Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Bertrand.thy | |
Authors: Julian Biendarra, Manuel Eberl <manuel@pruvisto.org>, Larry Paulson | |
A proof of Bertrand's postulate (based on John Harrison's HOL Light proof). | |
Uses reflection and the approximation tactic. | |
*) | |
theory Bertrand | |
imports | |
Complex_Main | |
"HOL-Number_Theory.Number_Theory" | |
"HOL-Library.Discrete" | |
"HOL-Decision_Procs.Approximation_Bounds" | |
"HOL-Library.Code_Target_Numeral" | |
Pratt_Certificate.Pratt_Certificate | |
begin | |
subsection \<open>Auxiliary facts\<close> | |
lemma ln_2_le: "ln 2 \<le> 355 / (512 :: real)" | |
proof - | |
have "ln 2 \<le> real_of_float (ub_ln2 12)" by (rule ub_ln2) | |
also have "ub_ln2 12 = Float 5680 (- 13)" by code_simp | |
finally show ?thesis by simp | |
qed | |
lemma ln_2_ge: "ln 2 \<ge> (5677 / 8192 :: real)" | |
proof - | |
have "ln 2 \<ge> real_of_float (lb_ln2 12)" by (rule lb_ln2) | |
also have "lb_ln2 12 = Float 5677 (-13)" by code_simp | |
finally show ?thesis by simp | |
qed | |
lemma ln_2_ge': "ln (2 :: real) \<ge> 2/3" and ln_2_le': "ln (2 :: real) \<le> 16/23" | |
using ln_2_le ln_2_ge by simp_all | |
lemma of_nat_ge_1_iff: "(of_nat x :: 'a :: linordered_semidom) \<ge> 1 \<longleftrightarrow> x \<ge> 1" | |
using of_nat_le_iff[of 1 x] by (subst (asm) of_nat_1) | |
lemma floor_conv_div_nat: | |
"of_int (floor (real m / real n)) = real (m div n)" | |
by (subst floor_divide_of_nat_eq) simp | |
lemma frac_conv_mod_nat: | |
"frac (real m / real n) = real (m mod n) / real n" | |
by (cases "n = 0") | |
(simp_all add: frac_def floor_conv_div_nat field_simps of_nat_mult | |
[symmetric] of_nat_add [symmetric] del: of_nat_mult of_nat_add) | |
lemma of_nat_prod_mset: "prod_mset (image_mset of_nat A) = of_nat (prod_mset A)" | |
by (induction A) simp_all | |
lemma prod_mset_pos: "(\<And>x :: 'a :: linordered_semidom. x \<in># A \<Longrightarrow> x > 0) \<Longrightarrow> prod_mset A > 0" | |
by (induction A) simp_all | |
lemma ln_msetprod: | |
assumes "\<And>x. x \<in>#I \<Longrightarrow> x > 0" | |
shows "(\<Sum>p::nat\<in>#I. ln p) = ln (\<Prod>p\<in>#I. p)" | |
using assms by (induction I) (simp_all add: of_nat_prod_mset ln_mult prod_mset_pos) | |
lemma ln_fact: "ln (fact n) = (\<Sum>d=1..n. ln d)" | |
by (induction n) (simp_all add: ln_mult) | |
lemma overpower_lemma: | |
fixes f g :: "real \<Rightarrow> real" | |
assumes "f a \<le> g a" | |
assumes "\<And>x. a \<le> x \<Longrightarrow> ((\<lambda>x. g x - f x) has_real_derivative (d x)) (at x)" | |
assumes "\<And>x. a \<le> x \<Longrightarrow> d x \<ge> 0" | |
assumes "a \<le> x" | |
shows "f x \<le> g x" | |
proof (cases "a < x") | |
case True | |
with assms have "\<exists>z. z > a \<and> z < x \<and> g x - f x - (g a - f a) = (x - a) * d z" | |
by (intro MVT2) auto | |
then obtain z where z: "z > a" "z < x" "g x - f x - (g a - f a) = (x - a) * d z" by blast | |
hence "f x = g x + (f a - g a) + (a - x) * d z" by (simp add: algebra_simps) | |
also from assms have "f a - g a \<le> 0" by (simp add: algebra_simps) | |
also from assms z have "(a - x) * d z \<le> 0 * d z" | |
by (intro mult_right_mono) simp_all | |
finally show ?thesis by simp | |
qed (insert assms, auto) | |
subsection \<open>Preliminary definitions\<close> | |
definition primepow_even :: "nat \<Rightarrow> bool" where | |
"primepow_even q \<longleftrightarrow> (\<exists> p k. 1 \<le> k \<and> prime p \<and> q = p^(2*k))" | |
definition primepow_odd :: "nat \<Rightarrow> bool" where | |
"primepow_odd q \<longleftrightarrow> (\<exists> p k. 1 \<le> k \<and> prime p \<and> q = p^(2*k+1))" | |
abbreviation (input) isprimedivisor :: "nat \<Rightarrow> nat \<Rightarrow> bool" where | |
"isprimedivisor q p \<equiv> prime p \<and> p dvd q" | |
definition pre_mangoldt :: "nat \<Rightarrow> nat" where | |
"pre_mangoldt d = (if primepow d then aprimedivisor d else 1)" | |
definition mangoldt_even :: "nat \<Rightarrow> real" where | |
"mangoldt_even d = (if primepow_even d then ln (real (aprimedivisor d)) else 0)" | |
definition mangoldt_odd :: "nat \<Rightarrow> real" where | |
"mangoldt_odd d = (if primepow_odd d then ln (real (aprimedivisor d)) else 0)" | |
definition mangoldt_1 :: "nat \<Rightarrow> real" where | |
"mangoldt_1 d = (if prime d then ln d else 0)" | |
definition psi :: "nat \<Rightarrow> real" where | |
"psi n = (\<Sum>d=1..n. mangoldt d)" | |
definition psi_even :: "nat \<Rightarrow> real" where | |
"psi_even n = (\<Sum>d=1..n. mangoldt_even d)" | |
definition psi_odd :: "nat \<Rightarrow> real" where | |
"psi_odd n = (\<Sum>d=1..n. mangoldt_odd d)" | |
abbreviation (input) psi_even_2 :: "nat \<Rightarrow> real" where | |
"psi_even_2 n \<equiv> (\<Sum>d=2..n. mangoldt_even d)" | |
abbreviation (input) psi_odd_2 :: "nat \<Rightarrow> real" where | |
"psi_odd_2 n \<equiv> (\<Sum>d=2..n. mangoldt_odd d)" | |
definition theta :: "nat \<Rightarrow> real" where | |
"theta n = (\<Sum>p=1..n. if prime p then ln (real p) else 0)" | |
subsection \<open>Properties of prime powers\<close> | |
lemma primepow_even_imp_primepow: | |
assumes "primepow_even n" | |
shows "primepow n" | |
proof - | |
from assms obtain p k where "1 \<le> k" "prime p" "n = p ^ (2 * k)" | |
unfolding primepow_even_def by blast | |
moreover from \<open>1 \<le> k\<close> have "2 * k > 0" | |
by simp | |
ultimately show ?thesis unfolding primepow_def by blast | |
qed | |
lemma primepow_odd_imp_primepow: | |
assumes "primepow_odd n" | |
shows "primepow n" | |
proof - | |
from assms obtain p k where "1 \<le> k" "prime p" "n = p ^ (2 * k + 1)" | |
unfolding primepow_odd_def by blast | |
moreover from \<open>1 \<le> k\<close> have "Suc (2 * k) > 0" | |
by simp | |
ultimately show ?thesis unfolding primepow_def | |
by (auto simp del: power_Suc) | |
qed | |
lemma primepow_odd_altdef: | |
"primepow_odd n \<longleftrightarrow> | |
primepow n \<and> odd (multiplicity (aprimedivisor n) n) \<and> multiplicity (aprimedivisor n) n > 1" | |
proof (intro iffI conjI; (elim conjE)?) | |
assume "primepow_odd n" | |
then obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ (2 * k + 1)" | |
by (auto simp: primepow_odd_def) | |
thus "odd (multiplicity (aprimedivisor n) n)" "multiplicity (aprimedivisor n) n > 1" | |
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib) | |
next | |
assume A: "primepow n" and B: "odd (multiplicity (aprimedivisor n) n)" | |
and C: "multiplicity (aprimedivisor n) n > 1" | |
from A obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ k" | |
by (auto simp: primepow_def Suc_le_eq) | |
with B C have "odd k" "k > 1" | |
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib) | |
then obtain j where j: "k = 2 * j + 1" "j > 0" by (auto elim!: oddE) | |
with n show "primepow_odd n" by (auto simp: primepow_odd_def intro!: exI[of _ p, OF exI[of _ j]]) | |
qed (auto dest: primepow_odd_imp_primepow) | |
lemma primepow_even_altdef: | |
"primepow_even n \<longleftrightarrow> primepow n \<and> even (multiplicity (aprimedivisor n) n)" | |
proof (intro iffI conjI; (elim conjE)?) | |
assume "primepow_even n" | |
then obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ (2 * k)" | |
by (auto simp: primepow_even_def) | |
thus "even (multiplicity (aprimedivisor n) n)" | |
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib) | |
next | |
assume A: "primepow n" and B: "even (multiplicity (aprimedivisor n) n)" | |
from A obtain p k where n: "k \<ge> 1" "prime p" "n = p ^ k" | |
by (auto simp: primepow_def Suc_le_eq) | |
with B have "even k" | |
by (simp_all add: aprimedivisor_primepow prime_elem_multiplicity_mult_distrib) | |
then obtain j where j: "k = 2 * j" by (auto elim!: evenE) | |
from j n have "j \<noteq> 0" by (intro notI) simp_all | |
with j n show "primepow_even n" | |
by (auto simp: primepow_even_def intro!: exI[of _ p, OF exI[of _ j]]) | |
qed (auto dest: primepow_even_imp_primepow) | |
lemma primepow_odd_mult: | |
assumes "d > Suc 0" | |
shows "primepow_odd (aprimedivisor d * d) \<longleftrightarrow> primepow_even d" | |
using assms | |
by (auto simp: primepow_odd_altdef primepow_even_altdef primepow_mult_aprimedivisorI | |
aprimedivisor_primepow prime_aprimedivisor' aprimedivisor_dvd' | |
prime_elem_multiplicity_mult_distrib prime_elem_aprimedivisor_nat | |
dest!: primepow_multD) | |
lemma pre_mangoldt_primepow: | |
assumes "primepow n" "aprimedivisor n = p" | |
shows "pre_mangoldt n = p" | |
using assms by (simp add: pre_mangoldt_def) | |
lemma pre_mangoldt_notprimepow: | |
assumes "\<not>primepow n" | |
shows "pre_mangoldt n = 1" | |
using assms by (simp add: pre_mangoldt_def) | |
lemma primepow_cases: | |
"primepow d \<longleftrightarrow> | |
( primepow_even d \<and> \<not> primepow_odd d \<and> \<not> prime d) \<or> | |
(\<not> primepow_even d \<and> primepow_odd d \<and> \<not> prime d) \<or> | |
(\<not> primepow_even d \<and> \<not> primepow_odd d \<and> prime d)" | |
by (auto simp: primepow_even_altdef primepow_odd_altdef multiplicity_aprimedivisor_Suc_0_iff | |
elim!: oddE intro!: Nat.gr0I) | |
subsection \<open>Deriving a recurrence for the psi function\<close> | |
lemma ln_fact_bounds: | |
assumes "n > 0" | |
shows "abs(ln (fact n) - n * ln n + n) \<le> 1 + ln n" | |
proof - | |
have "\<forall>n\<in>{0<..}. \<exists>z>real n. z < real (n + 1) \<and> real (n + 1) * ln (real (n + 1)) - | |
real n * ln (real n) = (real (n + 1) - real n) * (ln z + 1)" | |
by (intro ballI MVT2) (auto intro!: derivative_eq_intros) | |
hence "\<forall>n\<in>{0<..}. \<exists>z>real n. z < real (n + 1) \<and> real (n + 1) * ln (real (n + 1)) - | |
real n * ln (real n) = (ln z + 1)" by (simp add: algebra_simps) | |
from bchoice[OF this] obtain k :: "nat \<Rightarrow> real" | |
where lb: "real n < k n" and ub: "k n < real (n + 1)" and | |
mvt: "real (n+1) * ln (real (n+1)) - real n * ln (real n) = ln (k n) + 1" | |
if "n > 0" for n::nat by blast | |
have *: "(n + 1) * ln (n + 1) = (\<Sum>i=1..n. ln(k i) + 1)" for n::nat | |
proof (induction n) | |
case (Suc n) | |
have "(\<Sum>i = 1..n+1. ln (k i) + 1) = (\<Sum>i = 1..n. ln (k i) + 1) + ln (k (n+1)) + 1" | |
by simp | |
also from Suc.IH have "(\<Sum>i = 1..n. ln (k i) + 1) = real (n+1) * ln (real (n+1))" .. | |
also from mvt[of "n+1"] have "\<dots> = real (n+2) * ln (real (n+2)) - ln (k (n+1)) - 1" | |
by simp | |
finally show ?case | |
by simp | |
qed simp | |
have **: "abs((\<Sum>i=1..n+1. ln i) - ((n+1) * ln (n+1) - (n+1))) \<le> 1 + ln(n+1)" for n::nat | |
