in_homI) | |
apply auto | |
using E'.antipar(2) by blast | |
have iso_\<eta>': "D.iso ?\<eta>'" | |
using assms g \<mu> \<eta>' E'.antipar unit_char | |
by (metis C.in_hhomE D.arrI D.inv_comp_left(2) D.inv_comp_right(2) D.iso_hcomp | |
D.iso_inv_iso D.isos_compose D.seqE E''.antipar(2) E''.unit_is_iso | |
E'.unit_is_iso as_nat_iso.components_are_iso cmp_components_are_iso) | |
let ?\<epsilon>' = "unit (src\<^sub>C g) \<cdot>\<^sub>D \<psi> \<cdot>\<^sub>D (D.inv (F f) \<star>\<^sub>D g') \<cdot>\<^sub>D (F f \<star>\<^sub>D D.inv \<mu>) \<cdot>\<^sub>D | |
D.inv (\<Phi> (f, g))" | |
have \<epsilon>': "\<guillemotleft>?\<epsilon>' : F (f \<star>\<^sub>C g) \<Rightarrow>\<^sub>D F (trg\<^sub>C f)\<guillemotright>" | |
proof (intro D.comp_in_homI) | |
show "\<guillemotleft>D.inv (\<Phi> (f, g)) : F (f \<star>\<^sub>C g) \<Rightarrow>\<^sub>D F f \<star>\<^sub>D F g\<guillemotright>" | |
using assms g cmp_in_hom C.VV.ide_char C.VV.arr_char by auto | |
show "\<guillemotleft>F f \<star>\<^sub>D D.inv \<mu> : F f \<star>\<^sub>D F g \<Rightarrow>\<^sub>D F f \<star>\<^sub>D g'\<guillemotright>" | |
using assms g \<mu> E''.antipar D.ide_in_hom(2) by auto | |
show "\<guillemotleft>D.inv (F f) \<star>\<^sub>D g' : F f \<star>\<^sub>D g' \<Rightarrow>\<^sub>D F f \<star>\<^sub>D g'\<guillemotright>" | |
using assms E'.antipar D.ide_is_iso by auto | |
show "\<guillemotleft>\<psi> : F f \<star>\<^sub>D g' \<Rightarrow>\<^sub>D trg\<^sub>D (F f)\<guillemotright>" | |
using E'.counit_in_hom by simp | |
show "\<guillemotleft>unit (src\<^sub>C g) : trg\<^sub>D (F f) \<Rightarrow>\<^sub>D F (trg\<^sub>C f)\<guillemotright>" | |
using assms g unit_char by auto | |
qed | |
have iso_\<epsilon>': "D.iso ?\<epsilon>'" | |
proof - | |
have "D.iso (\<Phi> (f, g))" | |
using assms g C.VV.ide_char C.VV.arr_char by auto | |
thus ?thesis | |
by (metis C.in_hhomE D.arrI D.hseq_char' D.ide_is_iso D.inv_comp_left(2) | |
D.inv_comp_right(2) D.iso_hcomp D.iso_inv_iso D.isos_compose D.seqE | |
D.seq_if_composable E''.counit_is_iso E'.counit_is_iso E'.ide_left | |
\<epsilon>' \<mu> g unit_char(2)) | |
qed | |
obtain \<eta> where \<eta>: "\<guillemotleft>\<eta> : src\<^sub>C f \<Rightarrow>\<^sub>C g \<star>\<^sub>C f\<guillemotright> \<and> F \<eta> = ?\<eta>'" | |
using assms g E'.antipar \<eta>' locally_full [of "src\<^sub>C f" "g \<star>\<^sub>C f" ?\<eta>'] | |
by (metis C.ide_hcomp C.ideD(1) C.in_hhomE C.src.preserves_ide C.hcomp_simps(1-2) | |
C.src_trg C.trg_trg) | |
have iso_\<eta>: "C.iso \<eta>" | |
using \<eta> \<eta>' iso_\<eta>' reflects_iso by auto | |
have 1: "\<exists>\<epsilon>. \<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright> \<and> F \<epsilon> = ?\<epsilon>'" | |
using assms g \<epsilon>' locally_full [of "f \<star>\<^sub>C g" "src\<^sub>C g" ?\<epsilon>'] by force | |
obtain \<epsilon> where \<epsilon>: "\<guillemotleft>\<epsilon> : f \<star>\<^sub>C g \<Rightarrow>\<^sub>C src\<^sub>C g\<guillemotright> \<and> F \<epsilon> = ?\<epsilon>'" | |
using 1 by blast | |
have iso_\<epsilon>: "C.iso \<epsilon>" | |
using \<epsilon> \<epsilon>' iso_\<epsilon>' reflects_iso by auto | |
have "equivalence_in_bicategory (\<cdot>\<^sub>C) (\<star>\<^sub>C) \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C f g \<eta> \<epsilon>" | |
