Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /Bicategory /Modification.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
138 kB
(* Title: Modification
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2020
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu>
*)
section "Modifications"
text \<open>
Modifications are morphisms of pseudonatural transformations.
In this section, we give a definition of ``modification'', and we prove that
the mappings \<open>\<eta>\<close> and \<open>\<epsilon>\<close>, which were chosen in the course of showing that a
pseudonatural equivalence \<open>\<tau>\<close> has a converse pseudonatural equivalence \<open>\<tau>'\<close>,
are invertible modifications that relate the composites \<open>\<tau>'\<tau>\<close> and \<open>\<tau>\<tau>'\<close>
to the identity pseudonatural transformations on \<open>F\<close> and \<open>G\<close>.
This means that \<open>\<tau>\<close> and \<open>\<tau>'\<close> are quasi-inverses in a suitable bicategory
of pseudofunctors, pseudonatural transformations, and modifications, though
we do not go so far as to give a formal construction of such a bicategory.
\<close>
theory Modification
imports PseudonaturalTransformation
begin
locale modification = (* 12 sec *)
C: bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C +
D: bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D +
\<tau>: pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<tau>\<^sub>0 \<tau>\<^sub>1 +
\<tau>': pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<tau>\<^sub>0' \<tau>\<^sub>1'
for V\<^sub>C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55)
and H\<^sub>C :: "'c comp" (infixr "\<star>\<^sub>C" 53)
and \<a>\<^sub>C :: "'c \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" ("\<a>\<^sub>C[_, _, _]")
and \<i>\<^sub>C :: "'c \<Rightarrow> 'c" ("\<i>\<^sub>C[_]")
and src\<^sub>C :: "'c \<Rightarrow> 'c"
and trg\<^sub>C :: "'c \<Rightarrow> 'c"
and V\<^sub>D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55)
and H\<^sub>D :: "'d comp" (infixr "\<star>\<^sub>D" 53)
and \<a>\<^sub>D :: "'d \<Rightarrow> 'd \<Rightarrow> 'd \<Rightarrow> 'd" ("\<a>\<^sub>D[_, _, _]")
and \<i>\<^sub>D :: "'d \<Rightarrow> 'd" ("\<i>\<^sub>D[_]")
and src\<^sub>D :: "'d \<Rightarrow> 'd"
and trg\<^sub>D :: "'d \<Rightarrow> 'd"
and F :: "'c \<Rightarrow> 'd"
and \<Phi>\<^sub>F :: "'c * 'c \<Rightarrow> 'd"
and G :: "'c \<Rightarrow> 'd"
and \<Phi>\<^sub>G :: "'c * 'c \<Rightarrow> 'd"
and \<tau>\<^sub>0 :: "'c \<Rightarrow> 'd"
and \<tau>\<^sub>1 :: "'c \<Rightarrow> 'd"
and \<tau>\<^sub>0' :: "'c \<Rightarrow> 'd"
and \<tau>\<^sub>1' :: "'c \<Rightarrow> 'd"
and \<Gamma> :: "'c \<Rightarrow> 'd" +
assumes \<Gamma>_in_hom: "C.obj a \<Longrightarrow> \<guillemotleft>\<Gamma> a : \<tau>\<^sub>0 a \<Rightarrow>\<^sub>D \<tau>\<^sub>0' a\<guillemotright>"
and naturality: "\<lbrakk> \<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright>; C.ide f \<rbrakk> \<Longrightarrow> \<tau>\<^sub>1' f \<cdot>\<^sub>D (G f \<star>\<^sub>D \<Gamma> a) = (\<Gamma> b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<tau>\<^sub>1 f"
locale invertible_modification = (* 13 sec *)
modification +
assumes components_are_iso: "C.obj a \<Longrightarrow> D.iso (\<Gamma> a)"
locale identity_modification = (* 12 sec *)
C: bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C +
D: bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D +
\<tau>: pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<tau>\<^sub>0 \<tau>\<^sub>1
for V\<^sub>C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55)
and H\<^sub>C :: "'c comp" (infixr "\<star>\<^sub>C" 53)
and \<a>\<^sub>C :: "'c \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" ("\<a>\<^sub>C[_, _, _]")
and \<i>\<^sub>C :: "'c \<Rightarrow> 'c" ("\<i>\<^sub>C[_]")
and src\<^sub>C :: "'c \<Rightarrow> 'c"
and trg\<^sub>C :: "'c \<Rightarrow> 'c"
and V\<^sub>D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55)
and H\<^sub>D :: "'d comp" (infixr "\<star>\<^sub>D" 53)
and \<a>\<^sub>D :: "'d \<Rightarrow> 'd \<Rightarrow> 'd \<Rightarrow> 'd" ("\<a>\<^sub>D[_, _, _]")
and \<i>\<^sub>D :: "'d \<Rightarrow> 'd" ("\<i>\<^sub>D[_]")
and src\<^sub>D :: "'d \<Rightarrow> 'd"
and trg\<^sub>D :: "'d \<Rightarrow> 'd"
and F :: "'c \<Rightarrow> 'd"
and \<Phi>\<^sub>F :: "'c * 'c \<Rightarrow> 'd"