proof - | |
have "(\<Sum>i=1..n+1. ln i) \<le> (\<Sum>i=1..n. ln i) + ln (n+1)" | |
by simp | |
also have "(\<Sum>i=1..n. ln i) \<le> (\<Sum>i=1..n. ln (k i))" | |
by (intro sum_mono, subst ln_le_cancel_iff) (auto simp: Suc_le_eq dest: lb ub) | |
also have "\<dots> = (\<Sum>i=1..n. ln (k i) + 1) - n" | |
by (simp add: sum.distrib) | |
also from * have "\<dots> = (n+1) * ln (n+1) - n" | |
by simp | |
finally have a_minus_b: "(\<Sum>i=1..n+1. ln i) - ((n+1) * ln (n+1) - (n+1)) \<le> 1 + ln (n+1)" | |
by simp | |
from * have "(n+1) * ln (n+1) - n = (\<Sum>i=1..n. ln (k i) + 1) - n" | |
by simp | |
also have "\<dots> = (\<Sum>i=1..n. ln (k i))" | |
by (simp add: sum.distrib) | |
also have "\<dots> \<le> (\<Sum>i=1..n. ln (i+1))" | |
by (intro sum_mono, subst ln_le_cancel_iff) (auto simp: Suc_le_eq dest: lb ub) | |
also from sum.shift_bounds_cl_nat_ivl[of "ln" 1 1 n] have "\<dots> = (\<Sum>i=1+1..n+1. ln i)" .. | |
also have "\<dots> = (\<Sum>i=1..n+1. ln i)" | |
by (rule sum.mono_neutral_left) auto | |
finally have b_minus_a: "((n+1) * ln (n+1) - (n+1)) - (\<Sum>i=1..n+1. ln i) \<le> 1" | |
by simp | |
have "0 \<le> ln (n+1)" | |
by simp | |
with b_minus_a have "((n+1) * ln (n+1) - (n+1)) - (\<Sum>i=1..n+1. ln i) \<le> 1 + ln (n+1)" | |
by linarith | |
with a_minus_b show ?thesis | |
by linarith | |
qed | |
from \<open>n > 0\<close> have "n \<ge> 1" by simp | |
thus ?thesis | |
proof (induction n rule: dec_induct) | |
case base | |
then show ?case by simp | |
next | |
case (step n) | |
from ln_fact[of "n+1"] **[of n] show ?case by simp | |
qed | |
qed | |
lemma ln_fact_diff_bounds: | |
"abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2) \<le> 4 * ln (if n = 0 then 1 else n) + 3" | |
proof (cases "n div 2 = 0") | |
case True | |
hence "n \<le> 1" by simp | |
with ln_le_minus_one[of "2::real"] show ?thesis by (cases n) simp_all | |
next | |
case False | |
then have "n > 1" by simp | |
let ?a = "real n * ln 2" | |
let ?b = "4 * ln (real n) + 3" | |
let ?l1 = "ln (fact (n div 2))" | |
let ?a1 = "real (n div 2) * ln (real (n div 2)) - real (n div 2)" | |
let ?b1 = "1 + ln (real (n div 2))" | |
let ?l2 = "ln (fact n)" | |
let ?a2 = "real n * ln (real n) - real n" | |
let ?b2 = "1 + ln (real n)" | |
have abs_a: "abs(?a - (?a2 - 2 * ?a1)) \<le> ?b - 2 * ?b1 - ?b2" | |
proof (cases "even n") | |
case True | |
then have "real (2 * (n div 2)) = real n" | |
by simp | |
then have n_div_2: "real (n div 2) = real n / 2" | |
by simp | |
from \<open>n > 1\<close> have *: "abs(?a - (?a2 - 2 * ?a1)) = 0" | |
by (simp add: n_div_2 ln_div algebra_simps) | |
from \<open>even n\<close> and \<open>n > 1\<close> have "0 \<le> ln (real n) - ln (real (n div 2))" | |
by (auto elim: evenE) | |
also have "2 * \<dots> \<le> 3 * ln (real n) - 2 * ln (real (n div 2))" | |
using \<open>n > 1\<close> by (auto intro!: ln_ge_zero) | |
also have "\<dots> = ?b - 2 * ?b1 - ?b2" by simp | |
finally show ?thesis using * by simp | |
next | |
case False | |
then have "real (2 * (n div 2)) = real (n - 1)" | |
by simp | |
with \<open>n > 1\<close> have n_div_2: "real (n div 2) = (real n - 1) / 2" | |
by simp | |
from \<open>odd n\<close> \<open>n div 2 \<noteq> 0\<close> have "n \<ge> 3" | |
by presburger | |
have "?a - (?a2 - 2 * ?a1) = real n * ln 2 - real n * ln (real n) + real n + | |
2 * real (n div 2) * ln (real (n div 2)) - 2* real (n div 2)" | |
by (simp add: algebra_simps) | |
also from n_div_2 have "2 * real (n div 2) = real n - 1" | |
by simp | |
also have "real n * ln 2 - real n * ln (real n) + real n + | |
(real n - 1) * ln (real (n div 2)) - (real n - 1) | |
= real n * (ln (real n - 1) - ln (real n)) - ln (real (n div 2)) + 1" | |
using \<open>n > 1\<close> by (simp add: algebra_simps n_div_2 ln_div) | |
finally have lhs: "abs(?a - (?a2 - 2 * ?a1)) = | |
abs(real n * (ln (real n - 1) - ln (real n)) - ln (real (n div 2)) + 1)" | |
by simp | |
from \<open>n > 1\<close> have "real n * (ln (real n - 1) - ln (real n)) \<le> 0" | |
by (simp add: algebra_simps mult_left_mono) | |
moreover from \<open>n > 1\<close> have "ln (real (n div 2)) \<le> ln (real n)" by simp | |
moreover { | |
have "exp 1 \<le> (3::real)" by (rule exp_le) | |
also from \<open>n \<ge> 3\<close> have "\<dots> \<le> exp (ln (real n))" by simp | |
finally have "ln (real n) \<ge> 1" by simp | |
} | |
ultimately have ub: "real n * (ln (real n - 1) - ln (real n)) - ln(real (n div 2)) + 1 \<le> | |
3 * ln (real n) - 2 * ln(real (n div 2))" by simp | |
have mon: "real n' * (ln (real n') - ln (real n' - 1)) \<le> | |
real n * (ln (real n) - ln (real n - 1))" | |
if "n \<ge> 3" "n' \<ge> n" for n n'::nat | |
proof (rule DERIV_nonpos_imp_nonincreasing[where f = "\<lambda>x. x * (ln x - ln (x - 1))"]) | |
fix t assume t: "real n \<le> t" "t \<le> real n'" | |
with that have "1 / (t - 1) \<ge> ln (1 + 1/(t - 1))" | |
by (intro ln_add_one_self_le_self) simp_all | |
also from t that have "ln (1 + 1/(t - 1)) = ln t- ln (t - 1)" | |
by (simp add: ln_div [symmetric] field_simps) | |
finally have "ln t - ln (t - 1) \<le> 1 / (t - 1)" . | |
with that t | |
show "\<exists>y. ((\<lambda>x. x * (ln x - ln (x - 1))) has_field_derivative y) (at t) \<and> y \<le> 0" | |
by (intro exI[of _ "1 / (1 - t) + ln t - ln (t - 1)"]) | |
(force intro!: derivative_eq_intros simp: field_simps)+ | |
qed (use that in simp_all) | |
from \<open>n > 1\<close> have "ln 2 = ln (real n) - ln (real n / 2)" | |
by (simp add: ln_div) | |
also from \<open>n > 1\<close> have "\<dots> \<le> ln (real n) - ln (real (n div 2))" | |
by simp | |
finally have *: "3*ln 2 + ln(real (n div 2)) \<le> 3* ln(real n) - 2* ln(real (n div 2))" | |
by simp | |
have "- real n * (ln (real n - 1) - ln (real n)) + ln(real (n div 2)) - 1 = | |
real n * (ln (real n) - ln (real n - 1)) - 1 + ln(real (n div 2))" | |
by (simp add: algebra_simps) | |
also have "real n * (ln (real n) - ln (real n - 1)) \<le> 3 * (ln 3 - ln (3 - 1))" | |
using mon[OF _ \<open>n \<ge> 3\<close>] by simp | |
also { | |
have "Some (Float 3 (-1)) = ub_ln 1 3" by code_simp | |
from ub_ln(1)[OF this] have "ln 3 \<le> (1.6 :: real)" by simp | |
also have "1.6 - 1 / 3 \<le> 2 * (2/3 :: real)" by simp | |
also have "2/3 \<le> ln (2 :: real)" by (rule ln_2_ge') | |
finally have "ln 3 - 1 / 3 \<le> 2 * ln (2 :: real)" by simp | |
} | |
hence "3 * (ln 3 - ln (3 - 1)) - 1 \<le> 3 * ln (2 :: real)" by simp | |
also note * | |
finally have "- real n * (ln (real n - 1) - ln (real n)) + ln(real (n div 2)) - 1 \<le> | |
3 * ln (real n) - 2 * ln (real (n div 2))" by simp | |
hence lhs': "abs(real n * (ln (real n - 1) - ln (real n)) - ln(real (n div 2)) + 1) \<le> | |
3 * ln (real n) - 2 * ln (real (n div 2))" | |
using ub by simp | |
have rhs: "?b - 2 * ?b1 - ?b2 = 3* ln (real n) - 2 * ln (real (n div 2))" | |
by simp | |
from \<open>n > 1\<close> have "ln (real (n div 2)) \<le> 3* ln (real n) - 2* ln (real (n div 2))" | |
by simp | |
with rhs lhs lhs' show ?thesis | |
by simp | |
qed | |
then have minus_a: "-?a \<le> ?b - 2 * ?b1 - ?b2 - (?a2 - 2 * ?a1)" | |
by simp | |
from abs_a have a: "?a \<le> ?b - 2 * ?b1 - ?b2 + ?a2 - 2 * ?a1" | |
by (simp) | |
from ln_fact_bounds[of "n div 2"] False have abs_l1: "abs(?l1 - ?a1) \<le> ?b1" | |
by (simp add: algebra_simps) | |
then have minus_l1: "?a1 - ?l1 \<le> ?b1" | |
by linarith | |
from abs_l1 have l1: "?l1 - ?a1 \<le> ?b1" | |
by linarith | |
from ln_fact_bounds[of n] False have abs_l2: "abs(?l2 - ?a2) \<le> ?b2" | |
by (simp add: algebra_simps) | |
then have l2: "?l2 - ?a2 \<le> ?b2" | |
by simp | |
from abs_l2 have minus_l2: "?a2 - ?l2 \<le> ?b2" | |
by simp | |
from minus_a minus_l1 l2 have "?l2 - 2 * ?l1 - ?a \<le> ?b" | |
by simp | |
moreover from a l1 minus_l2 have "- ?l2 + 2 * ?l1 + ?a \<le> ?b" | |
by simp | |
ultimately have "abs((?l2 - 2*?l1) - ?a) \<le> ?b" | |
by simp | |
then show ?thesis | |
by simp | |
qed | |
lemma ln_primefact: | |
assumes "n \<noteq> (0::nat)" | |
shows "ln n = (\<Sum>d=1..n. if primepow d \<and> d dvd n then ln (aprimedivisor d) else 0)" | |
(is "?lhs = ?rhs") | |
proof - | |
have "?rhs = (\<Sum>d\<in>{x \<in> {1..n}. primepow x \<and> x dvd n}. ln (real (aprimedivisor d)))" | |
unfolding primepow_factors_def by (subst sum.inter_filter [symmetric]) simp_all | |
also have "{x \<in> {1..n}. primepow x \<and> x dvd n} = primepow_factors n" | |
using assms by (auto simp: primepow_factors_def dest: dvd_imp_le primepow_gt_Suc_0) | |
finally have *: "(\<Sum>d\<in>primepow_factors n. ln (real (aprimedivisor d))) = ?rhs" .. | |
from in_prime_factors_imp_prime prime_gt_0_nat | |
have pf_pos: "\<And>p. p\<in>#prime_factorization n \<Longrightarrow> p > 0" | |
by blast | |
from ln_msetprod[of "prime_factorization n", OF pf_pos] assms | |
have "ln n = (\<Sum>p\<in>#prime_factorization n. ln p)" | |
by (simp add: of_nat_prod_mset) | |
also from * sum_prime_factorization_conv_sum_primepow_factors[of n ln, OF assms(1)] | |
have "\<dots> = ?rhs" by simp | |
finally show ?thesis . | |
qed | |
context | |
begin | |
private lemma divisors: | |
fixes x d::nat | |
assumes "x \<in> {1..n}" | |
assumes "d dvd x" | |
shows "\<exists>k\<in>{1..n div d}. x = d * k" | |
proof - | |
from assms have "x \<le> n" | |
by simp | |
then have ub: "x div d \<le> n div d" | |
by (simp add: div_le_mono \<open>x \<le> n\<close>) | |
from assms have "1 \<le> x div d" by (auto elim!: dvdE) | |
with ub have "x div d \<in> {1..n div d}" | |
by simp | |
with \<open>d dvd x\<close> show ?thesis by (auto intro!: bexI[of _ "x div d"]) | |
qed | |
lemma ln_fact_conv_mangoldt: "ln (fact n) = (\<Sum>d=1..n. mangoldt d * floor (n / d))" | |
proof - | |
have *: "(\<Sum>da=1..n. if primepow da \<and> da dvd d then ln (aprimedivisor da) else 0) = | |
(\<Sum>(da::nat)=1..d. if primepow da \<and> da dvd d then ln (aprimedivisor da) else 0)" | |
if d: "d \<in> {1..n}" for d | |
by (rule sum.mono_neutral_right, insert d) (auto dest: dvd_imp_le) | |
have "(\<Sum>d=1..n. \<Sum>da=1..d. if primepow da \<and> | |
da dvd d then ln (aprimedivisor da) else 0) = | |
(\<Sum>d=1..n. \<Sum>da=1..n. if primepow da \<and> | |
da dvd d then ln (aprimedivisor da) else 0)" | |
by (rule sum.cong) (insert *, simp_all) | |
also have "\<dots> = (\<Sum>da=1..n. \<Sum>d=1..n. if primepow da \<and> | |
da dvd d then ln (aprimedivisor da) else 0)" | |
by (rule sum.swap) | |
also have "\<dots> = sum (\<lambda>d. mangoldt d * floor (n/d)) {1..n}" | |
proof (rule sum.cong) | |
fix d assume d: "d \<in> {1..n}" | |
