Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(*<*) | |
\<comment>\<open> ******************************************************************** | |
* Project : AGM Theory | |
* Version : 1.0 | |
* | |
* Authors : Valentin Fouillard, Safouan Taha, Frederic Boulanger | |
and Nicolas Sabouret | |
* | |
* This file : AGM logics | |
* | |
* Copyright (c) 2021 Université Paris Saclay, France | |
* | |
******************************************************************************\<close> | |
theory AGM_Logic | |
imports Main | |
begin | |
(*>*) | |
section \<open>Introduction\<close> | |
text\<open> | |
The 1985 paper by Carlos Alchourrón, Peter Gärdenfors, | |
and David Makinson (AGM), ``On the Logic of Theory Change: Partial Meet | |
Contraction and Revision Functions'' @{cite "alchourron1985logic"} launches a large and | |
rapidly growing literature that employs formal models and logics to handle changing beliefs of a rational agent | |
and to take into account new piece of information observed by this agent. | |
In 2011, a review book titled "AGM 25 Years: Twenty-Five Years of Research in Belief Change" | |
was edited to summarize the first twenty five years of works based on AGM | |
@{cite "Ferme2011"}. | |
According to Google Scholar, the original AGM paper was cited 4000 times! | |
This AFP entry is HOL-based and it is a faithful formalization of the logic operators (e.g. contraction, revision, remainder \dots ) | |
axiomatized in the AGM paper. It also contains the proofs of all the theorems stated in the paper that show how these operators combine. | |
Both proofs of Harper and Levi identities are established. | |
\<close> | |
text\<open>A belief state can be considered as a consistent set of beliefs (logical propositions) closed under logical reasoning. | |
Belief changes represent the operations that apply on a belief state to remove some of it and/or to add new beliefs (propositions). | |
In the latter case, it is possible that other beliefs are affected by these changes (to preserve consistency for example). | |
AGM define several postulates to guarantee that such operations preserve consistency meaning that the agent keeps rational. | |
Three kinds of operators are defined : | |
\<^item> The contraction @{text \<open>\<div>\<close>} : where a proposition is removed from a belief set | |
\<^item> The expansion @{text \<open>\<oplus>\<close>} : where a proposition is added to a belief set | |
\<^item> The revision @{text \<open>\<^bold>*\<close>} : where a proposition is added to a belief set such that the belief set remains consistent | |
\<close> | |
text\<open>In this AFP entry, there are three theory files: | |
\<^enum> The AGM Logic file contains a classification of logics used in the AGM framework. | |
\<^enum> The AGM Remainder defines a important operator used in the AGM framework. | |
\<^enum> The AGM Contraction file contains the postulates of the AGM contraction and its relation with the meet contraction. | |
\<^enum> The AGM Revision file contains the postulates of the AGM revision and its relation with the meet revision. | |
\<close> | |
section \<open>Logics\<close> | |
text\<open>The AGM framework depends on the underlying logic used to express beliefs. AGM requires at least a Tarskian propositional calculus. | |
If this logic is also supra-classical and/or compact, new properties are established and the main theorems of AGM are strengthened. | |
To model AGM it is therefore important to start by formalizing this underlying logic and its various extensions. | |
We opted for a deep embedding in HOL which required the redefinition of all the logical operators and an axiomatization of their rules. | |
This is certainly not efficient in terms of proof but it gives a total control of our formalization and an assurance | |
that the logic used has no hidden properties depending on the Isabelle/HOL implementation. | |
We use the Isabelle \<^emph>\<open>locales\<close> feature and we take advantage of the inheritance/extension mechanisms between locales.\<close> | |
subsection \<open>Tarskian Logic\<close> | |
text \<open> | |
The first locale formalizes a Tarskian logic based on the famous Tarski's consequence operator: @{term \<open>Cn(A)\<close>} | |
