Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Bicategory | |
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2019 | |
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu> | |
*) | |
theory Bicategory | |
imports Prebicategory Category3.Subcategory Category3.DiscreteCategory | |
MonoidalCategory.MonoidalCategory | |
begin | |
section "Bicategories" | |
text \<open> | |
A \emph{bicategory} is a (vertical) category that has been equipped with | |
a horizontal composition, an associativity natural isomorphism, | |
and for each object a ``unit isomorphism'', such that horizontal | |
composition on the left by target and on the right by source are | |
fully faithful endofunctors of the vertical category, and such that | |
the usual pentagon coherence condition holds for the associativity. | |
\<close> | |
locale bicategory = | |
horizontal_composition V H src trg + | |
\<alpha>: natural_isomorphism VVV.comp V HoHV HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))\<close> + | |
L: fully_faithful_functor V V L + | |
R: fully_faithful_functor V V R | |
for V :: "'a comp" (infixr "\<cdot>" 55) | |
and H :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<star>" 53) | |
and \<a> :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>[_, _, _]") | |
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]") | |
and src :: "'a \<Rightarrow> 'a" | |
and trg :: "'a \<Rightarrow> 'a" + | |
assumes unit_in_vhom: "obj a \<Longrightarrow> \<guillemotleft>\<i>[a] : a \<star> a \<Rightarrow> a\<guillemotright>" | |
and iso_unit: "obj a \<Longrightarrow> iso \<i>[a]" | |
and pentagon: "\<lbrakk> ide f; ide g; ide h; ide k; src f = trg g; src g = trg h; src h = trg k \<rbrakk> \<Longrightarrow> | |
(f \<star> \<a>[g, h, k]) \<cdot> \<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k) = \<a>[f, g, h \<star> k] \<cdot> \<a>[f \<star> g, h, k]" | |
begin | |
(* | |
* TODO: the mapping \<i> is not currently assumed to be extensional. | |
* It might be best in the long run if it were. | |
*) | |
definition \<alpha> | |
where "\<alpha> \<mu>\<nu>\<tau> \<equiv> \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))" | |
lemma assoc_in_hom': | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "in_hhom \<a>[\<mu>, \<nu>, \<tau>] (src \<tau>) (trg \<mu>)" | |
and "\<guillemotleft>\<a>[\<mu>, \<nu>, \<tau>] : (dom \<mu> \<star> dom \<nu>) \<star> dom \<tau> \<Rightarrow> cod \<mu> \<star> cod \<nu> \<star> cod \<tau>\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<a>[\<mu>, \<nu>, \<tau>] : (dom \<mu> \<star> dom \<nu>) \<star> dom \<tau> \<Rightarrow> cod \<mu> \<star> cod \<nu> \<star> cod \<tau>\<guillemotright>" | |
proof - | |
have 1: "VVV.in_hom (\<mu>, \<nu>, \<tau>) (dom \<mu>, dom \<nu>, dom \<tau>) (cod \<mu>, cod \<nu>, cod \<tau>)" | |
using assms VVV.in_hom_char VVV.arr_char VV.arr_char by auto | |
have "\<guillemotleft>\<a>[\<mu>, \<nu>, \<tau>] : HoHV (dom \<mu>, dom \<nu>, dom \<tau>) \<Rightarrow> HoVH (cod \<mu>, cod \<nu>, cod \<tau>)\<guillemotright>" | |
using 1 \<alpha>.preserves_hom by auto | |
moreover have "HoHV (dom \<mu>, dom \<nu>, dom \<tau>) = (dom \<mu> \<star> dom \<nu>) \<star> dom \<tau>" | |
using 1 HoHV_def by (simp add: VVV.in_hom_char) | |
moreover have "HoVH (cod \<mu>, cod \<nu>, cod \<tau>) = cod \<mu> \<star> cod \<nu> \<star> cod \<tau>" | |
using 1 HoVH_def by (simp add: VVV.in_hom_char) | |
ultimately show ?thesis by simp | |
qed | |
thus "in_hhom \<a>[\<mu>, \<nu>, \<tau>] (src \<tau>) (trg \<mu>)" | |
using assms src_cod trg_cod vconn_implies_hpar(1) vconn_implies_hpar(2) by auto | |
qed | |
lemma assoc_is_natural_1: | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "\<a>[\<mu>, \<nu>, \<tau>] = (\<mu> \<star> \<nu> \<star> \<tau>) \<cdot> \<a>[dom \<mu>, dom \<nu>, dom \<tau>]" | |
using assms \<alpha>.is_natural_1 [of "(\<mu>, \<nu>, \<tau>)"] VVV.arr_char VV.arr_char VVV.dom_char | |
HoVH_def src_dom trg_dom | |
by simp | |
lemma assoc_is_natural_2: | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "\<a>[\<mu>, \<nu>, \<tau>] = \<a>[cod \<mu>, cod \<nu>, cod \<tau>] \<cdot> ((\<mu> \<star> \<nu>) \<star> \<tau>)" | |
using assms \<alpha>.is_natural_2 [of "(\<mu>, \<nu>, \<tau>)"] VVV.arr_char VV.arr_char VVV.cod_char | |
HoHV_def src_dom trg_dom | |
by simp | |
lemma assoc_naturality: | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "\<a>[cod \<mu>, cod \<nu>, cod \<tau>] \<cdot> ((\<mu> \<star> \<nu>) \<star> \<tau>) = (\<mu> \<star> \<nu> \<star> \<tau>) \<cdot> \<a>[dom \<mu>, dom \<nu>, dom \<tau>]" | |
using assms \<alpha>.naturality VVV.arr_char VV.arr_char HoVH_def HoHV_def | |
VVV.dom_char VVV.cod_char | |
by auto | |
lemma assoc_in_hom [intro]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "in_hhom \<a>[f, g, h] (src h) (trg f)" | |
and "\<guillemotleft>\<a>[f, g, h] : (dom f \<star> dom g) \<star> dom h \<Rightarrow> cod f \<star> cod g \<star> cod h\<guillemotright>" | |
using assms assoc_in_hom' apply auto[1] | |
using assms assoc_in_hom' ideD(1) by metis | |
lemma assoc_simps [simp]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "arr \<a>[f, g, h]" | |
and "src \<a>[f, g, h] = src h" and "trg \<a>[f, g, h] = trg f" | |
and "dom \<a>[f, g, h] = (dom f \<star> dom g) \<star> dom h" | |
and "cod \<a>[f, g, h] = cod f \<star> cod g \<star> cod h" | |
using assms assoc_in_hom apply auto | |
using assoc_in_hom(1) by auto | |
lemma iso_assoc [intro, simp]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "iso \<a>[f, g, h]" | |
using assms \<alpha>.components_are_iso [of "(f, g, h)"] VVV.ide_char VVV.arr_char VV.arr_char | |
by simp | |
end | |
subsection "Categories Induce Bicategories" | |
text \<open> | |
In this section we show that a category becomes a bicategory if we take the vertical | |
composition to be discrete, we take the composition of the category as the | |
horizontal composition, and we take the vertical domain and codomain as \<open>src\<close> and \<open>trg\<close>. | |
\<close> | |
(* | |
* It is helpful to make a few local definitions here, but I don't want them to | |
* clutter the category locale. Using a context and private definitions does not | |
* work as expected. So we have to define a new locale just for the present purpose. | |
*) | |
locale category_as_bicategory = category | |
begin | |
interpretation V: discrete_category \<open>Collect arr\<close> null | |
using not_arr_null by (unfold_locales, blast) | |
abbreviation V | |
where "V \<equiv> V.comp" | |
interpretation src: "functor" V V dom | |
using V.null_char | |
by (unfold_locales, simp add: has_domain_iff_arr dom_def, auto) | |
interpretation trg: "functor" V V cod | |
using V.null_char | |
by (unfold_locales, simp add: has_codomain_iff_arr cod_def, auto) | |
interpretation H: horizontal_homs V dom cod | |
by (unfold_locales, auto) | |
interpretation H: "functor" H.VV.comp V \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<cdot> snd \<mu>\<nu>\<close> | |
apply (unfold_locales) | |
using H.VV.arr_char V.null_char ext | |
apply force | |
using H.VV.arr_char V.null_char H.VV.dom_char H.VV.cod_char | |
apply auto[3] | |
proof - | |
show "\<And>g f. H.VV.seq g f \<Longrightarrow> | |
fst (H.VV.comp g f) \<cdot> snd (H.VV.comp g f) = V (fst g \<cdot> snd g) (fst f \<cdot> snd f)" | |
proof - | |
have 0: "\<And>f. H.VV.arr f \<Longrightarrow> V.arr (fst f \<cdot> snd f)" | |
using H.VV.arr_char by auto | |
have 1: "\<And>f g. V.seq g f \<Longrightarrow> V.ide f \<and> g = f" | |
using V.arr_char V.dom_char V.cod_char V.not_arr_null by force | |
have 2: "\<And>f g. H.VxV.seq g f \<Longrightarrow> H.VxV.ide f \<and> g = f" | |
using 1 H.VxV.seq_char by (metis H.VxV.dom_eqI H.VxV.ide_Ide) | |
fix f g | |
assume fg: "H.VV.seq g f" | |
have 3: "H.VV.ide f \<and> f = g" | |
using fg 2 H.VV.seq_char H.VV.ide_char by blast | |
show "fst (H.VV.comp g f) \<cdot> snd (H.VV.comp g f) = V (fst g \<cdot> snd g) (fst f \<cdot> snd f)" | |
using fg 0 1 3 H.VV.comp_char H.VV.arr_char H.VV.ide_char V.arr_char V.comp_char | |
H.VV.comp_arr_ide | |
by (metis (no_types, lifting)) | |
qed | |
qed | |
interpretation H: horizontal_composition V C dom cod | |
by (unfold_locales, auto) | |
abbreviation \<a> | |
where "\<a> f g h \<equiv> f \<cdot> g \<cdot> h" | |
interpretation \<alpha>: natural_isomorphism H.VVV.comp V H.HoHV H.HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))\<close> | |
apply unfold_locales | |
using V.null_char ext | |
apply fastforce | |
using H.HoHV_def H.HoVH_def H.VVV.arr_char H.VV.arr_char H.VVV.dom_char | |
H.VV.dom_char H.VVV.cod_char H.VV.cod_char H.VVV.ide_char comp_assoc | |
by auto | |
interpretation fully_faithful_functor V V H.R | |
using comp_arr_dom by (unfold_locales, auto) | |
interpretation fully_faithful_functor V V H.L | |
using comp_cod_arr by (unfold_locales, auto) | |
abbreviation \<i> | |
where "\<i> \<equiv> \<lambda>x. x" | |
proposition induces_bicategory: | |
shows "bicategory V C \<a> \<i> dom cod" | |
apply (unfold_locales, auto simp add: comp_assoc) | |
using comp_arr_dom by fastforce | |
end | |
subsection "Monoidal Categories induce Bicategories" | |
text \<open> | |
In this section we show that our definition of bicategory directly generalizes our | |
definition of monoidal category: | |
a monoidal category becomes a bicategory when equipped with the constant-\<open>\<I>\<close> functors | |
as src and trg and \<open>\<iota>\<close> as the unit isomorphism from \<open>\<I> \<otimes> \<I>\<close> to \<open>\<I>\<close>. | |
There is a slight mismatch because the bicategory locale assumes that the associator | |
is given in curried form, whereas for monoidal categories it is given in tupled form. | |
Ultimately, the monoidal category locale should be revised to also use curried form, | |
which ends up being more convenient in most situations. | |
\<close> | |
context monoidal_category | |
begin | |
interpretation I: constant_functor C C \<I> | |
using \<iota>_in_hom by unfold_locales auto | |
interpretation horizontal_homs C I.map I.map | |
by unfold_locales auto | |
lemma CC_eq_VV: | |
shows "CC.comp = VV.comp" | |
proof - | |
have "\<And>g f. CC.comp g f = VV.comp g f" | |
proof - | |
fix f g | |
show "CC.comp g f = VV.comp g f" | |
proof - | |
have "CC.seq g f \<Longrightarrow> CC.comp g f = VV.comp g f" | |
using VV.comp_char VV.arr_char CC.seq_char | |
by (elim CC.seqE seqE, simp) | |
moreover have "\<not> CC.seq g f \<Longrightarrow> CC.comp g f = VV.comp g f" | |
using VV.seq_char VV.ext VV.null_char CC.ext | |
by (metis (no_types, lifting)) | |
ultimately show ?thesis by blast | |
qed | |
qed | |
thus ?thesis by blast | |
qed | |
lemma CCC_eq_VVV: | |
shows "CCC.comp = VVV.comp" | |
proof - | |
have "\<And>g f. CCC.comp g f = VVV.comp g f" | |
proof - | |
fix f g | |
show "CCC.comp g f = VVV.comp g f" | |
proof - | |
have "CCC.seq g f \<Longrightarrow> CCC.comp g f = VVV.comp g f" | |
by (metis (no_types, lifting) CC.arrE CCC.seqE CC_eq_VV I.map_simp | |
I.preserves_reflects_arr VV.seq_char VVV.arrI VVV.comp_simp VVV.seq_char | |
trg_vcomp vseq_implies_hpar(1)) | |
moreover have "\<not> CCC.seq g f \<Longrightarrow> CCC.comp g f = VVV.comp g f" | |
using VVV.seq_char VVV.ext VVV.null_char CCC.ext | |
by (metis (no_types, lifting)) | |
ultimately show ?thesis by blast | |
qed | |
qed | |
thus ?thesis by blast | |
qed | |
interpretation H: "functor" VV.comp C \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<otimes> snd \<mu>\<nu>\<close> | |
using CC_eq_VV T.functor_axioms by simp | |
interpretation H: horizontal_composition C tensor I.map I.map | |
by (unfold_locales, simp_all) | |
lemma HoHV_eq_ToTC: | |
shows "H.HoHV = T.ToTC" | |
using H.HoHV_def T.ToTC_def CCC_eq_VVV by presburger | |
lemma HoVH_eq_ToCT: | |
shows "H.HoVH = T.ToCT" | |
using H.HoVH_def T.ToCT_def CCC_eq_VVV by presburger | |
interpretation \<alpha>: natural_isomorphism VVV.comp C H.HoHV H.HoVH \<alpha> | |
using \<alpha>.natural_isomorphism_axioms CCC_eq_VVV HoHV_eq_ToTC HoVH_eq_ToCT | |
by simp | |
lemma R'_eq_R: | |
shows "H.R = R" | |
using H.is_extensional CC_eq_VV CC.arr_char by force | |
lemma L'_eq_L: | |
shows "H.L = L" | |
using H.is_extensional CC_eq_VV CC.arr_char by force | |
interpretation R': fully_faithful_functor C C H.R | |
using R'_eq_R R.fully_faithful_functor_axioms unity_def by auto | |
interpretation L': fully_faithful_functor C C H.L | |
using L'_eq_L L.fully_faithful_functor_axioms unity_def by auto | |
lemma obj_char: | |
shows "obj a \<longleftrightarrow> a = \<I>" | |
using obj_def [of a] \<iota>_in_hom by fastforce | |
proposition induces_bicategory: | |
shows "bicategory C tensor (\<lambda>\<mu> \<nu> \<tau>. \<alpha> (\<mu>, \<nu>, \<tau>)) (\<lambda>_. \<iota>) I.map I.map" | |
using obj_char \<iota>_in_hom \<iota>_is_iso pentagon \<alpha>.is_extensional \<alpha>.is_natural_1 \<alpha>.is_natural_2 | |
by unfold_locales simp_all | |
end | |
subsection "Prebicategories Extend to Bicategories" | |
text \<open> | |
In this section, we show that a prebicategory with homs and units extends to a bicategory. | |
The main work is to show that the endofunctors \<open>L\<close> and \<open>R\<close> are fully faithful. | |
We take the left and right unitor isomorphisms, which were obtained via local | |
constructions in the left and right hom-subcategories defined by a specified | |
weak unit, and show that in the presence of the chosen sources and targets they | |
are the components of a global natural isomorphisms \<open>\<ll>\<close> and \<open>\<rr>\<close> from the endofunctors | |
\<open>L\<close> and \<open>R\<close> to the identity functor. A consequence is that functors \<open>L\<close> and \<open>R\<close> are | |
endo-equivalences, hence fully faithful. | |
\<close> | |
context prebicategory_with_homs | |
begin | |
text \<open> | |
Once it is equipped with a particular choice of source and target for each arrow, | |
a prebicategory determines a horizontal composition. | |
\<close> | |
lemma induces_horizontal_composition: | |
shows "horizontal_composition V H src trg" | |
proof - | |
interpret H: "functor" VV.comp V \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> | |
proof - | |
have "VV.comp = VoV.comp" | |
using composable_char\<^sub>P\<^sub>B\<^sub>H by meson | |
thus "functor VV.comp V (\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>)" | |
using functor_axioms by argo | |
qed | |
show "horizontal_composition V H src trg" | |
using src_hcomp' trg_hcomp' composable_char\<^sub>P\<^sub>B\<^sub>H not_arr_null | |
by (unfold_locales; metis) | |
qed | |
end | |
sublocale prebicategory_with_homs \<subseteq> horizontal_composition V H src trg | |