have "(\<Sum>da = 1..n. if primepow d \<and> d dvd da then ln (real (aprimedivisor d)) else 0) = | |
(\<Sum>da = 1..n. if d dvd da then mangoldt d else 0)" | |
by (intro sum.cong) (simp_all add: mangoldt_def) | |
also have "\<dots> = mangoldt d * real (card {x. x \<in> {1..n} \<and> d dvd x})" | |
by (subst sum.inter_filter [symmetric]) (simp_all add: algebra_simps) | |
also { | |
have "{x. x \<in> {1..n} \<and> d dvd x} = {x. \<exists>k \<in>{1..n div d}. x=k*d}" | |
proof safe | |
fix x assume "x \<in> {1..n}" "d dvd x" | |
thus "\<exists>k\<in>{1..n div d}. x = k * d" using divisors[of x n d] by auto | |
next | |
fix x k assume k: "k \<in> {1..n div d}" | |
from k have "k * d \<le> n div d * d" by (intro mult_right_mono) simp_all | |
also have "n div d * d \<le> n div d * d + n mod d" by (rule le_add1) | |
also have "\<dots> = n" by simp | |
finally have "k * d \<le> n" . | |
thus "k * d \<in> {1..n}" using d k by auto | |
qed auto | |
also have "\<dots> = (\<lambda>k. k*d) ` {1..n div d}" | |
by fast | |
also have "card \<dots> = card {1..n div d}" | |
by (rule card_image) (simp add: inj_on_def) | |
also have "\<dots> = n div d" | |
by simp | |
also have "... = \<lfloor>n / d\<rfloor>" | |
by (simp add: floor_divide_of_nat_eq) | |
finally have "real (card {x. x \<in> {1..n} \<and> d dvd x}) = real_of_int \<lfloor>n / d\<rfloor>" | |
by force | |
} | |
finally show "(\<Sum>da = 1..n. if primepow d \<and> d dvd da then ln (real (aprimedivisor d)) else 0) = | |
mangoldt d * real_of_int \<lfloor>real n / real d\<rfloor>" . | |
qed simp_all | |
finally have "(\<Sum>d=1..n. \<Sum>da=1..d. if primepow da \<and> | |
da dvd d then ln (aprimedivisor da) else 0) = | |
sum (\<lambda>d. mangoldt d * floor (n/d)) {1..n}" . | |
with ln_primefact have "(\<Sum>d=1..n. ln d) = | |
(\<Sum>d=1..n. mangoldt d * floor (n/d))" | |
by simp | |
with ln_fact show ?thesis | |
by simp | |
qed | |
end | |
context | |
begin | |
private lemma div_2_mult_2_bds: | |
fixes n d :: nat | |
assumes "d > 0" | |
shows "0 \<le> \<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor>" "\<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor> \<le> 1" | |
proof - | |
have "\<lfloor>2::real\<rfloor> * \<lfloor>(n div 2) / d\<rfloor> \<le> \<lfloor>2 * ((n div 2) / d)\<rfloor>" | |
by (rule le_mult_floor) simp_all | |
also from assms have "\<dots> \<le> \<lfloor>n / d\<rfloor>" by (intro floor_mono) (simp_all add: field_simps) | |
finally show "0 \<le> \<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor>" by (simp add: algebra_simps) | |
next | |
have "real (n div d) \<le> real (2 * ((n div 2) div d) + 1)" | |
by (subst div_mult2_eq [symmetric], simp only: mult.commute, subst div_mult2_eq) simp | |
thus "\<lfloor>n / d\<rfloor> - 2 * \<lfloor>(n div 2) / d\<rfloor> \<le> 1" | |
unfolding of_nat_add of_nat_mult floor_conv_div_nat [symmetric] by simp_all | |
qed | |
private lemma n_div_d_eq_1: "d \<in> {n div 2 + 1..n} \<Longrightarrow> \<lfloor>real n / real d\<rfloor> = 1" | |
by (cases "n = d") (auto simp: field_simps intro: floor_eq) | |
lemma psi_bounds_ln_fact: | |
shows "ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n" | |
"psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))" | |
proof - | |
fix n::nat | |
let ?k = "n div 2" and ?d = "n mod 2" | |
have *: "\<lfloor>?k / d\<rfloor> = 0" if "d > ?k" for d | |
proof - | |
from that div_less have "0 = ?k div d" by simp | |
also have "\<dots> = \<lfloor>?k / d\<rfloor>" by (rule floor_divide_of_nat_eq [symmetric]) | |
finally show "\<lfloor>?k / d\<rfloor> = 0" by simp | |
qed | |
have sum_eq: "(\<Sum>d=1..2*?k+?d. mangoldt d * \<lfloor>?k / d\<rfloor>) = (\<Sum>d=1..?k. mangoldt d * \<lfloor>?k / d\<rfloor>)" | |
by (intro sum.mono_neutral_right) (auto simp: *) | |
from ln_fact_conv_mangoldt have "ln (fact n) = (\<Sum>d=1..n. mangoldt d * \<lfloor>n / d\<rfloor>)" . | |
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * \<lfloor>(2 * (n div 2) + n mod 2) / d\<rfloor>)" | |
by simp | |
also have "\<dots> \<le> (\<Sum>d=1..n. mangoldt d * (2 * \<lfloor>?k / d\<rfloor> + 1))" | |
using div_2_mult_2_bds(2)[of _ n] | |
by (intro sum_mono mult_left_mono, subst of_int_le_iff) | |
(auto simp: algebra_simps mangoldt_nonneg) | |
also have "\<dots> = 2 * (\<Sum>d=1..n. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>) + (\<Sum>d=1..n. mangoldt d)" | |
by (simp add: algebra_simps sum.distrib sum_distrib_left) | |
also have "\<dots> = 2 * (\<Sum>d=1..2*?k+?d. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>) + (\<Sum>d=1..n. mangoldt d)" | |
by presburger | |
also from sum_eq have "\<dots> = 2 * (\<Sum>d=1..?k. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>) + (\<Sum>d=1..n. mangoldt d)" | |
by presburger | |
also from ln_fact_conv_mangoldt psi_def have "\<dots> = 2 * ln (fact ?k) + psi n" | |
by presburger | |
finally show "ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n" | |
by simp | |
next | |
fix n::nat | |
let ?k = "n div 2" and ?d = "n mod 2" | |
from psi_def have "psi n - psi ?k = (\<Sum>d=1..2*?k+?d. mangoldt d) - (\<Sum>d=1..?k. mangoldt d)" | |
by presburger | |
also have "\<dots> = sum mangoldt ({1..2 * (n div 2) + n mod 2} - {1..n div 2})" | |
by (subst sum_diff) simp_all | |
also have "\<dots> = (\<Sum>d\<in>({1..2 * (n div 2) + n mod 2} - {1..n div 2}). | |
(if d \<le> ?k then 0 else mangoldt d))" | |
by (intro sum.cong) simp_all | |
also have "\<dots> = (\<Sum>d=1..2*?k+?d. (if d \<le> ?k then 0 else mangoldt d))" | |
by (intro sum.mono_neutral_left) auto | |
also have "\<dots> = (\<Sum>d=1..n. (if d \<le> ?k then 0 else mangoldt d))" | |
by presburger | |
also have "\<dots> = (\<Sum>d=1..n. (if d \<le> ?k then mangoldt d * 0 else mangoldt d))" | |
by (intro sum.cong) simp_all | |
also from div_2_mult_2_bds(1) have "\<dots> \<le> (\<Sum>d=1..n. (if d \<le> ?k then mangoldt d * (\<lfloor>n/d\<rfloor> - 2 * \<lfloor>?k/d\<rfloor>) else mangoldt d))" | |
by (intro sum_mono) | |
(auto simp: algebra_simps mangoldt_nonneg intro!: mult_left_mono simp del: of_int_mult) | |
also from n_div_d_eq_1 have "\<dots> = (\<Sum>d=1..n. (if d \<le> ?k then mangoldt d * (\<lfloor>n/d\<rfloor> - 2 * \<lfloor>?k/d\<rfloor>) else mangoldt d * \<lfloor>n/d\<rfloor>))" | |
by (intro sum.cong refl) auto | |
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * real_of_int (\<lfloor>real n / real d\<rfloor>) - | |
(if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0))" | |
by (intro sum.cong refl) (auto simp: algebra_simps) | |
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * real_of_int (\<lfloor>real n / real d\<rfloor>)) - | |
(\<Sum>d=1..n. (if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0))" | |
by (rule sum_subtractf) | |
also have "(\<Sum>d=1..n. (if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0)) = | |
(\<Sum>d=1..?k. (if d \<le> ?k then 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor> else 0))" | |
by (intro sum.mono_neutral_right) auto | |
also have "\<dots> = (\<Sum>d=1..?k. 2 * mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor>)" | |
by (intro sum.cong) simp_all | |
also have "\<dots> = 2 * (\<Sum>d=1..?k. mangoldt d * real_of_int \<lfloor>real ?k / real d\<rfloor>)" | |
by (simp add: sum_distrib_left mult_ac) | |
also have "(\<Sum>d = 1..n. mangoldt d * real_of_int \<lfloor>real n / real d\<rfloor>) - \<dots> = | |
ln (fact n) - 2 * ln (fact (n div 2))" | |
by (simp add: ln_fact_conv_mangoldt) | |
finally show "psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))" . | |
qed | |
end | |
lemma psi_bounds_induct: | |
"real n * ln 2 - (4 * ln (real (if n = 0 then 1 else n)) + 3) \<le> psi n" | |
"psi n - psi (n div 2) \<le> real n * ln 2 + (4 * ln (real (if n = 0 then 1 else n)) + 3)" | |
proof - | |
from le_imp_neg_le[OF ln_fact_diff_bounds] | |
have "n * ln 2 - (4 * ln (if n = 0 then 1 else n) + 3) | |
\<le> n * ln 2 - abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)" | |
by simp | |
also have "\<dots> \<le> ln (fact n) - 2 * ln (fact (n div 2))" | |
by simp | |
also from psi_bounds_ln_fact (1) have "\<dots> \<le> psi n" | |
by simp | |
finally show "real n * ln 2 - (4 * ln (real (if n = 0 then 1 else n)) + 3) \<le> psi n" . | |
next | |
from psi_bounds_ln_fact (2) have "psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))" . | |
also have "\<dots> \<le> n * ln 2 + abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2)" | |
by simp | |
also from ln_fact_diff_bounds [of n] | |
have "abs(ln (fact n) - 2 * ln (fact (n div 2)) - n * ln 2) | |
\<le> (4 * ln (real (if n = 0 then 1 else n)) + 3)" by simp | |
finally show "psi n - psi (n div 2) \<le> real n * ln 2 + (4 * ln (real (if n = 0 then 1 else n)) + 3)" | |
by simp | |
qed | |
subsection \<open>Bounding the psi function\<close> | |
text \<open> | |
In this section, we will first prove the relatively tight estimate | |
@{prop "psi n \<le> 3 / 2 + ln 2 * n"} for @{term "n \<le> 128"} and then use the | |
recurrence we have just derived to extend it to @{prop "psi n \<le> 551 / 256"} for | |
@{term "n \<le> 1024"}, at which point applying the recurrence can be used to prove | |
the same bound for arbitrarily big numbers. | |
First of all, we will prove the bound for @{term "n <= 128"} using reflection and | |
approximation. | |
\<close> | |
context | |
begin | |
private lemma Ball_insertD: | |
assumes "\<forall>x\<in>insert y A. P x" | |
shows "P y" "\<forall>x\<in>A. P x" | |
using assms by auto | |
private lemma meta_eq_TrueE: "PROP A \<equiv> Trueprop True \<Longrightarrow> PROP A" | |
by simp | |
private lemma pre_mangoldt_pos: "pre_mangoldt n > 0" | |
unfolding pre_mangoldt_def by (auto simp: primepow_gt_Suc_0) | |
private lemma psi_conv_pre_mangoldt: "psi n = ln (real (prod pre_mangoldt {1..n}))" | |
by (auto simp: psi_def mangoldt_def pre_mangoldt_def ln_prod primepow_gt_Suc_0 intro!: sum.cong) | |
private lemma eval_psi_aux1: "psi 0 = ln (real (numeral Num.One))" | |
by (simp add: psi_def) | |
private lemma eval_psi_aux2: | |
assumes "psi m = ln (real (numeral x))" "pre_mangoldt n = y" "m + 1 = n" "numeral x * y = z" | |
shows "psi n = ln (real z)" | |
proof - | |
from assms(2) [symmetric] have [simp]: "y > 0" by (simp add: pre_mangoldt_pos) | |
have "psi n = psi (Suc m)" by (simp add: assms(3) [symmetric]) | |
also have "\<dots> = ln (real y * (\<Prod>x = Suc 0..m. real (pre_mangoldt x)))" | |
using assms(2,3) [symmetric] by (simp add: psi_conv_pre_mangoldt prod.nat_ivl_Suc' mult_ac) | |
