Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: CanonicalIsomorphisms | |
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2019 | |
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu> | |
*) | |
section "Canonical Isomorphisms" | |
text \<open> | |
In this section we develop some technology for working with canonical isomorphisms in a bicategory, | |
which permits them to be specified simply by giving syntactic terms that evaluate to the | |
domain and codomain, rather than often-cumbersome formulas expressed in terms of unitors and | |
associators. | |
\<close> | |
theory CanonicalIsos | |
imports Coherence | |
begin | |
context bicategory | |
begin | |
interpretation bicategorical_language .. | |
interpretation E: self_evaluation_map V H \<a> \<i> src trg .. | |
notation E.eval ("\<lbrace>_\<rbrace>") | |
text \<open> | |
The next definition defines \<open>can u t\<close>, which denotes the unique canonical isomorphism | |
from \<open>\<lbrace>t\<rbrace>\<close> to \<open>\<lbrace>u\<rbrace>\<close>. The ordering of the arguments of \<open>can\<close> has been chosen to be the | |
opposite of what was used for \<open>hom\<close>. Having the arguments to \<open>can\<close> this way makes it easier | |
to see at a glance when canonical isomorphisms are composable. It could probably be argued | |
that \<open>hom\<close> should have been defined this way as well, but that choice is somewhat | |
well-entrenched by now and the argument for \<open>can\<close> is stronger, as it denotes an arrow and | |
therefore appears in expressions composed with other arrows, rather than just as a hypothesis | |
or conclusion. | |
\<close> | |
definition can | |
where "can u t \<equiv> \<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace>" | |
subsection "Basic Properties" | |
text \<open> | |
The following develop basic properties of \<open>can\<close>. | |
\<close> | |
lemma can_in_hom [intro]: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" | |
shows "\<guillemotleft>can u t : \<lbrace>t\<rbrace> \<Rightarrow> \<lbrace>u\<rbrace>\<guillemotright>" | |
proof - | |
let ?v = "Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>" | |
have 1: "Can ?v \<and> Dom ?v = t \<and> Cod ?v = u" | |
using assms red_in_Hom Can_red Inv_in_Hom Can_Inv(1) by simp | |
show "\<guillemotleft>can u t : \<lbrace>t\<rbrace> \<Rightarrow> \<lbrace>u\<rbrace>\<guillemotright>" | |
unfolding can_def using 1 E.eval_in_hom Can_implies_Arr | |
by (metis (no_types, lifting)) | |
qed | |
lemma can_simps [simp]: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" | |
shows "arr (can u t)" and "dom (can u t) = \<lbrace>t\<rbrace>" and "cod (can u t) = \<lbrace>u\<rbrace>" | |
using assms can_in_hom by auto | |
lemma inverse_arrows_can: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" | |
shows "iso (can u t)" and "inverse_arrows (can u t) (can t u)" | |
proof - | |
let ?v = "Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>" | |
have 1: "Can ?v \<and> Dom ?v = t \<and> Cod ?v = u" | |
using assms red_in_Hom Can_red Inv_in_Hom Can_Inv(1) by simp | |
show "iso (can u t)" | |
unfolding can_def using 1 E.iso_eval_Can by blast | |
show "inverse_arrows (can u t) (can t u)" | |
proof (unfold can_def) | |
show "inverse_arrows \<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> \<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace>" | |
proof | |
show "ide (\<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace>)" | |
proof - | |
have "\<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace> = \<lbrace>(Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) \<^bold>\<cdot> (Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>)\<rbrace>" | |
by simp | |
also have "... = \<lbrace>u\<rbrace>" | |
proof (intro E.eval_eqI) | |
show 2: "VPar ((Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) \<^bold>\<cdot> Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) u" | |
using assms 1 red_in_Hom Inv_in_Hom Ide_implies_Can Can_Inv Can_implies_Arr | |
Can_red(1) | |
by (simp add: Dom_Ide Cod_Ide) | |
show "\<^bold>\<lfloor>(Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) \<^bold>\<cdot> Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" | |
proof - | |
have 3: "Can (Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>)" | |
using Arr.simps(4) Can.simps(4) Can_Inv(1) Can_red(1) 2 assms(1) assms(2) | |
by presburger | |
have "VSeq (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) (Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>)" | |
using 2 Arr.simps(4) by blast | |
hence "Can (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) \<and> Can (Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<and> | |
Dom (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) = Cod (Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>)" | |
using 3 1 by metis | |
thus ?thesis | |
by (metis (no_types) 2 Can.simps(4) Nmlize_Dom Dom_Ide Ide_Nmlize_Can | |
assms(2)) | |
qed | |
qed | |
finally have "\<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace> = \<lbrace>u\<rbrace>" | |