using induces_horizontal_composition by auto | |
locale prebicategory_with_homs_and_units = | |
prebicategory_with_units + | |
prebicategory_with_homs | |
begin | |
no_notation in_hom ("\<guillemotleft>_ : _ \<rightarrow> _\<guillemotright>") | |
text \<open> | |
The next definitions extend the left and right unitors that were defined locally with | |
respect to a particular weak unit, to globally defined versions using the chosen | |
source and target for each arrow. | |
\<close> | |
definition lunit ("\<l>[_]") | |
where "lunit f \<equiv> left_hom_with_unit.lunit V H \<a> \<i>[trg f] (trg f) f" | |
definition runit ("\<r>[_]") | |
where "runit f \<equiv> right_hom_with_unit.runit V H \<a> \<i>[src f] (src f) f" | |
lemma lunit_in_hom: | |
assumes "ide f" | |
shows "\<guillemotleft>\<l>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" and "\<guillemotleft>\<l>[f] : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
proof - | |
interpret Left: subcategory V \<open>left (trg f)\<close> | |
using assms left_hom_is_subcategory by simp | |
interpret Left: left_hom_with_unit V H \<a> \<open>\<i>[trg f]\<close> \<open>trg f\<close> | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
have 0: "Left.ide f" | |
using assms Left.ide_char Left.arr_char left_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
show 1: "\<guillemotleft>\<l>[f] : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
unfolding lunit_def | |
using assms 0 Left.lunit_char(1) Left.hom_char H\<^sub>L_def by auto | |
show "\<guillemotleft>\<l>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" | |
using 1 src_cod trg_cod src_in_sources trg_in_targets | |
by (metis arrI vconn_implies_hpar) | |
qed | |
lemma runit_in_hom: | |
assumes "ide f" | |
shows "\<guillemotleft>\<r>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" and "\<guillemotleft>\<r>[f] : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
proof - | |
interpret Right: subcategory V \<open>right (src f)\<close> | |
using assms right_hom_is_subcategory weak_unit_self_composable by force | |
interpret Right: right_hom_with_unit V H \<a> \<open>\<i>[src f]\<close> \<open>src f\<close> | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
have 0: "Right.ide f" | |
using assms Right.ide_char Right.arr_char right_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
show 1: "\<guillemotleft>\<r>[f] : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
unfolding runit_def | |
using assms 0 Right.runit_char(1) Right.hom_char H\<^sub>R_def by auto | |
show "\<guillemotleft>\<r>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" | |
using 1 src_cod trg_cod src_in_sources trg_in_targets | |
by (metis arrI vconn_implies_hpar) | |
qed | |
text \<open> | |
The characterization of the locally defined unitors yields a corresponding characterization | |
of the globally defined versions, by plugging in the chosen source or target for each | |
arrow for the unspecified weak unit in the the local versions. | |
\<close> | |
lemma lunit_char: | |
assumes "ide f" | |
shows "\<guillemotleft>\<l>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" and "\<guillemotleft>\<l>[f] : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
and "trg f \<star> \<l>[f] = (\<i>[trg f] \<star> f) \<cdot> inv \<a>[trg f, trg f, f]" | |
and "\<exists>!\<mu>. \<guillemotleft>\<mu> : trg f \<star> f \<Rightarrow> f\<guillemotright> \<and> trg f \<star> \<mu> = (\<i>[trg f] \<star> f) \<cdot> inv \<a>[trg f, trg f, f]" | |
proof - | |
let ?a = "src f" and ?b = "trg f" | |
interpret Left: subcategory V \<open>left ?b\<close> | |
using assms left_hom_is_subcategory weak_unit_self_composable by force | |
interpret Left: left_hom_with_unit V H \<a> \<open>\<i>[?b]\<close> ?b | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
have 0: "Left.ide f" | |
using assms Left.ide_char Left.arr_char left_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
show "\<guillemotleft>\<l>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" | |
using assms lunit_in_hom by simp | |
show A: "\<guillemotleft>\<l>[f] : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
using assms lunit_in_hom by simp | |
show B: "?b \<star> \<l>[f] = (\<i>[?b] \<star> f) \<cdot> inv \<a>[?b, ?b, f]" | |
unfolding lunit_def using 0 Left.lunit_char(2) H\<^sub>L_def | |
by (metis Left.comp_simp Left.characteristic_iso(1-2) Left.seqI') | |
show "\<exists>!\<mu>. \<guillemotleft>\<mu> : trg f \<star> f \<Rightarrow> f\<guillemotright> \<and> trg f \<star> \<mu> = (\<i>[?b] \<star> f) \<cdot> inv \<a>[?b, ?b, f]" | |
proof - | |
have 1: "hom (trg f \<star> f) f = Left.hom (Left.L f) f" | |
proof | |
have 1: "Left.L f = ?b \<star> f" | |
using 0 H\<^sub>L_def by simp | |
show "Left.hom (Left.L f) f \<subseteq> hom (?b \<star> f) f" | |
using assms Left.hom_char [of "?b \<star> f" f] H\<^sub>L_def by simp | |
show "hom (?b \<star> f) f \<subseteq> Left.hom (Left.L f) f" | |
using assms 1 ide_in_hom composable_char\<^sub>P\<^sub>B\<^sub>H hom_connected left_def | |
Left.hom_char | |
by auto | |
qed | |
let ?P = "\<lambda>\<mu>. Left.in_hom \<mu> (Left.L f) f" | |
let ?P' = "\<lambda>\<mu>. \<guillemotleft>\<mu> : ?b \<star> f \<Rightarrow> f\<guillemotright>" | |
let ?Q = "\<lambda>\<mu>. Left.L \<mu> = (\<i>[?b] \<star> f) \<cdot> (inv \<a>[?b, ?b, f])" | |
let ?R = "\<lambda>\<mu>. ?b \<star> \<mu> = (\<i>[?b] \<star> f) \<cdot> (inv \<a>[?b, ?b, f])" | |
have 2: "?P = ?P'" | |
using 0 1 H\<^sub>L_def Left.hom_char by blast | |
moreover have "\<forall>\<mu>. ?P \<mu> \<longrightarrow> (?Q \<mu> \<longleftrightarrow> ?R \<mu>)" | |
using 2 Left.lunit_eqI H\<^sub>L_def by presburger | |
moreover have "(\<exists>!\<mu>. ?P \<mu> \<and> ?Q \<mu>)" | |
using 0 2 A B Left.lunit_char(3) Left.ide_char Left.arr_char | |
by (metis (no_types, lifting) Left.lunit_char(2) calculation(2) lunit_def) | |
ultimately show ?thesis by metis | |
qed | |
qed | |
lemma runit_char: | |
assumes "ide f" | |
shows "\<guillemotleft>\<r>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" and "\<guillemotleft>\<r>[f] : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
and "\<r>[f] \<star> src f = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
and "\<exists>!\<mu>. \<guillemotleft>\<mu> : f \<star> src f \<Rightarrow> f\<guillemotright> \<and> \<mu> \<star> src f = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
proof - | |
let ?a = "src f" and ?b = "trg f" | |
interpret Right: subcategory V \<open>right ?a\<close> | |
using assms right_hom_is_subcategory weak_unit_self_composable by force | |
interpret Right: right_hom_with_unit V H \<a> \<open>\<i>[?a]\<close> ?a | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
have 0: "Right.ide f" | |
using assms Right.ide_char Right.arr_char right_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
show "\<guillemotleft>\<r>[f] : src f \<rightarrow>\<^sub>W\<^sub>C trg f\<guillemotright>" | |
using assms runit_in_hom by simp | |
show A: "\<guillemotleft>\<r>[f] : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
using assms runit_in_hom by simp | |
show B: "\<r>[f] \<star> ?a = (f \<star> \<i>[?a]) \<cdot> \<a>[f, ?a, ?a]" | |
unfolding runit_def using 0 Right.runit_char(2) H\<^sub>R_def | |
using Right.comp_simp Right.characteristic_iso(4) Right.iso_is_arr by auto | |
show "\<exists>!\<mu>. \<guillemotleft>\<mu> : f \<star> src f \<Rightarrow> f\<guillemotright> \<and> \<mu> \<star> ?a = (f \<star> \<i>[?a]) \<cdot> \<a>[f, ?a, ?a]" | |
proof - | |
have 1: "hom (f \<star> ?a) f = Right.hom (Right.R f) f" | |
proof | |
have 1: "Right.R f = f \<star> ?a" | |
using 0 H\<^sub>R_def by simp | |
show "Right.hom (Right.R f) f \<subseteq> hom (f \<star> ?a) f" | |
using assms Right.hom_char [of "f \<star> ?a" f] H\<^sub>R_def by simp | |
show "hom (f \<star> ?a) f \<subseteq> Right.hom (Right.R f) f" | |
using assms 1 ide_in_hom composable_char\<^sub>P\<^sub>B\<^sub>H hom_connected right_def | |
Right.hom_char | |
by auto | |
qed | |
let ?P = "\<lambda>\<mu>. Right.in_hom \<mu> (Right.R f) f" | |
let ?P' = "\<lambda>\<mu>. \<guillemotleft>\<mu> : f \<star> ?a \<Rightarrow> f\<guillemotright>" | |
let ?Q = "\<lambda>\<mu>. Right.R \<mu> = (f \<star> \<i>[?a]) \<cdot> \<a>[f, ?a, ?a]" | |
let ?R = "\<lambda>\<mu>. \<mu> \<star> ?a = (f \<star> \<i>[?a]) \<cdot> \<a>[f, ?a, ?a]" | |
have 2: "?P = ?P'" | |
using 0 1 H\<^sub>R_def Right.hom_char by blast | |
moreover have "\<forall>\<mu>. ?P \<mu> \<longrightarrow> (?Q \<mu> \<longleftrightarrow> ?R \<mu>)" | |
using 2 Right.runit_eqI H\<^sub>R_def by presburger | |
moreover have "(\<exists>!\<mu>. ?P \<mu> \<and> ?Q \<mu>)" | |
using 0 2 A B Right.runit_char(3) Right.ide_char Right.arr_char | |
by (metis (no_types, lifting) Right.runit_char(2) calculation(2) runit_def) | |
ultimately show ?thesis by metis | |
qed | |
qed | |
lemma lunit_eqI: | |
assumes "ide f" and "\<guillemotleft>\<mu> : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
and "trg f \<star> \<mu> = (\<i>[trg f] \<star> f) \<cdot> (inv \<a>[trg f, trg f, f])" | |
shows "\<mu> = \<l>[f]" | |
using assms lunit_char(2-4) by blast | |
lemma runit_eqI: | |
assumes "ide f" and "\<guillemotleft>\<mu> : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
and "\<mu> \<star> src f = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
shows "\<mu> = \<r>[f]" | |
using assms runit_char(2-4) by blast | |
lemma iso_lunit: | |
assumes "ide f" | |
shows "iso \<l>[f]" | |
proof - | |
let ?b = "trg f" | |
interpret Left: subcategory V \<open>left ?b\<close> | |
using assms left_hom_is_subcategory weak_unit_self_composable by force | |
interpret Left: left_hom_with_unit V H \<a> \<open>\<i>[?b]\<close> ?b | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
show ?thesis | |
proof - | |
have 0: "Left.ide f" | |
using assms Left.ide_char Left.arr_char left_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
thus ?thesis | |
unfolding lunit_def using Left.iso_lunit Left.iso_char by blast | |
qed | |
qed | |
lemma iso_runit: | |
assumes "ide f" | |
shows "iso \<r>[f]" | |
proof - | |
let ?a = "src f" | |
interpret Right: subcategory V \<open>right ?a\<close> | |
using assms right_hom_is_subcategory weak_unit_self_composable by force | |
interpret Right: right_hom_with_unit V H \<a> \<open>\<i>[?a]\<close> ?a | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
show ?thesis | |
proof - | |
have 0: "Right.ide f" | |
using assms Right.ide_char Right.arr_char right_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
thus ?thesis | |
unfolding runit_def using Right.iso_runit Right.iso_char by blast | |
qed | |
qed | |
lemma lunit_naturality: | |
assumes "arr \<mu>" | |
shows "\<mu> \<cdot> \<l>[dom \<mu>] = \<l>[cod \<mu>] \<cdot> (trg \<mu> \<star> \<mu>)" | |
proof - | |
let ?a = "src \<mu>" and ?b = "trg \<mu>" | |
interpret Left: subcategory V \<open>left ?b\<close> | |
using assms obj_trg left_hom_is_subcategory weak_unit_self_composable by force | |
interpret Left: left_hom_with_unit V H \<a> \<open>\<i>[?b]\<close> ?b | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
interpret Left.L: endofunctor \<open>Left ?b\<close> Left.L | |
using assms endofunctor_H\<^sub>L [of ?b] weak_unit_self_composable obj_trg obj_is_weak_unit | |
by blast | |
have 1: "Left.in_hom \<mu> (dom \<mu>) (cod \<mu>)" | |
using assms Left.hom_char Left.arr_char left_def composable_char\<^sub>P\<^sub>B\<^sub>H obj_trg by auto | |
have 2: "Left.in_hom \<l>[Left.dom \<mu>] (?b \<star> dom \<mu>) (dom \<mu>)" | |
unfolding lunit_def | |
using assms 1 Left.in_hom_char trg_dom Left.lunit_char(1) H\<^sub>L_def | |
Left.arr_char Left.dom_char Left.ide_dom | |
by force | |
have 3: "Left.in_hom \<l>[Left.cod \<mu>] (?b \<star> cod \<mu>) (cod \<mu>)" | |
unfolding lunit_def | |
using assms 1 Left.in_hom_char trg_cod Left.lunit_char(1) H\<^sub>L_def | |
Left.cod_char Left.ide_cod | |
by force | |
have 4: "Left.in_hom (Left.L \<mu>) (?b \<star> dom \<mu>) (?b \<star> cod \<mu>)" | |
using 1 Left.L.preserves_hom [of \<mu> "dom \<mu>" "cod \<mu>"] H\<^sub>L_def by auto | |
show ?thesis | |
proof - | |
have "\<mu> \<cdot> \<l>[dom \<mu>] = Left.comp \<mu> \<l>[Left.dom \<mu>]" | |
using 1 2 Left.comp_simp by fastforce | |
also have "... = Left.comp \<mu> (Left.lunit (Left.dom \<mu>))" | |
using assms 1 lunit_def by auto | |
also have "... = Left.comp (Left.lunit (Left.cod \<mu>)) (Left.L \<mu>)" | |
using 1 Left.lunit_naturality Left.cod_simp by auto | |
also have "... = Left.comp (lunit (Left.cod \<mu>)) (Left.L \<mu>)" | |
using assms 1 lunit_def by auto | |
also have "... = \<l>[cod \<mu>] \<cdot> Left.L \<mu>" | |
using 1 3 4 Left.comp_char Left.cod_char Left.in_hom_char by auto | |
also have "... = \<l>[cod \<mu>] \<cdot> (trg \<mu> \<star> \<mu>)" | |
using 1 by (simp add: H\<^sub>L_def) | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma runit_naturality: | |
assumes "arr \<mu>" | |
shows "\<mu> \<cdot> \<r>[dom \<mu>] = \<r>[cod \<mu>] \<cdot> (\<mu> \<star> src \<mu>)" | |
proof - | |
let ?a = "src \<mu>" and ?b = "trg \<mu>" | |
interpret Right: subcategory V \<open>right ?a\<close> | |
using assms right_hom_is_subcategory weak_unit_self_composable by force | |
interpret Right: right_hom_with_unit V H \<a> \<open>\<i>[?a]\<close> ?a | |
using assms obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by (unfold_locales, auto) | |
interpret Right.R: endofunctor \<open>Right ?a\<close> Right.R | |
using assms endofunctor_H\<^sub>R [of ?a] weak_unit_self_composable obj_src obj_is_weak_unit | |
by blast | |
have 1: "Right.in_hom \<mu> (dom \<mu>) (cod \<mu>)" | |
using assms Right.hom_char Right.arr_char right_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
have 2: "Right.in_hom \<r>[Right.dom \<mu>] (dom \<mu> \<star> ?a) (dom \<mu>)" | |
unfolding runit_def | |
using 1 Right.in_hom_char trg_dom Right.runit_char(1) [of "Right.dom \<mu>"] H\<^sub>R_def | |
Right.arr_char Right.dom_char Right.ide_dom assms | |
by force | |
have 3: "\<r>[Right.cod \<mu>] \<in> Right.hom (cod \<mu> \<star> ?a) (cod \<mu>)" | |
unfolding runit_def | |
using 1 Right.in_hom_char trg_cod Right.runit_char(1) [of "Right.cod \<mu>"] H\<^sub>R_def | |
Right.cod_char Right.ide_cod assms | |
by force | |
have 4: "Right.R \<mu> \<in> Right.hom (dom \<mu> \<star> ?a) (cod \<mu> \<star> ?a)" | |
using 1 Right.R.preserves_hom [of \<mu> "dom \<mu>" "cod \<mu>"] H\<^sub>R_def by auto | |
show ?thesis | |
proof - | |
have "\<mu> \<cdot> \<r>[dom \<mu>] = Right.comp \<mu> \<r>[Right.dom \<mu>]" | |
by (metis 1 2 Right.comp_char Right.in_homE Right.seqI' Right.seq_char) | |
also have "... = Right.comp \<mu> (Right.runit (Right.dom \<mu>))" | |