using assms g \<eta> \<epsilon> iso_\<eta> iso_\<epsilon> by (unfold_locales, auto) | |
thus ?thesis | |
using C.equivalence_map_def by auto | |
qed | |
lemma reflects_equivalent_objects: | |
assumes "C.obj a" and "C.obj b" and "D.equivalent_objects (map\<^sub>0 a) (map\<^sub>0 b)" | |
shows "C.equivalent_objects a b" | |
proof - | |
obtain f' where f': "\<guillemotleft>f' : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 b\<guillemotright> \<and> D.equivalence_map f'" | |
using assms D.equivalent_objects_def D.equivalence_map_def by auto | |
obtain f where f: "\<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright> \<and> C.ide f \<and> D.isomorphic (F f) f'" | |
using assms f' locally_essentially_surjective [of a b f'] D.equivalence_map_is_ide | |
by auto | |
have "D.equivalence_map (F f)" | |
using f f' D.equivalence_map_preserved_by_iso [of f' "F f"] D.isomorphic_symmetric | |
by simp | |
hence "C.equivalence_map f" | |
using f f' reflects_equivalence_map [of f] by simp | |
thus ?thesis | |
using f C.equivalent_objects_def by auto | |
qed | |
end | |
text\<open> | |
For each pair of objects \<open>a\<close>, \<open>b\<close> of \<open>C\<close>, an equivalence pseudofunctor restricts | |
to an equivalence of categories between \<open>C.hhom a b\<close> and \<open>D.hhom (map\<^sub>0 a) (map\<^sub>0 b)\<close>. | |
\<close> | |
(* TODO: Change the "perspective" of this locale to be the defined functor. *) | |
locale equivalence_pseudofunctor_at_hom = | |
equivalence_pseudofunctor + | |
fixes a :: 'a and a' :: 'a | |
assumes obj_a: "C.obj a" | |
and obj_a': "C.obj a'" | |
begin | |
sublocale hhom\<^sub>C: subcategory V\<^sub>C \<open>\<lambda>\<mu>. \<guillemotleft>\<mu> : a \<rightarrow>\<^sub>C a'\<guillemotright>\<close> | |
using C.hhom_is_subcategory by simp | |
sublocale hhom\<^sub>D: subcategory V\<^sub>D \<open>\<lambda>\<mu>. \<guillemotleft>\<mu> : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 a'\<guillemotright>\<close> | |
using D.hhom_is_subcategory by simp | |
definition F\<^sub>1 | |
where "F\<^sub>1 = (\<lambda>\<mu>. if hhom\<^sub>C.arr \<mu> then F \<mu> else D.null)" | |
interpretation F\<^sub>1: "functor" hhom\<^sub>C.comp hhom\<^sub>D.comp F\<^sub>1 | |
unfolding F\<^sub>1_def | |
using hhom\<^sub>C.arr_char hhom\<^sub>D.arr_char hhom\<^sub>C.dom_char hhom\<^sub>D.dom_char | |
hhom\<^sub>C.cod_char hhom\<^sub>D.cod_char hhom\<^sub>C.seq_char hhom\<^sub>C.comp_char hhom\<^sub>D.comp_char | |
by unfold_locales auto | |
interpretation F\<^sub>1: fully_faithful_and_essentially_surjective_functor | |
hhom\<^sub>C.comp hhom\<^sub>D.comp F\<^sub>1 | |
proof | |
show "\<And>\<mu> \<mu>'. \<lbrakk>hhom\<^sub>C.par \<mu> \<mu>'; F\<^sub>1 \<mu> = F\<^sub>1 \<mu>'\<rbrakk> \<Longrightarrow> \<mu> = \<mu>'" | |
unfolding F\<^sub>1_def | |
using is_faithful hhom\<^sub>C.dom_char hhom\<^sub>D.dom_char hhom\<^sub>C.cod_char hhom\<^sub>D.cod_char | |
by (metis C.in_hhom_def hhom\<^sub>C.arrE) | |
show "\<And>f f' \<nu>. \<lbrakk>hhom\<^sub>C.ide f; hhom\<^sub>C.ide f'; hhom\<^sub>D.in_hom \<nu> (F\<^sub>1 f') (F\<^sub>1 f)\<rbrakk> | |
\<Longrightarrow> \<exists>\<mu>. hhom\<^sub>C.in_hom \<mu> f' f \<and> F\<^sub>1 \<mu> = \<nu>" | |
proof (unfold F\<^sub>1_def) | |
fix f f' \<nu> | |
assume f: "hhom\<^sub>C.ide f" and f': "hhom\<^sub>C.ide f'" | |