also have "\<dots> = ln (real y) + psi m" | |
by (subst ln_mult) (simp_all add: pre_mangoldt_pos prod_pos psi_conv_pre_mangoldt) | |
also have "psi m = ln (real (numeral x))" by fact | |
also have "ln (real y) + \<dots> = ln (real (numeral x * y))" by (simp add: ln_mult) | |
finally show ?thesis by (simp add: assms(4) [symmetric]) | |
qed | |
private lemma Ball_atLeast0AtMost_doubleton: | |
assumes "psi 0 \<le> 3 / 2 * ln 2 * real 0" | |
assumes "psi 1 \<le> 3 / 2 * ln 2 * real 1" | |
shows "(\<forall>x\<in>{0..1}. psi x \<le> 3 / 2 * ln 2 * real x)" | |
using assms unfolding One_nat_def atLeast0_atMost_Suc ball_simps by auto | |
private lemma Ball_atLeast0AtMost_insert: | |
assumes "(\<forall>x\<in>{0..m}. psi x \<le> 3 / 2 * ln 2 * real x)" | |
assumes "psi (numeral n) \<le> 3 / 2 * ln 2 * real (numeral n)" "m = pred_numeral n" | |
shows "(\<forall>x\<in>{0..numeral n}. psi x \<le> 3 / 2 * ln 2 * real x)" | |
using assms | |
by (subst numeral_eq_Suc[of n], subst atLeast0_atMost_Suc, | |
subst ball_simps, simp only: numeral_eq_Suc [symmetric]) | |
private lemma eval_psi_ineq_aux: | |
assumes "psi n = x" "x \<le> 3 / 2 * ln 2 * n" | |
shows "psi n \<le> 3 / 2 * ln 2 * n" | |
using assms by simp_all | |
private lemma eval_psi_ineq_aux2: | |
assumes "numeral m ^ 2 \<le> (2::nat) ^ (3 * n)" | |
shows "ln (real (numeral m)) \<le> 3 / 2 * ln 2 * real n" | |
proof - | |
have "ln (real (numeral m)) \<le> 3 / 2 * ln 2 * real n \<longleftrightarrow> | |
2 * log 2 (real (numeral m)) \<le> 3 * real n" | |
by (simp add: field_simps log_def) | |
also have "2 * log 2 (real (numeral m)) = log 2 (real (numeral m ^ 2))" | |
by (subst of_nat_power, subst log_nat_power) simp_all | |
also have "\<dots> \<le> 3 * real n \<longleftrightarrow> real ((numeral m) ^ 2) \<le> 2 powr real (3 * n)" | |
by (subst Transcendental.log_le_iff) simp_all | |
also have "2 powr (3 * n) = real (2 ^ (3 * n))" | |
by (simp add: powr_realpow [symmetric]) | |
also have "real ((numeral m) ^ 2) \<le> \<dots> \<longleftrightarrow> numeral m ^ 2 \<le> (2::nat) ^ (3 * n)" | |
by (rule of_nat_le_iff) | |
finally show ?thesis using assms by blast | |
qed | |
private lemma eval_psi_ineq_aux_mono: | |
assumes "psi n = x" "psi m = x" "psi n \<le> 3 / 2 * ln 2 * n" "n \<le> m" | |
shows "psi m \<le> 3 / 2 * ln 2 * m" | |
proof - | |
from assms have "psi m = psi n" by simp | |
also have "\<dots> \<le> 3 / 2 * ln 2 * n" by fact | |
also from \<open>n \<le> m\<close> have "\<dots> \<le> 3 / 2 * ln 2 * m" by simp | |
finally show ?thesis . | |
qed | |
lemma not_primepow_1_nat: "\<not>primepow (1 :: nat)" by auto | |
ML_file \<open>bertrand.ML\<close> | |
(* This should not take more than 1 minute *) | |
local_setup \<open>fn lthy => | |
let | |
fun tac ctxt = | |
let | |
val psi_cache = Bertrand.prove_psi ctxt 129 | |
fun prove_psi_ineqs ctxt = | |
let | |
fun tac goal_ctxt = | |
HEADGOAL (resolve_tac goal_ctxt @{thms eval_psi_ineq_aux2} THEN' | |
Simplifier.simp_tac goal_ctxt) | |
fun prove_by_approx n thm = | |
let | |
val thm = thm RS @{thm eval_psi_ineq_aux} | |
val [prem] = Thm.prems_of thm | |
val prem = Goal.prove ctxt [] [] prem (tac o #context) | |
in | |
prem RS thm | |
end | |
fun prove_by_mono last_thm last_thm' thm = | |
let | |
val thm = @{thm eval_psi_ineq_aux_mono} OF [last_thm, thm, last_thm'] | |
val [prem] = Thm.prems_of thm | |
val prem = | |
Goal.prove ctxt [] [] prem (fn {context = goal_ctxt, ...} => | |
HEADGOAL (Simplifier.simp_tac goal_ctxt)) | |
in | |
prem RS thm | |
end | |
fun go _ acc [] = acc | |
| go last acc ((n, x, thm) :: xs) = | |
let | |
val thm' = | |
case last of | |
NONE => prove_by_approx n thm | |
| SOME (last_x, last_thm, last_thm') => | |
if last_x = x then | |
prove_by_mono last_thm last_thm' thm | |
else | |
prove_by_approx n thm | |
in | |
go (SOME (x, thm, thm')) (thm' :: acc) xs | |
end | |
in | |
rev o go NONE [] | |
end | |
val psi_ineqs = prove_psi_ineqs ctxt psi_cache | |
fun prove_ball ctxt (thm1 :: thm2 :: thms) = | |
let | |
val thm = @{thm Ball_atLeast0AtMost_doubleton} OF [thm1, thm2] | |
fun solve_prem thm = | |
let | |
val thm' = | |
Goal.prove ctxt [] [] (Thm.cprem_of thm 1 |> Thm.term_of) | |
(fn {context = goal_ctxt, ...} => | |
HEADGOAL (Simplifier.simp_tac goal_ctxt)) | |
in | |
thm' RS thm | |
end | |
fun go thm thm' = (@{thm Ball_atLeast0AtMost_insert} OF [thm', thm]) |> solve_prem | |
in | |
fold go thms thm | |
end | |
| prove_ball _ _ = raise Match | |
in | |
HEADGOAL (resolve_tac ctxt [prove_ball ctxt psi_ineqs]) | |
end | |
val thm = Goal.prove lthy [] [] @{prop "\<forall>n\<in>{0..128}. psi n \<le> 3 / 2 * ln 2 * n"} (tac o #context) | |
in | |
Local_Theory.note ((@{binding psi_ubound_log_128}, []), [thm]) lthy |> snd | |
end | |
\<close> | |
end | |
context | |
begin | |
private lemma psi_ubound_aux: | |
defines "f \<equiv> \<lambda>x::real. (4 * ln x + 3) / (ln 2 * x)" | |
assumes "x \<ge> 2" "x \<le> y" | |
shows "f x \<ge> f y" | |
using assms(3) | |
proof (rule DERIV_nonpos_imp_nonincreasing, goal_cases) | |
case (1 t) | |
define f' where "f' = (\<lambda>x. (1 - 4 * ln x) / x^2 / ln 2 :: real)" | |
from 1 assms(2) have "(f has_real_derivative f' t) (at t)" unfolding f_def f'_def | |
by (auto intro!: derivative_eq_intros simp: field_simps power2_eq_square) | |
moreover { | |
from ln_2_ge have "1/4 \<le> ln (2::real)" by simp | |
also from assms(2) 1 have "\<dots> \<le> ln t" by simp | |
finally have "ln t \<ge> 1/4" . | |
} | |
with 1 assms(2) have "f' t \<le> 0" by (simp add: f'_def field_simps) | |
ultimately show ?case by (intro exI[of _ "f' t"]) simp_all | |
qed | |
text \<open> | |
These next rules are used in combination with @{thm psi_bounds_induct} and | |
@{thm psi_ubound_log_128} to extend the upper bound for @{term "psi"} from values no greater | |
than 128 to values no greater than 1024. The constant factor of the upper bound changes every | |
time, but once we have reached 1024, the recurrence is self-sustaining in the sense that we do | |
not have to adjust the constant factor anymore in order to double the range. | |
\<close> | |
lemma psi_ubound_log_double_cases': | |
assumes "\<And>n. n \<le> m \<Longrightarrow> psi n \<le> c * ln 2 * real n" "n \<le> m'" "m' = 2*m" | |
"c \<le> c'" "c \<ge> 0" "m \<ge> 1" "c' \<ge> 1 + c/2 + (4 * ln (m+1) + 3) / (ln 2 * (m+1))" | |
shows "psi n \<le> c' * ln 2 * real n" | |
proof (cases "n > m") | |
case False | |
hence "psi n \<le> c * ln 2 * real n" by (intro assms) simp_all | |
also have "c \<le> c'" by fact | |
finally show ?thesis by - (simp_all add: mult_right_mono) | |
next | |
case True | |
hence n: "n \<ge> m+1" by simp | |
from psi_bounds_induct(2)[of n] True | |
have "psi n \<le> real n * ln 2 + 4 * ln (real n) + 3 + psi (n div 2)" by simp | |
also from assms have "psi (n div 2) \<le> c * ln 2 * real (n div 2)" | |
by (intro assms) simp_all | |
also have "real (n div 2) \<le> real n / 2" by simp | |
also have "c * ln 2 * \<dots> = c / 2 * ln 2 * real n" by simp | |
also have "real n * ln 2 + 4 * ln (real n) + 3 + \<dots> = | |
(1 + c/2) * ln 2 * real n + (4 * ln (real n) + 3)" by (simp add: field_simps) | |
also { | |
have "(4 * ln (real n) + 3) / (ln 2 * (real n)) \<le> (4 * ln (m+1) + 3) / (ln 2 * (m+1))" | |
using n assms by (intro psi_ubound_aux) simp_all | |
also from assms have "(4 * ln (m+1) + 3) / (ln 2 * (m+1)) \<le> c' - 1 - c/2" | |
by (simp add: algebra_simps) | |
finally have "4 * ln (real n) + 3 \<le> (c' - 1 - c/2) * ln 2 * real n" | |
using n by (simp add: field_simps) | |
} | |
also have "(1 + c / 2) * ln 2 * real n + (c' - 1 - c / 2) * ln 2 * real n = c' * ln 2 * real n" | |
by (simp add: field_simps) | |
finally show ?thesis using \<open>c \<ge> 0\<close> by (simp_all add: mult_left_mono) | |
qed | |
end | |
lemma psi_ubound_log_double_cases: | |
assumes "\<forall>n\<le>m. psi n \<le> c * ln 2 * real n" | |
"c' \<ge> 1 + c/2 + (4 * ln (m+1) + 3) / (ln 2 * (m+1))" | |
"m' = 2*m" "c \<le> c'" "c \<ge> 0" "m \<ge> 1" | |
shows "\<forall>n\<le>m'. psi n \<le> c' * ln 2 * real n" | |
using assms(1) by (intro allI impI assms psi_ubound_log_double_cases'[of m c _ m' c']) auto | |
lemma psi_ubound_log_1024: | |
"\<forall>n\<le>1024. psi n \<le> 551 / 256 * ln 2 * real n" | |
proof - | |
from psi_ubound_log_128 have "\<forall>n\<le>128. psi n \<le> 3 / 2 * ln 2 * real n" by simp | |
hence "\<forall>n\<le>256. psi n \<le> 1025 / 512 * ln 2 * real n" | |
proof (rule psi_ubound_log_double_cases, goal_cases) | |
case 1 | |
have "Some (Float 624 (- 7)) = ub_ln 9 129" by code_simp | |
from ub_ln(1)[OF this] and ln_2_ge show ?case by (simp add: field_simps) | |
qed simp_all | |
hence "\<forall>n\<le>512. psi n \<le> 549 / 256 * ln 2 * real n" | |
proof (rule psi_ubound_log_double_cases, goal_cases) | |
case 1 | |
have "Some (Float 180 (- 5)) = ub_ln 7 257" by code_simp | |
from ub_ln(1)[OF this] and ln_2_ge show ?case by (simp add: field_simps) | |
qed simp_all | |
thus "\<forall>n\<le>1024. psi n \<le> 551 / 256 * ln 2 * real n" | |
proof (rule psi_ubound_log_double_cases, goal_cases) | |
case 1 | |
have "Some (Float 203 (- 5)) = ub_ln 7 513" by code_simp | |
from ub_ln(1)[OF this] and ln_2_ge show ?case by (simp add: field_simps) | |
qed simp_all | |
qed | |
lemma psi_bounds_sustained_induct: | |
assumes "4 * ln (1 + 2 ^ j) + 3 \<le> d * ln 2 * (1 + 2^j)" | |
assumes "4 / (1 + 2^j) \<le> d * ln 2" | |
assumes "0 \<le> c" | |
assumes "c / 2 + d + 1 \<le> c" | |
assumes "j \<le> k" | |
assumes "\<And>n. n \<le> 2^k \<Longrightarrow> psi n \<le> c * ln 2 * n" | |
assumes "n \<le> 2^(Suc k)" | |
shows "psi n \<le> c * ln 2 * n" | |
proof (cases "n \<le> 2^k") | |
case True | |
with assms(6) show ?thesis . | |
next | |
case False | |
from psi_bounds_induct(2) | |
have "psi n - psi (n div 2) \<le> real n * ln 2 + (4 * ln (real (if n = 0 then 1 else n)) + 3)" . | |
also from False have "(if n = 0 then 1 else n) = n" | |
by simp | |
finally have "psi n \<le> real n * ln 2 + (4 * ln (real n) + 3) + psi (n div 2)" | |
by simp | |
also from assms(6,7) have "psi (n div 2) \<le> c * ln 2 * (n div 2)" | |
by simp | |
also have "real (n div 2) \<le> real n / 2" | |
by simp | |
also have "real n * ln 2 + (4 * ln (real n) + 3) + c * ln 2 * (n / 2) \<le> c * ln 2 * real n" | |
proof (rule overpower_lemma[of | |
"\<lambda>x. x * ln 2 + (4 * ln x + 3) + c * ln 2 * (x / 2)" "1+2^j" | |
"\<lambda>x. c * ln 2 * x" "\<lambda>x. c * ln 2 - ln 2 - 4 / x - c / 2 * ln 2" | |