using assms 1 src_dom trg_dom Right.hom_char runit_def by auto | |
also have "... = Right.comp (Right.runit (Right.cod \<mu>)) (Right.R \<mu>)" | |
using 1 Right.runit_naturality Right.cod_simp by auto | |
also have "... = Right.comp (runit (Right.cod \<mu>)) (Right.R \<mu>)" | |
using assms 1 runit_def by auto | |
also have "... = \<r>[cod \<mu>] \<cdot> Right.R \<mu>" | |
using 1 3 4 Right.comp_char Right.cod_char Right.in_hom_char by auto | |
also have "... = \<r>[cod \<mu>] \<cdot> (\<mu> \<star> ?a)" | |
using 1 by (simp add: H\<^sub>R_def) | |
finally show ?thesis by simp | |
qed | |
qed | |
interpretation L: endofunctor V L | |
using endofunctor_L by auto | |
interpretation \<ll>: transformation_by_components V V L map lunit | |
using lunit_in_hom lunit_naturality by unfold_locales auto | |
interpretation \<ll>: natural_isomorphism V V L map \<ll>.map | |
using iso_lunit by unfold_locales auto | |
lemma natural_isomorphism_\<ll>: | |
shows "natural_isomorphism V V L map \<ll>.map" | |
.. | |
interpretation L: equivalence_functor V V L | |
using L.isomorphic_to_identity_is_equivalence \<ll>.natural_isomorphism_axioms by simp | |
lemma equivalence_functor_L: | |
shows "equivalence_functor V V L" | |
.. | |
lemma lunit_commutes_with_L: | |
assumes "ide f" | |
shows "\<l>[L f] = L \<l>[f]" | |
proof - | |
have "seq \<l>[f] (L \<l>[f])" | |
using assms lunit_char(2) L.preserves_hom by fastforce | |
moreover have "seq \<l>[f] \<l>[L f]" | |
using assms lunit_char(2) lunit_char(2) [of "L f"] L.preserves_ide by auto | |
ultimately show ?thesis | |
using assms lunit_char(2) [of f] lunit_naturality [of "\<l>[f]"] iso_lunit | |
iso_is_section section_is_mono monoE [of "\<l>[f]" "L \<l>[f]" "\<l>[L f]"] | |
by auto | |
qed | |
interpretation R: endofunctor V R | |
using endofunctor_R by auto | |
interpretation \<rr>: transformation_by_components V V R map runit | |
using runit_in_hom runit_naturality by unfold_locales auto | |
interpretation \<rr>: natural_isomorphism V V R map \<rr>.map | |
using iso_runit by unfold_locales auto | |
lemma natural_isomorphism_\<rr>: | |
shows "natural_isomorphism V V R map \<rr>.map" | |
.. | |
interpretation R: equivalence_functor V V R | |
using R.isomorphic_to_identity_is_equivalence \<rr>.natural_isomorphism_axioms by simp | |
lemma equivalence_functor_R: | |
shows "equivalence_functor V V R" | |
.. | |
lemma runit_commutes_with_R: | |
assumes "ide f" | |
shows "\<r>[R f] = R \<r>[f]" | |
proof - | |
have "seq \<r>[f] (R \<r>[f])" | |
using assms runit_char(2) R.preserves_hom by fastforce | |
moreover have "seq \<r>[f] \<r>[R f]" | |
using assms runit_char(2) runit_char(2) [of "R f"] R.preserves_ide by auto | |
ultimately show ?thesis | |
using assms runit_char(2) [of f] runit_naturality [of "\<r>[f]"] iso_runit | |
iso_is_section section_is_mono monoE [of "\<r>[f]" "R \<r>[f]" "\<r>[R f]"] | |
by auto | |
qed | |
definition \<alpha> | |
where "\<alpha> \<mu> \<nu> \<tau> \<equiv> if VVV.arr (\<mu>, \<nu>, \<tau>) then | |
(\<mu> \<star> \<nu> \<star> \<tau>) \<cdot> \<a>[dom \<mu>, dom \<nu>, dom \<tau>] | |
else null" | |
lemma \<alpha>_ide_simp [simp]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "\<alpha> f g h = \<a>[f, g, h]" | |
proof - | |
have "\<alpha> f g h = (f \<star> g \<star> h) \<cdot> \<a>[dom f, dom g, dom h]" | |
using assms \<alpha>_def VVV.arr_char [of "(f, g, h)"] by auto | |
also have "... = (f \<star> g \<star> h) \<cdot> \<a>[f, g, h]" | |
using assms by simp | |
also have "... = \<a>[f, g, h]" | |
using assms \<alpha>_def assoc_in_hom\<^sub>A\<^sub>W\<^sub>C hcomp_in_hom\<^sub>P\<^sub>B\<^sub>H VVV.arr_char VoV.arr_char | |
comp_cod_arr composable_char\<^sub>P\<^sub>B\<^sub>H | |
by auto | |
finally show ?thesis by simp | |
qed | |
(* TODO: Figure out how this got reinstated. *) | |
no_notation in_hom ("\<guillemotleft>_ : _ \<rightarrow> _\<guillemotright>") | |
lemma natural_isomorphism_\<alpha>: | |
shows "natural_isomorphism VVV.comp V HoHV HoVH | |
(\<lambda>\<mu>\<nu>\<tau>. \<alpha> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>)))" | |
proof - | |
interpret \<alpha>: transformation_by_components VVV.comp V HoHV HoVH | |
\<open>\<lambda>f. \<a>[fst f, fst (snd f), snd (snd f)]\<close> | |
proof | |
show 1: "\<And>x. VVV.ide x \<Longrightarrow> \<guillemotleft>\<a>[fst x, fst (snd x), snd (snd x)] : HoHV x \<Rightarrow> HoVH x\<guillemotright>" | |
proof - | |
fix x | |
assume x: "VVV.ide x" | |
show "\<guillemotleft>\<a>[fst x, fst (snd x), snd (snd x)] : HoHV x \<Rightarrow> HoVH x\<guillemotright>" | |
proof - | |
have "ide (fst x) \<and> ide (fst (snd x)) \<and> ide (snd (snd x)) \<and> | |
fst x \<star> fst (snd x) \<noteq> null \<and> fst (snd x) \<star> snd (snd x) \<noteq> null" | |
using x VVV.ide_char VVV.arr_char VV.arr_char composable_char\<^sub>P\<^sub>B\<^sub>H by simp | |
hence "\<a>[fst x, fst (snd x), snd (snd x)] | |
\<in> hom ((fst x \<star> fst (snd x)) \<star> snd (snd x)) | |
(fst x \<star> fst (snd x) \<star> snd (snd x))" | |
using x assoc_in_hom\<^sub>A\<^sub>W\<^sub>C by simp | |
thus ?thesis | |
unfolding HoHV_def HoVH_def | |
using x VVV.ideD(1) by simp | |
qed | |
qed | |
show "\<And>f. VVV.arr f \<Longrightarrow> | |
\<a>[fst (VVV.cod f), fst (snd (VVV.cod f)), snd (snd (VVV.cod f))] \<cdot> HoHV f = | |
HoVH f \<cdot> \<a>[fst (VVV.dom f), fst (snd (VVV.dom f)), snd (snd (VVV.dom f))]" | |
unfolding HoHV_def HoVH_def | |
using assoc_naturality\<^sub>A\<^sub>W\<^sub>C VVV.arr_char VV.arr_char VVV.dom_char VVV.cod_char | |
composable_char\<^sub>P\<^sub>B\<^sub>H | |
by simp | |
qed | |
interpret \<alpha>: natural_isomorphism VVV.comp V HoHV HoVH \<alpha>.map | |
proof | |
fix f | |
assume f: "VVV.ide f" | |
show "iso (\<alpha>.map f)" | |
proof - | |
have "fst f \<star> fst (snd f) \<noteq> null \<and> fst (snd f) \<star> snd (snd f) \<noteq> null" | |
using f VVV.ideD(1) VVV.arr_char [of f] VV.arr_char composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
thus ?thesis | |
using f \<alpha>.map_simp_ide iso_assoc\<^sub>A\<^sub>W\<^sub>C VVV.ide_char VVV.arr_char by simp | |
qed | |
qed | |
have "(\<lambda>\<mu>\<nu>\<tau>. \<alpha> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))) = \<alpha>.map" | |
proof | |
fix \<mu>\<nu>\<tau> | |
have "\<not> VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> \<alpha> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>)) = \<alpha>.map \<mu>\<nu>\<tau>" | |
using \<alpha>_def \<alpha>.map_def by simp | |
moreover have "VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> | |
\<alpha> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>)) = \<alpha>.map \<mu>\<nu>\<tau>" | |
proof - | |
assume \<mu>\<nu>\<tau>: "VVV.arr \<mu>\<nu>\<tau>" | |
have "\<alpha> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>)) = | |
(fst \<mu>\<nu>\<tau> \<star> fst (snd \<mu>\<nu>\<tau>) \<star> snd (snd \<mu>\<nu>\<tau>)) \<cdot> | |
\<a>[dom (fst \<mu>\<nu>\<tau>), dom (fst (snd \<mu>\<nu>\<tau>)), dom (snd (snd \<mu>\<nu>\<tau>))]" | |
using \<mu>\<nu>\<tau> \<alpha>_def by simp | |
also have "... = \<a>[cod (fst \<mu>\<nu>\<tau>), cod (fst (snd \<mu>\<nu>\<tau>)), cod (snd (snd \<mu>\<nu>\<tau>))] \<cdot> | |
((fst \<mu>\<nu>\<tau> \<star> fst (snd \<mu>\<nu>\<tau>)) \<star> snd (snd \<mu>\<nu>\<tau>))" | |
using \<mu>\<nu>\<tau> HoHV_def HoVH_def VVV.arr_char VV.arr_char assoc_naturality\<^sub>A\<^sub>W\<^sub>C | |
composable_char\<^sub>P\<^sub>B\<^sub>H | |
by simp | |
also have "... = | |
\<a>[fst (VVV.cod \<mu>\<nu>\<tau>), fst (snd (VVV.cod \<mu>\<nu>\<tau>)), snd (snd (VVV.cod \<mu>\<nu>\<tau>))] \<cdot> | |
((fst \<mu>\<nu>\<tau> \<star> fst (snd \<mu>\<nu>\<tau>)) \<star> snd (snd \<mu>\<nu>\<tau>))" | |
using \<mu>\<nu>\<tau> VVV.arr_char VVV.cod_char VV.arr_char by simp | |
also have "... = \<alpha>.map \<mu>\<nu>\<tau>" | |
using \<mu>\<nu>\<tau> \<alpha>.map_def HoHV_def composable_char\<^sub>P\<^sub>B\<^sub>H by auto | |
finally show ?thesis by blast | |
qed | |
ultimately show "\<alpha> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>)) = \<alpha>.map \<mu>\<nu>\<tau>" by blast | |
qed | |
thus ?thesis using \<alpha>.natural_isomorphism_axioms by simp | |
qed | |
proposition induces_bicategory: | |
shows "bicategory V H \<alpha> \<i> src trg" | |
proof - | |
interpret VxVxV: product_category V VxV.comp .. | |
interpret VoVoV: subcategory VxVxV.comp | |
\<open>\<lambda>\<tau>\<mu>\<nu>. arr (fst \<tau>\<mu>\<nu>) \<and> VV.arr (snd \<tau>\<mu>\<nu>) \<and> | |
src (fst \<tau>\<mu>\<nu>) = trg (fst (snd \<tau>\<mu>\<nu>))\<close> | |
using subcategory_VVV by blast | |
interpret HoHV: "functor" VVV.comp V HoHV | |
using functor_HoHV by blast | |
interpret HoVH: "functor" VVV.comp V HoVH | |
using functor_HoVH by blast | |
interpret \<alpha>: natural_isomorphism VVV.comp V HoHV HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<alpha> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))\<close> | |
using natural_isomorphism_\<alpha> by blast | |
interpret L: equivalence_functor V V L | |
using equivalence_functor_L by blast | |
interpret R: equivalence_functor V V R | |
using equivalence_functor_R by blast | |
show "bicategory V H \<alpha> \<i> src trg" | |
proof | |
show "\<And>a. obj a \<Longrightarrow> \<guillemotleft>\<i>[a] : a \<star> a \<Rightarrow> a\<guillemotright>" | |
using obj_is_weak_unit unit_in_vhom\<^sub>P\<^sub>B\<^sub>U by blast | |
show "\<And>a. obj a \<Longrightarrow> iso \<i>[a]" | |
using obj_is_weak_unit iso_unit\<^sub>P\<^sub>B\<^sub>U by blast | |
show "\<And>f g h k. \<lbrakk> ide f; ide g; ide h; ide k; | |
src f = trg g; src g = trg h; src h = trg k \<rbrakk> \<Longrightarrow> | |
(f \<star> \<alpha> g h k) \<cdot> \<alpha> f (g \<star> h) k \<cdot> (\<alpha> f g h \<star> k) = | |
\<alpha> f g (h \<star> k) \<cdot> \<alpha> (f \<star> g) h k" | |
proof - | |
fix f g h k | |
assume f: "ide f" and g: "ide g" and h: "ide h" and k: "ide k" | |
and fg: "src f = trg g" and gh: "src g = trg h" and hk: "src h = trg k" | |
have "sources f \<inter> targets g \<noteq> {}" | |
using f g fg src_in_sources [of f] trg_in_targets ideD(1) by auto | |
moreover have "sources g \<inter> targets h \<noteq> {}" | |
using g h gh src_in_sources [of g] trg_in_targets ideD(1) by auto | |
moreover have "sources h \<inter> targets k \<noteq> {}" | |
using h k hk src_in_sources [of h] trg_in_targets ideD(1) by auto | |
moreover have "\<alpha> f g h = \<a>[f, g, h] \<and> \<alpha> g h k = \<a>[g, h, k]" | |
using f g h k fg gh hk \<alpha>_ide_simp by simp | |
moreover have "\<alpha> f (g \<star> h) k = \<a>[f, g \<star> h, k] \<and> \<alpha> f g (h \<star> k) = \<a>[f, g, h \<star> k] \<and> | |
\<alpha> (f \<star> g) h k = \<a>[f \<star> g, h, k]" | |
using f g h k fg gh hk \<alpha>_ide_simp preserves_ide hcomp_in_hom\<^sub>P\<^sub>B\<^sub>H(1) by simp | |
ultimately show "(f \<star> \<alpha> g h k) \<cdot> \<alpha> f (g \<star> h) k \<cdot> (\<alpha> f g h \<star> k) = | |
\<alpha> f g (h \<star> k) \<cdot> \<alpha> (f \<star> g) h k" | |
using f g h k fg gh hk pentagon\<^sub>A\<^sub>W\<^sub>C [of f g h k] \<alpha>_ide_simp by presburger | |
qed | |
qed | |
qed | |
end | |
text \<open> | |
The following is the main result of this development: | |
Every prebicategory extends to a bicategory, by making an arbitrary choice of | |
representatives of each isomorphism class of weak units and using that to | |
define the source and target mappings, and then choosing an arbitrary isomorphism | |
in \<open>hom (a \<star> a) a\<close> for each weak unit \<open>a\<close>. | |
\<close> | |
context prebicategory | |
begin | |
interpretation prebicategory_with_homs V H \<a> some_src some_trg | |
using extends_to_prebicategory_with_homs by auto | |
interpretation prebicategory_with_units V H \<a> some_unit | |
using extends_to_prebicategory_with_units by auto | |
interpretation prebicategory_with_homs_and_units V H \<a> some_unit some_src some_trg .. | |
theorem extends_to_bicategory: | |
shows "bicategory V H \<alpha> some_unit some_src some_trg" | |
using induces_bicategory by simp | |
end | |
section "Bicategories as Prebicategories" | |
subsection "Bicategories are Prebicategories" | |
text \<open> | |
In this section we show that a bicategory determines a prebicategory with homs, | |
whose weak units are exactly those arrows that are isomorphic to their chosen source, | |
or equivalently, to their chosen target. | |
Moreover, the notion of horizontal composability, which in a bicategory is determined | |
by the coincidence of chosen sources and targets, agrees with the version defined | |
for the induced weak composition in terms of nonempty intersections of source and | |
target sets, which is not dependent on any arbitrary choices. | |
\<close> | |
context bicategory | |
begin | |
(* TODO: Why does this get re-introduced? *) | |
no_notation in_hom ("\<guillemotleft>_ : _ \<rightarrow> _\<guillemotright>") | |
interpretation \<alpha>': inverse_transformation VVV.comp V HoHV HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))\<close> .. | |
abbreviation \<alpha>' | |
where "\<alpha>' \<equiv> \<alpha>'.map" | |
definition \<a>' ("\<a>\<^sup>-\<^sup>1[_, _, _]") | |
where "\<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] \<equiv> \<alpha>'.map (\<mu>, \<nu>, \<tau>)" | |
lemma assoc'_in_hom': | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "in_hhom \<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] (src \<tau>) (trg \<mu>)" | |
and "\<guillemotleft>\<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] : dom \<mu> \<star> dom \<nu> \<star> dom \<tau> \<Rightarrow> (cod \<mu> \<star> cod \<nu>) \<star> cod \<tau>\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] : dom \<mu> \<star> dom \<nu> \<star> dom \<tau> \<Rightarrow> (cod \<mu> \<star> cod \<nu>) \<star> cod \<tau>\<guillemotright>" | |
proof - | |
have 1: "VVV.in_hom (\<mu>, \<nu>, \<tau>) (dom \<mu>, dom \<nu>, dom \<tau>) (cod \<mu>, cod \<nu>, cod \<tau>)" | |
using assms VVV.in_hom_char VVV.arr_char VV.arr_char by auto | |
have "\<guillemotleft>\<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] : HoVH (dom \<mu>, dom \<nu>, dom \<tau>) \<Rightarrow> HoHV (cod \<mu>, cod \<nu>, cod \<tau>)\<guillemotright>" | |
using 1 \<a>'_def \<alpha>'.preserves_hom by auto | |
moreover have "HoVH (dom \<mu>, dom \<nu>, dom \<tau>) = dom \<mu> \<star> dom \<nu> \<star> dom \<tau>" | |
using 1 HoVH_def by (simp add: VVV.in_hom_char) | |
moreover have "HoHV (cod \<mu>, cod \<nu>, cod \<tau>) = (cod \<mu> \<star> cod \<nu>) \<star> cod \<tau>" | |
using 1 HoHV_def by (simp add: VVV.in_hom_char) | |
ultimately show ?thesis by simp | |
qed | |