by blast | |
moreover have "ide \<lbrace>u\<rbrace>" | |
using assms E.ide_eval_Ide by simp | |
ultimately show ?thesis by simp | |
qed | |
show "ide (\<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace>)" | |
proof - | |
have "\<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> = \<lbrace>(Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<^bold>\<cdot> (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>)\<rbrace>" | |
by simp | |
also have "... = \<lbrace>t\<rbrace>" | |
proof (intro E.eval_eqI) | |
show 2: "VPar ((Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<^bold>\<cdot> Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) t" | |
using assms 1 red_in_Hom Inv_in_Hom Ide_implies_Can Can_Inv Can_implies_Arr | |
Can_red(1) | |
by (simp add: Dom_Ide Cod_Ide) | |
show "\<^bold>\<lfloor>(Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<^bold>\<cdot> Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>t\<^bold>\<rfloor>" | |
using assms 1 2 | |
by (metis (full_types) Arr.simps(4) Can.simps(4) Can_Inv(1) Can_red(1) | |
Nml_Nmlize(4) Dom_Ide Ide_Nmlize_Can) | |
qed | |
finally have "\<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> = \<lbrace>t\<rbrace>" | |
by blast | |
moreover have "ide \<lbrace>t\<rbrace>" | |
using assms E.ide_eval_Ide by simp | |
ultimately show ?thesis by simp | |
qed | |
qed | |
qed | |
qed | |
lemma inv_can [simp]: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" | |
shows "inv (can u t) = can t u" | |
using assms inverse_arrows_can by (simp add: inverse_unique) | |
lemma vcomp_can [simp]: | |
assumes "Ide t" and "Ide u" and "Ide v" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" and "\<^bold>\<lfloor>u\<^bold>\<rfloor> = \<^bold>\<lfloor>v\<^bold>\<rfloor>" | |
shows "can v u \<cdot> can u t = can v t" | |
proof (unfold can_def) | |
have "\<lbrace>Inv (v\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> = \<lbrace>(Inv (v\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<^bold>\<cdot> (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>)\<rbrace>" | |
using assms by simp | |
also have "... = \<lbrace>Inv (v\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace>" | |
proof (intro E.eval_eqI) | |
show "VPar ((Inv (v\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<^bold>\<cdot> Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) (Inv (v\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>)" | |
using assms red_in_Hom Inv_in_Hom Ide_implies_Can | |
by (simp add: Can_red(1)) | |
show "\<^bold>\<lfloor>(Inv (v\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<^bold>\<cdot> Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>Inv (v\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<^bold>\<rfloor>" | |
using assms Can_red(1) Nml_Nmlize(1) Nmlize_Inv Ide_Nmlize_Can | |
Ide_implies_Can \<open>VPar ((Inv (v\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>) \<^bold>\<cdot> Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) (Inv (v\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>)\<close> | |
apply simp | |
by (metis red_simps(4) Nmlize_red Dom_Cod VcompNml_Nml_Dom) | |
qed | |
finally show "\<lbrace>Inv (v\<^bold>\<down>) \<^bold>\<cdot> u\<^bold>\<down>\<rbrace> \<cdot> \<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> = \<lbrace>Inv (v\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace>" | |
by blast | |
qed | |
lemma hcomp_can [simp]: | |
assumes "Ide t" and "Ide u" and "Ide v" and "Ide w" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" and "\<^bold>\<lfloor>v\<^bold>\<rfloor> = \<^bold>\<lfloor>w\<^bold>\<rfloor>" | |
and "Src t = Trg v" and "Src u = Trg w" | |
shows "can u t \<star> can w v = can (u \<^bold>\<star> w) (t \<^bold>\<star> v)" | |
proof (unfold can_def) | |
have "\<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> \<star> \<lbrace>Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>\<rbrace> = \<lbrace>(Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) \<^bold>\<star> (Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>)\<rbrace>" | |
using assms by simp | |
also have "... = \<lbrace>Inv ((u \<^bold>\<star> w)\<^bold>\<down>) \<^bold>\<cdot> (t \<^bold>\<star> v)\<^bold>\<down>\<rbrace>" | |
proof (intro E.eval_eqI) | |
show "VPar (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down> \<^bold>\<star> Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>) (Inv ((u \<^bold>\<star> w)\<^bold>\<down>) \<^bold>\<cdot> (t \<^bold>\<star> v)\<^bold>\<down>)" | |
proof - | |
have "Arr (Inv ((u \<^bold>\<star> w)\<^bold>\<down>) \<^bold>\<cdot> (t \<^bold>\<star> v)\<^bold>\<down>)" | |
proof - | |
have "Ide (u \<^bold>\<star> w)" | |
using assms by simp | |
hence "Can ((u \<^bold>\<star> w)\<^bold>\<down>)" | |
using assms Can_red by blast | |
thus ?thesis | |
using assms Can.simps(4) Can_Inv(1) Dom_Inv Can_implies_Arr Can_red(1) | |
red_simps(4) Nmlize.simps(3) Ide.simps(3) | |
by presburger | |
qed | |
moreover have "Arr (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down> \<^bold>\<star> Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>)" | |