"real n"]) | |
from assms(1) have "4 * ln (1 + 2^j) + 3 \<le> d * ln 2 * (1 + 2^j)" . | |
also from assms(4) have "d \<le> c - c/2 - 1" | |
by simp | |
also have "(\<dots>) * ln 2 * (1 + 2 ^ j) = c * ln 2 * (1 + 2 ^ j) - c / 2 * ln 2 * (1 + 2 ^ j) | |
- (1 + 2 ^ j) * ln 2" | |
by (simp add: left_diff_distrib) | |
finally have "4 * ln (1 + 2^j) + 3 \<le> c * ln 2 * (1 + 2 ^ j) - c / 2 * ln 2 * (1 + 2 ^ j) | |
- (1 + 2 ^ j) * ln 2" | |
by (simp add: add_pos_pos) | |
then show "(1 + 2 ^ j) * ln 2 + (4 * ln (1 + 2 ^ j) + 3) | |
+ c * ln 2 * ((1 + 2 ^ j) / 2) \<le> c * ln 2 * (1 + 2 ^ j)" | |
by simp | |
next | |
fix x::real | |
assume x: "1 + 2^j \<le> x" | |
moreover have "1 + 2 ^ j > (0::real)" by (simp add: add_pos_pos) | |
ultimately have x_pos: "x > 0" by linarith | |
show "((\<lambda>x. c * ln 2 * x - (x * ln 2 + (4 * ln x + 3) + c * ln 2 * (x / 2))) | |
has_real_derivative c * ln 2 - ln 2 - 4 / x - c / 2 * ln 2) (at x)" | |
by (rule derivative_eq_intros refl | simp add: \<open>0 < x\<close>)+ | |
from \<open>0 < x\<close> \<open>0 < 1 + 2^j\<close> have "0 < x * (1 + 2^j)" | |
by (rule mult_pos_pos) | |
have "4 / x \<le> 4 / (1 + 2^j)" | |
by (intro divide_left_mono mult_pos_pos add_pos_pos x x_pos) simp_all | |
also from assms(2) have "4 / (1 + 2^j) \<le> d * ln 2" . | |
also from assms(4) have "d \<le> c - c/2 - 1" by simp | |
also have "\<dots> * ln 2 = c * ln 2 - c/2 * ln 2 - ln 2" by (simp add: algebra_simps) | |
finally show "0 \<le> c * ln 2 - ln 2 - 4 / x - c / 2 * ln 2" by simp | |
next | |
have "1 + 2^j = real (1 + 2^j)" by simp | |
also from assms(5) have "\<dots> \<le> real (1 + 2^k)" by simp | |
also from False have "2^k \<le> n - 1" by simp | |
finally show "1 + 2^j \<le> real n" using False by simp | |
qed | |
finally show ?thesis using assms by - (simp_all add: mult_left_mono) | |
qed | |
lemma psi_bounds_sustained: | |
assumes "\<And>n. n \<le> 2^k \<Longrightarrow> psi n \<le> c * ln 2 * n" | |
assumes "4 * ln (1 + 2^k) + 3 \<le> (c/2 - 1) * ln 2 * (1 + 2^k)" | |
assumes "4 / (1 + 2^k) \<le> (c/2 - 1) * ln 2" | |
assumes "c \<ge> 0" | |
shows "psi n \<le> c * ln 2 * n" | |
proof - | |
have "psi n \<le> c * ln 2 * n" if "n \<le> 2^j" for j n | |
using that | |
proof (induction j arbitrary: n) | |
case 0 | |
with assms(4) 0 show ?case unfolding psi_def mangoldt_def by (cases n) auto | |
next | |
case (Suc j) | |
show ?case | |
proof (cases "k \<le> j") | |
case True | |
from assms(4) have c_div_2: "c/2 + (c/2 - 1) + 1 \<le> c" | |
by simp | |
from psi_bounds_sustained_induct[of k "c/2 -1" c j, | |
OF assms(2) assms(3) assms(4) c_div_2 True Suc.IH Suc.prems] | |
show ?thesis by simp | |
next | |
case False | |
then have j_lt_k: "Suc j \<le> k" by simp | |
from Suc.prems have "n \<le> 2 ^ Suc j" . | |
also have "(2::nat) ^ Suc j \<le> 2 ^ k" | |
using power_increasing[of "Suc j" k "2::nat", OF j_lt_k] | |
by simp | |
finally show ?thesis using assms(1) by simp | |
qed | |
qed | |
from less_exp this [of n n] show ?thesis by simp | |
qed | |
lemma psi_ubound_log: "psi n \<le> 551 / 256 * ln 2 * n" | |
proof (rule psi_bounds_sustained) | |
show "0 \<le> 551 / (256 :: real)" by simp | |
next | |
fix n :: nat assume "n \<le> 2 ^ 10" | |
with psi_ubound_log_1024 show "psi n \<le> 551 / 256 * ln 2 * real n" by auto | |
next | |
have "4 / (1 + 2 ^ 10) \<le> (551 / 256 / 2 - 1) * (2/3 :: real)" | |
by simp | |
also have "\<dots> \<le> (551 / 256 / 2 - 1) * ln 2" | |
by (intro mult_left_mono ln_2_ge') simp_all | |
finally show "4 / (1 + 2 ^ 10) \<le> (551 / 256 / 2 - 1) * ln (2 :: real)" . | |
next | |
have "Some (Float 16 (-1)) = ub_ln 3 1025" by code_simp | |
from ub_ln(1)[OF this] and ln_2_ge | |
have "2048 * ln 1025 + 1536 \<le> 39975 * (ln 2::real)" by simp | |
thus "4 * ln (1 + 2 ^ 10) + 3 \<le> (551 / 256 / 2 - 1) * ln 2 * (1 + 2 ^ 10 :: real)" | |
by simp | |
qed | |
lemma psi_ubound_3_2: "psi n \<le> 3/2 * n" | |
proof - | |
have "(551 / 256) * ln 2 \<le> (551 / 256) * (16/23 :: real)" | |
by (intro mult_left_mono ln_2_le') auto | |
also have "\<dots> \<le> 3 / 2" by simp | |
finally have "551 / 256 * ln 2 \<le> 3/(2::real)" . | |
with of_nat_0_le_iff mult_right_mono have "551 / 256 * ln 2 * n \<le> 3/2 * n" | |
by blast | |
with psi_ubound_log[of "n"] show ?thesis | |
by linarith | |
qed | |
subsection \<open>Doubling psi and theta\<close> | |
lemma psi_residues_compare_2: | |
"psi_odd_2 n \<le> psi_even_2 n" | |
proof - | |
have "psi_odd_2 n = (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_odd d}. mangoldt_odd d)" | |
unfolding mangoldt_odd_def by (rule sum.mono_neutral_right) auto | |
also have "\<dots> = (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_odd d}. ln (real (aprimedivisor d)))" | |
by (intro sum.cong refl) (simp add: mangoldt_odd_def) | |
also have "\<dots> \<le> (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_even d}. ln (real (aprimedivisor d)))" | |
proof (rule sum_le_included [where i = "\<lambda>y. y * aprimedivisor y"]; clarify?) | |
fix d :: nat assume "d \<in> {2..n}" "primepow_odd d" | |
note d = this | |
then obtain p k where d': "k \<ge> 1" "prime p" "d = p ^ (2*k+1)" | |
by (auto simp: primepow_odd_def) | |
from d' have "p ^ (2 * k) \<le> p ^ (2 * k + 1)" | |
by (subst power_increasing_iff) (auto simp: prime_gt_Suc_0_nat) | |
also from d d' have "\<dots> \<le> n" by simp | |
finally have "p ^ (2 * k) \<le> n" . | |
moreover from d' have "p ^ (2 * k) > 1" | |
by (intro one_less_power) (simp_all add: prime_gt_Suc_0_nat) | |
ultimately have "p ^ (2 * k) \<in> {2..n}" by simp | |
moreover from d' have "primepow_even (p ^ (2 * k))" | |
by (auto simp: primepow_even_def) | |
ultimately show "\<exists>y\<in>{d \<in> {2..n}. primepow_even d}. y * aprimedivisor y = d \<and> | |
ln (real (aprimedivisor d)) \<le> ln (real (aprimedivisor y))" using d' | |
by (intro bexI[of _ "p ^ (2 * k)"]) | |
(auto simp: aprimedivisor_prime_power aprimedivisor_primepow) | |
qed (simp_all add: of_nat_ge_1_iff Suc_le_eq) | |
also have "\<dots> = (\<Sum>d\<in>{d. d \<in> {2..n} \<and> primepow_even d}. mangoldt_even d)" | |
by (intro sum.cong refl) (simp add: mangoldt_even_def) | |
also have "\<dots> = psi_even_2 n" | |
unfolding mangoldt_even_def by (rule sum.mono_neutral_left) auto | |
finally show ?thesis . | |
qed | |
lemma psi_residues_compare: | |
"psi_odd n \<le> psi_even n" | |
proof - | |
have "\<not> primepow_odd 1" by (simp add: primepow_odd_def) | |
hence *: "mangoldt_odd 1 = 0" by (simp add: mangoldt_odd_def) | |
have "\<not> primepow_even 1" | |
using primepow_gt_Suc_0[OF primepow_even_imp_primepow, of 1] by auto | |
with mangoldt_even_def have **: "mangoldt_even 1 = 0" | |
by simp | |
from psi_odd_def have "psi_odd n = (\<Sum>d=1..n. mangoldt_odd d)" | |
by simp | |
also from * have "\<dots> = psi_odd_2 n" | |
by (cases "n \<ge> 1") (simp_all add: eval_nat_numeral sum.atLeast_Suc_atMost) | |
also from psi_residues_compare_2 have "\<dots> \<le> psi_even_2 n" . | |
also from ** have "\<dots> = psi_even n" | |
by (cases "n \<ge> 1") (simp_all add: eval_nat_numeral sum.atLeast_Suc_atMost psi_even_def) | |
finally show ?thesis . | |
qed | |
lemma primepow_iff_even_sqr: | |
"primepow n \<longleftrightarrow> primepow_even (n^2)" | |
by (cases "n = 0") | |
(auto simp: primepow_even_altdef aprimedivisor_primepow_power primepow_power_iff_nat | |
prime_elem_multiplicity_power_distrib prime_aprimedivisor' prime_imp_prime_elem | |
unit_factor_nat_def primepow_gt_0_nat dest: primepow_gt_Suc_0) | |
lemma psi_sqrt: "psi (Discrete.sqrt n) = psi_even n" | |
proof (induction n) | |
case 0 | |
with psi_def psi_even_def show ?case by simp | |
next | |
case (Suc n) | |
then show ?case | |
proof cases | |
assume asm: "\<exists> m. Suc n = m^2" | |
with sqrt_Suc have sqrt_seq: "Discrete.sqrt(Suc n) = Suc(Discrete.sqrt n)" | |
by simp | |
from asm obtain "m" where " Suc n = m^2" | |
by blast | |
with sqrt_seq have "Suc(Discrete.sqrt n) = m" | |
by simp | |
with \<open>Suc n = m^2\<close> have suc_sqrt_n_sqrt: "(Suc(Discrete.sqrt n))^2 = Suc n" | |
by simp | |
from sqrt_seq have "psi (Discrete.sqrt (Suc n)) = psi (Suc (Discrete.sqrt n))" | |
by simp | |
also from psi_def have "\<dots> = psi (Discrete.sqrt n) + mangoldt (Suc (Discrete.sqrt n))" | |
by simp | |
also from Suc.IH have "psi (Discrete.sqrt n) = psi_even n" . | |
also have "mangoldt (Suc (Discrete.sqrt n)) = mangoldt_even (Suc n)" | |
proof (cases "primepow (Suc(Discrete.sqrt n))") | |
case True | |
with primepow_iff_even_sqr have True2: "primepow_even ((Suc(Discrete.sqrt n))^2)" | |
by simp | |
from suc_sqrt_n_sqrt have "mangoldt_even (Suc n) = mangoldt_even ((Suc(Discrete.sqrt n))^2)" | |
by simp | |
also from mangoldt_even_def True2 | |
have "\<dots> = ln (aprimedivisor ((Suc (Discrete.sqrt n))^2))" | |
by simp | |
also from True have "aprimedivisor ((Suc (Discrete.sqrt n))^2) = aprimedivisor (Suc (Discrete.sqrt n))" | |
by (simp add: aprimedivisor_primepow_power) | |
also from True have "ln (\<dots>) = mangoldt (Suc (Discrete.sqrt n))" | |
by (simp add: mangoldt_def) | |
finally show ?thesis .. | |
next | |
case False | |
with primepow_iff_even_sqr | |
have False2: "\<not> primepow_even ((Suc(Discrete.sqrt n))^2)" | |
by simp | |
from suc_sqrt_n_sqrt have "mangoldt_even (Suc n) = mangoldt_even ((Suc(Discrete.sqrt n))^2)" | |
by simp | |
also from mangoldt_even_def False2 | |
have "\<dots> = 0" | |
by simp | |
also from False have "\<dots> = mangoldt (Suc (Discrete.sqrt n))" | |
by (simp add: mangoldt_def) | |
finally show ?thesis .. | |
qed | |
also from psi_even_def have "psi_even n + mangoldt_even (Suc n) = psi_even (Suc n)" | |
by simp | |
finally show ?case . | |
next | |
assume asm: "\<not>(\<exists>m. Suc n = m^2)" | |
with sqrt_Suc have sqrt_eq: "Discrete.sqrt (Suc n) = Discrete.sqrt n" | |
by simp | |
then have lhs: "psi (Discrete.sqrt (Suc n)) = psi (Discrete.sqrt n)" | |
by simp | |
have "\<not> primepow_even (Suc n)" | |
proof | |
assume "primepow_even (Suc n)" | |
with primepow_even_def obtain "p" "k" | |
where "1 \<le> k \<and> prime p \<and> Suc n = p ^ (2 * k)" | |
by blast | |
with power_even_eq have "Suc n = (p ^ k)^2" | |
by simp | |
with asm show False by blast | |
qed | |
with psi_even_def mangoldt_even_def | |
have rhs: "psi_even (Suc n) = psi_even n" | |
by simp | |
from Suc.IH lhs rhs show ?case | |
by simp | |
qed | |
qed | |
lemma mangoldt_split: | |