thus "in_hhom \<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] (src \<tau>) (trg \<mu>)" | |
using assms vconn_implies_hpar(1) vconn_implies_hpar(2) by auto | |
qed | |
lemma assoc'_is_natural_1: | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "\<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] = ((\<mu> \<star> \<nu>) \<star> \<tau>) \<cdot> \<a>\<^sup>-\<^sup>1[dom \<mu>, dom \<nu>, dom \<tau>]" | |
using assms \<alpha>'.is_natural_1 [of "(\<mu>, \<nu>, \<tau>)"] VVV.arr_char VV.arr_char | |
VVV.dom_char HoHV_def src_dom trg_dom \<a>'_def | |
by simp | |
lemma assoc'_is_natural_2: | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "\<a>\<^sup>-\<^sup>1[\<mu>, \<nu>, \<tau>] = \<a>\<^sup>-\<^sup>1[cod \<mu>, cod \<nu>, cod \<tau>] \<cdot> (\<mu> \<star> \<nu> \<star> \<tau>)" | |
using assms \<alpha>'.is_natural_2 [of "(\<mu>, \<nu>, \<tau>)"] VVV.arr_char VV.arr_char | |
VVV.cod_char HoVH_def src_dom trg_dom \<a>'_def | |
by simp | |
lemma assoc'_naturality: | |
assumes "arr \<mu>" and "arr \<nu>" and "arr \<tau>" and "src \<mu> = trg \<nu>" and "src \<nu> = trg \<tau>" | |
shows "\<a>\<^sup>-\<^sup>1[cod \<mu>, cod \<nu>, cod \<tau>] \<cdot> (\<mu> \<star> \<nu> \<star> \<tau>) = ((\<mu> \<star> \<nu>) \<star> \<tau>) \<cdot> \<a>\<^sup>-\<^sup>1[dom \<mu>, dom \<nu>, dom \<tau>]" | |
using assms assoc'_is_natural_1 assoc'_is_natural_2 by metis | |
lemma assoc'_in_hom [intro]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "in_hhom \<a>\<^sup>-\<^sup>1[f, g, h] (src h) (trg f)" | |
and "\<guillemotleft>\<a>\<^sup>-\<^sup>1[f, g, h] : dom f \<star> dom g \<star> dom h \<Rightarrow> (cod f \<star> cod g) \<star> cod h\<guillemotright>" | |
using assms assoc'_in_hom'(1-2) ideD(1) by meson+ | |
lemma assoc'_simps [simp]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "arr \<a>\<^sup>-\<^sup>1[f, g, h]" | |
and "src \<a>\<^sup>-\<^sup>1[f, g, h] = src h" and "trg \<a>\<^sup>-\<^sup>1[f, g, h] = trg f" | |
and "dom \<a>\<^sup>-\<^sup>1[f, g, h] = dom f \<star> dom g \<star> dom h" | |
and "cod \<a>\<^sup>-\<^sup>1[f, g, h] = (cod f \<star> cod g) \<star> cod h" | |
using assms assoc'_in_hom by blast+ | |
lemma assoc'_eq_inv_assoc [simp]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "\<a>\<^sup>-\<^sup>1[f, g, h] = inv \<a>[f, g, h]" | |
using assms VVV.ide_char VVV.arr_char VV.ide_char VV.arr_char \<alpha>'.map_ide_simp | |
\<a>'_def | |
by auto | |
lemma inverse_assoc_assoc' [intro]: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "inverse_arrows \<a>[f, g, h] \<a>\<^sup>-\<^sup>1[f, g, h]" | |
using assms VVV.ide_char VVV.arr_char VV.ide_char VV.arr_char \<alpha>'.map_ide_simp | |
\<alpha>'.inverts_components \<a>'_def | |
by auto | |
lemma iso_assoc' [intro, simp]: | |
assumes "ide f" and "ide g" and "ide h" | |
and "src f = trg g" and "src g = trg h" | |
shows "iso \<a>\<^sup>-\<^sup>1[f, g, h]" | |
using assms by simp | |
lemma comp_assoc_assoc' [simp]: | |
assumes "ide f" and "ide g" and "ide h" | |
and "src f = trg g" and "src g = trg h" | |
shows "\<a>[f, g, h] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h] = f \<star> g \<star> h" | |
and "\<a>\<^sup>-\<^sup>1[f, g, h] \<cdot> \<a>[f, g, h] = (f \<star> g) \<star> h" | |
using assms comp_arr_inv' comp_inv_arr' by auto | |
lemma unit_in_hom [intro, simp]: | |
assumes "obj a" | |
shows "\<guillemotleft>\<i>[a] : a \<rightarrow> a\<guillemotright>" and "\<guillemotleft>\<i>[a] : a \<star> a \<Rightarrow> a\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<i>[a] : a \<star> a \<Rightarrow> a\<guillemotright>" | |
using assms unit_in_vhom by simp | |
thus "\<guillemotleft>\<i>[a] : a \<rightarrow> a\<guillemotright>" | |
using assms | |
by (metis arrI in_hhom_def obj_simps(2-3) vconn_implies_hpar(1-4)) | |
qed | |
interpretation weak_composition V H | |
using is_weak_composition by auto | |
lemma seq_if_composable: | |
assumes "\<nu> \<star> \<mu> \<noteq> null" | |
shows "src \<nu> = trg \<mu>" | |
using assms H.is_extensional [of "(\<nu>, \<mu>)"] VV.arr_char by auto | |
lemma obj_self_composable: | |
assumes "obj a" | |
shows "a \<star> a \<noteq> null" | |
and "isomorphic (a \<star> a) a" | |
proof - | |
show 1: "isomorphic (a \<star> a) a" | |
using assms unit_in_hom iso_unit isomorphic_def by blast | |
obtain \<phi> where \<phi>: "iso \<phi> \<and> \<guillemotleft>\<phi> : a \<star> a \<Rightarrow> a\<guillemotright>" | |
using 1 isomorphic_def by blast | |
have "ide (a \<star> a)" using 1 \<phi> ide_dom [of \<phi>] by fastforce | |
thus "a \<star> a \<noteq> null" using ideD(1) not_arr_null by metis | |
qed | |
lemma obj_is_weak_unit: | |
assumes "obj a" | |
shows "weak_unit a" | |
proof - | |
interpret Left_a: subcategory V \<open>left a\<close> | |
using assms left_hom_is_subcategory by force | |
interpret Right_a: subcategory V \<open>right a\<close> | |
using assms right_hom_is_subcategory by force | |
text \<open> | |
We know that \<open>H\<^sub>L a\<close> is fully faithful as a global endofunctor, | |
but the definition of weak unit involves its restriction to a | |
subcategory. So we have to verify that the restriction | |
is also a fully faithful functor. | |
\<close> | |
interpret La: endofunctor \<open>Left a\<close> \<open>H\<^sub>L a\<close> | |
using assms obj_self_composable endofunctor_H\<^sub>L [of a] by force | |
interpret La: fully_faithful_functor \<open>Left a\<close> \<open>Left a\<close> \<open>H\<^sub>L a\<close> | |
proof | |
show "\<And>f f'. Left_a.par f f' \<Longrightarrow> H\<^sub>L a f = H\<^sub>L a f' \<Longrightarrow> f = f'" | |
proof - | |
fix \<mu> \<mu>' | |
assume par: "Left_a.par \<mu> \<mu>'" | |
assume eq: "H\<^sub>L a \<mu> = H\<^sub>L a \<mu>'" | |
have 1: "par \<mu> \<mu>'" | |
using par Left_a.arr_char Left_a.dom_char Left_a.cod_char left_def | |
composable_implies_arr null_agreement | |
by metis | |
moreover have "L \<mu> = L \<mu>'" | |
using par eq H\<^sub>L_def Left_a.arr_char left_def preserves_arr | |
assms 1 seq_if_composable [of a \<mu>] not_arr_null seq_if_composable [of a \<mu>'] | |
by auto | |
ultimately show "\<mu> = \<mu>'" | |
using L.is_faithful by blast | |
qed | |
show "\<And>f g \<mu>. \<lbrakk> Left_a.ide f; Left_a.ide g; Left_a.in_hom \<mu> (H\<^sub>L a f) (H\<^sub>L a g) \<rbrakk> \<Longrightarrow> | |
\<exists>\<nu>. Left_a.in_hom \<nu> f g \<and> H\<^sub>L a \<nu> = \<mu>" | |
proof - | |
fix f g \<mu> | |
assume f: "Left_a.ide f" and g: "Left_a.ide g" | |
and \<mu>: "Left_a.in_hom \<mu> (H\<^sub>L a f) (H\<^sub>L a g)" | |
have 1: "a = trg f \<and> a = trg g" | |
using assms f g Left_a.ide_char Left_a.arr_char left_def seq_if_composable [of a f] | |
seq_if_composable [of a g] | |
by auto | |
show "\<exists>\<nu>. Left_a.in_hom \<nu> f g \<and> H\<^sub>L a \<nu> = \<mu>" | |
proof - | |
have 2: "\<exists>\<nu>. \<guillemotleft>\<nu> : f \<Rightarrow> g\<guillemotright> \<and> L \<nu> = \<mu>" | |
using f g \<mu> 1 Left_a.ide_char H\<^sub>L_def L.preserves_reflects_arr Left_a.arr_char | |
Left_a.in_hom_char L.is_full | |
by force | |
obtain \<nu> where \<nu>: "\<guillemotleft>\<nu> : f \<Rightarrow> g\<guillemotright> \<and> L \<nu> = \<mu>" | |
using 2 by blast | |
have "Left_a.arr \<nu>" | |
using \<nu> 1 trg_dom Left_a.arr_char left_def hseq_char' by fastforce | |
moreover have "H\<^sub>L a \<nu> = \<mu>" | |
using \<nu> 1 trg_dom H\<^sub>L_def by auto | |
ultimately show ?thesis | |
using \<nu> Left_a.dom_simp Left_a.cod_simp by blast | |
qed | |
qed | |
qed | |
interpret Ra: endofunctor \<open>Right a\<close> \<open>H\<^sub>R a\<close> | |
using assms obj_self_composable endofunctor_H\<^sub>R [of a] by force | |
interpret Ra: fully_faithful_functor \<open>Right a\<close> \<open>Right a\<close> \<open>H\<^sub>R a\<close> | |
proof | |
show "\<And>f f'. Right_a.par f f' \<Longrightarrow> H\<^sub>R a f = H\<^sub>R a f' \<Longrightarrow> f = f'" | |
proof - | |
fix \<mu> \<mu>' | |
assume par: "Right_a.par \<mu> \<mu>'" | |
assume eq: "H\<^sub>R a \<mu> = H\<^sub>R a \<mu>'" | |
have 1: "par \<mu> \<mu>'" | |
using par Right_a.arr_char Right_a.dom_char Right_a.cod_char right_def | |
composable_implies_arr null_agreement | |
by metis | |
moreover have "R \<mu> = R \<mu>'" | |
using par eq H\<^sub>R_def Right_a.arr_char right_def preserves_arr | |
assms 1 seq_if_composable [of \<mu> a] not_arr_null seq_if_composable [of \<mu>' a] | |
by auto | |
ultimately show "\<mu> = \<mu>'" | |
using R.is_faithful by blast | |
qed | |
show "\<And>f g \<mu>. \<lbrakk> Right_a.ide f; Right_a.ide g; Right_a.in_hom \<mu> (H\<^sub>R a f) (H\<^sub>R a g) \<rbrakk> \<Longrightarrow> | |
\<exists>\<nu>. Right_a.in_hom \<nu> f g \<and> H\<^sub>R a \<nu> = \<mu>" | |
proof - | |
fix f g \<mu> | |
assume f: "Right_a.ide f" and g: "Right_a.ide g" | |
and \<mu>: "Right_a.in_hom \<mu> (H\<^sub>R a f) (H\<^sub>R a g)" | |
have 1: "a = src f \<and> a = src g" | |
using assms f g Right_a.ide_char Right_a.arr_char right_def seq_if_composable | |
by auto | |
show "\<exists>\<nu>. Right_a.in_hom \<nu> f g \<and> H\<^sub>R a \<nu> = \<mu>" | |
proof - | |
have 2: "\<exists>\<nu>. \<guillemotleft>\<nu> : f \<Rightarrow> g\<guillemotright> \<and> R \<nu> = \<mu>" | |
using f g \<mu> 1 Right_a.ide_char H\<^sub>R_def R.preserves_reflects_arr Right_a.arr_char | |
Right_a.in_hom_char R.is_full | |
by force | |
obtain \<nu> where \<nu>: "\<guillemotleft>\<nu> : f \<Rightarrow> g\<guillemotright> \<and> R \<nu> = \<mu>" | |
using 2 by blast | |
have "Right_a.arr \<nu>" | |
using \<nu> 1 src_dom Right_a.arr_char right_def hseq_char' by fastforce | |
moreover have "H\<^sub>R a \<nu> = \<mu>" | |
using \<nu> 1 src_dom H\<^sub>R_def by auto | |
ultimately show ?thesis | |
using \<nu> Right_a.dom_simp Right_a.cod_simp by blast | |
qed | |
qed | |
qed | |
have "isomorphic (a \<star> a) a \<and> a \<star> a \<noteq> null" | |
using assms obj_self_composable unit_in_hom iso_unit isomorphic_def by blast | |
thus ?thesis | |
using La.fully_faithful_functor_axioms Ra.fully_faithful_functor_axioms weak_unit_def | |
by blast | |
qed | |
lemma src_in_sources: | |
assumes "arr \<mu>" | |
shows "src \<mu> \<in> sources \<mu>" | |
using assms obj_is_weak_unit R.preserves_arr hseq_char' by auto | |
lemma trg_in_targets: | |
assumes "arr \<mu>" | |
shows "trg \<mu> \<in> targets \<mu>" | |
using assms obj_is_weak_unit L.preserves_arr hseq_char' by auto | |
lemma weak_unit_cancel_left: | |
assumes "weak_unit a" and "ide f" and "ide g" | |
and "a \<star> f \<cong> a \<star> g" | |
shows "f \<cong> g" | |
proof - | |
have 0: "ide a" | |
using assms weak_unit_def by force | |
interpret Left_a: subcategory V \<open>left a\<close> | |
using 0 left_hom_is_subcategory by simp | |
interpret Left_a: left_hom V H a | |
using assms weak_unit_self_composable by unfold_locales auto | |
interpret La: fully_faithful_functor \<open>Left a\<close> \<open>Left a\<close> \<open>H\<^sub>L a\<close> | |
using assms weak_unit_def by fast | |
obtain \<phi> where \<phi>: "iso \<phi> \<and> \<guillemotleft>\<phi> : a \<star> f \<Rightarrow> a \<star> g\<guillemotright>" | |
using assms by blast | |
have 1: "Left_a.iso \<phi> \<and> Left_a.in_hom \<phi> (a \<star> f) (a \<star> g)" | |
proof | |
have "a \<star> \<phi> \<noteq> null" | |
proof - | |
have "a \<star> dom \<phi> \<noteq> null" | |
using assms \<phi> weak_unit_self_composable | |
by (metis arr_dom_iff_arr hseq_char' in_homE match_4) | |
thus ?thesis | |
using hom_connected by simp | |
qed | |
thus "Left_a.in_hom \<phi> (a \<star> f) (a \<star> g)" | |
using \<phi> Left_a.hom_char left_def by auto | |
thus "Left_a.iso \<phi>" | |
using \<phi> Left_a.iso_char by auto | |
qed | |
hence 2: "Left_a.ide (a \<star> f) \<and> Left_a.ide (a \<star> g)" | |
using Left_a.ide_dom [of \<phi>] Left_a.ide_cod [of \<phi>] Left_a.dom_simp Left_a.cod_simp | |
by auto | |
hence 3: "Left_a.ide f \<and> Left_a.ide g" | |
by (metis Left_a.ideI Left_a.ide_def Left_a.null_char assms(2) assms(3) left_def) | |
obtain \<psi> where \<psi>: "\<psi> \<in> Left_a.hom f g \<and> a \<star> \<psi> = \<phi>" | |
using assms 1 2 3 La.is_full [of g f \<phi>] H\<^sub>L_def by auto | |
have "Left_a.iso \<psi>" | |
using \<psi> 1 H\<^sub>L_def La.reflects_iso by auto | |
hence "iso \<psi> \<and> \<guillemotleft>\<psi> : f \<Rightarrow> g\<guillemotright>" | |
using \<psi> Left_a.iso_char Left_a.in_hom_char by auto | |
thus ?thesis by auto | |
qed | |
lemma weak_unit_cancel_right: | |
assumes "weak_unit a" and "ide f" and "ide g" | |
and "f \<star> a \<cong> g \<star> a" | |
shows "f \<cong> g" | |
proof - | |
have 0: "ide a" | |
using assms weak_unit_def by force | |
interpret Right_a: subcategory V \<open>right a\<close> | |
using 0 right_hom_is_subcategory by simp | |
interpret Right_a: right_hom V H a | |
using assms weak_unit_self_composable by unfold_locales auto | |
interpret R: fully_faithful_functor \<open>Right a\<close> \<open>Right a\<close> \<open>H\<^sub>R a\<close> | |
using assms weak_unit_def by fast | |
obtain \<phi> where \<phi>: "iso \<phi> \<and> in_hom \<phi> (f \<star> a) (g \<star> a)" | |
using assms by blast | |
have 1: "Right_a.iso \<phi> \<and> \<phi> \<in> Right_a.hom (f \<star> a) (g \<star> a)" | |
proof | |
have "\<phi> \<star> a \<noteq> null" | |
proof - | |
have "dom \<phi> \<star> a \<noteq> null" | |
using assms \<phi> weak_unit_self_composable | |
by (metis arr_dom_iff_arr hseq_char' in_homE match_3) | |
thus ?thesis | |
using hom_connected by simp | |
qed | |
thus "\<phi> \<in> Right_a.hom (f \<star> a) (g \<star> a)" | |
using \<phi> Right_a.hom_char right_def by simp | |
thus "Right_a.iso \<phi>" | |
using \<phi> Right_a.iso_char by auto | |
qed | |
hence 2: "Right_a.ide (f \<star> a) \<and> Right_a.ide (g \<star> a)" | |
using Right_a.ide_dom [of \<phi>] Right_a.ide_cod [of \<phi>] Right_a.dom_simp Right_a.cod_simp | |
by auto | |
hence 3: "Right_a.ide f \<and> Right_a.ide g" | |
using assms Right_a.ide_char Right_a.arr_char right_def Right_a.ide_def Right_a.null_char | |
by metis | |
obtain \<psi> where \<psi>: "\<psi> \<in> Right_a.hom f g \<and> \<psi> \<star> a = \<phi>" | |
using assms 1 2 3 R.is_full [of g f \<phi>] H\<^sub>R_def by auto | |
have "Right_a.iso \<psi>" | |
using \<psi> 1 H\<^sub>R_def R.reflects_iso by auto | |
hence "iso \<psi> \<and> \<guillemotleft>\<psi> : f \<Rightarrow> g\<guillemotright>" | |
using \<psi> Right_a.iso_char Right_a.in_hom_char by auto | |
thus ?thesis by auto | |
qed | |
text \<open> | |
All sources of an arrow ({\em i.e.}~weak units composable on the right with that arrow) | |
are isomorphic to the chosen source, and similarly for targets. That these statements | |
hold was somewhat surprising to me. | |