using assms red_in_Hom Inv_in_Hom Ide_implies_Can | |
by (simp add: Can_red(1)) | |
moreover have "Dom (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down> \<^bold>\<star> Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>) = | |
Dom (Inv ((u \<^bold>\<star> w)\<^bold>\<down>) \<^bold>\<cdot> (t \<^bold>\<star> v)\<^bold>\<down>)" | |
using assms red_in_Hom Inv_in_Hom Ide_implies_Can | |
by (metis (no_types, lifting) Nml_HcompD(3-4) Dom.simps(3-4) red.simps(3) | |
red_Nml) | |
moreover have "Cod (Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down> \<^bold>\<star> Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>) = | |
Cod (Inv ((u \<^bold>\<star> w)\<^bold>\<down>) \<^bold>\<cdot> (t \<^bold>\<star> v)\<^bold>\<down>)" | |
using assms red_in_Hom Inv_in_Hom Ide_implies_Can red_Nml | |
by (simp add: Can_red(1) Cod_Ide) | |
ultimately show ?thesis by simp | |
qed | |
show "\<^bold>\<lfloor>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down> \<^bold>\<star> Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>Inv ((u \<^bold>\<star> w)\<^bold>\<down>) \<^bold>\<cdot> (t \<^bold>\<star> v)\<^bold>\<down>\<^bold>\<rfloor>" | |
using assms Inv_in_Hom Ide_implies_Can Nmlize_Inv Ide_Nmlize_Can Can_red | |
red2_Nml | |
apply auto | |
using VcompNml_HcompNml [of u w u w] | |
apply (metis red_simps(4) Nml_HcompD(3-4) Nmlize_Nml red_simps(3) red_Nml) | |
apply (metis Nml_HcompD(3-4) Nmlize.simps(3) Nmlize_Nml | |
red_simps(3) Ide.simps(3) VcompNml_Nml_Dom red_Nml) | |
apply (metis Can_red2(1) red_simps(4) Nml_HcompD(3-4) Nmlize.simps(3) | |
Nmlize_Nml VcompNml_Cod_Nml red_Nml) | |
using red2_Nml Nmlize_red2 Can_red2(1) Nmlize_Hcomp Dom_Ide Ide_implies_Arr | |
VcompNml_Nml_Dom Nml_Nmlize(1) Nml_Nmlize(2) Nml_Nmlize(3) | |
Nmlize.simps(3) | |
by metis | |
qed | |
finally show "\<lbrace>Inv (u\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> \<star> \<lbrace>Inv (w\<^bold>\<down>) \<^bold>\<cdot> v\<^bold>\<down>\<rbrace> = \<lbrace>Inv ((u \<^bold>\<star> w)\<^bold>\<down>) \<^bold>\<cdot> (t \<^bold>\<star> v)\<^bold>\<down>\<rbrace>" | |
by blast | |
qed | |
subsection "Introduction Rules" | |
text \<open> | |
To make the \<open>can\<close> notation useful, we need a way to introduce it. | |
This is a bit tedious, because in general there can multiple \<open>can\<close> | |
notations for the same isomorphism, and we have to use the right ones in the | |
right contexts, otherwise we won't be able to compose them properly. | |
Thankfully, we don't need the inverse versions of the theorems below, | |
as they are easily provable from the non-inverse versions using \<open>inv_can\<close>. | |
\<close> | |
lemma canI_unitor_0: | |
assumes "ide f" | |
shows "\<l>[f] = can \<^bold>\<langle>f\<^bold>\<rangle> (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>)" | |
and "\<r>[f] = can \<^bold>\<langle>f\<^bold>\<rangle> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
have "can \<^bold>\<langle>f\<^bold>\<rangle> (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) = \<lbrace>\<^bold>\<l>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus 1: "\<l>[f] = can \<^bold>\<langle>f\<^bold>\<rangle> (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>)" | |
using assms by (simp add: \<ll>_ide_simp) | |
have "can \<^bold>\<langle>f\<^bold>\<rangle> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) = \<lbrace>\<^bold>\<r>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus "\<r>[f] = can \<^bold>\<langle>f\<^bold>\<rangle> (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0)" | |
using assms by (simp add: \<rr>_ide_simp) | |
qed | |
lemma canI_unitor_1: | |
assumes "obj a" | |
shows "\<l>[a] = can \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0)" | |
and "\<r>[a] = can \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
have "can \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) = \<lbrace>\<^bold>\<l>\<^bold>[\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus 1: "\<l>[a] = can \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0)" | |
using assms by (auto simp add: \<ll>_ide_simp) | |
have "can \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) = \<lbrace>\<^bold>\<r>\<^bold>[\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus "\<r>[a] = can \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0)" | |
using assms by (auto simp add: \<rr>_ide_simp) | |
qed | |
lemma canI_associator_0: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "\<a>[f, g, h] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>)" | |
proof - | |
have "can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>h\<^bold>\<rangle>\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus "\<a>[f, g, h] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>)" | |
using assms by (simp add: \<alpha>_def) | |
qed | |
lemma canI_associator_1: | |
assumes "ide f" and "ide g" and "src f = trg g" | |
shows "\<a>[trg f, f, g] = can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>)" | |