"mangoldt d = mangoldt_1 d + mangoldt_even d + mangoldt_odd d" | |
proof (cases "primepow d") | |
case False | |
thus ?thesis | |
by (auto simp: mangoldt_def mangoldt_1_def mangoldt_even_def mangoldt_odd_def | |
dest: primepow_even_imp_primepow primepow_odd_imp_primepow) | |
next | |
case True | |
thus ?thesis | |
by (auto simp: mangoldt_def mangoldt_1_def mangoldt_even_def mangoldt_odd_def primepow_cases) | |
qed | |
lemma psi_split: "psi n = theta n + psi_even n + psi_odd n" | |
by (induction n) | |
(simp_all add: psi_def theta_def psi_even_def psi_odd_def mangoldt_1_def mangoldt_split) | |
lemma psi_mono: "m \<le> n \<Longrightarrow> psi m \<le> psi n" unfolding psi_def | |
by (intro sum_mono2 mangoldt_nonneg) auto | |
lemma psi_pos: "0 \<le> psi n" | |
by (auto simp: psi_def intro!: sum_nonneg mangoldt_nonneg) | |
lemma mangoldt_odd_pos: "0 \<le> mangoldt_odd d" | |
using aprimedivisor_gt_Suc_0[of d] | |
by (auto simp: mangoldt_odd_def of_nat_le_iff[of 1, unfolded of_nat_1] Suc_le_eq | |
intro!: ln_ge_zero dest!: primepow_odd_imp_primepow primepow_gt_Suc_0) | |
lemma psi_odd_mono: "m \<le> n \<Longrightarrow> psi_odd m \<le> psi_odd n" | |
using mangoldt_odd_pos sum_mono2[of "{1..n}" "{1..m}" "mangoldt_odd"] | |
by (simp add: psi_odd_def) | |
lemma psi_odd_pos: "0 \<le> psi_odd n" | |
by (auto simp: psi_odd_def intro!: sum_nonneg mangoldt_odd_pos) | |
lemma psi_theta: | |
"theta n + psi (Discrete.sqrt n) \<le> psi n" "psi n \<le> theta n + 2 * psi (Discrete.sqrt n)" | |
using psi_odd_pos[of n] psi_residues_compare[of n] psi_sqrt[of n] psi_split[of n] | |
by simp_all | |
context | |
begin | |
private lemma sum_minus_one: | |
"(\<Sum>x \<in> {1..y}. (- 1 :: real) ^ (x + 1)) = (if odd y then 1 else 0)" | |
by (induction y) simp_all | |
private lemma div_invert: | |
fixes x y n :: nat | |
assumes "x > 0" "y > 0" "y \<le> n div x" | |
shows "x \<le> n div y" | |
proof - | |
from assms(1,3) have "y * x \<le> (n div x) * x" | |
by simp | |
also have "\<dots> \<le> n" | |
by (simp add: minus_mod_eq_div_mult[symmetric]) | |
finally have "y * x \<le> n" . | |
with assms(2) show ?thesis | |
using div_le_mono[of "y*x" n y] by simp | |
qed | |
lemma sum_expand_lemma: | |
"(\<Sum>d=1..n. (-1) ^ (d + 1) * psi (n div d)) = | |
(\<Sum>d = 1..n. (if odd (n div d) then 1 else 0) * mangoldt d)" | |
proof - | |
have **: "x \<le> n" if "x \<le> n div y" for x y | |
using div_le_dividend order_trans that by blast | |
have "(\<Sum>d=1..n. (-1)^(d+1) * psi (n div d)) = | |
(\<Sum>d=1..n. (-1)^(d+1) * (\<Sum>e=1..n div d. mangoldt e))" | |
by (simp add: psi_def) | |
also have "\<dots> = (\<Sum>d = 1..n. \<Sum>e = 1..n div d. (-1)^(d+1) * mangoldt e)" | |
by (simp add: sum_distrib_left) | |
also from ** have "\<dots> = (\<Sum>d = 1..n. \<Sum>e\<in>{y\<in>{1..n}. y \<le> n div d}. (-1)^(d+1) * mangoldt e)" | |
by (intro sum.cong) auto | |
also have "\<dots> = (\<Sum>y = 1..n. \<Sum>x | x \<in> {1..n} \<and> y \<le> n div x. (- 1) ^ (x + 1) * mangoldt y)" | |
by (rule sum.swap_restrict) simp_all | |
also have "\<dots> = (\<Sum>y = 1..n. \<Sum>x | x \<in> {1..n} \<and> x \<le> n div y. (- 1) ^ (x + 1) * mangoldt y)" | |
by (intro sum.cong) (auto intro: div_invert) | |
also from ** have "\<dots> = (\<Sum>y = 1..n. \<Sum>x \<in> {1..n div y}. (- 1) ^ (x + 1) * mangoldt y)" | |
by (intro sum.cong) auto | |
also have "\<dots> = (\<Sum>y = 1..n. (\<Sum>x \<in> {1..n div y}. (- 1) ^ (x + 1)) * mangoldt y)" | |
by (intro sum.cong) (simp_all add: sum_distrib_right) | |
also have "\<dots> = (\<Sum>y = 1..n. (if odd (n div y) then 1 else 0) * mangoldt y)" | |
by (intro sum.cong refl) (simp_all only: sum_minus_one) | |
finally show ?thesis . | |
qed | |
private lemma floor_half_interval: | |
fixes n d :: nat | |
assumes "d \<noteq> 0" | |
shows "real (n div d) - real (2 * ((n div 2) div d)) = (if odd (n div d) then 1 else 0)" | |
proof - | |
have "((n div 2) div d) = (n div (2 * d))" | |
by (rule div_mult2_eq[symmetric]) | |
also have "\<dots> = ((n div d) div 2)" | |
by (simp add: mult_ac div_mult2_eq) | |
also have "real (n div d) - real (2 * \<dots>) = (if odd (n div d) then 1 else 0)" | |
by (cases "odd (n div d)", cases "n div d = 0 ", simp_all) | |
finally show ?thesis by simp | |
qed | |
lemma fact_expand_psi: | |
"ln (fact n) - 2 * ln (fact (n div 2)) = (\<Sum>d=1..n. (-1)^(d+1) * psi (n div d))" | |
proof - | |
have "ln (fact n) - 2 * ln (fact (n div 2)) = | |
(\<Sum>d=1..n. mangoldt d * \<lfloor>n / d\<rfloor>) - 2 * (\<Sum>d=1..n div 2. mangoldt d * \<lfloor>(n div 2) / d\<rfloor>)" | |
by (simp add: ln_fact_conv_mangoldt) | |
also have "(\<Sum>d=1..n div 2. mangoldt d * \<lfloor>real (n div 2) / d\<rfloor>) = | |
(\<Sum>d=1..n. mangoldt d * \<lfloor>real (n div 2) / d\<rfloor>)" | |
by (rule sum.mono_neutral_left) (auto simp: floor_unique[of 0]) | |
also have "2 * \<dots> = (\<Sum>d=1..n. mangoldt d * 2 * \<lfloor>real (n div 2) / d\<rfloor>)" | |
by (simp add: sum_distrib_left mult_ac) | |
also have "(\<Sum>d=1..n. mangoldt d * \<lfloor>n / d\<rfloor>) - \<dots> = | |
(\<Sum>d=1..n. (mangoldt d * \<lfloor>n / d\<rfloor> - mangoldt d * 2 * \<lfloor>real (n div 2) / d\<rfloor>))" | |
by (simp add: sum_subtractf) | |
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * (\<lfloor>n / d\<rfloor> - 2 * \<lfloor>real (n div 2) / d\<rfloor>))" | |
by (simp add: algebra_simps) | |
also have "\<dots> = (\<Sum>d=1..n. mangoldt d * (if odd(n div d) then 1 else 0))" | |
by (intro sum.cong refl) | |
(simp_all add: floor_conv_div_nat [symmetric] floor_half_interval [symmetric]) | |
also have "\<dots> = (\<Sum>d=1..n. (if odd(n div d) then 1 else 0) * mangoldt d)" | |
by (simp add: mult_ac) | |
also from sum_expand_lemma[symmetric] have "\<dots> = (\<Sum>d=1..n. (-1)^(d+1) * psi (n div d))" . | |
finally show ?thesis . | |
qed | |
end | |
lemma psi_expansion_cutoff: | |
assumes "m \<le> p" | |
shows "(\<Sum>d=1..2*m. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*p. (-1)^(d+1) * psi (n div d))" | |
"(\<Sum>d=1..2*p+1. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*m+1. (-1)^(d+1) * psi (n div d))" | |
using assms | |
proof (induction m rule: inc_induct) | |
case (step k) | |
have "(\<Sum>d = 1..2 * k. (-1)^(d + 1) * psi (n div d)) \<le> | |
(\<Sum>d = 1..2 * Suc k. (-1)^(d + 1) * psi (n div d))" | |
by (simp add: psi_mono div_le_mono2) | |
with step.IH(1) | |
show "(\<Sum>d = 1..2 * k. (-1)^(d + 1) * psi (n div d)) | |
\<le> (\<Sum>d = 1..2 * p. (-1)^(d + 1) * psi (n div d))" | |
by simp | |
from step.IH(2) | |
have "(\<Sum>d = 1..2 * p + 1. (-1)^(d + 1) * psi (n div d)) | |
\<le> (\<Sum>d = 1..2 * Suc k + 1. (-1)^(d + 1) * psi (n div d))" . | |
also have "\<dots> \<le> (\<Sum>d = 1..2 * k + 1. (-1)^(d + 1) * psi (n div d))" | |
by (simp add: psi_mono div_le_mono2) | |
finally show "(\<Sum>d = 1..2 * p + 1. (-1)^(d + 1) * psi (n div d)) | |
\<le> (\<Sum>d = 1..2 * k + 1. (-1)^(d + 1) * psi (n div d))" . | |
qed simp_all | |
lemma fact_psi_bound_even: | |
assumes "even k" | |
shows "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) \<le> ln (fact n) - 2 * ln (fact (n div 2))" | |
proof - | |
have "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))" | |
proof (cases "k \<le> n") | |
case True | |
with psi_expansion_cutoff(1)[of "k div 2" "n div 2" n] | |
have "(\<Sum>d=1..2*(k div 2). (-1)^(d+1) * psi (n div d)) | |
\<le> (\<Sum>d = 1..2*(n div 2). (- 1) ^ (d + 1) * psi (n div d))" | |
by simp | |
also from assms have "2*(k div 2) = k" | |
by simp | |
also have "(\<Sum>d = 1..2*(n div 2). (- 1) ^ (d + 1) * psi (n div d)) | |
\<le> (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))" | |
proof (cases "even n") | |
case True | |
then show ?thesis | |
by simp | |
next | |
case False | |
from psi_pos have "(\<Sum>d = 1..2*(n div 2). (- 1) ^ (d + 1) * psi (n div d)) | |
\<le> (\<Sum>d = 1..2*(n div 2) + 1. (- 1) ^ (d + 1) * psi (n div d))" | |
by simp | |
with False show ?thesis | |
by simp | |
qed | |
finally show ?thesis . | |
next | |
case False | |
hence *: "n div 2 \<le> (k-1) div 2" | |
by simp | |
have "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) \<le> | |
(\<Sum>d=1..2*((k-1) div 2) + 1. (-1)^(d+1) * psi (n div d))" | |
proof (cases "k = 0") | |
case True | |
with psi_pos show ?thesis by simp | |
next | |
case False | |
with sum.cl_ivl_Suc[of "\<lambda>d. (-1)^(d+1) * psi (n div d)" 1 "k-1"] | |
have "(\<Sum>d=1..k. (-1)^(d+1) * psi (n div d)) = (\<Sum>d=1..k-1. (-1)^(d+1) * psi (n div d)) | |
+ (-1)^(k+1) * psi (n div k)" | |
by simp | |
also from assms psi_pos have "(-1)^(k+1) * psi (n div k) \<le> 0" | |
by simp | |
also from assms False have "k-1 = 2*((k-1) div 2) + 1" | |
by presburger | |
finally show ?thesis by simp | |
qed | |
also from * psi_expansion_cutoff(2)[of "n div 2" "(k-1) div 2" n] | |
have "\<dots> \<le> (\<Sum>d=1..2*(n div 2) + 1. (-1)^(d+1) * psi (n div d))" by blast | |
also have "\<dots> \<le> (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))" | |
by (cases "even n") (simp_all add: psi_def) | |
finally show ?thesis . | |
qed | |
also from fact_expand_psi have "\<dots> = ln (fact n) - 2 * ln (fact (n div 2))" .. | |
finally show ?thesis . | |
qed | |
lemma fact_psi_bound_odd: | |
assumes "odd k" | |
shows "ln (fact n) - 2 * ln (fact (n div 2)) \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))" | |
proof - | |
from fact_expand_psi | |
have "ln (fact n) - 2 * ln (fact (n div 2)) = (\<Sum>d = 1..n. (- 1) ^ (d + 1) * psi (n div d))" . | |
also have "\<dots> \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))" | |
proof (cases "k \<le> n") | |
case True | |
have "(\<Sum>d=1..n. (-1)^(d+1) * psi (n div d)) \<le> ( | |
\<Sum>d=1..2*(n div 2)+1. (-1)^(d+1) * psi (n div d))" | |
by (cases "even n") (simp_all add: psi_pos) | |
also from True assms psi_expansion_cutoff(2)[of "k div 2" "n div 2" n] | |
have "\<dots> \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))" | |
by simp | |
finally show ?thesis . | |
next | |
case False | |
have "(\<Sum>d=1..n. (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*((n+1) div 2). (-1)^(d+1) * psi (n div d))" | |
by (cases "even n") (simp_all add: psi_def) | |
also from False assms psi_expansion_cutoff(1)[of "(n+1) div 2" "k div 2" n] | |
have "(\<Sum>d=1..2*((n+1) div 2). (-1)^(d+1) * psi (n div d)) \<le> (\<Sum>d=1..2*(k div 2). (-1)^(d+1) * psi (n div d))" | |
by simp | |
also from assms have "\<dots> \<le> (\<Sum>d=1..k. (-1)^(d+1) * psi (n div d))" | |
by (auto elim: oddE simp: psi_pos) | |