\<close> | |
lemma source_iso_src: | |
assumes "arr \<mu>" and "a \<in> sources \<mu>" | |
shows "a \<cong> src \<mu>" | |
proof - | |
have 0: "ide a" | |
using assms weak_unit_def by force | |
have 1: "src a = trg a" | |
using assms ide_dom sources_def weak_unit_iff_self_target seq_if_composable | |
weak_unit_self_composable | |
by simp | |
obtain \<phi> where \<phi>: "iso \<phi> \<and> \<guillemotleft>\<phi> : a \<star> a \<Rightarrow> a\<guillemotright>" | |
using assms weak_unit_def by blast | |
have "a \<star> src a \<cong> src a \<star> src a" | |
proof - | |
have "src a \<cong> src a \<star> src a" | |
using 0 obj_is_weak_unit weak_unit_def isomorphic_symmetric by auto | |
moreover have "a \<star> src a \<cong> src a" | |
proof - | |
have "a \<star> a \<star> src a \<cong> a \<star> src a" | |
proof - | |
have "iso (\<phi> \<star> src a) \<and> \<guillemotleft>\<phi> \<star> src a : (a \<star> a) \<star> src a \<Rightarrow> a \<star> src a\<guillemotright>" | |
using 0 1 \<phi> ide_in_hom(2) by auto | |
moreover have "iso \<a>\<^sup>-\<^sup>1[a, a, src a] \<and> | |
\<guillemotleft>\<a>\<^sup>-\<^sup>1[a, a, src a] : a \<star> a \<star> src a \<Rightarrow> (a \<star> a) \<star> src a\<guillemotright>" | |
using 0 1 iso_assoc' by force | |
ultimately show ?thesis | |
using isos_compose isomorphic_def by auto | |
qed | |
thus ?thesis | |
using assms 0 weak_unit_cancel_left by auto | |
qed | |
ultimately show ?thesis | |
using isomorphic_transitive by meson | |
qed | |
hence "a \<cong> src a" | |
using 0 weak_unit_cancel_right [of "src a" a "src a"] obj_is_weak_unit by auto | |
thus ?thesis using assms seq_if_composable 1 by auto | |
qed | |
lemma target_iso_trg: | |
assumes "arr \<mu>" and "b \<in> targets \<mu>" | |
shows "b \<cong> trg \<mu>" | |
proof - | |
have 0: "ide b" | |
using assms weak_unit_def by force | |
have 1: "trg \<mu> = src b" | |
using assms seq_if_composable by auto | |
obtain \<phi> where \<phi>: "iso \<phi> \<and> \<guillemotleft>\<phi> : b \<star> b \<Rightarrow> b\<guillemotright>" | |
using assms weak_unit_def by blast | |
have "trg b \<star> b \<cong> trg b \<star> trg b" | |
proof - | |
have "trg b \<cong> trg b \<star> trg b" | |
using 0 obj_is_weak_unit weak_unit_def isomorphic_symmetric by auto | |
moreover have "trg b \<star> b \<cong> trg b" | |
proof - | |
have "(trg b \<star> b) \<star> b \<cong> trg b \<star> b" | |
proof - | |
have "iso (trg b \<star> \<phi>) \<and> \<guillemotleft>trg b \<star> \<phi> : trg b \<star> b \<star> b \<Rightarrow> trg b \<star> b\<guillemotright>" | |
using assms 0 1 \<phi> ide_in_hom(2) targetsD(1) weak_unit_self_composable | |
apply (intro conjI hcomp_in_vhom) by auto | |
moreover have "iso \<a>[trg b, b, b] \<and> | |
\<guillemotleft>\<a>[trg b, b, b] : (trg b \<star> b) \<star> b \<Rightarrow> trg b \<star> b \<star> b\<guillemotright>" | |
using assms(2) 0 1 seq_if_composable targetsD(1-2) weak_unit_self_composable | |
by auto | |
ultimately show ?thesis | |
using isos_compose isomorphic_def by auto | |
qed | |
thus ?thesis | |
using assms 0 weak_unit_cancel_right by auto | |
qed | |
ultimately show ?thesis | |
using isomorphic_transitive by meson | |
qed | |
hence "b \<cong> trg b" | |
using 0 weak_unit_cancel_left [of "trg b" b "trg b"] obj_is_weak_unit by simp | |
thus ?thesis | |
using assms 0 1 seq_if_composable weak_unit_iff_self_source targetsD(1-2) source_iso_src | |
by simp | |
qed | |
lemma is_weak_composition_with_homs: | |
shows "weak_composition_with_homs V H src trg" | |
using src_in_sources trg_in_targets seq_if_composable composable_implies_arr | |
by (unfold_locales, simp_all) | |
interpretation weak_composition_with_homs V H src trg | |
using is_weak_composition_with_homs by auto | |
text \<open> | |
In a bicategory, the notion of composability defined in terms of | |
the chosen sources and targets coincides with the version defined | |
for a weak composition, which does not involve particular choices. | |
\<close> | |
lemma connected_iff_seq: | |
assumes "arr \<mu>" and "arr \<nu>" | |
shows "sources \<nu> \<inter> targets \<mu> \<noteq> {} \<longleftrightarrow> src \<nu> = trg \<mu>" | |
proof | |
show "src \<nu> = trg \<mu> \<Longrightarrow> sources \<nu> \<inter> targets \<mu> \<noteq> {}" | |
using assms src_in_sources [of \<nu>] trg_in_targets [of \<mu>] by auto | |
show "sources \<nu> \<inter> targets \<mu> \<noteq> {} \<Longrightarrow> src \<nu> = trg \<mu>" | |
proof - | |
assume 1: "sources \<nu> \<inter> targets \<mu> \<noteq> {}" | |
obtain a where a: "a \<in> sources \<nu> \<inter> targets \<mu>" | |
using assms 1 by blast | |
have \<mu>: "arr \<mu>" | |
using a composable_implies_arr by auto | |
have \<nu>: "arr \<nu>" | |
using a composable_implies_arr by auto | |
have 1: "\<And>a'. a' \<in> sources \<nu> \<Longrightarrow> src a' = src a \<and> trg a' = trg a" | |
proof | |
fix a' | |
assume a': "a' \<in> sources \<nu>" | |
have 1: "a' \<cong> a" | |
using a a' \<nu> src_dom sources_dom source_iso_src isomorphic_transitive | |
isomorphic_symmetric | |
by (meson IntD1) | |
obtain \<phi> where \<phi>: "iso \<phi> \<and> \<phi> \<in> hom a' a" | |
using 1 by auto | |
show "src a' = src a" | |
using \<phi> src_dom src_cod by auto | |
show "trg a' = trg a" | |
using \<phi> trg_dom trg_cod by auto | |
qed | |
have 2: "\<And>a'. a' \<in> targets \<mu> \<Longrightarrow> src a' = src a \<and> trg a' = trg a" | |
proof | |
fix a' | |
assume a': "a' \<in> targets \<mu>" | |
have 1: "a' \<cong> a" | |
using a a' \<mu> trg_dom targets_dom target_iso_trg isomorphic_transitive | |
isomorphic_symmetric | |
by (meson IntD2) | |
obtain \<phi> where \<phi>: "iso \<phi> \<and> \<phi> \<in> hom a' a" | |
using 1 by auto | |
show "src a' = src a" | |
using \<phi> src_dom src_cod by auto | |
show "trg a' = trg a" | |
using \<phi> trg_dom trg_cod by auto | |
qed | |
have "src \<nu> = src (src \<nu>)" using \<nu> by simp | |
also have "... = src (trg \<mu>)" | |
using \<nu> 1 [of "src \<nu>"] src_in_sources a weak_unit_self_composable seq_if_composable | |
by auto | |
also have "... = trg (trg \<mu>)" using \<mu> by simp | |
also have "... = trg \<mu>" using \<mu> by simp | |
finally show "src \<nu> = trg \<mu>" by blast | |
qed | |
qed | |
lemma is_associative_weak_composition: | |
shows "associative_weak_composition V H \<a>" | |
proof - | |
have 1: "\<And>\<nu> \<mu>. \<nu> \<star> \<mu> \<noteq> null \<Longrightarrow> src \<nu> = trg \<mu>" | |
using H.is_extensional VV.arr_char by force | |
show "associative_weak_composition V H \<a>" | |
proof | |
show "\<And>f g h. ide f \<Longrightarrow> ide g \<Longrightarrow> ide h \<Longrightarrow> f \<star> g \<noteq> null \<Longrightarrow> g \<star> h \<noteq> null \<Longrightarrow> | |
\<guillemotleft>\<a>[f, g, h] : (f \<star> g) \<star> h \<Rightarrow> f \<star> g \<star> h\<guillemotright>" | |
using 1 by auto | |
show "\<And>f g h. ide f \<Longrightarrow> ide g \<Longrightarrow> ide h \<Longrightarrow> f \<star> g \<noteq> null \<Longrightarrow> g \<star> h \<noteq> null \<Longrightarrow> | |
iso \<a>[f, g, h]" | |
using 1 iso_assoc by presburger | |
show "\<And>\<tau> \<mu> \<nu>. \<tau> \<star> \<mu> \<noteq> null \<Longrightarrow> \<mu> \<star> \<nu> \<noteq> null \<Longrightarrow> | |
\<a>[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> ((\<tau> \<star> \<mu>) \<star> \<nu>) = (\<tau> \<star> \<mu> \<star> \<nu>) \<cdot> \<a>[dom \<tau>, dom \<mu>, dom \<nu>]" | |
using 1 assoc_naturality hseq_char hseq_char' by metis | |
show "\<And>f g h k. ide f \<Longrightarrow> ide g \<Longrightarrow> ide h \<Longrightarrow> ide k \<Longrightarrow> | |
sources f \<inter> targets g \<noteq> {} \<Longrightarrow> | |
sources g \<inter> targets h \<noteq> {} \<Longrightarrow> | |
sources h \<inter> targets k \<noteq> {} \<Longrightarrow> | |
(f \<star> \<a>[g, h, k]) \<cdot> \<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k) = | |
\<a>[f, g, h \<star> k] \<cdot> \<a>[f \<star> g, h, k]" | |
using 1 connected_iff_seq pentagon ideD(1) by auto | |
qed | |
qed | |
interpretation associative_weak_composition V H \<a> | |
using is_associative_weak_composition by auto | |
theorem is_prebicategory: | |
shows "prebicategory V H \<a>" | |
using src_in_sources trg_in_targets by (unfold_locales, auto) | |
interpretation prebicategory V H \<a> | |
using is_prebicategory by auto | |
corollary is_prebicategory_with_homs: | |
shows "prebicategory_with_homs V H \<a> src trg" | |
.. | |
interpretation prebicategory_with_homs V H \<a> src trg | |
using is_prebicategory_with_homs by auto | |
text \<open> | |
In a bicategory, an arrow is a weak unit if and only if it is | |
isomorphic to its chosen source (or to its chosen target). | |
\<close> | |
lemma weak_unit_char: | |
shows "weak_unit a \<longleftrightarrow> a \<cong> src a" | |
and "weak_unit a \<longleftrightarrow> a \<cong> trg a" | |
proof - | |
show "weak_unit a \<longleftrightarrow> a \<cong> src a" | |
using isomorphism_respects_weak_units isomorphic_symmetric | |
by (meson ideD(1) isomorphic_implies_ide(2) obj_is_weak_unit obj_src source_iso_src | |
weak_unit_iff_self_source weak_unit_self_composable(1)) | |
show "weak_unit a \<longleftrightarrow> a \<cong> trg a" | |
using isomorphism_respects_weak_units isomorphic_symmetric | |
by (metis \<open>weak_unit a = isomorphic a (src a)\<close> ideD(1) isomorphic_implies_hpar(3) | |
isomorphic_implies_ide(1) src_trg target_iso_trg weak_unit_iff_self_target) | |
qed | |
interpretation H: partial_magma H | |
using is_partial_magma by auto | |
text \<open> | |
Every arrow with respect to horizontal composition is also an arrow with respect | |
to vertical composition. The converse is not necessarily true. | |
\<close> | |
lemma harr_is_varr: | |
assumes "H.arr \<mu>" | |
shows "arr \<mu>" | |
proof - | |
have "H.domains \<mu> \<noteq> {} \<Longrightarrow> arr \<mu>" | |
proof - | |
assume 1: "H.domains \<mu> \<noteq> {}" | |
obtain a where a: "H.ide a \<and> \<mu> \<star> a \<noteq> null" | |
using 1 H.domains_def by auto | |
show "arr \<mu>" | |
using a hseq_char' H.ide_def by blast | |
qed | |
moreover have "H.codomains \<mu> \<noteq> {} \<Longrightarrow> arr \<mu>" | |
proof - | |
assume 1: "H.codomains \<mu> \<noteq> {}" | |
obtain a where a: "H.ide a \<and> a \<star> \<mu> \<noteq> null" | |
using 1 H.codomains_def by auto | |
show "arr \<mu>" | |
using a hseq_char' ide_def by blast | |
qed | |
ultimately show ?thesis using assms H.arr_def by auto | |
qed | |
text \<open> | |
An identity for horizontal composition is also an identity for vertical composition. | |
\<close> | |
lemma horizontal_identity_is_ide: | |
assumes "H.ide \<mu>" | |
shows "ide \<mu>" | |
proof - | |
have \<mu>: "arr \<mu>" | |
using assms H.ide_def composable_implies_arr(2) by auto | |
hence 1: "\<mu> \<star> dom \<mu> \<noteq> null" | |
using assms hom_connected H.ide_def by auto | |
have "\<mu> \<star> dom \<mu> = dom \<mu>" | |
using assms 1 H.ide_def by simp | |
moreover have "\<mu> \<star> dom \<mu> = \<mu>" | |
using assms 1 H.ide_def [of \<mu>] null_agreement | |
by (metis \<mu> cod_cod cod_dom hcomp_simps\<^sub>W\<^sub>C(3) ideD(2) ide_char' paste_1) | |
ultimately have "dom \<mu> = \<mu>" | |
by simp | |
thus ?thesis | |
using \<mu> by (metis ide_dom) | |
qed | |
text \<open> | |
Every identity for horizontal composition is a weak unit. | |
\<close> | |
lemma horizontal_identity_is_weak_unit: | |
assumes "H.ide \<mu>" | |
shows "weak_unit \<mu>" | |
using assms weak_unit_char | |
by (metis H.ide_def comp_target_ide horizontal_identity_is_ide ideD(1) | |
isomorphism_respects_weak_units null_agreement targetsD(2-3) trg_in_targets) | |
end | |
subsection "Vertically Discrete Bicategories are Categories" | |
text \<open> | |
In this section we show that if a bicategory is discrete with respect to vertical | |
composition, then it is a category with respect to horizontal composition. | |
To obtain this result, we need to establish that the set of arrows for the horizontal | |
composition coincides with the set of arrows for the vertical composition. | |
This is not true for a general bicategory, and even with the assumption that the | |
vertical category is discrete it is not immediately obvious from the definitions. | |
The issue is that the notion ``arrow'' for the horizontal composition is defined | |
in terms of the existence of ``domains'' and ``codomains'' with respect to that | |
composition, whereas the axioms for a bicategory only relate the notion ``arrow'' | |
for the vertical category to the existence of sources and targets with respect | |
to the horizontal composition. | |
So we have to establish that, under the assumption of vertical discreteness, | |
sources coincide with domains and targets coincide with codomains. | |
We also need the fact that horizontal identities are weak units, which previously | |
required some effort to show. | |
\<close> | |
locale vertically_discrete_bicategory = | |
bicategory + | |
assumes vertically_discrete: "ide = arr" | |
begin | |
interpretation prebicategory_with_homs V H \<a> src trg | |
using is_prebicategory_with_homs by auto | |
interpretation H: partial_magma H | |
using is_partial_magma(1) by auto | |
lemma weak_unit_is_horizontal_identity: | |
assumes "weak_unit a" | |
shows "H.ide a" | |
proof - | |
have "a \<star> a \<noteq> H.null" | |
using assms weak_unit_self_composable by simp | |
moreover have "\<And>f. f \<star> a \<noteq> H.null \<Longrightarrow> f \<star> a = f" | |
proof - | |
fix f | |
assume "f \<star> a \<noteq> H.null" | |
hence "f \<star> a \<cong> f" | |
using assms comp_ide_source composable_implies_arr(2) sourcesI vertically_discrete | |
by auto | |
thus "f \<star> a = f" | |
using vertically_discrete isomorphic_def by auto | |
qed | |
moreover have "\<And>f. a \<star> f \<noteq> H.null \<Longrightarrow> a \<star> f = f" | |
proof - | |
fix f | |
assume "a \<star> f \<noteq> H.null" | |
hence "a \<star> f \<cong> f" | |
using assms comp_target_ide composable_implies_arr(1) targetsI vertically_discrete | |
by auto | |
thus "a \<star> f = f" | |
using vertically_discrete isomorphic_def by auto | |
qed | |
ultimately show "H.ide a" | |
using H.ide_def by simp | |
qed | |
lemma sources_eq_domains: | |
shows "sources \<mu> = H.domains \<mu>" | |
using weak_unit_is_horizontal_identity H.domains_def sources_def | |
horizontal_identity_is_weak_unit | |
by auto | |
lemma targets_eq_codomains: | |
shows "targets \<mu> = H.codomains \<mu>" | |
using weak_unit_is_horizontal_identity H.codomains_def targets_def | |
horizontal_identity_is_weak_unit | |
by auto | |
lemma arr_agreement: | |
shows "arr = H.arr" | |