and "\<a>[f, src f, g] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>)" | |
and "\<a>[f, g, src g] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
show "\<a>[trg f, f, g] = can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>)" | |
proof - | |
have "can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus ?thesis | |
using assms \<alpha>_def by simp | |
qed | |
show "\<a>[f, src f, g] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>)" | |
proof - | |
have "can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>g\<^bold>\<rangle>\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus ?thesis | |
using assms \<alpha>_def by simp | |
qed | |
show "\<a>[f, g, src g] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
have "can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>g\<^bold>\<rangle>, \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus ?thesis | |
using assms \<alpha>_def by simp | |
qed | |
qed | |
lemma canI_associator_2: | |
assumes "ide f" | |
shows "\<a>[trg f, trg f, f] = can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>)" | |
and "\<a>[trg f, f, src f] = can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0)" | |
and "\<a>[f, src f, src f] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
show "\<a>[trg f, trg f, f] = can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>)" | |
proof - | |
have "can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>f\<^bold>\<rangle>\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus ?thesis | |
using assms \<alpha>_def by simp | |
qed | |
show "\<a>[trg f, f, src f] = can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
have "can (\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus ?thesis | |
using assms \<alpha>_def by simp | |
qed | |
show "\<a>[f, src f, src f] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
have "can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0) = | |
\<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>f\<^bold>\<rangle>, \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>src f\<^bold>\<rangle>\<^sub>0\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus ?thesis | |
using assms \<alpha>_def by simp | |
qed | |
qed | |
lemma canI_associator_3: | |
assumes "obj a" | |
shows "\<a>[a, a, a] = can (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
have "can (\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) ((\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) = \<lbrace>\<^bold>\<a>\<^bold>[\<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0, \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0\<^bold>]\<rbrace>" | |
unfolding can_def using assms by (intro E.eval_eqI, simp_all) | |
thus ?thesis | |
using assms \<alpha>_def by auto | |
qed | |
lemma canI_associator_hcomp: | |
assumes "ide f" and "ide g" and "ide h" and "ide k" | |
and "src f = trg g" and "src g = trg h" and "src h = trg k" | |
shows "\<a>[f \<star> g, h, k] = can ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) (((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>)" | |
and "\<a>[f, g \<star> h, k] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>)) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>)" | |
and "\<a>[f, g, h \<star> k] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>)" | |
proof - | |
show "\<a>[f \<star> g, h, k] = can ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) (((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>)" | |
proof - | |
have "can ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) (((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) = | |
(((f \<star> g) \<star> h \<star> k) \<cdot> (\<a>\<^sup>-\<^sup>1[f, g, h \<star> k] \<cdot> (f \<star> g \<star> h \<star> k)) \<cdot> (f \<star> g \<star> h \<star> k)) \<cdot> | |
((f \<star> g \<star> h \<star> k) \<cdot> (f \<star> (g \<star> h \<star> k) \<cdot> (g \<star> h \<star> k) \<cdot> \<a>[g, h, k]) \<cdot> \<a>[f, g \<star> h, k]) \<cdot> | |
(((f \<star> g \<star> h) \<cdot> (f \<star> g \<star> h) \<cdot> \<a>[f, g, h]) \<cdot> ((f \<star> g) \<star> h) \<star> k)" | |
unfolding can_def using assms \<alpha>_def \<a>'_def \<alpha>'.map_ide_simp by simp | |
also have "... = \<a>\<^sup>-\<^sup>1[f, g, h \<star> k] \<cdot> (f \<star> \<a>[g, h, k]) \<cdot> \<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k)" | |
using assms comp_arr_dom comp_cod_arr comp_assoc by simp | |
also have "... = \<a>[f \<star> g, h, k]" | |
using assms pentagon [of f g h k] invert_side_of_triangle(1) \<alpha>_def \<alpha>'.map_ide_simp | |
assoc_simps(1,4-5) ideD(1) iso_assoc preserves_ide seqI | |
by simp | |
finally show ?thesis by simp | |
qed | |
show "\<a>[f, g \<star> h, k] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>)) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>)" | |
proof - | |
have "can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle>)) \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) = | |