and G :: "'c \<Rightarrow> 'd"
and \<Phi>\<^sub>G :: "'c * 'c \<Rightarrow> 'd"
and \<tau>\<^sub>0 :: "'c \<Rightarrow> 'd"
and \<tau>\<^sub>1 :: "'c \<Rightarrow> 'd"
begin
abbreviation map
where "map \<equiv> \<tau>\<^sub>0"
sublocale invertible_modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<tau>\<^sub>0 \<tau>\<^sub>1 \<tau>\<^sub>0 \<tau>\<^sub>1 map
using D.comp_arr_dom D.comp_cod_arr
by unfold_locales auto
end
locale composite_modification = (* 13 sec *)
C: bicategory V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C +
D: bicategory V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D +
\<rho>: pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<rho>\<^sub>0 \<rho>\<^sub>1 +
\<sigma>: pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<sigma>\<^sub>0 \<sigma>\<^sub>1 +
\<tau>: pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<tau>\<^sub>0 \<tau>\<^sub>1 +
\<Gamma>: modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<rho>\<^sub>0 \<rho>\<^sub>1 \<sigma>\<^sub>0 \<sigma>\<^sub>1 \<Gamma> +
\<Delta>: modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<sigma>\<^sub>0 \<sigma>\<^sub>1 \<tau>\<^sub>0 \<tau>\<^sub>1 \<Delta>
for V\<^sub>C :: "'c comp" (infixr "\<cdot>\<^sub>C" 55)
and H\<^sub>C :: "'c comp" (infixr "\<star>\<^sub>C" 53)
and \<a>\<^sub>C :: "'c \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" ("\<a>\<^sub>C[_, _, _]")
and \<i>\<^sub>C :: "'c \<Rightarrow> 'c" ("\<i>\<^sub>C[_]")
and src\<^sub>C :: "'c \<Rightarrow> 'c"
and trg\<^sub>C :: "'c \<Rightarrow> 'c"
and V\<^sub>D :: "'d comp" (infixr "\<cdot>\<^sub>D" 55)
and H\<^sub>D :: "'d comp" (infixr "\<star>\<^sub>D" 53)
and \<a>\<^sub>D :: "'d \<Rightarrow> 'd \<Rightarrow> 'd \<Rightarrow> 'd" ("\<a>\<^sub>D[_, _, _]")
and \<i>\<^sub>D :: "'d \<Rightarrow> 'd" ("\<i>\<^sub>D[_]")
and src\<^sub>D :: "'d \<Rightarrow> 'd"
and trg\<^sub>D :: "'d \<Rightarrow> 'd"
and F :: "'c \<Rightarrow> 'd"
and \<Phi>\<^sub>F :: "'c * 'c \<Rightarrow> 'd"
and G :: "'c \<Rightarrow> 'd"
and \<Phi>\<^sub>G :: "'c * 'c \<Rightarrow> 'd"
and \<rho>\<^sub>0 :: "'c \<Rightarrow> 'd"
and \<rho>\<^sub>1 :: "'c \<Rightarrow> 'd"
and \<sigma>\<^sub>0 :: "'c \<Rightarrow> 'd"
and \<sigma>\<^sub>1 :: "'c \<Rightarrow> 'd"
and \<tau>\<^sub>0 :: "'c \<Rightarrow> 'd"
and \<tau>\<^sub>1 :: "'c \<Rightarrow> 'd"
and \<Gamma> :: "'c \<Rightarrow> 'd"
and \<Delta> :: "'c \<Rightarrow> 'd"
begin
abbreviation map
where "map a \<equiv> \<Delta> a \<cdot>\<^sub>D \<Gamma> a"
sublocale modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G \<rho>\<^sub>0 \<rho>\<^sub>1 \<tau>\<^sub>0 \<tau>\<^sub>1 map
using \<Delta>.\<Gamma>_in_hom \<Gamma>.\<Gamma>_in_hom \<Delta>.naturality \<Gamma>.naturality
apply unfold_locales
apply auto[1]
proof -
fix f a b
assume f: "\<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright>" and ide_f: "C.ide f"
have "\<tau>\<^sub>1 f \<cdot>\<^sub>D (G f \<star>\<^sub>D map a) = (\<tau>\<^sub>1 f \<cdot>\<^sub>D (G f \<star>\<^sub>D \<Delta> a)) \<cdot>\<^sub>D (G f \<star>\<^sub>D \<Gamma> a)"
proof -
have "D.seq (\<Delta> a) (\<Gamma> a)"
using f \<Delta>.\<Gamma>_in_hom \<Gamma>.\<Gamma>_in_hom by blast
thus ?thesis
using f ide_f D.whisker_left [of "G f" "\<Delta> a" "\<Gamma> a"] D.comp_assoc
by simp
qed
also have "... = (\<Delta> b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<sigma>\<^sub>1 f \<cdot>\<^sub>D (G f \<star>\<^sub>D \<Gamma> a)"
using f ide_f \<Delta>.naturality [of f a b] D.comp_assoc by simp
also have "... = ((\<Delta> b \<star>\<^sub>D F f) \<cdot>\<^sub>D (\<Gamma> b \<star>\<^sub>D F f)) \<cdot>\<^sub>D \<rho>\<^sub>1 f"
using f ide_f \<Gamma>.naturality [of f a b] D.comp_assoc by simp
also have "... = (map b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<rho>\<^sub>1 f"
proof -
have "D.seq (\<Delta> b) (\<Gamma> b)"
using f \<Delta>.\<Gamma>_in_hom \<Gamma>.\<Gamma>_in_hom by blast
thus ?thesis
using f ide_f D.whisker_right [of "F f" "\<Delta> b" "\<Gamma> b"] by simp
qed
finally show "\<tau>\<^sub>1 f \<cdot>\<^sub>D (G f \<star>\<^sub>D map a) = (map b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<rho>\<^sub>1 f" by simp
qed
end
context converse_pseudonatural_equivalence
begin
interpretation EV: self_evaluation_map V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D ..