using arr_def H.arr_def arr_iff_has_src arr_iff_has_trg | |
sources_eq_domains targets_eq_codomains | |
by auto | |
interpretation H: category H | |
proof | |
show "\<And>g f. g \<star> f \<noteq> H.null \<Longrightarrow> H.seq g f" | |
using arr_agreement hcomp_simps\<^sub>W\<^sub>C(1) by auto | |
show "\<And>f. (H.domains f \<noteq> {}) = (H.codomains f \<noteq> {})" | |
using sources_eq_domains targets_eq_codomains arr_iff_has_src arr_iff_has_trg | |
by simp | |
fix f g h | |
show "H.seq h g \<Longrightarrow> H.seq (h \<star> g) f \<Longrightarrow> H.seq g f" | |
using null_agreement arr_agreement H.not_arr_null preserves_arr VoV.arr_char | |
by (metis hseq_char' match_1) | |
show "H.seq h (g \<star> f) \<Longrightarrow> H.seq g f \<Longrightarrow> H.seq h g" | |
using null_agreement arr_agreement H.not_arr_null preserves_arr VoV.arr_char | |
by (metis hseq_char' match_2) | |
show "H.seq g f \<Longrightarrow> H.seq h g \<Longrightarrow> H.seq (h \<star> g) f" | |
using arr_agreement match_3 hseq_char(1) by auto | |
show "H.seq g f \<Longrightarrow> H.seq h g \<Longrightarrow> (h \<star> g) \<star> f = h \<star> g \<star> f" | |
proof - | |
assume hg: "H.seq h g" | |
assume gf: "H.seq g f" | |
have "iso \<a>[h, g, f] \<and> \<guillemotleft>\<a>[h, g, f] : (h \<star> g) \<star> f \<Rightarrow> h \<star> g \<star> f\<guillemotright>" | |
using hg gf vertically_discrete arr_agreement hseq_char assoc_in_hom iso_assoc | |
by auto | |
thus ?thesis | |
using arr_agreement vertically_discrete by auto | |
qed | |
qed | |
proposition is_category: | |
shows "category H" | |
.. | |
end | |
subsection "Obtaining the Unitors" | |
text \<open> | |
We now want to exploit the construction of unitors in a prebicategory with units, | |
to obtain left and right unitors in a bicategory. However, a bicategory is not | |
\emph{a priori} a prebicategory with units, because a bicategory only assigns unit | |
isomorphisms to each \emph{object}, not to each weak unit. In order to apply the results | |
about prebicategories with units to a bicategory, we first need to extend the bicategory to | |
a prebicategory with units, by extending the mapping \<open>\<iota>\<close>, which provides a unit isomorphism | |
for each object, to a mapping that assigns a unit isomorphism to all weak units. | |
This extension can be made in an arbitrary way, as the values chosen for | |
non-objects ultimately do not affect the components of the unitors at objects. | |
\<close> | |
context bicategory | |
begin | |
interpretation prebicategory V H \<a> | |
using is_prebicategory by auto | |
definition \<i>' | |
where "\<i>' a \<equiv> SOME \<phi>. iso \<phi> \<and> \<phi> \<in> hom (a \<star> a) a \<and> (obj a \<longrightarrow> \<phi> = \<i>[a])" | |
lemma \<i>'_extends_\<i>: | |
assumes "weak_unit a" | |
shows "iso (\<i>' a)" and "\<guillemotleft>\<i>' a : a \<star> a \<Rightarrow> a\<guillemotright>" and "obj a \<Longrightarrow> \<i>' a = \<i>[a]" | |
proof - | |
let ?P = "\<lambda>a \<phi>. iso \<phi> \<and> \<guillemotleft>\<phi> : a \<star> a \<Rightarrow> a\<guillemotright> \<and> (obj a \<longrightarrow> \<phi> = \<i>[a])" | |
have "\<exists>\<phi>. ?P a \<phi>" | |
by (metis assms iso_some_unit(1) iso_some_unit(2) iso_unit unit_in_vhom) | |
hence 1: "?P a (\<i>' a)" | |
using \<i>'_def someI_ex [of "?P a"] by simp | |
show "iso (\<i>' a)" using 1 by simp | |
show "\<guillemotleft>\<i>' a : a \<star> a \<Rightarrow> a\<guillemotright>" using 1 by simp | |
show "obj a \<Longrightarrow> \<i>' a = \<i>[a]" using 1 by simp | |
qed | |
proposition extends_to_prebicategory_with_units: | |
shows "prebicategory_with_units V H \<a> \<i>'" | |
using \<i>'_extends_\<i> by unfold_locales auto | |
interpretation PB: prebicategory_with_units V H \<a> \<i>' | |
using extends_to_prebicategory_with_units by auto | |
interpretation PB: prebicategory_with_homs V H \<a> src trg | |
using is_prebicategory_with_homs by auto | |
interpretation PB: prebicategory_with_homs_and_units V H \<a> \<i>' src trg .. | |
proposition extends_to_prebicategory_with_homs_and_units: | |
shows "prebicategory_with_homs_and_units V H \<a> \<i>' src trg" | |
.. | |
definition lunit ("\<l>[_]") | |
where "\<l>[a] \<equiv> PB.lunit a" | |
definition runit ("\<r>[_]") | |
where "\<r>[a] \<equiv> PB.runit a" | |
abbreviation lunit' ("\<l>\<^sup>-\<^sup>1[_]") | |
where "\<l>\<^sup>-\<^sup>1[a] \<equiv> inv \<l>[a]" | |
abbreviation runit' ("\<r>\<^sup>-\<^sup>1[_]") | |
where "\<r>\<^sup>-\<^sup>1[a] \<equiv> inv \<r>[a]" | |
text \<open> | |
\sloppypar | |
The characterizations of the left and right unitors that we obtain from locale | |
@{locale prebicategory_with_homs_and_units} mention the arbitarily chosen extension \<open>\<i>'\<close>, | |
rather than the given \<open>\<i>\<close>. We want ``native versions'' for the present context. | |
\<close> | |
lemma lunit_char: | |
assumes "ide f" | |
shows "\<guillemotleft>\<l>[f] : L f \<Rightarrow> f\<guillemotright>" and "L \<l>[f] = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, trg f, f]" | |
and "\<exists>!\<mu>. \<guillemotleft>\<mu> : L f \<Rightarrow> f\<guillemotright> \<and> L \<mu> = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, trg f, f]" | |
proof - | |
have 1: "trg (PB.lunit f) = trg f" | |
using assms PB.lunit_char [of f] vconn_implies_hpar(2) vconn_implies_hpar(4) | |
by metis | |
show "\<guillemotleft>\<l>[f] : L f \<Rightarrow> f\<guillemotright>" | |
unfolding lunit_def | |
using assms PB.lunit_char by simp | |
show "L \<l>[f] = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, trg f, f]" | |
unfolding lunit_def | |
using assms 1 PB.lunit_char obj_is_weak_unit \<i>'_extends_\<i> by simp | |
let ?P = "\<lambda>\<mu>. \<guillemotleft>\<mu> : L f \<Rightarrow> f\<guillemotright> \<and> L \<mu> = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, trg f, f]" | |
have "?P = (\<lambda>\<mu>. \<guillemotleft>\<mu> : trg f \<star> f \<Rightarrow> f\<guillemotright> \<and> | |
trg f \<star> \<mu> = (\<i>' (trg f) \<star> f) \<cdot> inv \<a>[trg f, trg f, f])" | |
proof - | |
have "\<And>\<mu>. \<guillemotleft>\<mu> : L f \<Rightarrow> f\<guillemotright> \<longleftrightarrow> \<guillemotleft>\<mu> : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
using assms by simp | |
moreover have "\<And>\<mu>. \<guillemotleft>\<mu> : L f \<Rightarrow> f\<guillemotright> \<Longrightarrow> | |
L \<mu> = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, trg f, f] \<longleftrightarrow> | |
trg f \<star> \<mu> = (\<i>' (trg f) \<star> f) \<cdot> inv \<a>[trg f, trg f, f]" | |
using calculation obj_is_weak_unit \<i>'_extends_\<i> by auto | |
ultimately show ?thesis by blast | |
qed | |
thus "\<exists>!\<mu>. \<guillemotleft>\<mu> : L f \<Rightarrow> f\<guillemotright> \<and> L \<mu> = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, trg f, f]" | |
using assms PB.lunit_char by simp | |
qed | |
lemma lunit_in_hom [intro]: | |
assumes "ide f" | |
shows "\<guillemotleft>\<l>[f] : src f \<rightarrow> trg f\<guillemotright>" and "\<guillemotleft>\<l>[f] : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<l>[f] : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
using assms lunit_char by auto | |
thus "\<guillemotleft>\<l>[f] : src f \<rightarrow> trg f\<guillemotright>" | |
by (metis arrI in_hhomI vconn_implies_hpar(1-4)) | |
qed | |
lemma lunit_in_vhom [simp]: | |
assumes "ide f" and "trg f = b" | |
shows "\<guillemotleft>\<l>[f] : b \<star> f \<Rightarrow> f\<guillemotright>" | |
using assms by auto | |
lemma lunit_simps [simp]: | |
assumes "ide f" | |
shows "arr \<l>[f]" and "src \<l>[f] = src f" and "trg \<l>[f] = trg f" | |
and "dom \<l>[f] = trg f \<star> f" and "cod \<l>[f] = f" | |
using assms lunit_in_hom | |
apply auto | |
using assms lunit_in_hom | |
apply blast | |
using assms lunit_in_hom | |
by blast | |
lemma runit_char: | |
assumes "ide f" | |
shows "\<guillemotleft>\<r>[f] : R f \<Rightarrow> f\<guillemotright>" and "R \<r>[f] = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
and "\<exists>!\<mu>. \<guillemotleft>\<mu> : R f \<Rightarrow> f\<guillemotright> \<and> R \<mu> = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
proof - | |
have 1: "src (PB.runit f) = src f" | |
using assms PB.runit_char [of f] vconn_implies_hpar(1) vconn_implies_hpar(3) | |
by metis | |
show "\<guillemotleft>\<r>[f] : R f \<Rightarrow> f\<guillemotright>" | |
unfolding runit_def | |
using assms PB.runit_char by simp | |
show "R \<r>[f] = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
unfolding runit_def | |
using assms 1 PB.runit_char obj_is_weak_unit \<i>'_extends_\<i> by simp | |
let ?P = "\<lambda>\<mu>. \<guillemotleft>\<mu> : R f \<Rightarrow> f\<guillemotright> \<and> R \<mu> = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
have "?P = (\<lambda>\<mu>. \<guillemotleft>\<mu> : f \<star> src f \<Rightarrow> f\<guillemotright> \<and> | |
\<mu> \<star> src f = (f \<star> \<i>' (src f)) \<cdot> \<a>[f, src f, src f])" | |
proof - | |
have "\<And>\<mu>. \<guillemotleft>\<mu> : R f \<Rightarrow> f\<guillemotright> \<longleftrightarrow> \<guillemotleft>\<mu> : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
using assms by simp | |
moreover have "\<And>\<mu>. \<guillemotleft>\<mu> : R f \<Rightarrow> f\<guillemotright> \<Longrightarrow> | |
R \<mu> = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f] \<longleftrightarrow> | |
\<mu> \<star> src f = (f \<star> \<i>' (src f)) \<cdot> \<a>[f, src f, src f]" | |
using calculation obj_is_weak_unit \<i>'_extends_\<i> by auto | |
ultimately show ?thesis by blast | |
qed | |
thus "\<exists>!\<mu>. \<guillemotleft>\<mu> : R f \<Rightarrow> f\<guillemotright> \<and> R \<mu> = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
using assms PB.runit_char by simp | |
qed | |
lemma runit_in_hom [intro]: | |
assumes "ide f" | |
shows "\<guillemotleft>\<r>[f] : src f \<rightarrow> trg f\<guillemotright>" and "\<guillemotleft>\<r>[f] : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<r>[f] : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
using assms runit_char by auto | |
thus "\<guillemotleft>\<r>[f] : src f \<rightarrow> trg f\<guillemotright>" | |
by (metis arrI in_hhom_def vconn_implies_hpar(1-4)) | |
qed | |
lemma runit_in_vhom [simp]: | |
assumes "ide f" and "src f = a" | |
shows "\<guillemotleft>\<r>[f] : f \<star> a \<Rightarrow> f\<guillemotright>" | |
using assms by auto | |
lemma runit_simps [simp]: | |
assumes "ide f" | |
shows "arr \<r>[f]" and "src \<r>[f] = src f" and "trg \<r>[f] = trg f" | |
and "dom \<r>[f] = f \<star> src f" and "cod \<r>[f] = f" | |
using assms runit_in_hom | |
apply auto | |
using assms runit_in_hom | |
apply blast | |
using assms runit_in_hom | |
by blast | |
lemma lunit_eqI: | |
assumes "ide f" and "\<guillemotleft>\<mu> : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
and "trg f \<star> \<mu> = (\<i>[trg f] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, trg f, f]" | |
shows "\<mu> = \<l>[f]" | |
unfolding lunit_def | |
using assms PB.lunit_eqI \<i>'_extends_\<i> trg.preserves_ide obj_is_weak_unit by simp | |
lemma runit_eqI: | |
assumes "ide f" and "\<guillemotleft>\<mu> : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
and "\<mu> \<star> src f = (f \<star> \<i>[src f]) \<cdot> \<a>[f, src f, src f]" | |
shows "\<mu> = \<r>[f]" | |
unfolding runit_def | |
using assms PB.runit_eqI \<i>'_extends_\<i> src.preserves_ide obj_is_weak_unit by simp | |
lemma lunit_naturality: | |
assumes "arr \<mu>" | |
shows "\<mu> \<cdot> \<l>[dom \<mu>] = \<l>[cod \<mu>] \<cdot> (trg \<mu> \<star> \<mu>)" | |
unfolding lunit_def | |
using assms PB.lunit_naturality by auto | |
lemma runit_naturality: | |
assumes "arr \<mu>" | |
shows "\<mu> \<cdot> \<r>[dom \<mu>] = \<r>[cod \<mu>] \<cdot> (\<mu> \<star> src \<mu>)" | |
unfolding runit_def | |
using assms PB.runit_naturality by auto | |
lemma iso_lunit [simp]: | |
assumes "ide f" | |
shows "iso \<l>[f]" | |
unfolding lunit_def | |
using assms PB.iso_lunit by blast | |
lemma iso_runit [simp]: | |
assumes "ide f" | |
shows "iso \<r>[f]" | |
unfolding runit_def | |
using assms PB.iso_runit by blast | |
lemma iso_lunit' [simp]: | |
assumes "ide f" | |
shows "iso \<l>\<^sup>-\<^sup>1[f]" | |
using assms iso_lunit by blast | |
lemma iso_runit' [simp]: | |
assumes "ide f" | |
shows "iso \<r>\<^sup>-\<^sup>1[f]" | |
using assms iso_runit by blast | |
lemma lunit'_in_hom [intro]: | |
assumes "ide f" | |
shows "\<guillemotleft>\<l>\<^sup>-\<^sup>1[f] : src f \<rightarrow> trg f\<guillemotright>" and "\<guillemotleft>\<l>\<^sup>-\<^sup>1[f] : f \<Rightarrow> trg f \<star> f\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<l>\<^sup>-\<^sup>1[f] : f \<Rightarrow> trg f \<star> f\<guillemotright>" | |
using assms lunit_char iso_lunit by simp | |
thus "\<guillemotleft>\<l>\<^sup>-\<^sup>1[f] : src f \<rightarrow> trg f\<guillemotright>" | |
using assms src_dom trg_dom by simp | |
qed | |
lemma lunit'_in_vhom [simp]: | |
assumes "ide f" and "trg f = b" | |
shows "\<guillemotleft>\<l>\<^sup>-\<^sup>1[f] : f \<Rightarrow> b \<star> f\<guillemotright>" | |
using assms by auto | |
lemma lunit'_simps [simp]: | |
assumes "ide f" | |
shows "arr \<l>\<^sup>-\<^sup>1[f]" and "src \<l>\<^sup>-\<^sup>1[f] = src f" and "trg \<l>\<^sup>-\<^sup>1[f] = trg f" | |
and "dom \<l>\<^sup>-\<^sup>1[f] = f" and "cod \<l>\<^sup>-\<^sup>1[f] = trg f \<star> f" | |
using assms lunit'_in_hom by auto | |
lemma runit'_in_hom [intro]: | |
assumes "ide f" | |
shows "\<guillemotleft>\<r>\<^sup>-\<^sup>1[f] : src f \<rightarrow> trg f\<guillemotright>" and "\<guillemotleft>\<r>\<^sup>-\<^sup>1[f] : f \<Rightarrow> f \<star> src f\<guillemotright>" | |
proof - | |
show "\<guillemotleft>\<r>\<^sup>-\<^sup>1[f] : f \<Rightarrow> f \<star> src f\<guillemotright>" | |
using assms runit_char iso_runit by simp | |
thus "\<guillemotleft>\<r>\<^sup>-\<^sup>1[f] : src f \<rightarrow> trg f\<guillemotright>" | |
using src_dom trg_dom | |
by (simp add: assms) | |
qed | |
lemma runit'_in_vhom [simp]: | |
assumes "ide f" and "src f = a" | |
shows "\<guillemotleft>\<r>\<^sup>-\<^sup>1[f] : f \<Rightarrow> f \<star> a\<guillemotright>" | |
using assms by auto | |
lemma runit'_simps [simp]: | |
assumes "ide f" | |
shows "arr \<r>\<^sup>-\<^sup>1[f]" and "src \<r>\<^sup>-\<^sup>1[f] = src f" and "trg \<r>\<^sup>-\<^sup>1[f] = trg f" | |
and "dom \<r>\<^sup>-\<^sup>1[f] = f" and "cod \<r>\<^sup>-\<^sup>1[f] = f \<star> src f" | |
using assms runit'_in_hom by auto | |
interpretation L: endofunctor V L .. | |
interpretation \<ll>: transformation_by_components V V L map lunit | |
using lunit_in_hom lunit_naturality by unfold_locales auto | |