((f \<star> ((g \<star> h) \<star> k) \<cdot> (\<a>\<^sup>-\<^sup>1[g, h, k] \<cdot> (g \<star> h \<star> k)) \<cdot> (g \<star> h \<star> k)) \<cdot> (f \<star> g \<star> h \<star> k)) \<cdot> | |
((f \<star> g \<star> h \<star> k) \<cdot> (f \<star> (g \<star> h \<star> k) \<cdot> (g \<star> h \<star> k) \<cdot> \<a>[g, h, k]) \<cdot> \<a>[f, g \<star> h, k]) \<cdot> | |
((f \<star> g \<star> h) \<star> k)" | |
unfolding can_def using assms \<alpha>_def \<alpha>'.map_ide_simp \<a>'_def by simp | |
also have "... = ((f \<star> \<a>\<^sup>-\<^sup>1[g, h, k]) \<cdot> (f \<star> \<a>[g, h, k])) \<cdot> \<a>[f, g \<star> h, k]" | |
using assms comp_arr_dom comp_cod_arr comp_assoc by simp | |
also have "... = \<a>[f, g \<star> h, k]" | |
using assms comp_cod_arr whisker_left [of f "\<a>\<^sup>-\<^sup>1[g, h, k]" "\<a>[g, h, k]"] | |
comp_assoc_assoc' | |
by simp | |
finally show ?thesis by simp | |
qed | |
show "\<a>[f, g, h \<star> k] = can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>)" | |
proof - | |
have "can (\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) ((\<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>g\<^bold>\<rangle>) \<^bold>\<star> \<^bold>\<langle>h\<^bold>\<rangle> \<^bold>\<star> \<^bold>\<langle>k\<^bold>\<rangle>) = | |
(f \<star> g \<star> h \<star> k) \<cdot> ((f \<star> g \<star> h \<star> k) \<cdot> (f \<star> g \<star> h \<star> k) \<cdot> \<a>[f, g, h \<star> k]) \<cdot> ((f \<star> g) \<star> h \<star> k)" | |
unfolding can_def using assms \<alpha>_def \<alpha>'.map_ide_simp by simp | |
also have "... = \<a>[f, g, h \<star> k]" | |
using assms comp_arr_dom comp_cod_arr by simp | |
finally show ?thesis by simp | |
qed | |
qed | |
subsection "Rules for Eliminating `can'" | |
text \<open> | |
The following rules are used for replacing \<open>can\<close> in an expression by terms expressed | |
using unit and associativity isomorphisms. They are not really expressed in the form | |
of elimination rules, so the names are perhaps a bit misleading. They are typically | |
applied as simplifications. | |
\<close> | |
lemma canE_unitor: | |
assumes "Ide f" | |
shows "can f (f \<^bold>\<star> Src f) = \<r>[\<lbrace>f\<rbrace>]" | |
and "can f (Trg f \<^bold>\<star> f) = \<l>[\<lbrace>f\<rbrace>]" | |
and "can (f \<^bold>\<star> Src f) f = \<r>\<^sup>-\<^sup>1[\<lbrace>f\<rbrace>]" | |
and "can (Trg f \<^bold>\<star> f) f = \<l>\<^sup>-\<^sup>1[\<lbrace>f\<rbrace>]" | |
proof - | |
show 1: "can f (f \<^bold>\<star> Src f) = \<r>[\<lbrace>f\<rbrace>]" | |
proof - | |
have f: "\<not>Nml (f \<^bold>\<star> Src f)" | |
using assms Nml_HcompD(5) is_Prim0_Src by blast | |
have "can f (f \<^bold>\<star> Src f) = \<lbrace>Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>) \<^bold>\<cdot> (f\<^bold>\<down> \<^bold>\<star> Src f\<^bold>\<down>)\<rbrace>" | |
using assms f can_def by simp | |
also have "... = \<lbrace>\<^bold>\<r>\<^bold>[f\<^bold>]\<rbrace>" | |
proof (intro E.eval_eqI) | |
show "VPar (Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>) \<^bold>\<cdot> (f\<^bold>\<down> \<^bold>\<star> Src f\<^bold>\<down>)) \<^bold>\<r>\<^bold>[f\<^bold>]" | |
using assms Nmlize_in_Hom red_in_Hom red2_in_Hom Inv_in_Hom Can_red Can_implies_Arr | |
Nml_Nmlize(1) Ide_implies_Can Nml_Src Nml_implies_Arr | |
HcompNml_Nml_Src Ide_Cod Obj_implies_Ide | |
apply (simp add: Dom_Ide Cod_Ide) | |
apply (intro conjI) | |
proof - | |
assume f: "Ide f" | |
have 1: "Nml (Src f)" | |
proof - | |
have "Ide (Src f)" | |
using f Obj_implies_Ide by simp | |
thus ?thesis | |
using f Obj_Src Nml_Nmlize(1) Nmlize_Src(2) Ide_implies_Arr | |
by metis | |
qed | |
show "Arr (\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>)" | |
using f 1 Can_red2 Ide_Nmlize_Ide Nml_Nmlize Obj_implies_Ide by simp | |
show "Dom (\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>) = \<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<star> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>" | |
using f 1 Nml_Nmlize red2_in_Hom Ide_Nmlize_Ide Obj_implies_Ide by auto | |
show "\<^bold>\<lfloor>f\<^bold>\<rfloor> = Cod (\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>)" | |
proof - | |
have "Src \<^bold>\<lfloor>f\<^bold>\<rfloor> = Trg \<^bold>\<lfloor>Src f\<^bold>\<rfloor>" | |
using f Nml_Nmlize Obj_implies_Ide by simp | |
moreover have "\<^bold>\<lfloor>\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<star> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>\<^bold>\<rfloor> = \<^bold>\<lfloor>f\<^bold>\<rfloor>" | |
using f 1 Nml_Nmlize Nmlize_Src HcompNml_Nml_Src Nml_Src | |
by (auto simp add: HcompNml_Nml_Obj) | |
thus ?thesis | |
using f 1 Obj_Src red2_in_Hom [of "\<^bold>\<lfloor>f\<^bold>\<rfloor>" "\<^bold>\<lfloor>Src f\<^bold>\<rfloor>"] HcompNml_Nml_Src | |
Nml_Nmlize Ide_Nmlize_Ide Obj_implies_Ide | |
by auto | |
qed | |
qed | |
show "\<^bold>\<lfloor>Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>) \<^bold>\<cdot> (f\<^bold>\<down> \<^bold>\<star> Src f\<^bold>\<down>)\<^bold>\<rfloor> = \<^bold>\<lfloor>\<^bold>\<r>\<^bold>[f\<^bold>]\<^bold>\<rfloor>" | |
using assms f HcompNml_Nml_Src Nml_Nmlize Can_red Nmlize_Hcomp | |