which gives the set of all propositions (\<^bold>\<open>closure\<close>) that can be inferred from the set of propositions @{term \<open>A\<close>}, | |
Exactly as it is classically axiomatized in the literature, three assumptions of the locale define the consequence operator. | |
\<close> | |
locale Tarskian_logic = | |
fixes Cn::\<open>'a set \<Rightarrow> 'a set\<close> | |
assumes monotonicity_L: \<open>A \<subseteq> B \<Longrightarrow> Cn(A) \<subseteq> Cn(B)\<close> | |
and inclusion_L: \<open>A \<subseteq> Cn(A)\<close> | |
and transitivity_L: \<open>Cn(Cn(A)) \<subseteq> Cn(A)\<close> | |
\<comment> \<open> | |
Short notation for ``@{term \<open>\<phi>\<close>} can be inferred from the propositions in @{term \<open>A\<close>}''. | |
\<close> | |
fixes infer::\<open>'a set \<Rightarrow> 'a \<Rightarrow> bool\<close> (infix \<open>\<turnstile>\<close> 50) | |
defines \<open>A \<turnstile> \<phi> \<equiv> \<phi> \<in> Cn(A)\<close> | |
\<comment> \<open> | |
@{term \<open>\<phi>\<close>} is valid (a tautology) if it can be inferred from nothing. | |
\<close> | |
fixes valid::\<open>'a \<Rightarrow> bool\<close> (\<open>\<tturnstile>\<close>) | |
defines \<open>\<tturnstile> \<phi> \<equiv> {} \<turnstile> \<phi>\<close> | |
\<comment> \<open> | |
@{term \<open>A \<oplus> \<phi>\<close>} is all that can be infered from @{term \<open>A\<close>} and @{term \<open>\<phi>\<close>}. | |
\<close> | |
fixes expansion::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set\<close> (infix \<open>\<oplus>\<close> 57) | |
defines \<open>A \<oplus> \<phi> \<equiv> Cn(A \<union> {\<phi>})\<close> | |
begin | |
lemma idempotency_L: \<open>Cn(Cn(A)) = Cn(A)\<close> | |
by (simp add: inclusion_L transitivity_L subset_antisym) | |
lemma assumption_L: \<open>\<phi> \<in> A \<Longrightarrow> A \<turnstile> \<phi>\<close> | |
using inclusion_L infer_def by blast | |
lemma validD_L: \<open>\<tturnstile> \<phi> \<Longrightarrow> \<phi> \<in> Cn(A)\<close> | |
using monotonicity_L valid_def infer_def by fastforce | |
lemma valid_expansion: \<open>K = Cn(A) \<Longrightarrow> \<tturnstile> \<phi> \<Longrightarrow> K \<oplus> \<phi> = K\<close> | |
by (simp add: idempotency_L insert_absorb validD_L valid_def expansion_def) | |
lemma transitivity2_L: | |
assumes \<open>\<forall>\<phi> \<in> B. A \<turnstile> \<phi>\<close> | |
and \<open>B \<turnstile> \<psi>\<close> | |
shows \<open>A \<turnstile> \<psi>\<close> | |
proof - | |
from assms(1) have \<open>B \<subseteq> Cn(A)\<close> by (simp add: infer_def subsetI) | |
hence \<open>Cn(B) \<subseteq> Cn(A)\<close> using idempotency_L monotonicity_L by blast | |
moreover from assms(2) have \<open>\<psi> \<in> Cn(B)\<close> by (simp add: infer_def) | |
ultimately show ?thesis using infer_def by blast | |
qed | |
lemma Cn_same: \<open>(Cn(A) = Cn(B)) \<longleftrightarrow> (\<forall>C. A \<subseteq> Cn(C) \<longleftrightarrow> B \<subseteq> Cn(C))\<close> | |
proof | |
{ assume h:\<open>Cn(A) = Cn(B)\<close> | |
from h have \<open>\<forall>\<phi> \<in> B. A \<turnstile> \<phi>\<close> | |
by (simp add: Tarskian_logic.assumption_L Tarskian_logic_axioms infer_def) | |
moreover from h[symmetric] have \<open>\<forall>\<phi> \<in> A. B \<turnstile> \<phi>\<close> | |
by (simp add: Tarskian_logic.assumption_L Tarskian_logic_axioms infer_def) | |
ultimately have \<open>\<forall>C. A \<subseteq> Cn(C) \<longleftrightarrow> B \<subseteq> Cn(C)\<close> | |
using h idempotency_L inclusion_L monotonicity_L by blast | |
} thus \<open>Cn(A) = Cn(B) \<Longrightarrow> \<forall>C. (A \<subseteq> Cn(C)) = (B \<subseteq> Cn(C))\<close> . | |
next | |
{ assume h:\<open>\<forall>C. (A \<subseteq> Cn(C)) = (B \<subseteq> Cn(C))\<close> | |
from h have \<open>(A \<subseteq> Cn(A)) = (B \<subseteq> Cn(A))\<close> and \<open>(A \<subseteq> Cn(B)) = (B \<subseteq> Cn(B))\<close> by simp+ | |
hence \<open>B \<subseteq> Cn(A)\<close> and \<open>A \<subseteq> Cn(B)\<close> by (simp add: inclusion_L)+ | |
hence \<open>Cn(A) = Cn(B)\<close> | |
using idempotency_L monotonicity_L by blast | |
} thus \<open>(\<forall>C. (A \<subseteq> Cn(C)) = (B \<subseteq> Cn(C))) \<Longrightarrow> Cn(A) = Cn(B)\<close> . | |
qed | |
\<comment> \<open> | |
The closure of the union of two consequence closures. | |