assume "hhom\<^sub>D.in_hom \<nu> (if hhom\<^sub>C.arr f' then F f' else D.null) | |
(if hhom\<^sub>C.arr f then F f else D.null)" | |
hence \<nu>: "hhom\<^sub>D.in_hom \<nu> (F f') (F f)" | |
using f f' by simp | |
have "\<exists>\<mu>. hhom\<^sub>C.in_hom \<mu> f' f \<and> F \<mu> = \<nu>" | |
proof - | |
have 1: "src\<^sub>C f' = src\<^sub>C f \<and> trg\<^sub>C f' = trg\<^sub>C f" | |
using f f' hhom\<^sub>C.ide_char by (metis C.in_hhomE hhom\<^sub>C.arrE) | |
hence ex: "\<exists>\<mu>. C.in_hom \<mu> f' f \<and> F \<mu> = \<nu>" | |
by (meson \<nu> f f' hhom\<^sub>D.in_hom_char horizontal_homs.hhom_is_subcategory | |
locally_full subcategory.ide_char weak_arrow_of_homs_axioms | |
weak_arrow_of_homs_def) | |
obtain \<mu> where \<mu>: "C.in_hom \<mu> f' f \<and> F \<mu> = \<nu>" | |
using ex by blast | |
have "hhom\<^sub>C.in_hom \<mu> f' f" | |
by (metis C.arrI C.in_hhom_def C.vconn_implies_hpar(1-2) \<mu> f f' | |
hhom\<^sub>C.arr_char hhom\<^sub>C.ide_char hhom\<^sub>C.in_hom_char) | |
thus ?thesis | |
using \<mu> by auto | |
qed | |
thus "\<exists>\<mu>. hhom\<^sub>C.in_hom \<mu> f' f \<and> (if hhom\<^sub>C.arr \<mu> then F \<mu> else D.null) = \<nu>" | |
by auto | |
qed | |
show "\<And>g. hhom\<^sub>D.ide g \<Longrightarrow> \<exists>f. hhom\<^sub>C.ide f \<and> hhom\<^sub>D.isomorphic (F\<^sub>1 f) g" | |
proof (unfold F\<^sub>1_def) | |
fix g | |
assume g: "hhom\<^sub>D.ide g" | |
show "\<exists>f. hhom\<^sub>C.ide f \<and> hhom\<^sub>D.isomorphic (if hhom\<^sub>C.arr f then F f else D.null) g" | |
proof - | |
have "C.obj a \<and> C.obj a'" | |
using obj_a obj_a' by simp | |
moreover have 1: "D.ide g \<and> \<guillemotleft>g : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 a'\<guillemotright>" | |
using g obj_a obj_a' hhom\<^sub>D.ide_char by auto | |
ultimately have 2: "\<exists>f. C.in_hhom f a a' \<and> C.ide f \<and> D.isomorphic (F f) g" | |
using locally_essentially_surjective [of a a' g] by simp | |
obtain f \<phi> where f: "C.in_hhom f a a' \<and> C.ide f \<and> D.in_hom \<phi> (F f) g \<and> D.iso \<phi>" | |
using 2 by auto | |
have "hhom\<^sub>C.ide f" | |
using f hhom\<^sub>C.ide_char hhom\<^sub>C.arr_char by simp | |
moreover have "hhom\<^sub>D.isomorphic (F f) g" | |
proof - | |
have "hhom\<^sub>D.arr \<phi> \<and> hhom\<^sub>D.arr (D.inv \<phi>)" | |
by (metis 1 D.arrI D.in_hhom_def D.vconn_implies_hpar(1-4) D.inv_in_homI | |
f hhom\<^sub>D.arrI) | |
hence "hhom\<^sub>D.in_hom \<phi> (F f) g \<and> hhom\<^sub>D.iso \<phi>" | |
by (metis D.in_homE f hhom\<^sub>D.cod_simp hhom\<^sub>D.dom_simp hhom\<^sub>D.in_homI hhom\<^sub>D.iso_char) | |
thus ?thesis | |
unfolding hhom\<^sub>D.isomorphic_def by blast | |
qed | |
ultimately show "\<exists>f. hhom\<^sub>C.ide f \<and> | |
hhom\<^sub>D.isomorphic (if hhom\<^sub>C.arr f then F f else D.null) g" | |
by force | |
qed | |
qed | |
qed | |
lemma equivalence_functor_F\<^sub>1: | |
shows "fully_faithful_and_essentially_surjective_functor hhom\<^sub>C.comp hhom\<^sub>D.comp F\<^sub>1" | |
and "equivalence_functor hhom\<^sub>C.comp hhom\<^sub>D.comp F\<^sub>1" | |
.. | |
definition G\<^sub>1 | |
where "G\<^sub>1 = (SOME G. \<exists>\<eta>\<epsilon>. | |
adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G F\<^sub>1 (fst \<eta>\<epsilon>) (snd \<eta>\<epsilon>))" | |