notation EV.eval ("\<lbrace>_\<rbrace>")
interpretation \<iota>\<^sub>F: identity_pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F
..
interpretation \<iota>\<^sub>G: identity_pseudonatural_transformation
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D G \<Phi>\<^sub>G
..
interpretation \<tau>'\<tau>: composite_pseudonatural_equivalence
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F G \<Phi>\<^sub>G F \<Phi>\<^sub>F
\<tau>\<^sub>0 \<tau>\<^sub>1 map\<^sub>0 map\<^sub>1
..
interpretation \<tau>\<tau>': composite_pseudonatural_equivalence
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D G \<Phi>\<^sub>G F \<Phi>\<^sub>F G \<Phi>\<^sub>G
map\<^sub>0 map\<^sub>1 \<tau>\<^sub>0 \<tau>\<^sub>1
..
interpretation \<eta>: invertible_modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F F \<Phi>\<^sub>F
\<iota>\<^sub>F.map\<^sub>0 \<iota>\<^sub>F.map\<^sub>1 \<tau>'\<tau>.map\<^sub>0 \<tau>'\<tau>.map\<^sub>1 \<eta>
proof
show "\<And>a. C.obj a \<Longrightarrow> \<guillemotleft>\<eta> a : F.map\<^sub>0 a \<Rightarrow>\<^sub>D \<tau>'\<tau>.map\<^sub>0 a\<guillemotright>"
using unit_in_hom \<tau>'\<tau>.map\<^sub>0_def by simp
show "\<And>a. C.obj a \<Longrightarrow> D.iso (\<eta> a)"
by simp
show "\<And>f a b. \<lbrakk> \<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright>; C.ide f\<rbrakk>
\<Longrightarrow> \<tau>'\<tau>.map\<^sub>1 f \<cdot>\<^sub>D (F f \<star>\<^sub>D \<eta> a) = (\<eta> b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<cdot>\<^sub>D \<r>\<^sub>D[F f]"
proof -
fix f a b
assume f: "\<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright>" and ide_f: "C.ide f"
have a: "C.obj a" and b: "C.obj b"
using f by auto
have "\<tau>'\<tau>.map\<^sub>1 f \<cdot>\<^sub>D (F f \<star>\<^sub>D \<eta> a) =
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a)
\<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
(F f \<star>\<^sub>D \<eta> a)"
unfolding \<tau>'\<tau>.map\<^sub>1_def map\<^sub>1_def
using a b f D.comp_assoc by auto
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
(F f \<star>\<^sub>D \<eta> a)"
proof -
have "(\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a)
\<star>\<^sub>D \<tau>\<^sub>0 a
= ((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a)"
proof -
have "D.arr ((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a))"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
by (metis (no_types, lifting) C.in_hhomE map\<^sub>1_def map\<^sub>1_simps(1))
thus ?thesis
using a b f D.whisker_right [of "\<tau>\<^sub>0 a"] by fastforce
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[F\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(F f \<star>\<^sub>D \<eta> a)"
proof -
have "((\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] =
\<a>\<^sub>D\<^sup>-\<^sup>1[F\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D (\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a)"
using a b f ide_f D.assoc'_naturality [of "\<l>\<^sub>D\<^sup>-\<^sup>1[F f]" "\<tau>\<^sub>0' a" "\<tau>\<^sub>0 a"] by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[F\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
((F\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<eta> a) = \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<eta> a"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "\<l>\<^sub>D\<^sup>-\<^sup>1[F f]" "F f" "\<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a" "\<eta> a"]
by simp
also have "... = ((F\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D (\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "F\<^sub>0 b \<star>\<^sub>D F f" "\<l>\<^sub>D\<^sup>-\<^sup>1[F f]" "\<eta> a" "F\<^sub>0 a"]
by auto
finally have "(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D (F f \<star>\<^sub>D \<eta> a) =
((F\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D (\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((F\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a)) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "(((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[F\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] =
\<a>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D ((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a)"
using a b f ide_f D.assoc'_naturality [of "\<eta> b \<star>\<^sub>D F f" "\<tau>\<^sub>0' a" "\<tau>\<^sub>0 a"] by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a)) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D ((F\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a)
= (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "\<eta> b \<star>\<^sub>D F f" "F\<^sub>0 b \<star>\<^sub>D F f" "\<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a" "\<eta> a"]
by auto
also have "... = (((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D ((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a)"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f" "\<eta> b \<star>\<^sub>D F f" "\<eta> a" "F\<^sub>0 a"]
by auto
finally have "((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D ((F\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) =
(((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D ((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a)"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) =
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a"
using a b f ide_f D.whisker_right \<tau>.iso_map\<^sub>1_ide by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D (G f \<star>\<^sub>D \<tau>\<^sub>0 a), \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a)) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "(((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] =
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D (G f \<star>\<^sub>D \<tau>\<^sub>0 a), \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a)"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
D.assoc'_naturality
[of "(\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]" "\<tau>\<^sub>0' a" "\<tau>\<^sub>0 a"]
by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D (G f \<star>\<^sub>D \<tau>\<^sub>0 a), \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) =