finally show ?thesis . | |
qed | |
finally show ?thesis . | |
qed | |
lemma fact_psi_bound_2_3: | |
"psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))" | |
"ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n - psi (n div 2) + psi (n div 3)" | |
proof - | |
show "psi n - psi (n div 2) \<le> ln (fact n) - 2 * ln (fact (n div 2))" | |
by (rule psi_bounds_ln_fact (2)) | |
next | |
from fact_psi_bound_odd[of 3 n] have "ln (fact n) - 2 * ln (fact (n div 2)) | |
\<le> (\<Sum>d = 1..3. (- 1) ^ (d + 1) * psi (n div d))" | |
by simp | |
also have "\<dots> = psi n - psi (n div 2) + psi (n div 3)" | |
by (simp add: sum.atLeast_Suc_atMost numeral_2_eq_2) | |
finally show "ln (fact n) - 2 * ln (fact (n div 2)) \<le> psi n - psi (n div 2) + psi (n div 3)" . | |
qed | |
lemma ub_ln_1200: "ln 1200 \<le> 57 / (8 :: real)" | |
proof - | |
have "Some (Float 57 (-3)) = ub_ln 8 1200" by code_simp | |
from ub_ln(1)[OF this] show ?thesis by simp | |
qed | |
lemma psi_double_lemma: | |
assumes "n \<ge> 1200" | |
shows "real n / 6 \<le> psi n - psi (n div 2)" | |
proof - | |
from ln_fact_diff_bounds | |
have "\<bar>ln (fact n) - 2 * ln (fact (n div 2)) - real n * ln 2\<bar> | |
\<le> 4 * ln (real (if n = 0 then 1 else n)) + 3" . | |
with assms have "ln (fact n) - 2 * ln (fact (n div 2)) | |
\<ge> real n * ln 2 - 4 * ln (real n) - 3" | |
by simp | |
moreover have "real n * ln 2 - 4 * ln (real n) - 3 \<ge> 2 / 3 * n" | |
proof (rule overpower_lemma[of "\<lambda>n. 2/3 * n" 1200]) | |
show "2 / 3 * 1200 \<le> 1200 * ln 2 - 4 * ln 1200 - (3::real)" | |
using ub_ln_1200 ln_2_ge by linarith | |
next | |
fix x::real | |
assume "1200 \<le> x" | |
then have "0 < x" | |
by simp | |
show "((\<lambda>x. x * ln 2 - 4 * ln x - 3 - 2 / 3 * x) | |
has_real_derivative ln 2 - 4 / x - 2 / 3) (at x)" | |
by (rule derivative_eq_intros refl | simp add: \<open>0 < x\<close>)+ | |
next | |
fix x::real | |
assume "1200 \<le> x" | |
then have "12 / x \<le> 12 / 1200" by simp | |
then have "0 \<le> 0.67 - 4 / x - 2 / 3" by simp | |
also have "0.67 \<le> ln (2::real)" using ln_2_ge by simp | |
finally show "0 \<le> ln 2 - 4 / x - 2 / 3" by simp | |
next | |
from assms show "1200 \<le> real n" | |
by simp | |
qed | |
ultimately have "2 / 3 * real n \<le> ln (fact n) - 2 * ln (fact (n div 2))" | |
by simp | |
with psi_ubound_3_2[of "n div 3"] | |
have "n/6 + psi (n div 3) \<le> ln (fact n) - 2 * ln (fact (n div 2))" | |
by simp | |
with fact_psi_bound_2_3[of "n"] show ?thesis | |
by simp | |
qed | |
lemma theta_double_lemma: | |
assumes "n \<ge> 1200" | |
shows "theta (n div 2) < theta n" | |
proof - | |
from psi_theta[of "n div 2"] psi_pos[of "Discrete.sqrt (n div 2)"] | |
have theta_le_psi_n_2: "theta (n div 2) \<le> psi (n div 2)" | |
by simp | |
have "(Discrete.sqrt n * 18)^2 \<le> 324 * n" | |
by simp | |
from mult_less_cancel2[of "324" "n" "n"] assms have "324 * n < n^2" | |
by (simp add: power2_eq_square) | |
with \<open>(Discrete.sqrt n * 18)^2 \<le> 324 * n\<close> have "(Discrete.sqrt n*18)^2 < n^2" | |
by presburger | |
with power2_less_imp_less assms have "Discrete.sqrt n * 18 < n" | |
by blast | |
with psi_ubound_3_2[of "Discrete.sqrt n"] have "2 * psi (Discrete.sqrt n) < n / 6" | |
by simp | |
with psi_theta[of "n"] have psi_lt_theta_n: "psi n - n / 6 < theta n" | |
by simp | |
from psi_double_lemma[OF assms(1)] have "psi (n div 2) \<le> psi n - n / 6" | |
by simp | |
with theta_le_psi_n_2 psi_lt_theta_n show ?thesis | |
by simp | |
qed | |
subsection \<open>Proof of the main result\<close> | |
lemma theta_mono: "mono theta" | |
by (auto simp: theta_def [abs_def] intro!: monoI sum_mono2) | |
lemma theta_lessE: | |
assumes "theta m < theta n" "m \<ge> 1" | |
obtains p where "p \<in> {m<..n}" "prime p" | |
proof - | |
from mono_invE[OF theta_mono assms(1)] have "m \<le> n" by blast | |
hence "theta n = theta m + (\<Sum>p\<in>{m<..n}. if prime p then ln (real p) else 0)" | |
unfolding theta_def using assms(2) | |
by (subst sum.union_disjoint [symmetric]) (auto simp: ivl_disj_un) | |
also note assms(1) | |
finally have "(\<Sum>p\<in>{m<..n}. if prime p then ln (real p) else 0) \<noteq> 0" by simp | |
then obtain p where "p \<in> {m<..n}" "(if prime p then ln (real p) else 0) \<noteq> 0" | |
by (rule sum.not_neutral_contains_not_neutral) | |
thus ?thesis using that[of p] by (auto intro!: exI[of _ p] split: if_splits) | |
qed | |
theorem bertrand: | |
fixes n :: nat | |
assumes "n > 1" | |
shows "\<exists>p\<in>{n<..<2*n}. prime p" | |
proof cases | |
assume n_less: "n < 600" | |
define prime_constants | |
where "prime_constants = {2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631::nat}" | |
from \<open>n > 1\<close> n_less have "\<exists>p \<in> prime_constants. n < p \<and> p < 2 * n" | |
unfolding bex_simps greaterThanLessThan_iff prime_constants_def by presburger | |
moreover have "\<forall>p\<in>prime_constants. prime p" | |
unfolding prime_constants_def ball_simps HOL.simp_thms | |
by (intro conjI; pratt (silent)) | |
ultimately show ?thesis | |
unfolding greaterThanLessThan_def greaterThan_def lessThan_def by blast | |
next | |
assume n: "\<not>(n < 600)" | |
from n have "theta n < theta (2 * n)" using theta_double_lemma[of "2 * n"] by simp | |
with assms obtain p where "p \<in> {n<..2*n}" "prime p" by (auto elim!: theta_lessE) | |
moreover from assms have "\<not>prime (2*n)" by (auto dest!: prime_product) | |
with \<open>prime p\<close> have "p \<noteq> 2 * n" by auto | |
ultimately show ?thesis | |
by auto | |
qed | |
subsection \<open>Proof of Mertens' first theorem\<close> | |
text \<open> | |
The following proof of Mertens' first theorem was ported from John Harrison's HOL Light | |
proof by Larry Paulson: | |
\<close> | |
lemma sum_integral_ubound_decreasing': | |
fixes f :: "real \<Rightarrow> real" | |
assumes "m \<le> n" | |
and der: "\<And>x. x \<in> {of_nat m - 1..of_nat n} \<Longrightarrow> (g has_field_derivative f x) (at x)" | |
and le: "\<And>x y. \<lbrakk>real m - 1 \<le> x; x \<le> y; y \<le> real n\<rbrakk> \<Longrightarrow> f y \<le> f x" | |
shows "(\<Sum>k = m..n. f (of_nat k)) \<le> g (of_nat n) - g (of_nat m - 1)" | |
proof - | |
have "(\<Sum>k = m..n. f (of_nat k)) \<le> (\<Sum>k = m..n. g (of_nat(Suc k) - 1) - g (of_nat k - 1))" | |
proof (rule sum_mono, clarsimp) | |
fix r | |
assume r: "m \<le> r" "r \<le> n" | |
hence "\<exists>z>real r - 1. z < real r \<and> g (real r) - g (real r - 1) = (real r - (real r - 1)) * f z" | |
using assms by (intro MVT2) auto | |
hence "\<exists>z\<in>{of_nat r - 1..of_nat r}. g (real r) - g (real r - 1) = f z" by auto | |
then obtain u::real where u: "u \<in> {of_nat r - 1..of_nat r}" | |
and eq: "g r - g (of_nat r - 1) = f u" by blast | |
have "real m \<le> u + 1" | |
using r u by auto | |
then have "f (of_nat r) \<le> f u" | |
using r(2) and u by (intro le) auto | |
then show "f (of_nat r) \<le> g r - g (of_nat r - 1)" | |
by (simp add: eq) | |
qed | |
also have "\<dots> \<le> g (of_nat n) - g (of_nat m - 1)" | |
using \<open>m \<le> n\<close> by (subst sum_Suc_diff) auto | |
finally show ?thesis . | |
qed | |
lemma Mertens_lemma: | |
assumes "n \<noteq> 0" | |
shows "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - ln n\<bar> \<le> 4" | |
proof - | |
have *: "\<lbrakk>abs(s' - nl + n) \<le> a; abs(s' - s) \<le> (k - 1) * n - a\<rbrakk> | |
\<Longrightarrow> abs(s - nl) \<le> n * k" for s' s k nl a::real | |
by (auto simp: algebra_simps abs_if split: if_split_asm) | |
have le: "\<bar>(\<Sum>d=1..n. mangoldt d * floor (n / d)) - n * ln n + n\<bar> \<le> 1 + ln n" | |
using ln_fact_bounds ln_fact_conv_mangoldt assms by simp | |
have "\<bar>real n * ((\<Sum>d = 1..n. mangoldt d / real d) - ln n)\<bar> = | |
\<bar>((\<Sum>d = 1..n. real n * mangoldt d / real d) - n * ln n)\<bar>" | |
by (simp add: algebra_simps sum_distrib_left) | |
also have "\<dots> \<le> real n * 4" | |
proof (rule * [OF le]) | |
have "\<bar>(\<Sum>d = 1..n. mangoldt d * \<lfloor>n / d\<rfloor>) - (\<Sum>d = 1..n. n * mangoldt d / d)\<bar> | |
= \<bar>\<Sum>d = 1..n. mangoldt d * (\<lfloor>n / d\<rfloor> - n / d)\<bar>" | |
by (simp add: sum_subtractf algebra_simps) | |
also have "\<dots> \<le> psi n" (is "\<bar>?sm\<bar> \<le> ?rhs") | |
proof - | |
have "-?sm = (\<Sum>d = 1..n. mangoldt d * (n/d - \<lfloor>n/d\<rfloor>))" | |
by (simp add: sum_subtractf algebra_simps) | |
also have "\<dots> \<le> (\<Sum>d = 1..n. mangoldt d * 1)" | |
by (intro sum_mono mult_left_mono mangoldt_nonneg) linarith+ | |
finally have "-?sm \<le> ?rhs" by (simp add: psi_def) | |
moreover | |
have "?sm \<le> 0" | |
using mangoldt_nonneg by (simp add: mult_le_0_iff sum_nonpos) | |
ultimately show ?thesis by (simp add: abs_if) | |
qed | |
also have "\<dots> \<le> 3/2 * real n" | |
by (rule psi_ubound_3_2) | |
also have "\<dots>\<le> (4 - 1) * real n - (1 + ln n)" | |
using ln_le_minus_one [of n] assms by (simp add: divide_simps) | |
finally | |
show "\<bar>(\<Sum>d = 1..n. mangoldt d * real_of_int \<lfloor>real n / real d\<rfloor>) - | |
(\<Sum>d = 1..n. real n * mangoldt d / real d)\<bar> | |
\<le> (4 - 1) * real n - (1 + ln n)" . | |
qed | |
finally have "\<bar>real n * ((\<Sum>d = 1..n. mangoldt d / real d) - ln n)\<bar> \<le> real n * 4" . | |
then show ?thesis | |
using assms mult_le_cancel_left_pos by (simp add: abs_mult) | |
qed | |
lemma Mertens_mangoldt_versus_ln: | |
assumes "I \<subseteq> {1..n}" | |
shows "\<bar>(\<Sum>i\<in>I. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> I. ln p / p)\<bar> \<le> 3" | |
(is "\<bar>?lhs\<bar> \<le> 3") | |
proof (cases "n = 0") | |
case True | |
with assms show ?thesis by simp | |
next | |
case False | |
have "finite I" | |
using assms finite_subset by blast | |
have "0 \<le> (\<Sum>i\<in>I. mangoldt i / i - (if prime i then ln i / i else 0))" | |
using mangoldt_nonneg by (intro sum_nonneg) simp_all | |
moreover have "\<dots> \<le> (\<Sum>i = 1..n. mangoldt i / i - (if prime i then ln i / i else 0))" | |
using assms by (intro sum_mono2) (auto simp: mangoldt_nonneg) | |
ultimately have *: "\<bar>\<Sum>i\<in>I. mangoldt i / i - (if prime i then ln i / i else 0)\<bar> | |
\<le> \<bar>\<Sum>i = 1..n. mangoldt i / i - (if prime i then ln i / i else 0)\<bar>" | |
by linarith | |
moreover have "?lhs = (\<Sum>i\<in>I. mangoldt i / i - (if prime i then ln i / i else 0))" | |
"(\<Sum>i = 1..n. mangoldt i / i - (if prime i then ln i / i else 0)) | |