Nmlize_Inv Nmlize_Src(1) Nmlize_red Nmlize_red2 | |
Ide_Nmlize_Can VcompNml_Nml_Ide red_Src | |
apply (simp add: HcompNml_Nml_Obj) | |
proof - | |
assume f: "Ide f" | |
have "\<^bold>\<lfloor>\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> Src f\<^bold>\<rfloor> = \<^bold>\<lfloor>f\<^bold>\<rfloor>" | |
proof - | |
have "Obj (Src f)" | |
using f Obj_Src by simp | |
thus ?thesis | |
using f apply (cases "Src f") | |
by (simp_all add: Nml_Nmlize(1) Nml_Nmlize(2) Ide_Nmlize_Ide) | |
qed | |
thus "\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<lfloor>\<^bold>\<cdot>\<^bold>\<rfloor> \<^bold>\<lfloor>\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> Src f\<^bold>\<rfloor> \<^bold>\<lfloor>\<^bold>\<cdot>\<^bold>\<rfloor> \<^bold>\<lfloor>f\<^bold>\<rfloor> = \<^bold>\<lfloor>f\<^bold>\<rfloor>" | |
by (metis Cod_Inv Can_red(1) Cod.simps(4) Nmlize.simps(4) | |
Nmlize.simps(7) Nmlize_Vcomp_Cod_Arr red_simps(3) | |
\<open>VPar (Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>Src f\<^bold>\<rfloor>) \<^bold>\<cdot> (f\<^bold>\<down> \<^bold>\<star> Src f\<^bold>\<down>)) \<^bold>\<r>\<^bold>[f\<^bold>]\<close> f) | |
qed | |
qed | |
also have "... = \<r>[\<lbrace>f\<rbrace>]" | |
using assms E.eval_Runit_Ide by blast | |
finally show ?thesis by simp | |
qed | |
show 2: "can f (Trg f \<^bold>\<star> f) = \<l>[\<lbrace>f\<rbrace>]" | |
proof - | |
have f: "\<not>Nml (Trg f \<^bold>\<star> f)" | |
using assms by (metis Nml.simps(4) Nml_HcompD(6)) | |
have "can f (Trg f \<^bold>\<star> f) = \<lbrace>Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>Trg f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>) \<^bold>\<cdot> (Trg f\<^bold>\<down> \<^bold>\<star> f\<^bold>\<down>)\<rbrace>" | |
using assms f can_def by simp | |
also have "... = \<lbrace>\<^bold>\<l>\<^bold>[f\<^bold>]\<rbrace>" | |
proof (intro E.eval_eqI) | |
show "VPar (Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>Trg f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>) \<^bold>\<cdot> (Trg f\<^bold>\<down> \<^bold>\<star> f\<^bold>\<down>)) \<^bold>\<l>\<^bold>[f\<^bold>]" | |
using assms Nmlize_in_Hom red_in_Hom red2_in_Hom Inv_in_Hom Can_red Can_implies_Arr | |
Nml_Nmlize(1) Ide_implies_Can Nml_Trg Nml_implies_Arr | |
HcompNml_Trg_Nml Ide_Cod Nmlize_Trg(1) Obj_implies_Ide | |
apply (simp add: Dom_Ide Cod_Ide) | |
apply (intro conjI) | |
proof - | |
assume f: "Ide f" | |
have 1: "Nml (Trg f)" | |
proof - | |
have "Ide (Trg f)" | |
using f Obj_implies_Ide by simp | |
thus ?thesis | |
using f Obj_Trg Nml_Nmlize(1) Nmlize_Trg(2) Ide_implies_Arr | |
by metis | |
qed | |
show "Arr (Trg f \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>)" | |
using f 1 Can_red2 Ide_Nmlize_Ide Nml_Nmlize(1,3) Obj_implies_Ide by simp | |
show "Dom (Trg f \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>) = Trg f \<^bold>\<star> \<^bold>\<lfloor>f\<^bold>\<rfloor>" | |
using f Obj_Trg 1 Nml_Nmlize(1,3) red2_in_Hom Ide_Nmlize_Ide Obj_implies_Ide by auto | |
show "\<^bold>\<lfloor>f\<^bold>\<rfloor> = Cod (Trg f \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>)" | |
proof - | |
have "Src (Trg f) = Trg \<^bold>\<lfloor>f\<^bold>\<rfloor>" | |
using f Nml_Nmlize(3) by simp | |
thus ?thesis | |
using f 1 Obj_Trg HcompNml_Trg_Nml Nml_Nmlize(1) Ide_Nmlize_Ide Obj_implies_Ide | |
by auto | |
qed | |
qed | |
show "\<^bold>\<lfloor>Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>Trg f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>) \<^bold>\<cdot> (Trg f\<^bold>\<down> \<^bold>\<star> f\<^bold>\<down>)\<^bold>\<rfloor> = \<^bold>\<lfloor>\<^bold>\<l>\<^bold>[f\<^bold>]\<^bold>\<rfloor>" | |
using assms f HcompNml_Nml_Src Nml_Nmlize Can_red Nmlize_Hcomp | |
Nmlize_Inv Nmlize_Trg(1) Nmlize_red Nmlize_red2 | |
Ide_Nmlize_Can VcompNml_Nml_Ide red_Trg | |
apply (simp add: HcompNml_Obj_Nml) | |
proof - | |
assume f: "Ide f" | |
have "\<^bold>\<lfloor>Trg f \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>\<^bold>\<rfloor> = \<^bold>\<lfloor>f\<^bold>\<rfloor>" | |
proof - | |
have "Obj (Trg f)" | |
using f Obj_Trg by simp | |
thus ?thesis | |
using f apply (cases "Trg f") | |
by (simp_all add: Nml_Nmlize(1) Nml_Nmlize(2) Ide_Nmlize_Ide) | |
qed | |
thus "\<^bold>\<lfloor>f\<^bold>\<rfloor> \<^bold>\<lfloor>\<^bold>\<cdot>\<^bold>\<rfloor> \<^bold>\<lfloor>Trg f \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>\<^bold>\<rfloor> \<^bold>\<lfloor>\<^bold>\<cdot>\<^bold>\<rfloor> \<^bold>\<lfloor>f\<^bold>\<rfloor> = \<^bold>\<lfloor>f\<^bold>\<rfloor>" | |
by (metis Cod_Inv Can_red(1) Cod.simps(4) Nmlize.simps(4) | |
Nmlize.simps(5) Nmlize_Vcomp_Cod_Arr red_simps(3) | |
\<open>VPar (Inv (f\<^bold>\<down>) \<^bold>\<cdot> (\<^bold>\<lfloor>Trg f\<^bold>\<rfloor> \<^bold>\<Down> \<^bold>\<lfloor>f\<^bold>\<rfloor>) \<^bold>\<cdot> (Trg f\<^bold>\<down> \<^bold>\<star> f\<^bold>\<down>)) \<^bold>\<l>\<^bold>[f\<^bold>]\<close> f) | |
qed | |
qed | |
also have "... = \<l>[\<lbrace>f\<rbrace>]" | |
using assms E.eval_Lunit_Ide by blast | |
finally show ?thesis by simp | |