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]) \<cdot>\<^sub>D ((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D
(\<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D \<eta> a"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
D.interchange [of "(\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]"
"(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f" "\<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a" "\<eta> a"]
by auto
also have "... = (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<eta> a"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide D.comp_arr_dom D.comp_cod_arr D.comp_assoc
by auto
also have "... = (\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]
\<star>\<^sub>D \<eta> a \<cdot>\<^sub>D F\<^sub>0 a"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide D.comp_arr_dom D.comp_cod_arr by auto
also have "... = ((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "D.seq (\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a) ((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f])"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
by (intro D.seqI D.hseqI') auto
thus ?thesis
using a b f ide_f \<tau>.iso_map\<^sub>1_ide D.comp_arr_dom D.comp_cod_arr
D.interchange [of "(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a)"
"(\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]"
"\<eta> a" "F\<^sub>0 a"]
by simp
qed
finally have "((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f) \<star>\<^sub>D \<eta> a) =
((\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a)"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, G\<^sub>0 a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<epsilon> a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D (G f \<star>\<^sub>D \<tau>\<^sub>0 a), \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, F\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a
= (\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, G\<^sub>0 a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<epsilon> a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a)"
proof -
have "(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a
= (\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<epsilon> a) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a)"
using a b f ide_f D.hcomp_reassoc D.whisker_right [of "\<tau>\<^sub>0 a"] by auto
also have "... = (\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, G\<^sub>0 a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<epsilon> a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a)"
using a b f ide_f D.hcomp_reassoc(1) [of "\<tau>\<^sub>0' b \<star>\<^sub>D G f" "\<epsilon> a" "\<tau>\<^sub>0 a"]
by auto
finally show ?thesis by blast
qed
moreover have "(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a) \<star>\<^sub>D \<eta> a
= (\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, F\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a) \<star>\<^sub>D \<eta> a =
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D ((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D
(\<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D \<eta> a \<cdot>\<^sub>D F\<^sub>0 a"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.hcomp_reassoc(2) [of "\<tau>\<^sub>0' b" "G f" "\<tau>\<^sub>0 a"]
by auto
also have "... = (\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a) \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a)"
using a b f ide_f D.inv_inv D.iso_inv_iso D.interchange by auto
also have "... = (\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<eta> a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, F\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a)"
using a b f ide_f D.hcomp_reassoc(1) [of "\<tau>\<^sub>0' b \<star>\<^sub>D G f" "\<tau>\<^sub>0 a" "\<eta> a"] by auto
finally show ?thesis by blast
qed
ultimately show ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, G\<^sub>0 a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<epsilon> a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<eta> a)) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, F\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D (G f \<star>\<^sub>D \<tau>\<^sub>0 a), \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a] =
(\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]"
proof -
have "\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D (G f \<star>\<^sub>D \<tau>\<^sub>0 a), \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a \<star>\<^sub>D \<tau>\<^sub>0 a]
= \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot>
(\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>) \<^bold>\<cdot>
((\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[ \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>) \<^bold>\<cdot>
(\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>G f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>) \<^bold>\<cdot>
\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>G f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>), \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot>
(\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>) \<^bold>\<cdot>
\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>]\<rbrace>"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char
by auto
also have "... = \<lbrace>(\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>G f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>]\<rbrace>"
using a b f ide_f by (intro EV.eval_eqI, auto)
also have "... = (\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char
by auto
finally show ?thesis by blast
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, G\<^sub>0 a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, F\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a)) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
interpret adjoint_equivalence_in_bicategory
V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>\<tau>\<^sub>0 a\<close> \<open>\<tau>\<^sub>0' a\<close> \<open>\<eta> a\<close> \<open>\<epsilon> a\<close>
using a chosen_adjoint_equivalence by simp