lemma G\<^sub>1_props: | |
assumes "C.obj a" and "C.obj a'" | |
shows "\<exists>\<eta> \<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta> \<epsilon>" | |
proof - | |
have "\<exists>G. \<exists>\<eta>\<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G F\<^sub>1 (fst \<eta>\<epsilon>) (snd \<eta>\<epsilon>)" | |
using F\<^sub>1.extends_to_adjoint_equivalence by simp | |
hence "\<exists>\<eta>\<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 (fst \<eta>\<epsilon>) (snd \<eta>\<epsilon>)" | |
unfolding G\<^sub>1_def | |
using someI_ex | |
[of "\<lambda>G. \<exists>\<eta>\<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G F\<^sub>1 (fst \<eta>\<epsilon>) (snd \<eta>\<epsilon>)"] | |
by blast | |
thus ?thesis by simp | |
qed | |
definition \<eta> | |
where "\<eta> = (SOME \<eta>. \<exists>\<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta> \<epsilon>)" | |
definition \<epsilon> | |
where "\<epsilon> = (SOME \<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta> \<epsilon>)" | |
lemma \<eta>\<epsilon>_props: | |
shows "adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta> \<epsilon>" | |
using obj_a obj_a' \<eta>_def \<epsilon>_def G\<^sub>1_props | |
someI_ex [of "\<lambda>\<eta>. \<exists>\<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta> \<epsilon>"] | |
someI_ex [of "\<lambda>\<epsilon>. adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta> \<epsilon>"] | |
by simp | |
sublocale \<eta>\<epsilon>: adjoint_equivalence hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta> \<epsilon> | |
using \<eta>\<epsilon>_props by simp | |
sublocale \<eta>\<epsilon>: meta_adjunction hhom\<^sub>C.comp hhom\<^sub>D.comp G\<^sub>1 F\<^sub>1 \<eta>\<epsilon>.\<phi> \<eta>\<epsilon>.\<psi> | |
using \<eta>\<epsilon>.induces_meta_adjunction by simp | |
end | |
context identity_pseudofunctor | |
begin | |
sublocale equivalence_pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B | |
map cmp | |
using B.isomorphic_reflexive B.arrI | |
apply unfold_locales | |
by (auto simp add: B.equivalent_objects_reflexive map\<^sub>0_def B.obj_simps) | |
lemma is_equivalence_pseudofunctor: | |
shows "equivalence_pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B | |
map cmp" | |
.. | |
end | |
locale composite_equivalence_pseudofunctor = | |
composite_pseudofunctor + | |
F: equivalence_pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C F \<Phi>\<^sub>F + | |
G: equivalence_pseudofunctor V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D G \<Phi>\<^sub>G | |
begin | |
interpretation faithful_functor V\<^sub>B V\<^sub>D \<open>G o F\<close> | |
using F.faithful_functor_axioms G.faithful_functor_axioms faithful_functors_compose | |
by blast | |
interpretation equivalence_pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D | |
\<open>G o F\<close> cmp | |
proof | |
show "\<And>c. D.obj c \<Longrightarrow> \<exists>a. B.obj a \<and> D.equivalent_objects (map\<^sub>0 a) c" | |
proof - | |
fix c | |
assume c: "D.obj c" | |
obtain b where b: "C.obj b \<and> D.equivalent_objects (G.map\<^sub>0 b) c" | |
using c G.biessentially_surjective_on_objects by auto | |
obtain a where a: "B.obj a \<and> C.equivalent_objects (F.map\<^sub>0 a) b" | |
using b F.biessentially_surjective_on_objects by auto | |
have "D.equivalent_objects (map\<^sub>0 a) c" | |