qed | |
show "can (f \<^bold>\<star> Src f) f = \<r>\<^sup>-\<^sup>1[\<lbrace>f\<rbrace>]" | |
using assms 1 inv_can inv_inv | |
by (metis (no_types, lifting) Nml_Nmlize(1) Nmlize.simps(3) | |
Nmlize_Src(1) HcompNml_Nml_Src Ide.simps(3) Ide_implies_Arr | |
Obj_Src Obj_implies_Ide Trg_Src) | |
show "can (Trg f \<^bold>\<star> f) f = \<l>\<^sup>-\<^sup>1[\<lbrace>f\<rbrace>]" | |
using assms 2 inv_can inv_inv | |
by (metis (no_types, lifting) Nml_Nmlize(1) Nmlize.simps(3) | |
Nmlize_Trg(1) HcompNml_Trg_Nml Ide.simps(3) Ide_implies_Arr | |
Obj_Trg Obj_implies_Ide Src_Trg) | |
qed | |
lemma canE_associator: | |
assumes "Ide f" and "Ide g" and "Ide h" and "Src f = Trg g" and "Src g = Trg h" | |
shows "can (f \<^bold>\<star> g \<^bold>\<star> h) ((f \<^bold>\<star> g) \<^bold>\<star> h) = \<a>[\<lbrace>f\<rbrace>, \<lbrace>g\<rbrace>, \<lbrace>h\<rbrace>]" | |
and "can ((f \<^bold>\<star> g) \<^bold>\<star> h) (f \<^bold>\<star> g \<^bold>\<star> h) = \<a>\<^sup>-\<^sup>1[\<lbrace>f\<rbrace>, \<lbrace>g\<rbrace>, \<lbrace>h\<rbrace>]" | |
proof - | |
show "can (f \<^bold>\<star> g \<^bold>\<star> h) ((f \<^bold>\<star> g) \<^bold>\<star> h) = \<a>[\<lbrace>f\<rbrace>, \<lbrace>g\<rbrace>, \<lbrace>h\<rbrace>]" | |
proof - | |
have "can (f \<^bold>\<star> g \<^bold>\<star> h) ((f \<^bold>\<star> g) \<^bold>\<star> h) = \<lbrace>Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>\<rbrace>" | |
using can_def by simp | |
also have "... = \<lbrace>\<^bold>\<a>\<^bold>[f, g, h\<^bold>]\<rbrace>" | |
proof (intro E.eval_eqI) | |
have 1: "Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down> \<in> VHom ((f \<^bold>\<star> g) \<^bold>\<star> h) (f \<^bold>\<star> g \<^bold>\<star> h)" | |
using assms Inv_in_Hom [of "(f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>"] Can_red [of "f \<^bold>\<star> g \<^bold>\<star> h"] | |
red_in_Hom [of "f \<^bold>\<star> g \<^bold>\<star> h"] red_in_Hom [of "(f \<^bold>\<star> g) \<^bold>\<star> h"] | |
Nmlize_Hcomp_Hcomp Nmlize_Hcomp_Hcomp' | |
Ide_implies_Arr Nml_HcompNml Nmlize_Nml Ide_HcompNml | |
by auto | |
show par: "VPar (Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<a>\<^bold>[f, g, h\<^bold>]" | |
using assms 1 Inv_in_Hom red_in_Hom Ide_in_Hom by simp | |
show "\<^bold>\<lfloor>Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>\<^bold>\<a>\<^bold>[f, g, h\<^bold>]\<^bold>\<rfloor>" | |
proof - | |
have "\<^bold>\<lfloor>Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor> = Dom \<^bold>\<lfloor>Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor>" | |
proof - | |
have "Can (Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>)" | |
(* Here presburger depends on par being at the end, not after assms. *) | |
using assms Nmlize_Inv Can_Inv | |
Arr.simps(10) Arr.simps(4) Can.simps(4) Can_red(1) Ide.simps(3) | |
Src.simps(3) Trg.simps(3) par | |
by presburger | |
hence "Ide \<^bold>\<lfloor>Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor>" | |
using Ide_Nmlize_Can by blast | |
thus ?thesis | |
using Ide_in_Hom Dom_Ide by presburger | |
qed | |
also have 6: "... = \<^bold>\<lfloor>(f \<^bold>\<star> g) \<^bold>\<star> h\<^bold>\<rfloor>" | |
using 1 Nmlize_Dom [of "Inv ((f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> ((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>"] | |
by (metis (mono_tags, lifting) mem_Collect_eq) | |
also have 5: "... = Dom \<^bold>\<lfloor>\<^bold>\<a>\<^bold>[f, g, h\<^bold>]\<^bold>\<rfloor>" | |
using assms 6 par Nmlize_Dom Nml_Nmlize(4) by metis | |
also have "... = \<^bold>\<lfloor>\<^bold>\<a>\<^bold>[f, g, h\<^bold>]\<^bold>\<rfloor>" | |
using assms 5 Ide_in_Hom by auto | |
finally show ?thesis by simp | |
qed | |
qed | |
also have "... = \<a>[\<lbrace>f\<rbrace>, \<lbrace>g\<rbrace>, \<lbrace>h\<rbrace>]" | |
using assms E.eval_Assoc_Ide \<alpha>_def by fastforce | |
finally show ?thesis by simp | |
qed | |
show "can ((f \<^bold>\<star> g) \<^bold>\<star> h) (f \<^bold>\<star> g \<^bold>\<star> h) = \<a>\<^sup>-\<^sup>1[\<lbrace>f\<rbrace>, \<lbrace>g\<rbrace>, \<lbrace>h\<rbrace>]" | |
proof - | |
have "can ((f \<^bold>\<star> g) \<^bold>\<star> h) (f \<^bold>\<star> g \<^bold>\<star> h) = \<lbrace>Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>\<rbrace>" | |
using can_def by simp | |
also have "... = \<lbrace>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[f, g, h\<^bold>]\<rbrace>" | |
proof (intro E.eval_eqI) | |
have 1: "Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down> \<in> VHom (f \<^bold>\<star> g \<^bold>\<star> h) ((f \<^bold>\<star> g) \<^bold>\<star> h)" | |
using assms Inv_in_Hom [of "((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>"] Can_red [of "(f \<^bold>\<star> g) \<^bold>\<star> h"] | |
red_in_Hom [of "(f \<^bold>\<star> g) \<^bold>\<star> h"] red_in_Hom [of "f \<^bold>\<star> g \<^bold>\<star> h"] | |
Nmlize_Hcomp_Hcomp Nmlize_Hcomp_Hcomp' | |
Ide_implies_Arr Nml_HcompNml Nmlize_Nml Ide_HcompNml | |
by auto | |
show par: "VPar (Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[f, g, h\<^bold>]" | |