interpretation \<ll>: natural_isomorphism V V L map \<ll>.map | |
using iso_lunit by (unfold_locales, auto) | |
lemma natural_isomorphism_\<ll>: | |
shows "natural_isomorphism V V L map \<ll>.map" | |
.. | |
abbreviation \<ll> | |
where "\<ll> \<equiv> \<ll>.map" | |
lemma \<ll>_ide_simp: | |
assumes "ide f" | |
shows "\<ll> f = \<l>[f]" | |
using assms by simp | |
interpretation L: equivalence_functor V V L | |
using L.isomorphic_to_identity_is_equivalence \<ll>.natural_isomorphism_axioms by simp | |
lemma equivalence_functor_L: | |
shows "equivalence_functor V V L" | |
.. | |
lemma lunit_commutes_with_L: | |
assumes "ide f" | |
shows "\<l>[L f] = L \<l>[f]" | |
unfolding lunit_def | |
using assms PB.lunit_commutes_with_L by blast | |
interpretation R: endofunctor V R .. | |
interpretation \<rr>: transformation_by_components V V R map runit | |
using runit_in_hom runit_naturality by unfold_locales auto | |
interpretation \<rr>: natural_isomorphism V V R map \<rr>.map | |
using iso_runit by (unfold_locales, auto) | |
lemma natural_isomorphism_\<rr>: | |
shows "natural_isomorphism V V R map \<rr>.map" | |
.. | |
abbreviation \<rr> | |
where "\<rr> \<equiv> \<rr>.map" | |
lemma \<rr>_ide_simp: | |
assumes "ide f" | |
shows "\<rr> f = \<r>[f]" | |
using assms by simp | |
interpretation R: equivalence_functor V V R | |
using R.isomorphic_to_identity_is_equivalence \<rr>.natural_isomorphism_axioms by simp | |
lemma equivalence_functor_R: | |
shows "equivalence_functor V V R" | |
.. | |
lemma runit_commutes_with_R: | |
assumes "ide f" | |
shows "\<r>[R f] = R \<r>[f]" | |
unfolding runit_def | |
using assms PB.runit_commutes_with_R by blast | |
lemma lunit'_naturality: | |
assumes "arr \<mu>" | |
shows "(trg \<mu> \<star> \<mu>) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu>] = \<l>\<^sup>-\<^sup>1[cod \<mu>] \<cdot> \<mu>" | |
using assms iso_lunit lunit_naturality invert_opposite_sides_of_square L.preserves_arr | |
L.preserves_cod arr_cod ide_cod ide_dom lunit_simps(1) lunit_simps(4) seqI | |
by presburger | |
lemma runit'_naturality: | |
assumes "arr \<mu>" | |
shows "(\<mu> \<star> src \<mu>) \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>] = \<r>\<^sup>-\<^sup>1[cod \<mu>] \<cdot> \<mu>" | |
using assms iso_runit runit_naturality invert_opposite_sides_of_square R.preserves_arr | |
R.preserves_cod arr_cod ide_cod ide_dom runit_simps(1) runit_simps(4) seqI | |
by presburger | |
lemma isomorphic_unit_right: | |
assumes "ide f" | |
shows "f \<star> src f \<cong> f" | |
using assms runit'_in_hom iso_runit' isomorphic_def isomorphic_symmetric by blast | |
lemma isomorphic_unit_left: | |
assumes "ide f" | |
shows "trg f \<star> f \<cong> f" | |
using assms lunit'_in_hom iso_lunit' isomorphic_def isomorphic_symmetric by blast | |
end | |
subsection "Further Properties of Bicategories" | |
text \<open> | |
Here we derive further properties of bicategories, now that we | |
have the unitors at our disposal. This section generalizes the corresponding | |
development in theory @{theory MonoidalCategory.MonoidalCategory}, | |
which has some diagrams to illustrate the longer calculations. | |
The present section also includes some additional facts that are now nontrivial | |
due to the partiality of horizontal composition. | |
\<close> | |
context bicategory | |
begin | |
lemma unit_simps [simp]: | |
assumes "obj a" | |
shows "arr \<i>[a]" and "src \<i>[a] = a" and "trg \<i>[a] = a" | |
and "dom \<i>[a] = a \<star> a" and "cod \<i>[a] = a" | |
using assms unit_in_hom by blast+ | |
lemma triangle: | |
assumes "ide f" and "ide g" and "src g = trg f" | |
shows "(g \<star> \<l>[f]) \<cdot> \<a>[g, src g, f] = \<r>[g] \<star> f" | |
proof - | |
let ?b = "src g" | |
have *: "(g \<star> \<l>[?b \<star> f]) \<cdot> \<a>[g, ?b, ?b \<star> f] = \<r>[g] \<star> ?b \<star> f" | |
proof - | |
have 1: "((g \<star> \<l>[?b \<star> f]) \<cdot> \<a>[g, ?b, ?b \<star> f]) \<cdot> \<a>[g \<star> ?b, ?b, f] | |
= (\<r>[g] \<star> ?b \<star> f) \<cdot> \<a>[g \<star> ?b, ?b, f]" | |
proof - | |
have "((g \<star> \<l>[?b \<star> f]) \<cdot> \<a>[g, ?b, ?b \<star> f]) \<cdot> \<a>[g \<star> ?b, ?b, f] | |
= (g \<star> \<l>[?b \<star> f]) \<cdot> \<a>[g, ?b, ?b \<star> f] \<cdot> \<a>[g \<star> ?b, ?b, f]" | |
using HoVH_def HoHV_def comp_assoc by auto | |
also have | |
"... = (g \<star> \<l>[?b \<star> f]) \<cdot> (g \<star> \<a>[?b, ?b, f]) \<cdot> \<a>[g, ?b \<star> ?b, f] \<cdot> (\<a>[g, ?b, ?b] \<star> f)" | |
using assms pentagon by force | |
also have | |
"... = ((g \<star> \<l>[?b \<star> f]) \<cdot> (g \<star> \<a>[?b, ?b, f])) \<cdot> \<a>[g, ?b \<star> ?b, f] \<cdot> (\<a>[g, ?b, ?b] \<star> f)" | |
using assms assoc_in_hom HoVH_def HoHV_def comp_assoc by auto | |
also have | |
"... = ((g \<star> ?b \<star> \<l>[f]) \<cdot> (g \<star> \<a>[?b, ?b, f])) \<cdot> \<a>[g, ?b \<star> ?b, f] \<cdot> (\<a>[g, ?b, ?b] \<star> f)" | |
using assms lunit_commutes_with_L lunit_in_hom by force | |
also have "... = ((g \<star> (\<i>[?b] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[?b, ?b, f]) \<cdot> (g \<star> \<a>[?b, ?b, f])) | |
\<cdot> \<a>[g, ?b \<star> ?b, f] \<cdot> (\<a>[g, ?b, ?b] \<star> f)" | |
using assms lunit_char(2) by force | |
also have "... = (g \<star> ((\<i>[?b] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[?b, ?b, f]) \<cdot> \<a>[?b, ?b, f]) | |
\<cdot> \<a>[g, ?b \<star> ?b, f] \<cdot> (\<a>[g, ?b, ?b] \<star> f)" | |
using assms interchange [of g g "(\<i>[?b] \<star> f) \<cdot> \<a>\<^sup>-\<^sup>1[?b, ?b, f]" "\<a>[?b, ?b, f]"] | |
by auto | |
also have "... = ((g \<star> \<i>[?b] \<star> f) \<cdot> \<a>[g, ?b \<star> ?b, f]) \<cdot> (\<a>[g, ?b, ?b] \<star> f)" | |
using assms comp_arr_dom comp_assoc_assoc' comp_assoc by auto | |
also have "... = (\<a>[g, ?b, f] \<cdot> ((g \<star> \<i>[?b]) \<star> f)) \<cdot> (\<a>[g, ?b, ?b] \<star> f)" | |
using assms assoc_naturality [of g "\<i>[?b]" f] by simp | |
also have "... = \<a>[g, ?b, f] \<cdot> ((g \<star> \<i>[?b]) \<cdot> \<a>[g, ?b, ?b] \<star> f)" | |
using assms interchange [of "g \<star> \<i>[?b]" "\<a>[g, ?b, ?b]" f f] comp_assoc by simp | |
also have "... = \<a>[g, ?b, f] \<cdot> ((\<r>[g] \<star> ?b) \<star> f)" | |
using assms runit_char(2) by force | |
also have "... = (\<r>[g] \<star> ?b \<star> f) \<cdot> \<a>[g \<star> ?b, ?b, f]" | |
using assms assoc_naturality [of "\<r>[g]" ?b f] by auto | |
finally show ?thesis by blast | |
qed | |
show "(g \<star> \<l>[?b \<star> f]) \<cdot> \<a>[g, ?b, ?b \<star> f] = \<r>[g] \<star> ?b \<star> f" | |
proof - | |
have "epi \<a>[g \<star> ?b, ?b, f]" | |
using assms preserves_ide iso_assoc iso_is_retraction retraction_is_epi by force | |
thus ?thesis | |
using assms 1 by auto | |
qed | |
qed | |
have "(g \<star> \<l>[f]) \<cdot> \<a>[g, ?b, f] = ((g \<star> \<l>[f]) \<cdot> (g \<star> \<l>[?b \<star> f]) \<cdot> (g \<star> ?b \<star> \<l>\<^sup>-\<^sup>1[f])) \<cdot> | |
(g \<star> ?b \<star> \<l>[f]) \<cdot> \<a>[g, ?b, ?b \<star> f] \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f])" | |
proof - | |
have "\<a>[g, ?b, f] = (g \<star> ?b \<star> \<l>[f]) \<cdot> \<a>[g, ?b, ?b \<star> f] \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f])" | |
proof - | |
have "\<a>[g, ?b, f] = (g \<star> ?b \<star> f) \<cdot> \<a>[g, ?b, f]" | |
using assms comp_cod_arr by simp | |
have "\<a>[g, ?b, f] = ((g \<star> ?b \<star> \<l>[f]) \<cdot> (g \<star> ?b \<star> \<l>\<^sup>-\<^sup>1[f])) \<cdot> \<a>[g, ?b, f]" | |
using assms comp_cod_arr comp_arr_inv' whisker_left [of g] | |
whisker_left [of ?b "\<l>[f]" "\<l>\<^sup>-\<^sup>1[f]"] | |
by simp | |
also have "... = (g \<star> ?b \<star> \<l>[f]) \<cdot> \<a>[g, ?b, ?b \<star> f] \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f])" | |
using assms iso_lunit assoc_naturality [of g ?b "\<l>\<^sup>-\<^sup>1[f]"] comp_assoc by force | |
finally show ?thesis by blast | |
qed | |
moreover have "g \<star> \<l>[f] = (g \<star> \<l>[f]) \<cdot> (g \<star> \<l>[?b \<star> f]) \<cdot> (g \<star> ?b \<star> \<l>\<^sup>-\<^sup>1[f])" | |
proof - | |
have "(g \<star> \<l>[?b \<star> f]) \<cdot> (g \<star> ?b \<star> \<l>\<^sup>-\<^sup>1[f]) = g \<star> ?b \<star> f" | |
proof - | |
have "(g \<star> \<l>[?b \<star> f]) \<cdot> (g \<star> ?b \<star> \<l>\<^sup>-\<^sup>1[f]) = (g \<star> ?b \<star> \<l>[f]) \<cdot> (g \<star> ?b \<star> \<l>\<^sup>-\<^sup>1[f])" | |
using assms lunit_in_hom lunit_commutes_with_L by simp | |
also have "... = g \<star> ?b \<star> f" | |
using assms comp_arr_inv' whisker_left [of g] whisker_left [of ?b "\<l>[f]" "\<l>\<^sup>-\<^sup>1[f]"] | |
by simp | |
finally show ?thesis by blast | |
qed | |
thus ?thesis | |
using assms comp_arr_dom by auto | |
qed | |
ultimately show ?thesis by simp | |
qed | |
also have "... = (g \<star> \<l>[f]) \<cdot> (g \<star> \<l>[?b \<star> f]) \<cdot> ((g \<star> ?b \<star> \<l>\<^sup>-\<^sup>1[f]) \<cdot> (g \<star> ?b \<star> \<l>[f])) \<cdot> | |
\<a>[g, ?b, ?b \<star> f] \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f])" | |
using comp_assoc by simp | |
also have "... = (g \<star> \<l>[f]) \<cdot> (g \<star> \<l>[?b \<star> f]) \<cdot> ((g \<star> ?b \<star> (?b \<star> f)) \<cdot> | |
\<a>[g, ?b, ?b \<star> f]) \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f])" | |
using assms iso_lunit comp_inv_arr' interchange [of g g "?b \<star> \<l>\<^sup>-\<^sup>1[f]" "?b \<star> \<l>[f]"] | |
interchange [of ?b ?b "\<l>\<^sup>-\<^sup>1[f]" "\<l>[f]"] comp_assoc | |
by auto | |
also have "... = (g \<star> \<l>[f]) \<cdot> ((g \<star> \<l>[?b \<star> f]) \<cdot> \<a>[g, ?b, ?b \<star> f]) \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f])" | |
using assms comp_cod_arr comp_assoc by auto | |
also have "... = \<r>[g] \<star> f" | |
proof - | |
have "\<r>[g] \<star> f = (g \<star> \<l>[f]) \<cdot> (\<r>[g] \<star> ?b \<star> f) \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f])" | |
proof - | |
have "(g \<star> \<l>[f]) \<cdot> (\<r>[g] \<star> ?b \<star> f) \<cdot> ((g \<star> ?b) \<star> \<l>\<^sup>-\<^sup>1[f]) | |
= (g \<star> \<l>[f]) \<cdot> (\<r>[g] \<cdot> (g \<star> ?b) \<star> (?b \<star> f) \<cdot> \<l>\<^sup>-\<^sup>1[f])" | |
using assms iso_lunit interchange [of "\<r>[g]" "g \<star> ?b" "?b \<star> f" "\<l>\<^sup>-\<^sup>1[f]"] | |
by force | |
also have "... = (g \<star> \<l>[f]) \<cdot> (\<r>[g] \<star> \<l>\<^sup>-\<^sup>1[f])" | |
using assms comp_arr_dom comp_cod_arr by simp | |
also have "... = \<r>[g] \<star> \<l>[f] \<cdot> \<l>\<^sup>-\<^sup>1[f]" | |
using assms interchange [of g "\<r>[g]" "\<l>[f]" "\<l>\<^sup>-\<^sup>1[f]"] comp_cod_arr | |
by simp | |
also have "... = \<r>[g] \<star> f" | |
using assms iso_lunit comp_arr_inv' by simp | |
finally show ?thesis by argo | |
qed | |
thus ?thesis using assms * by argo | |
qed | |
finally show ?thesis by blast | |
qed | |
lemma lunit_hcomp_gen: | |
assumes "ide f" and "ide g" and "ide h" | |
and "src f = trg g" and "src g = trg h" | |
shows "(f \<star> \<l>[g \<star> h]) \<cdot> (f \<star> \<a>[trg g, g, h]) = f \<star> \<l>[g] \<star> h" | |
proof - | |
have "((f \<star> \<l>[g \<star> h]) \<cdot> (f \<star> \<a>[trg g, g, h])) \<cdot> \<a>[f, trg g \<star> g, h] \<cdot> (\<a>[f, trg g, g] \<star> h) = | |
(f \<star> (\<l>[g] \<star> h)) \<cdot> \<a>[f, trg g \<star> g, h] \<cdot> (\<a>[f, trg g, g] \<star> h)" | |
proof - | |
have "((f \<star> \<l>[g \<star> h]) \<cdot> (f \<star> \<a>[trg g, g, h])) \<cdot> (\<a>[f, trg g \<star> g, h] \<cdot> (\<a>[f, trg g, g] \<star> h)) = | |
((f \<star> \<l>[g \<star> h]) \<cdot> \<a>[f, trg g, g \<star> h]) \<cdot> \<a>[f \<star> trg g, g, h]" | |
using assms pentagon comp_assoc by simp | |
also have "... = (\<r>[f] \<star> (g \<star> h)) \<cdot> \<a>[f \<star> trg g, g, h]" | |
using assms triangle [of "g \<star> h" f] by auto | |
also have "... = \<a>[f, g, h] \<cdot> ((\<r>[f] \<star> g) \<star> h)" | |
using assms assoc_naturality [of "\<r>[f]" g h] by simp | |
also have "... = (\<a>[f, g, h] \<cdot> ((f \<star> \<l>[g]) \<star> h)) \<cdot> (\<a>[f, trg g, g] \<star> h)" | |
using assms triangle interchange [of "f \<star> \<l>[g]" "\<a>[f, trg g, g]" h h] comp_assoc | |
by auto | |
also have "... = (f \<star> (\<l>[g] \<star> h)) \<cdot> (\<a>[f, trg g \<star> g, h] \<cdot> (\<a>[f, trg g, g] \<star> h))" | |
using assms assoc_naturality [of f "\<l>[g]" h] comp_assoc by simp | |
finally show ?thesis by blast | |
qed | |
moreover have "iso (\<a>[f, trg g \<star> g, h] \<cdot> (\<a>[f, trg g, g] \<star> h))" | |
using assms iso_assoc isos_compose by simp | |
ultimately show ?thesis | |
using assms iso_is_retraction retraction_is_epi | |
epiE [of "\<a>[f, trg g \<star> g, h] \<cdot> (\<a>[f, trg g, g] \<star> h)" | |
"(f \<star> \<l>[g \<star> h]) \<cdot> (f \<star> \<a>[trg g, g, h])" "f \<star> \<l>[g] \<star> h"] | |
by auto | |
qed | |
lemma lunit_hcomp: | |
assumes "ide f" and "ide g" and "src f = trg g" | |
shows "\<l>[f \<star> g] \<cdot> \<a>[trg f, f, g] = \<l>[f] \<star> g" | |
and "\<a>\<^sup>-\<^sup>1[trg f, f, g] \<cdot> \<l>\<^sup>-\<^sup>1[f \<star> g] = \<l>\<^sup>-\<^sup>1[f] \<star> g" | |
and "\<l>[f \<star> g] = (\<l>[f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, f, g]" | |
and "\<l>\<^sup>-\<^sup>1[f \<star> g] = \<a>[trg f, f, g] \<cdot> (\<l>\<^sup>-\<^sup>1[f] \<star> g)" | |
proof - | |
show 1: "\<l>[f \<star> g] \<cdot> \<a>[trg f, f, g] = \<l>[f] \<star> g" | |
proof - | |
have "L (\<l>[f \<star> g] \<cdot> \<a>[trg f, f, g]) = L (\<l>[f] \<star> g)" | |
using assms interchange [of "trg f" "trg f" "\<l>[f \<star> g]" "\<a>[trg f, f, g]"] lunit_hcomp_gen | |
by fastforce | |
thus ?thesis | |
using assms L.is_faithful [of "\<l>[f \<star> g] \<cdot> \<a>[trg f, f, g]" "\<l>[f] \<star> g"] by force | |
qed | |
show "\<a>\<^sup>-\<^sup>1[trg f, f, g] \<cdot> \<l>\<^sup>-\<^sup>1[f \<star> g] = \<l>\<^sup>-\<^sup>1[f] \<star> g" | |
proof - | |
have "\<a>\<^sup>-\<^sup>1[trg f, f, g] \<cdot> \<l>\<^sup>-\<^sup>1[f \<star> g] = inv (\<l>[f \<star> g] \<cdot> \<a>[trg f, f, g])" | |
using assms by (simp add: inv_comp) | |
also have "... = inv (\<l>[f] \<star> g)" | |
using 1 by simp | |
also have "... = \<l>\<^sup>-\<^sup>1[f] \<star> g" | |
using assms by simp | |
finally show ?thesis by simp | |
qed | |
show 2: "\<l>[f \<star> g] = (\<l>[f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, f, g]" | |
using assms 1 invert_side_of_triangle(2) by auto | |
show "\<l>\<^sup>-\<^sup>1[f \<star> g] = \<a>[trg f, f, g] \<cdot> (\<l>\<^sup>-\<^sup>1[f] \<star> g)" | |
proof - | |
have "\<l>\<^sup>-\<^sup>1[f \<star> g] = inv ((\<l>[f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[trg f, f, g])" | |