have "((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<epsilon> a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<eta> a)
= (\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D (\<epsilon> a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 a \<star>\<^sub>D \<eta> a)"
using a b f ide_f D.whisker_left by auto
also have "... = (\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 a]"
using triangle_left by simp
finally have "((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<epsilon> a \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a, \<tau>\<^sub>0' a, \<tau>\<^sub>0 a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<eta> a)
= (\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 a]"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
(\<r>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a)) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, G\<^sub>0 a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, F\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a)
= \<r>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a]"
proof -
have "\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, G f, G\<^sub>0 a] \<star>\<^sub>D \<tau>\<^sub>0 a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D G f, G\<^sub>0 a, \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D G f) \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 a] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f, \<tau>\<^sub>0 a, F\<^sub>0 a]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, G f, \<tau>\<^sub>0 a] \<star>\<^sub>D F\<^sub>0 a)
= \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot>
((\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<r>\<^bold>[\<^bold>\<langle>G f\<^bold>\<rangle>\<^bold>]) \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>) \<^bold>\<cdot>
(\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>G\<^sub>0 a\<^bold>\<rangle>\<^sub>0\<^bold>] \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>) \<^bold>\<cdot>
(\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>G\<^sub>0 a\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot>
((\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>G f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<l>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<r>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot>
\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>, \<^bold>\<langle>F\<^sub>0 a\<^bold>\<rangle>\<^sub>0\<^bold>]) \<^bold>\<cdot>
(\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>G f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>F\<^sub>0 a\<^bold>\<rangle>\<^sub>0)\<rbrace>"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char D.\<ll>_ide_simp D.\<rr>_ide_simp
by auto
also have "... = \<lbrace>\<^bold>\<r>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>G f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 a\<^bold>\<rangle>\<^bold>]\<rbrace>"
using a b f ide_f by (intro EV.eval_eqI, auto)
also have "... = \<r>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a]"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char D.\<ll>_ide_simp D.\<rr>_ide_simp
by auto
finally show ?thesis by blast
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)))) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D \<r>\<^sub>D[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f] \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "\<r>\<^sub>D[\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D F\<^sub>0 a)
= (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
\<r>\<^sub>D[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f]"
using a b f ide_f D.comp_assoc \<tau>.iso_map\<^sub>1_ide
D.runit_naturality [of "(\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]"]
by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = ((\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]) \<cdot>\<^sub>D
\<r>\<^sub>D[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f]) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D ((\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>1 f) \<cdot>\<^sub>D (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)))
= \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]"
using a b f ide_f D.comp_arr_inv' D.comp_arr_dom \<tau>.iso_map\<^sub>1_ide
D.whisker_left [of "\<tau>\<^sub>0' b" "\<tau>\<^sub>1 f" "D.inv (\<tau>\<^sub>1 f)"]
by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<r>\<^sub>D[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f] \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a)) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f]) \<cdot>\<^sub>D \<r>\<^sub>D[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f]
= \<r>\<^sub>D[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f]"
using a b f ide_f D.comp_inv_arr' D.comp_cod_arr by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<eta> b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<r>\<^sub>D[F\<^sub>0 b \<star>\<^sub>D F f] \<cdot>\<^sub>D (\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D F\<^sub>0 a)"
proof -
have "\<r>\<^sub>D[(\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f] \<cdot>\<^sub>D ((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D F\<^sub>0 a)
= (\<eta> b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<r>\<^sub>D[F\<^sub>0 b \<star>\<^sub>D F f]"
using a b f ide_f D.runit_naturality [of "\<eta> b \<star>\<^sub>D F f"] by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<eta> b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<cdot>\<^sub>D \<r>\<^sub>D[F f]"
using a b f ide_f D.runit_naturality [of "\<l>\<^sub>D\<^sup>-\<^sup>1[F f]"] by auto
finally show "\<tau>'\<tau>.map\<^sub>1 f \<cdot>\<^sub>D (F f \<star>\<^sub>D \<eta> a) = (\<eta> b \<star>\<^sub>D F f) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<cdot>\<^sub>D \<r>\<^sub>D[F f]"
by blast
qed
qed
lemma unit_is_invertible_modification:
shows "invertible_modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D F \<Phi>\<^sub>F F \<Phi>\<^sub>F
\<iota>\<^sub>F.map\<^sub>0 \<iota>\<^sub>F.map\<^sub>1 \<tau>'\<tau>.map\<^sub>0 \<tau>'\<tau>.map\<^sub>1 \<eta>"
..