= (\<Sum>d = 1..n. mangoldt d / d) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)" | |
using sum.inter_restrict [of _ "\<lambda>i. ln (real i) / i" "Collect prime", symmetric] | |
by (force simp: sum_subtractf \<open>finite I\<close> intro: sum.cong)+ | |
ultimately have "\<bar>?lhs\<bar> \<le> \<bar>(\<Sum>d = 1..n. mangoldt d / d) - | |
(\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)\<bar>" by linarith | |
also have "\<dots> \<le> 3" | |
proof - | |
have eq_sm: "(\<Sum>i = 1..n. mangoldt i / i) = | |
(\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 1}. mangoldt i / i)" | |
proof (intro sum.mono_neutral_right ballI, goal_cases) | |
case (3 i) | |
hence "\<not>primepow i" by (auto simp: primepow_def Suc_le_eq) | |
thus ?case by (simp add: mangoldt_def) | |
qed (auto simp: Suc_le_eq prime_gt_0_nat) | |
have "(\<Sum>i = 1..n. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) = | |
(\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 2}. mangoldt i / i)" | |
proof - | |
have eq: "{p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 1 \<le> k} = | |
{p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 2 \<le> k} \<union> {p. prime p \<and> p \<in> {1..n}}" | |
(is "?A = ?B \<union> ?C") | |
proof (intro equalityI subsetI; (elim UnE)?) | |
fix x assume "x \<in> ?A" | |
then obtain p k where "x = p ^ k" "prime p" "p ^ k \<le> n" "k \<ge> 1" by auto | |
thus "x \<in> ?B \<union> ?C" | |
by (cases "k \<ge> 2") (auto simp: prime_power_iff Suc_le_eq) | |
next | |
fix x assume "x \<in> ?B" | |
then obtain p k where "x = p ^ k" "prime p" "p ^ k \<le> n" "k \<ge> 1" by auto | |
thus "x \<in> ?A" by (auto simp: prime_power_iff Suc_le_eq) | |
next | |
fix x assume "x \<in> ?C" | |
then obtain p where "x = p ^ 1" "1 \<ge> (1::nat)" "prime p" "p ^ 1 \<le> n" by auto | |
thus "x \<in> ?A" by blast | |
qed | |
have eqln: "(\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) = | |
(\<Sum>p | prime p \<and> p \<in> {1..n}. mangoldt p / p)" | |
by (rule sum.cong) auto | |
have "(\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 1}. mangoldt i / i) = | |
(\<Sum>i \<in> {p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 2 \<le> k} \<union> | |
{p. prime p \<and> p \<in> {1..n}}. mangoldt i / i)" by (subst eq) simp_all | |
also have "\<dots> = (\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 2}. mangoldt i / i) | |
+ (\<Sum>p | prime p \<and> p \<in> {1..n}. mangoldt p / p)" | |
by (intro sum.union_disjoint) (auto simp: prime_power_iff finite_nat_set_iff_bounded_le) | |
also have "\<dots> = (\<Sum>i \<in> {p^k |p k. prime p \<and> p^k \<le> n \<and> k \<ge> 2}. mangoldt i / i) | |
+ (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)" by (simp only: eqln) | |
finally show ?thesis | |
using eq_sm by auto | |
qed | |
have "(\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) \<le> (\<Sum>p | prime p \<and> p \<in> {1..n}. mangoldt p / p)" | |
using mangoldt_nonneg by (auto intro: sum_mono) | |
also have "\<dots> \<le> (\<Sum>i = Suc 0..n. mangoldt i / i)" | |
by (intro sum_mono2) (auto simp: mangoldt_nonneg) | |
finally have "0 \<le> (\<Sum>i = 1..n. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p)" | |
by simp | |
moreover have "(\<Sum>i = 1..n. mangoldt i / i) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p / p) \<le> 3" | |
(is "?M - ?L \<le> 3") | |
proof - | |
have *: "\<exists>q. \<exists>j\<in>{1..n}. prime q \<and> 1 \<le> q \<and> q \<le> n \<and> | |
(q ^ j = p ^ k \<and> mangoldt (p ^ k) / real p ^ k \<le> ln (real q) / real q ^ j)" | |
if "prime p" "p ^ k \<le> n" "1 \<le> k" for p k | |
proof - | |
have "mangoldt (p ^ k) / real p ^ k \<le> ln p / p ^ k" | |
using that by (simp add: divide_simps) | |
moreover have "p \<le> n" | |
using that self_le_power[of p k] by (simp add: prime_ge_Suc_0_nat) | |
moreover have "k \<le> n" | |
proof - | |
have "k < 2^k" | |
using of_nat_less_two_power of_nat_less_numeral_power_cancel_iff by blast | |
also have "\<dots> \<le> p^k" | |
by (simp add: power_mono prime_ge_2_nat that) | |
also have "\<dots> \<le> n" | |
by (simp add: that) | |
finally show ?thesis by (simp add: that) | |
qed | |
ultimately show ?thesis | |
using prime_ge_1_nat that by auto (use atLeastAtMost_iff in blast) | |
qed | |
have finite: "finite {p ^ k |p k. prime p \<and> p ^ k \<le> n \<and> 1 \<le> k}" | |
by (rule finite_subset[of _ "{..n}"]) auto | |
have "?M \<le> (\<Sum>(x, k)\<in>{p. prime p \<and> p \<in> {1..n}} \<times> {1..n}. ln (real x) / real x ^ k)" | |
by (subst eq_sm, intro sum_le_included [where i = "\<lambda>(p,k). p^k"]) | |
(insert * finite, auto) | |
also have "\<dots> = (\<Sum>p | prime p \<and> p \<in> {1..n}. (\<Sum>k = 1..n. ln p / p^k))" | |
by (subst sum.Sigma) auto | |
also have "\<dots> = ?L + (\<Sum>p | prime p \<and> p \<in> {1..n}. (\<Sum>k = 2..n. ln p / p^k))" | |
by (simp add: comm_monoid_add_class.sum.distrib sum.atLeast_Suc_atMost numeral_2_eq_2) | |
finally have "?M - ?L \<le> (\<Sum>p | prime p \<and> p \<in> {1..n}. (\<Sum>k = 2..n. ln p / p^k))" | |
by (simp add: algebra_simps) | |
also have "\<dots> = (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p * (\<Sum>k = 2..n. inverse p ^ k))" | |
by (simp add: field_simps sum_distrib_left) | |
also have "\<dots> = (\<Sum>p | prime p \<and> p \<in> {1..n}. | |
ln p * (((inverse p)\<^sup>2 - inverse p ^ Suc n) / (1 - inverse p)))" | |
by (intro sum.cong refl) (simp add: sum_gp) | |
also have "\<dots> \<le> (\<Sum>p | prime p \<and> p \<in> {1..n}. ln p * inverse (real (p * (p - 1))))" | |
by (intro sum_mono mult_left_mono) | |
(auto simp: divide_simps power2_eq_square of_nat_diff mult_less_0_iff) | |
also have "\<dots> \<le> (\<Sum>p = 2..n. ln p * inverse (real (p * (p - 1))))" | |
by (rule sum_mono2) (use prime_ge_2_nat in auto) | |
also have "\<dots> \<le> (\<Sum>i = 2..n. ln i / (i - 1)\<^sup>2)" | |
unfolding divide_inverse power2_eq_square mult.assoc | |
by (auto intro: sum_mono mult_left_mono mult_right_mono) | |
also have "\<dots> \<le> 3" | |
proof (cases "n \<ge> 3") | |
case False then show ?thesis | |
proof (cases "n \<ge> 2") | |
case False then show ?thesis by simp | |
next | |
case True | |
then have "n = 2" using False by linarith | |
with ln_le_minus_one [of 2] show ?thesis by simp | |
qed | |
next | |
case True | |
have "(\<Sum>i = 3..n. ln (real i) / (real (i - Suc 0))\<^sup>2) | |
\<le> (ln (of_nat n - 1)) - (ln (of_nat n)) - (ln (of_nat n) / (of_nat n - 1)) + 2 * ln 2" | |
proof - | |
have 1: "((\<lambda>z. ln (z - 1) - ln z - ln z / (z - 1)) has_field_derivative ln x / (x - 1)\<^sup>2) (at x)" | |
if x: "x \<in> {2..real n}" for x | |
by (rule derivative_eq_intros | rule refl | | |
(use x in \<open>force simp: power2_eq_square divide_simps\<close>))+ | |
have 2: "ln y / (y - 1)\<^sup>2 \<le> ln x / (x - 1)\<^sup>2" if xy: "2 \<le> x" "x \<le> y" "y \<le> real n" for x y | |
proof (cases "x = y") | |
case False | |
define f' :: "real \<Rightarrow> real" | |
where "f' = (\<lambda>u. ((u - 1)\<^sup>2 / u - ln u * (2 * u - 2)) / (u - 1) ^ 4)" | |
have f'_altdef: "f' u = inverse u * inverse ((u - 1)\<^sup>2) - 2 * ln u / (u - 1) ^ 3" | |
if u: "u \<in> {x..y}" for u::real unfolding f'_def using u (* TODO ugly *) | |
by (simp add: eval_nat_numeral divide_simps) (simp add: algebra_simps)? | |
have deriv: "((\<lambda>z. ln z / (z - 1)\<^sup>2) has_field_derivative f' u) (at u)" | |
if u: "u \<in> {x..y}" for u::real unfolding f'_def | |
by (rule derivative_eq_intros refl | (use u xy in \<open>force simp: divide_simps\<close>))+ | |
hence "\<exists>z>x. z < y \<and> ln y / (y - 1)\<^sup>2 - ln x / (x - 1)\<^sup>2 = (y - x) * f' z" | |
using xy and \<open>x \<noteq> y\<close> by (intro MVT2) auto | |
then obtain \<xi>::real where "x < \<xi>" "\<xi> < y" | |
and \<xi>: "ln y / (y - 1)\<^sup>2 - ln x / (x - 1)\<^sup>2 = (y - x) * f' \<xi>" by blast | |
have "f' \<xi> \<le> 0" | |
proof - | |
have "2/3 \<le> ln (2::real)" by (fact ln_2_ge') | |
also have "\<dots> \<le> ln \<xi>" | |
using \<open>x < \<xi>\<close> xy by auto | |
finally have "1 \<le> 2 * ln \<xi>" by simp | |
then have *: "\<xi> \<le> \<xi> * (2 * ln \<xi>)" | |
using \<open>x < \<xi>\<close> xy by auto | |
hence "\<xi> - 1 \<le> ln \<xi> * 2 * \<xi>" by (simp add: algebra_simps) | |
hence "1 / (\<xi> * (\<xi> - 1)\<^sup>2) \<le> ln \<xi> * 2 / (\<xi> - 1) ^ 3" | |
using xy \<open>x < \<xi>\<close> by (simp add: divide_simps power_eq_if) | |
thus ?thesis using xy \<open>x < \<xi>\<close> \<open>\<xi> < y\<close> by (subst f'_altdef) (auto simp: divide_simps) | |
qed | |
then have "(ln y / (y - 1)\<^sup>2 - ln x / (x - 1)\<^sup>2) \<le> 0" | |
using \<open>x \<le> y\<close> by (simp add: mult_le_0_iff \<xi>) | |
then show ?thesis by simp | |
qed simp_all | |
show ?thesis | |
using sum_integral_ubound_decreasing' | |
[OF \<open>3 \<le> n\<close>, of "\<lambda>z. ln(z-1) - ln z - ln z / (z - 1)" "\<lambda>z. ln z / (z-1)\<^sup>2"] | |
1 2 \<open>3 \<le> n\<close> | |
by (auto simp: in_Reals_norm of_nat_diff) | |
qed | |
also have "\<dots> \<le> 2" | |
proof - | |
have "ln (real n - 1) - ln n \<le> 0" "0 \<le> ln n / (real n - 1)" | |
using \<open>3 \<le> n\<close> by auto | |
then have "ln (real n - 1) - ln n - ln n / (real n - 1) \<le> 0" | |
by linarith | |
with ln_2_less_1 show ?thesis by linarith | |
qed | |
also have "\<dots> \<le> 3 - ln 2" | |
using ln_2_less_1 by (simp add: algebra_simps) | |
finally show ?thesis | |
using True by (simp add: algebra_simps sum.atLeast_Suc_atMost [of 2 n]) | |
qed | |
finally show ?thesis . | |
qed | |
ultimately show ?thesis | |
by linarith | |
qed | |
finally show ?thesis . | |
qed | |
proposition Mertens: | |
assumes "n \<noteq> 0" | |
shows "\<bar>(\<Sum>p | prime p \<and> p \<le> n. ln p / of_nat p) - ln n\<bar> \<le> 7" | |
proof - | |
have "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - (\<Sum>p | prime p \<and> p \<in> {1..n}. ln (real p) / real p)\<bar> | |
\<le> 7 - 4" using Mertens_mangoldt_versus_ln [of "{1..n}" n] by simp_all | |
also have "{p. prime p \<and> p \<in> {1..n}} = {p. prime p \<and> p \<le> n}" | |
using atLeastAtMost_iff prime_ge_1_nat by blast | |
finally have "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - (\<Sum>p\<in>\<dots>. ln (real p) / real p)\<bar> \<le> 7 - 4" . | |
moreover from assms have "\<bar>(\<Sum>d = 1..n. mangoldt d / real d) - ln n\<bar> \<le> 4" | |
by (rule Mertens_lemma) | |
ultimately show ?thesis by linarith | |
qed | |
end | |