using assms 1 Inv_in_Hom red_in_Hom Ide_in_Hom by simp | |
show "\<^bold>\<lfloor>Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[f, g, h\<^bold>]\<^bold>\<rfloor>" | |
proof - | |
have "\<^bold>\<lfloor>Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor> = Dom \<^bold>\<lfloor>Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor>" | |
proof - | |
have "Can (Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>)" | |
using assms Nmlize_Inv Can_Inv | |
Arr.simps(10) Arr.simps(4) Can.simps(4) Can_red(1) Ide.simps(3) | |
Src.simps(3) Trg.simps(3) par | |
by presburger | |
hence "Ide \<^bold>\<lfloor>Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>\<^bold>\<rfloor>" | |
using Ide_Nmlize_Can by blast | |
thus ?thesis | |
using Ide_in_Hom Dom_Ide by presburger | |
qed | |
also have 6: "... = \<^bold>\<lfloor>f \<^bold>\<star> g \<^bold>\<star> h\<^bold>\<rfloor>" | |
using 1 Nmlize_Dom [of "Inv (((f \<^bold>\<star> g) \<^bold>\<star> h)\<^bold>\<down>) \<^bold>\<cdot> (f \<^bold>\<star> g \<^bold>\<star> h)\<^bold>\<down>"] | |
by (metis (mono_tags, lifting) mem_Collect_eq) | |
also have 5: "... = Dom \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[f, g, h\<^bold>]\<^bold>\<rfloor>" | |
using assms 6 par Nmlize_Dom Nml_Nmlize(4) by metis | |
also have "... = \<^bold>\<lfloor>\<^bold>\<a>\<^sup>-\<^sup>1\<^bold>[f, g, h\<^bold>]\<^bold>\<rfloor>" | |
using assms 5 Ide_in_Hom by auto | |
finally show ?thesis by simp | |
qed | |
qed | |
also have "... = \<a>\<^sup>-\<^sup>1[\<lbrace>f\<rbrace>, \<lbrace>g\<rbrace>, \<lbrace>h\<rbrace>]" | |
using assms E.eval_Assoc'_Ide by fastforce | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma can_Ide_self: | |
assumes "Ide t" | |
shows "can t t = \<lbrace>t\<rbrace>" | |
proof (unfold can_def) | |
show "\<lbrace>Inv (t\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<rbrace> = \<lbrace>t\<rbrace>" | |
proof (intro E.eval_eqI) | |
show "VPar (Inv (t\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) t" | |
using assms red_in_Hom Inv_in_Hom Ide_implies_Can Can_Inv Can_red(1) Ide_in_Hom(2) | |
by auto | |
show "\<^bold>\<lfloor>Inv (t\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>\<^bold>\<rfloor> = \<^bold>\<lfloor>t\<^bold>\<rfloor>" | |
using assms red_in_Hom Inv_in_Hom Ide_implies_Can Cod_Inv | |
by (metis (mono_tags, lifting) Can_red(1) Nml_Nmlize(1) Nmlize.simps(4) | |
Nmlize_Inv Ide_Nmlize_Ide Nmlize_red Inv_Ide VcompNml_Ide_Nml | |
\<open>VPar (Inv (t\<^bold>\<down>) \<^bold>\<cdot> t\<^bold>\<down>) t\<close>) | |
qed | |
qed | |
subsection "Rules for Whiskering" | |
lemma whisker_can_right_0: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" and "ide f" and "Src t = \<^bold>\<langle>trg f\<^bold>\<rangle>\<^sub>0" | |
shows "can u t \<star> f = can (u \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>) (t \<^bold>\<star> \<^bold>\<langle>f\<^bold>\<rangle>)" | |
proof - | |
have "f = can \<^bold>\<langle>f\<^bold>\<rangle> \<^bold>\<langle>f\<^bold>\<rangle>" | |
using assms can_Ide_self by simp | |
thus ?thesis | |
using assms Ide_implies_Arr hcomp_can | |
by (metis Nml_Nmlize(2) Ide.simps(2) Trg.simps(2)) | |
qed | |
lemma whisker_can_right_1: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" and "obj a" and "Src t = \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0" | |
shows "can u t \<star> a = can (u \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0) (t \<^bold>\<star> \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0)" | |
proof - | |
have "a = can \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0 \<^bold>\<langle>a\<^bold>\<rangle>\<^sub>0" | |
using assms can_Ide_self by auto | |
thus ?thesis | |
using assms Ide_implies_Arr hcomp_can | |
by (metis Nml_Nmlize(2) Ide.simps(1) Trg.simps(1)) | |
qed | |
lemma whisker_can_left_0: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" and "ide g" and "Trg t = \<^bold>\<langle>src g\<^bold>\<rangle>\<^sub>0" | |
shows "g \<star> can u t = can (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> u) (\<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<star> t)" | |
proof - | |
have "g = can \<^bold>\<langle>g\<^bold>\<rangle> \<^bold>\<langle>g\<^bold>\<rangle>" | |
using assms can_Ide_self by simp | |
thus ?thesis | |
using assms Ide_implies_Arr hcomp_can | |
by (metis Nml_Nmlize(3) Ide.simps(2) Src.simps(2)) | |
qed | |
lemma whisker_can_left_1: | |
assumes "Ide t" and "Ide u" and "\<^bold>\<lfloor>t\<^bold>\<rfloor> = \<^bold>\<lfloor>u\<^bold>\<rfloor>" and "obj b" and "Trg t = \<^bold>\<langle>b\<^bold>\<rangle>\<^sub>0" | |
shows "b \<star> can u t = can (\<^bold>\<langle>b\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> u) (\<^bold>\<langle>b\<^bold>\<rangle>\<^sub>0 \<^bold>\<star> t)" | |
proof - | |
have "b = can \<^bold>\<langle>b\<^bold>\<rangle>\<^sub>0 \<^bold>\<langle>b\<^bold>\<rangle>\<^sub>0" | |
using assms can_Ide_self by auto | |
thus ?thesis | |
using assms Ide_implies_Arr hcomp_can | |
by (metis Nml_Nmlize(3) Ide.simps(1) Src.simps(1)) | |
qed | |
end | |
end | |