interpretation \<epsilon>: invertible_modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D G \<Phi>\<^sub>G G \<Phi>\<^sub>G
\<tau>\<tau>'.map\<^sub>0 \<tau>\<tau>'.map\<^sub>1 \<iota>\<^sub>G.map\<^sub>0 \<iota>\<^sub>G.map\<^sub>1 \<epsilon>
proof
show "\<And>a. C.obj a \<Longrightarrow> \<guillemotleft>\<epsilon> a : \<tau>\<tau>'.map\<^sub>0 a \<Rightarrow>\<^sub>D G\<^sub>0 a\<guillemotright>"
using counit_in_hom \<tau>\<tau>'.map\<^sub>0_def by simp
show "\<And>a. C.obj a \<Longrightarrow> D.iso (\<epsilon> a)"
by simp
show "\<And>f a b. \<lbrakk>\<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright>; C.ide f\<rbrakk>
\<Longrightarrow> (\<l>\<^sub>D\<^sup>-\<^sup>1[G f] \<cdot>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D (G f \<star>\<^sub>D \<epsilon> a) = (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D \<tau>\<tau>'.map\<^sub>1 f"
proof -
fix f a b
assume f: "\<guillemotleft>f : a \<rightarrow>\<^sub>C b\<guillemotright>" and ide_f: "C.ide f"
have a: "C.obj a" and b: "C.obj b"
using f by auto
have "(\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D \<tau>\<tau>'.map\<^sub>1 f
= (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
unfolding \<tau>\<tau>'.map\<^sub>1_def map\<^sub>1_def
using a b f D.comp_assoc by auto
also have "... = (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "\<tau>\<^sub>0 b \<star>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a)
= (\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a)"
proof -
have "D.arr ((\<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a))"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
by (intro D.seqI) auto
thus ?thesis
using a b f D.whisker_left [of "\<tau>\<^sub>0 b"] by fastforce
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a)
= \<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a)"
using a b f ide_f D.whisker_left [of "\<tau>\<^sub>0 b"] \<tau>.iso_map\<^sub>1_ide by auto
also have "... = \<tau>\<^sub>0 b \<star>\<^sub>D (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
D.assoc_naturality [of "\<tau>\<^sub>0' b" "D.inv (\<tau>\<^sub>1 f)" "\<tau>\<^sub>0' a"]
by auto
also have "... = (\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a])"
using a b f ide_f D.whisker_left [of "\<tau>\<^sub>0 b"] \<tau>.iso_map\<^sub>1_ide by auto
finally have "(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f)) \<star>\<^sub>D \<tau>\<^sub>0' a)
= (\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a])"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f])) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)
= \<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
using a b f ide_f D.whisker_left \<tau>.iso_map\<^sub>1_ide by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f \<star>\<^sub>D G\<^sub>0 a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a)) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f] \<cdot>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<r>\<^sub>D[G f])
= ((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f \<star>\<^sub>D G\<^sub>0 a]"
using a b f ide_f D.assoc'_naturality [of "\<tau>\<^sub>0 b" "\<tau>\<^sub>0' b" "\<r>\<^sub>D[G f]"]
by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a))) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f \<star>\<^sub>D G\<^sub>0 a] \<cdot>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a)
= ((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a]"
using a b f ide_f D.assoc'_naturality [of "\<tau>\<^sub>0 b" "\<tau>\<^sub>0' b" "G f \<star>\<^sub>D \<epsilon> a"]
by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = ((\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<r>\<^sub>D[G f])) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a))
= ((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a]"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
D.assoc'_naturality
[of "\<tau>\<^sub>0 b" "\<tau>\<^sub>0' b" "\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)"]
by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
((\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D G\<^sub>0 a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a)) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "(\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D ((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<r>\<^sub>D[G f]) = \<epsilon> b \<star>\<^sub>D \<r>\<^sub>D[G f]"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "\<epsilon> b" "\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b" "G f" "\<r>\<^sub>D[G f]"]
by simp
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D (\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D G\<^sub>0 a)"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "G\<^sub>0 b" "\<epsilon> b" "\<r>\<^sub>D[G f]" "G f \<star>\<^sub>D G\<^sub>0 a"]
by auto
finally have "(\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D ((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<r>\<^sub>D[G f]) =
(G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D (\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D G\<^sub>0 a)"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
((\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a))) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "(\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D G\<^sub>0 a) \<cdot>\<^sub>D ((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a)
= \<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "\<epsilon> b" "\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b" "G f \<star>\<^sub>D G\<^sub>0 a" "G f \<star>\<^sub>D \<epsilon> a"]
by auto
also have "... = (G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D (\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a)"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.interchange [of "G\<^sub>0 b" "\<epsilon> b" "G f \<star>\<^sub>D \<epsilon> a" "G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a"]
by auto
finally have "(\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D G\<^sub>0 a) \<cdot>\<^sub>D ((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) =
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D (\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a)"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(\<epsilon> b \<star>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have 1: "D.seq (G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a)
(\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a))"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
by (intro D.seqI D.hseqI') auto