using a b map\<^sub>0_def G.preserves_equivalent_objects D.equivalent_objects_transitive | |
by fastforce | |
thus "\<exists>a. B.obj a \<and> D.equivalent_objects (map\<^sub>0 a) c" | |
using a by auto | |
qed | |
show "\<And>a a' h. \<lbrakk>B.obj a; B.obj a'; \<guillemotleft>h : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 a'\<guillemotright>; D.ide h\<rbrakk> | |
\<Longrightarrow> \<exists>f. B.in_hhom f a a' \<and> B.ide f \<and> D.isomorphic ((G \<circ> F) f) h" | |
proof - | |
fix a a' h | |
assume a: "B.obj a" and a': "B.obj a'" | |
and h_in_hom: "\<guillemotleft>h : map\<^sub>0 a \<rightarrow>\<^sub>D map\<^sub>0 a'\<guillemotright>" and ide_h: "D.ide h" | |
obtain g | |
where g: "C.in_hhom g (F.map\<^sub>0 a) (F.map\<^sub>0 a') \<and> C.ide g \<and> D.isomorphic (G g) h" | |
using a a' h_in_hom ide_h map\<^sub>0_def B.obj_simps | |
G.locally_essentially_surjective [of "F.map\<^sub>0 a" "F.map\<^sub>0 a'" h] | |
by auto | |
obtain f where f: "B.in_hhom f a a' \<and> B.ide f \<and> C.isomorphic (F f) g" | |
using a a' g F.locally_essentially_surjective by blast | |
have "D.isomorphic ((G o F) f) h" | |
by (metis D.isomorphic_transitive G.preserves_isomorphic comp_apply f g) | |
thus "\<exists>f. B.in_hhom f a a' \<and> B.ide f \<and> D.isomorphic ((G \<circ> F) f) h" | |
using f by auto | |
qed | |
show "\<And>f f' \<nu>. \<lbrakk>B.ide f; B.ide f'; src\<^sub>B f = src\<^sub>B f'; trg\<^sub>B f = trg\<^sub>B f'; | |
\<guillemotleft>\<nu> : (G \<circ> F) f \<Rightarrow>\<^sub>D (G \<circ> F) f'\<guillemotright>\<rbrakk> | |
\<Longrightarrow> \<exists>\<tau>. \<guillemotleft>\<tau> : f \<rightarrow>\<^sub>B f'\<guillemotright> \<and> (G \<circ> F) \<tau> = \<nu>" | |
proof - | |
fix f f' \<nu> | |
assume f: "B.ide f" and f': "B.ide f'" | |
and src: "src\<^sub>B f = src\<^sub>B f'" and trg: "trg\<^sub>B f = trg\<^sub>B f'" | |
and \<nu>: "\<guillemotleft>\<nu> : (G \<circ> F) f \<Rightarrow>\<^sub>D (G \<circ> F) f'\<guillemotright>" | |
have \<nu>: "\<guillemotleft>\<nu> : G (F f) \<Rightarrow>\<^sub>D G (F f')\<guillemotright>" | |
using \<nu> by simp | |
have 1: "src\<^sub>C (F f) = src\<^sub>C (F f') \<and> trg\<^sub>C (F f) = trg\<^sub>C (F f')" | |
using f f' src trg by simp | |
have 2: "\<exists>\<mu>. \<guillemotleft>\<mu> : F f \<Rightarrow>\<^sub>C F f'\<guillemotright> \<and> G \<mu> = \<nu>" | |
using f f' 1 \<nu> G.locally_full F.preserves_ide by simp | |
obtain \<mu> where \<mu>: "\<guillemotleft>\<mu> : F f \<Rightarrow>\<^sub>C F f'\<guillemotright> \<and> G \<mu> = \<nu>" | |
using 2 by auto | |
obtain \<tau> where \<tau>: "\<guillemotleft>\<tau> : f \<rightarrow>\<^sub>B f'\<guillemotright> \<and> F \<tau> = \<mu>" | |
using f f' src trg 2 \<mu> F.locally_full by blast | |
show "\<exists>\<tau>. \<guillemotleft>\<tau> : f \<rightarrow>\<^sub>B f'\<guillemotright> \<and> (G \<circ> F) \<tau> = \<nu>" | |
using \<mu> \<tau> by auto | |
qed | |
qed | |
sublocale equivalence_pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D | |
\<open>G o F\<close> cmp .. | |
lemma is_equivalence_pseudofunctor: | |
shows "equivalence_pseudofunctor V\<^sub>B H\<^sub>B \<a>\<^sub>B \<i>\<^sub>B src\<^sub>B trg\<^sub>B V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D | |
(G o F) cmp" | |
.. | |
end | |
end | |