using 2 by simp | |
also have "... = \<a>[trg f, f, g] \<cdot> inv (\<l>[f] \<star> g)" | |
using assms inv_comp by simp | |
also have "... = \<a>[trg f, f, g] \<cdot> (\<l>\<^sup>-\<^sup>1[f] \<star> g)" | |
using assms by simp | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma runit_hcomp_gen: | |
assumes "ide f" and "ide g" and "ide h" | |
and "src f = trg g" and "src g = trg h" | |
shows "\<r>[f \<star> g] \<star> h = ((f \<star> \<r>[g]) \<star> h) \<cdot> (\<a>[f, g, src g] \<star> h)" | |
proof - | |
have "\<r>[f \<star> g] \<star> h = ((f \<star> g) \<star> \<l>[h]) \<cdot> \<a>[f \<star> g, src g, h]" | |
using assms triangle by simp | |
also have "... = (\<a>\<^sup>-\<^sup>1[f, g, h] \<cdot> (f \<star> g \<star> \<l>[h]) \<cdot> \<a>[f, g, src g \<star> h]) \<cdot> \<a>[f \<star> g, src g, h]" | |
using assms assoc_naturality [of f g "\<l>[h]"] invert_side_of_triangle(1) | |
by simp | |
also have "... = \<a>\<^sup>-\<^sup>1[f, g, h] \<cdot> (f \<star> g \<star> \<l>[h]) \<cdot> \<a>[f, g, src g \<star> h] \<cdot> \<a>[f \<star> g, src g, h]" | |
using comp_assoc by simp | |
also have "... = (\<a>\<^sup>-\<^sup>1[f, g, h] \<cdot> (f \<star> (\<r>[g] \<star> h))) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, src g, h]) \<cdot> | |
\<a>[f, g, src g \<star> h] \<cdot> \<a>[f \<star> g, src g, h]" | |
using assms interchange [of f f] triangle comp_assoc | |
invert_side_of_triangle(2) [of "\<r>[g] \<star> h" "g \<star> \<l>[h]" "\<a>[g, src g, h]"] | |
by simp | |
also have "... = ((f \<star> \<r>[g]) \<star> h) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> src g, h] \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, src g, h]) \<cdot> | |
\<a>[f, g, src g \<star> h] \<cdot> \<a>[f \<star> g, src g, h]" | |
using assms assoc'_naturality [of f "\<r>[g]" h] comp_assoc by simp | |
also have "... = ((f \<star> \<r>[g]) \<star> h) \<cdot> (\<a>[f, g, src g] \<star> h)" | |
using assms pentagon [of f g "src g" h] iso_assoc inv_hcomp | |
invert_side_of_triangle(1) | |
[of "\<a>[f, g, src g \<star> h] \<cdot> \<a>[f \<star> g, src g, h]" "f \<star> \<a>[g, src g, h]" | |
"\<a>[f, g \<star> src g, h] \<cdot> (\<a>[f, g, src g] \<star> h)"] | |
invert_side_of_triangle(1) | |
[of "(f \<star> \<a>\<^sup>-\<^sup>1[g, src g, h]) \<cdot> \<a>[f, g, src g \<star> h] \<cdot> \<a>[f \<star> g, src g, h]" | |
"\<a>[f, g \<star> src g, h]" "\<a>[f, g, src g] \<star> h"] | |
by auto | |
finally show ?thesis by blast | |
qed | |
lemma runit_hcomp: | |
assumes "ide f" and "ide g" and "src f = trg g" | |
shows "\<r>[f \<star> g] = (f \<star> \<r>[g]) \<cdot> \<a>[f, g, src g]" | |
and "\<r>\<^sup>-\<^sup>1[f \<star> g] = \<a>\<^sup>-\<^sup>1[f, g, src g] \<cdot> (f \<star> \<r>\<^sup>-\<^sup>1[g])" | |
and "\<r>[f \<star> g] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, src g] = f \<star> \<r>[g]" | |
and "\<a>[f, g, src g] \<cdot> \<r>\<^sup>-\<^sup>1[f \<star> g] = f \<star> \<r>\<^sup>-\<^sup>1[g]" | |
proof - | |
show 1: "\<r>[f \<star> g] = (f \<star> \<r>[g]) \<cdot> \<a>[f, g, src g]" | |
using assms interchange [of "f \<star> \<r>[g]" "\<a>[f, g, src g]" "src g" "src g"] | |
runit_hcomp_gen [of f g "src g"] | |
R.is_faithful [of "(f \<star> \<r>[g]) \<cdot> (\<a>[f, g, src g])" "\<r>[f \<star> g]"] | |
by simp | |
show "\<r>\<^sup>-\<^sup>1[f \<star> g] = \<a>\<^sup>-\<^sup>1[f, g, src g] \<cdot> (f \<star> \<r>\<^sup>-\<^sup>1[g])" | |
using assms 1 inv_comp inv_hcomp by auto | |
show 2: "\<r>[f \<star> g] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, src g] = f \<star> \<r>[g]" | |
using assms 1 comp_arr_dom comp_cod_arr comp_assoc hseqI' comp_assoc_assoc' by auto | |
show "\<a>[f, g, src g] \<cdot> \<r>\<^sup>-\<^sup>1[f \<star> g] = f \<star> \<r>\<^sup>-\<^sup>1[g]" | |
proof - | |
have "\<a>[f, g, src g] \<cdot> \<r>\<^sup>-\<^sup>1[f \<star> g] = inv (\<r>[f \<star> g] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, src g])" | |
using assms inv_comp by simp | |
also have "... = inv (f \<star> \<r>[g])" | |
using 2 by simp | |
also have "... = f \<star> \<r>\<^sup>-\<^sup>1[g]" | |
using assms inv_hcomp [of f "\<r>[g]"] by simp | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma unitor_coincidence: | |
assumes "obj a" | |
shows "\<l>[a] = \<i>[a]" and "\<r>[a] = \<i>[a]" | |
proof - | |
have "R \<l>[a] = R \<i>[a] \<and> R \<r>[a] = R \<i>[a]" | |
proof - | |
have "R \<l>[a] = (a \<star> \<l>[a]) \<cdot> \<a>[a, a, a]" | |
using assms lunit_hcomp [of a a] lunit_commutes_with_L [of a] by auto | |
moreover have "(a \<star> \<l>[a]) \<cdot> \<a>[a, a, a] = R \<r>[a]" | |
using assms triangle [of a a] by auto | |
moreover have "(a \<star> \<l>[a]) \<cdot> \<a>[a, a, a] = R \<i>[a]" | |
proof - | |
have "(a \<star> \<l>[a]) \<cdot> \<a>[a, a, a] = ((\<i>[a] \<star> a) \<cdot> \<a>\<^sup>-\<^sup>1[a, a, a]) \<cdot> \<a>[a, a, a]" | |
using assms lunit_char(2) by force | |
also have "... = R \<i>[a]" | |
using assms comp_arr_dom comp_assoc comp_assoc_assoc' | |
apply (elim objE) | |
by (simp add: assms) | |
finally show ?thesis by blast | |
qed | |
ultimately show ?thesis by argo | |
qed | |
moreover have "par \<l>[a] \<i>[a] \<and> par \<r>[a] \<i>[a]" | |
using assms by auto | |
ultimately have 1: "\<l>[a] = \<i>[a] \<and> \<r>[a] = \<i>[a]" | |
using R.is_faithful by blast | |
show "\<l>[a] = \<i>[a]" using 1 by auto | |
show "\<r>[a] = \<i>[a]" using 1 by auto | |
qed | |
lemma unit_triangle: | |
assumes "obj a" | |
shows "\<i>[a] \<star> a = (a \<star> \<i>[a]) \<cdot> \<a>[a, a, a]" | |
and "(\<i>[a] \<star> a) \<cdot> \<a>\<^sup>-\<^sup>1[a, a, a] = a \<star> \<i>[a]" | |
proof - | |
show 1: "\<i>[a] \<star> a = (a \<star> \<i>[a]) \<cdot> \<a>[a, a, a]" | |
using assms triangle [of a a] unitor_coincidence by auto | |
show "(\<i>[a] \<star> a) \<cdot> \<a>\<^sup>-\<^sup>1[a, a, a] = a \<star> \<i>[a]" | |
using assms 1 invert_side_of_triangle(2) [of "\<i>[a] \<star> a" "a \<star> \<i>[a]" "\<a>[a, a, a]"] | |
assoc'_eq_inv_assoc | |
by (metis hseqI' iso_assoc objE obj_def' unit_simps(1) unit_simps(2)) | |
qed | |
lemma hcomp_assoc_isomorphic: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "(f \<star> g) \<star> h \<cong> f \<star> g \<star> h" | |
using assms assoc_in_hom [of f g h] iso_assoc isomorphic_def by auto | |
lemma hcomp_arr_obj: | |
assumes "arr \<mu>" and "obj a" and "src \<mu> = a" | |
shows "\<mu> \<star> a = \<r>\<^sup>-\<^sup>1[cod \<mu>] \<cdot> \<mu> \<cdot> \<r>[dom \<mu>]" | |
and "\<r>[cod \<mu>] \<cdot> (\<mu> \<star> a) \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>] = \<mu>" | |
proof - | |
show "\<mu> \<star> a = \<r>\<^sup>-\<^sup>1[cod \<mu>] \<cdot> \<mu> \<cdot> \<r>[dom \<mu>]" | |
using assms iso_runit runit_naturality comp_cod_arr | |
by (metis ide_cod ide_dom invert_side_of_triangle(1) runit_simps(1) runit_simps(5) seqI) | |
show "\<r>[cod \<mu>] \<cdot> (\<mu> \<star> a) \<cdot> \<r>\<^sup>-\<^sup>1[dom \<mu>] = \<mu>" | |
using assms iso_runit runit_naturality [of \<mu>] comp_cod_arr | |
by (metis ide_dom invert_side_of_triangle(2) comp_assoc runit_simps(1) | |
runit_simps(5) seqI) | |
qed | |
lemma hcomp_obj_arr: | |
assumes "arr \<mu>" and "obj b" and "b = trg \<mu>" | |
shows "b \<star> \<mu> = \<l>\<^sup>-\<^sup>1[cod \<mu>] \<cdot> \<mu> \<cdot> \<l>[dom \<mu>]" | |
and "\<l>[cod \<mu>] \<cdot> (b \<star> \<mu>) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu>] = \<mu>" | |
proof - | |
show "b \<star> \<mu> = \<l>\<^sup>-\<^sup>1[cod \<mu>] \<cdot> \<mu> \<cdot> \<l>[dom \<mu>]" | |
using assms iso_lunit lunit_naturality comp_cod_arr | |
by (metis ide_cod ide_dom invert_side_of_triangle(1) lunit_simps(1) lunit_simps(5) seqI) | |
show "\<l>[cod \<mu>] \<cdot> (b \<star> \<mu>) \<cdot> \<l>\<^sup>-\<^sup>1[dom \<mu>] = \<mu>" | |
using assms iso_lunit lunit_naturality [of \<mu>] comp_cod_arr | |
by (metis ide_dom invert_side_of_triangle(2) comp_assoc lunit_simps(1) | |
lunit_simps(5) seqI) | |
qed | |
lemma hcomp_reassoc: | |
assumes "arr \<tau>" and "arr \<mu>" and "arr \<nu>" | |
and "src \<tau> = trg \<mu>" and "src \<mu> = trg \<nu>" | |
shows "(\<tau> \<star> \<mu>) \<star> \<nu> = \<a>\<^sup>-\<^sup>1[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> (\<tau> \<star> \<mu> \<star> \<nu>) \<cdot> \<a>[dom \<tau>, dom \<mu>, dom \<nu>]" | |
and "\<tau> \<star> \<mu> \<star> \<nu> = \<a>[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> ((\<tau> \<star> \<mu>) \<star> \<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[dom \<tau>, dom \<mu>, dom \<nu>]" | |
proof - | |
show "(\<tau> \<star> \<mu>) \<star> \<nu> = \<a>\<^sup>-\<^sup>1[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> (\<tau> \<star> \<mu> \<star> \<nu>) \<cdot> \<a>[dom \<tau>, dom \<mu>, dom \<nu>]" | |
proof - | |
have "(\<tau> \<star> \<mu>) \<star> \<nu> = (\<a>\<^sup>-\<^sup>1[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> \<a>[cod \<tau>, cod \<mu>, cod \<nu>]) \<cdot> ((\<tau> \<star> \<mu>) \<star> \<nu>)" | |
using assms comp_assoc_assoc'(2) comp_cod_arr by simp | |
also have "... = \<a>\<^sup>-\<^sup>1[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> \<a>[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> ((\<tau> \<star> \<mu>) \<star> \<nu>)" | |
using comp_assoc by simp | |
also have "... = \<a>\<^sup>-\<^sup>1[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> (\<tau> \<star> \<mu> \<star> \<nu>) \<cdot> \<a>[dom \<tau>, dom \<mu>, dom \<nu>]" | |
using assms assoc_naturality by simp | |
finally show ?thesis by simp | |
qed | |
show "\<tau> \<star> \<mu> \<star> \<nu> = \<a>[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> ((\<tau> \<star> \<mu>) \<star> \<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[dom \<tau>, dom \<mu>, dom \<nu>]" | |
proof - | |
have "\<tau> \<star> \<mu> \<star> \<nu> = (\<tau> \<star> \<mu> \<star> \<nu>) \<cdot> \<a>[dom \<tau>, dom \<mu>, dom \<nu>] \<cdot> \<a>\<^sup>-\<^sup>1[dom \<tau>, dom \<mu>, dom \<nu>]" | |
using assms comp_assoc_assoc'(1) comp_arr_dom by simp | |
also have "... = ((\<tau> \<star> \<mu> \<star> \<nu>) \<cdot> \<a>[dom \<tau>, dom \<mu>, dom \<nu>]) \<cdot> \<a>\<^sup>-\<^sup>1[dom \<tau>, dom \<mu>, dom \<nu>]" | |
using comp_assoc by simp | |
also have "... = (\<a>[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> ((\<tau> \<star> \<mu>) \<star> \<nu>)) \<cdot> \<a>\<^sup>-\<^sup>1[dom \<tau>, dom \<mu>, dom \<nu>]" | |
using assms assoc_naturality by simp | |
also have "... = \<a>[cod \<tau>, cod \<mu>, cod \<nu>] \<cdot> ((\<tau> \<star> \<mu>) \<star> \<nu>) \<cdot> \<a>\<^sup>-\<^sup>1[dom \<tau>, dom \<mu>, dom \<nu>]" | |
using comp_assoc by simp | |
finally show ?thesis by simp | |
qed | |
qed | |
lemma triangle': | |
assumes "ide f" and "ide g" and "src f = trg g" | |
shows "(f \<star> \<l>[g]) = (\<r>[f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[f, src f, g]" | |
proof - | |
have "(\<r>[f] \<star> g) \<cdot> \<a>\<^sup>-\<^sup>1[f, src f, g] = ((f \<star> \<l>[g]) \<cdot> \<a>[f, src f, g]) \<cdot> \<a>\<^sup>-\<^sup>1[f, src f, g]" | |
using assms triangle by auto | |
also have "... = (f \<star> \<l>[g])" | |
using assms comp_arr_dom comp_assoc comp_assoc_assoc' by auto | |
finally show ?thesis by auto | |
qed | |
lemma pentagon': | |
assumes "ide f" and "ide g" and "ide h" and "ide k" | |
and "src f = trg g" and "src g = trg h" and "src h = trg k" | |
shows "((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> k) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> h, k]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, k]) | |
= \<a>\<^sup>-\<^sup>1[f \<star> g, h, k] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> k]" | |
proof - | |
have "((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> k) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> h, k]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, k]) | |
= inv ((f \<star> \<a>[g, h, k]) \<cdot> (\<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k)))" | |
proof - | |
have "inv ((f \<star> \<a>[g, h, k]) \<cdot> (\<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k))) = | |
inv (\<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k)) \<cdot> inv (f \<star> \<a>[g, h, k])" | |
using assms inv_comp [of "\<a>[f, g \<star> h, k] \<cdot> (\<a>[f, g, h] \<star> k)" "f \<star> \<a>[g, h, k]"] | |
by force | |
also have "... = (inv (\<a>[f, g, h] \<star> k) \<cdot> inv \<a>[f, g \<star> h, k]) \<cdot> inv (f \<star> \<a>[g, h, k])" | |
using assms iso_assoc inv_comp by simp | |
also have "... = ((\<a>\<^sup>-\<^sup>1[f, g, h] \<star> k) \<cdot> \<a>\<^sup>-\<^sup>1[f, g \<star> h, k]) \<cdot> (f \<star> \<a>\<^sup>-\<^sup>1[g, h, k])" | |
using assms inv_hcomp by simp | |
finally show ?thesis by simp | |
qed | |
also have "... = inv (\<a>[f, g, h \<star> k] \<cdot> \<a>[f \<star> g, h, k])" | |
using assms pentagon by simp | |
also have "... = \<a>\<^sup>-\<^sup>1[f \<star> g, h, k] \<cdot> \<a>\<^sup>-\<^sup>1[f, g, h \<star> k]" | |
using assms inv_comp by simp | |
finally show ?thesis by auto | |
qed | |
end | |
text \<open> | |
The following convenience locale extends @{locale bicategory} by pre-interpreting | |
the various functors and natural transformations. | |
\<close> | |
locale extended_bicategory = | |
bicategory + | |
L: equivalence_functor V V L + | |
R: equivalence_functor V V R + | |
\<alpha>: natural_isomorphism VVV.comp V HoHV HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))\<close> + | |
\<alpha>': inverse_transformation VVV.comp V HoHV HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))\<close> + | |
\<ll>: natural_isomorphism V V L map \<ll> + | |
\<ll>': inverse_transformation V V L map \<ll> + | |
\<rr>: natural_isomorphism V V R map \<rr> + | |
\<rr>': inverse_transformation V V R map \<rr> | |
sublocale bicategory \<subseteq> extended_bicategory V H \<a> \<i> src trg | |
proof - | |
interpret L: equivalence_functor V V L using equivalence_functor_L by auto | |
interpret R: equivalence_functor V V R using equivalence_functor_R by auto | |
interpret \<alpha>': inverse_transformation VVV.comp V HoHV HoVH | |
\<open>\<lambda>\<mu>\<nu>\<tau>. \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))\<close> .. | |
interpret \<ll>: natural_isomorphism V V L map \<ll> using natural_isomorphism_\<ll> by auto | |
interpret \<ll>': inverse_transformation V V L map \<ll> .. | |
interpret \<rr>: natural_isomorphism V V R map \<rr> using natural_isomorphism_\<rr> by auto | |
interpret \<rr>': inverse_transformation V V R map \<rr> .. | |
interpret extended_bicategory V H \<a> \<i> src trg .. | |
show "extended_bicategory V H \<a> \<i> src trg" .. | |
qed | |
end | |