have 2: "D.seq (\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a))
((\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
by (intro D.seqI D.hseqI') auto
have "(\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) =
\<epsilon> b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
using 1 a b f ide_f D.comp_arr_dom D.comp_cod_arr \<tau>.iso_map\<^sub>1_ide
D.interchange [of "\<epsilon> b" "\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b" "G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a"
"\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)"]
by auto
also have "... = G\<^sub>0 b \<cdot>\<^sub>D \<epsilon> b \<star>\<^sub>D
(\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide D.comp_arr_dom D.comp_cod_arr by auto
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(\<epsilon> b \<star>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
using 2 a b f ide_f \<tau>.iso_map\<^sub>1_ide D.comp_assoc
D.interchange [of "G\<^sub>0 b" "\<epsilon> b"
"\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
"(\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a"]
by simp
finally have "(\<epsilon> b \<star>\<^sub>D G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a))
= (G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(\<epsilon> b \<star>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
by blast
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[G\<^sub>0 b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "\<epsilon> b \<star>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a
= (G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[G\<^sub>0 b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a])"
proof -
have "\<epsilon> b \<star>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a
= (G\<^sub>0 b \<cdot>\<^sub>D \<epsilon> b \<cdot>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b)) \<star>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr
D.hcomp_reassoc(1) [of "\<tau>\<^sub>0 b" "F f" "\<tau>\<^sub>0' a"]
by auto
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a])"
using a b f ide_f D.comp_arr_dom D.comp_cod_arr D.assoc'_is_natural_1
D.interchange [of "G\<^sub>0 b" "\<epsilon> b \<cdot>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b)" "\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]"
"(\<tau>\<^sub>0 b \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]"]
D.interchange [of "\<epsilon> b" "\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b" "\<tau>\<^sub>0 b \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a"
"\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]"]
by fastforce
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[G\<^sub>0 b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a])"
using a b f ide_f D.hcomp_reassoc(2) [of "\<epsilon> b" "\<tau>\<^sub>0 b" "F f \<star>\<^sub>D \<tau>\<^sub>0' a"]
by auto
finally show ?thesis by blast
qed
moreover have "\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a
= (\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a])"
proof -
have "\<tau>\<^sub>0 b \<star>\<^sub>D (\<eta> b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a =
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a])"
using a b f ide_f D.hcomp_reassoc(1) [of "\<eta> b" "F f" "\<tau>\<^sub>0' a"]
D.whisker_left [of "\<tau>\<^sub>0 b"]
by auto
also have "... = (\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a])"
using a b f ide_f D.hcomp_reassoc(2) [of "\<tau>\<^sub>0 b" "\<eta> b" "F f \<star>\<^sub>D \<tau>\<^sub>0' a"]
by auto
finally show ?thesis by blast
qed
ultimately show ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[G\<^sub>0 b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(((\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, \<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]
= \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, \<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a"
proof -
have "\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<tau>\<^sub>0' b) \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, (\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b \<star>\<^sub>D F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[\<tau>\<^sub>0' b, \<tau>\<^sub>0 b, F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b \<star>\<^sub>D \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]
= \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot>
((\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot>
\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, (\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>F f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot>
(\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>F f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot>
(\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>) \<^bold>\<cdot>
(\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot>
\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]\<rbrace>"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char
by auto
also have "... = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' b\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>F f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<rbrace>"
using a b f ide_f by (intro EV.eval_eqI, auto)
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, \<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char
by auto
finally show ?thesis by blast
qed
thus ?thesis
using D.comp_assoc by auto
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
((G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[G\<^sub>0 b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "((\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, \<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a)
= \<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a"
proof -
interpret adjoint_equivalence_in_bicategory
V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D \<open>\<tau>\<^sub>0 b\<close> \<open>\<tau>\<^sub>0' b\<close> \<open>\<eta> b\<close> \<open>\<epsilon> b\<close>
using b chosen_adjoint_equivalence by simp
have "((\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, \<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
((\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a)
= (\<epsilon> b \<star>\<^sub>D \<tau>\<^sub>0 b) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, \<tau>\<^sub>0' b, \<tau>\<^sub>0 b] \<cdot>\<^sub>D (\<tau>\<^sub>0 b \<star>\<^sub>D \<eta> b) \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a"
using a b f ide_f D.whisker_right by auto
also have "... = \<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a"
using triangle_left by simp
finally show ?thesis by blast
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
((G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<l>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[G\<^sub>0 b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]
= \<l>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a]"
proof -
have "(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<a>\<^sub>D[G\<^sub>0 b, \<tau>\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(\<l>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b] \<cdot>\<^sub>D \<r>\<^sub>D[\<tau>\<^sub>0 b] \<star>\<^sub>D F f \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[\<tau>\<^sub>0 b, F\<^sub>0 b, F f \<star>\<^sub>D \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[F\<^sub>0 b, F f, \<tau>\<^sub>0' a]) \<cdot>\<^sub>D
(\<tau>\<^sub>0 b \<star>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[F f] \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
\<a>\<^sub>D[\<tau>\<^sub>0 b, F f, \<tau>\<^sub>0' a]
= \<lbrace>(\<^bold>\<langle>G\<^sub>0 b\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot>
(\<^bold>\<a>\<^bold>[\<^bold>\<langle>G\<^sub>0 b\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot>
(\<^bold>\<l>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>\<^bold>] \<^bold>\<cdot> \<^bold>\<r>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>F f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>) \<^bold>\<cdot>
\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F\<^sub>0 b\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>F f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot>
(\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<a>\<^bold>[\<^bold>\<langle>F\<^sub>0 b\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>F f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]) \<^bold>\<cdot>
(\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<l>\<^sup>-\<^sup>1\<^bold>[\<^bold>\<langle>F f\<^bold>\<rangle>\<^bold>] \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>) \<^bold>\<cdot>
\<^bold>\<a>\<^bold>[\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle>, \<^bold>\<langle>F f\<^bold>\<rangle>, \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]\<rbrace>"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char D.\<ll>_ide_simp D.\<rr>_ide_simp
by auto
also have "... = \<lbrace>\<^bold>\<l>\<^sup>-\<^sup>1\<^bold>[(\<^bold>\<langle>\<tau>\<^sub>0 b\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>F f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>\<tau>\<^sub>0' a\<^bold>\<rangle>\<^bold>]\<rbrace>"
using a b f ide_f by (intro EV.eval_eqI, auto)
also have "... = \<l>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a]"
using a b f ide_f D.\<alpha>_def D.\<alpha>'.map_ide_simp D.VVV.ide_char D.VVV.arr_char
D.VV.ide_char D.VV.arr_char D.\<ll>_ide_simp
by auto
finally show ?thesis by blast
qed
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
\<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
((D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D
(\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "(G\<^sub>0 b \<star>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D
\<l>\<^sub>D\<^sup>-\<^sup>1[(\<tau>\<^sub>0 b \<star>\<^sub>D F f) \<star>\<^sub>D \<tau>\<^sub>0' a]
= \<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
(D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide
D.lunit'_naturality [of "\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D (D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a)"]
by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
\<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D
\<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D
\<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
proof -
have "((D.inv (\<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D (\<tau>\<^sub>1 f \<star>\<^sub>D \<tau>\<^sub>0' a)) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] =
((D.inv (\<tau>\<^sub>1 f) \<cdot>\<^sub>D \<tau>\<^sub>1 f) \<star>\<^sub>D \<tau>\<^sub>0' a) \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide D.whisker_right [of "\<tau>\<^sub>0' a"] by simp
also have "... = \<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a]"
using a b f ide_f \<tau>.iso_map\<^sub>1_ide D.comp_inv_arr' D.comp_cod_arr by auto
finally show ?thesis
using D.comp_assoc by simp
qed
also have "... = (G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D
(G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D
\<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a]"
proof -
have "\<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] \<cdot>\<^sub>D \<a>\<^sub>D[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] \<cdot>\<^sub>D \<a>\<^sub>D\<^sup>-\<^sup>1[G f, \<tau>\<^sub>0 a, \<tau>\<^sub>0' a] =
\<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a]"
using a b f ide_f D.comp_arr_inv' D.comp_arr_dom by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = ((G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D G\<^sub>0 a]) \<cdot>\<^sub>D (G f \<star>\<^sub>D \<epsilon> a)"
proof -
have "(G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D (G\<^sub>0 b \<star>\<^sub>D G f \<star>\<^sub>D \<epsilon> a) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D \<tau>\<^sub>0 a \<star>\<^sub>D \<tau>\<^sub>0' a] =
(G\<^sub>0 b \<star>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D \<l>\<^sub>D\<^sup>-\<^sup>1[G f \<star>\<^sub>D G\<^sub>0 a] \<cdot>\<^sub>D (G f \<star>\<^sub>D \<epsilon> a)"
using a b f ide_f D.lunit'_naturality [of "G f \<star>\<^sub>D \<epsilon> a"] by auto
thus ?thesis
using D.comp_assoc by simp
qed
also have "... = (\<l>\<^sub>D\<^sup>-\<^sup>1[G f] \<cdot>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D (G f \<star>\<^sub>D \<epsilon> a)"
using a b f ide_f D.lunit'_naturality [of "\<r>\<^sub>D[G f]"] by auto
finally show "(\<l>\<^sub>D\<^sup>-\<^sup>1[G f] \<cdot>\<^sub>D \<r>\<^sub>D[G f]) \<cdot>\<^sub>D (G f \<star>\<^sub>D \<epsilon> a) = (\<epsilon> b \<star>\<^sub>D G f) \<cdot>\<^sub>D \<tau>\<tau>'.map\<^sub>1 f"
by simp
qed
qed
lemma counit_is_invertible_modification:
shows "invertible_modification
V\<^sub>C H\<^sub>C \<a>\<^sub>C \<i>\<^sub>C src\<^sub>C trg\<^sub>C V\<^sub>D H\<^sub>D \<a>\<^sub>D \<i>\<^sub>D src\<^sub>D trg\<^sub>D G \<Phi>\<^sub>G G \<Phi>\<^sub>G
\<tau>\<tau>'.map\<^sub>0 \<tau>\<tau>'.map\<^sub>1 \<iota>\<^sub>G.map\<^sub>0 \<iota>\<^sub>G.map\<^sub>1 \<epsilon>"
..
end
end