\<close> | |
lemma Cn_union: \<open>Cn(Cn(A) \<union> Cn(B)) = Cn(A \<union> B)\<close> | |
proof | |
have \<open>Cn(Cn(A) \<union> Cn(B)) \<subseteq> Cn(Cn (A \<union> B))\<close> by (simp add: monotonicity_L) | |
thus \<open>Cn(Cn(A) \<union> Cn(B)) \<subseteq> Cn(A \<union> B)\<close> by (simp add: idempotency_L) | |
next | |
have \<open>(A \<union> B) \<subseteq> (Cn(A) \<union> Cn(B))\<close> using inclusion_L by blast | |
thus \<open>Cn(A \<union> B) \<subseteq> Cn(Cn(A) \<union> Cn(B))\<close> by (simp add: monotonicity_L) | |
qed | |
\<comment> \<open> | |
The closure of an infinite union of consequence closures. | |
\<close> | |
lemma Cn_Union: \<open>Cn(\<Union>{Cn(B)|B. P B}) = Cn(\<Union>{B. P B})\<close> (is \<open>?A = ?B\<close>) | |
proof | |
have \<open>?A \<subseteq> Cn ?B\<close> | |
apply(rule monotonicity_L, rule Union_least, auto) | |
by (metis Sup_upper in_mono mem_Collect_eq monotonicity_L) | |
then show \<open>?A \<subseteq> ?B\<close> | |
by (simp add: idempotency_L) | |
next | |
show \<open>?B \<subseteq> ?A\<close> | |
by (metis (mono_tags, lifting) Union_subsetI inclusion_L mem_Collect_eq monotonicity_L) | |
qed | |
\<comment> \<open> | |
The intersection of two closures is closed. | |
\<close> | |
lemma Cn_inter: \<open>K = Cn(A) \<inter> Cn(B) \<Longrightarrow> K = Cn(K)\<close> | |
proof - | |
{ fix K assume h:\<open>K = Cn(A) \<inter> Cn(B)\<close> | |
from h have \<open>K \<subseteq> Cn(A)\<close> and \<open>K \<subseteq> Cn(B)\<close> by simp+ | |
hence \<open>Cn(K) \<subseteq> Cn(A)\<close> and \<open>Cn(K) \<subseteq> Cn(B)\<close> using idempotency_L monotonicity_L by blast+ | |
hence \<open>Cn(K) \<subseteq> Cn(A) \<inter> Cn(B)\<close> by simp | |
with h have \<open>K = Cn(K)\<close> by (simp add: inclusion_L subset_antisym) | |
} thus \<open>K = Cn(A) \<inter> Cn(B) \<Longrightarrow> K = Cn(K)\<close> . | |
qed | |
\<comment> \<open> | |
An infinite intersection of closures is closed. | |
\<close> | |
lemma Cn_Inter: \<open>K = \<Inter>{Cn(B)|B. P B} \<Longrightarrow> K = Cn(K)\<close> | |
proof - | |
{ fix K assume h:\<open>K = \<Inter>{Cn(B)|B. P B}\<close> | |
from h have \<open>\<forall>B. P B \<longrightarrow> K \<subseteq> Cn(B)\<close> by blast | |
hence \<open>\<forall>B. P B \<longrightarrow> Cn(K) \<subseteq> Cn(B)\<close> using idempotency_L monotonicity_L by blast | |
hence \<open>Cn(K) \<subseteq> \<Inter>{Cn(B)|B. P B}\<close> by blast | |
with h have \<open>K = Cn(K)\<close> by (simp add: inclusion_L subset_antisym) | |
} thus \<open>K = \<Inter>{Cn(B)|B. P B} \<Longrightarrow> K = Cn(K)\<close> . | |
qed | |
end | |
subsection \<open>Supraclassical Logic\<close> | |
text \<open> | |
A Tarskian logic has only one abstract operator catching the notion of consequence. A basic case of such a logic is a \<^bold>\<open>Supraclassical\<close> logic that | |
is a logic with all classical propositional operators (e.g. conjunction (\<open>\<and>\<close>), implication(\<open>\<longrightarrow>\<close>), negation (\<open>\<not>\<close>) \dots ) together with their classical semantics. | |
We define a new locale. In order to distinguish the propositional operators of our supraclassical logic from those of Isabelle/HOL, we use dots (e.g. \<open>.\<and>.\<close> stands for conjunction). | |
We axiomatize the introduction and elimination rules of each operator as it is commonly established in the classical literature. As explained before, | |
we give priority to a complete control of our logic instead of an efficient shallow embedding in Isabelle/HOL. | |
\<close> | |
locale Supraclassical_logic = Tarskian_logic + | |
fixes true_PL:: \<open>'a\<close> (\<open>\<top>\<close>) | |
and false_PL:: \<open>'a\<close> (\<open>\<bottom>\<close>) | |
and imp_PL:: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infix \<open>.\<longrightarrow>.\<close> 55) | |
and not_PL:: \<open>'a \<Rightarrow> 'a\<close> (\<open>.\<not>\<close>) | |
and conj_PL:: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infix \<open>.\<and>.\<close> 55) | |
and disj_PL:: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infix \<open>.\<or>.\<close> 55) | |
and equiv_PL:: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infix \<open>.\<longleftrightarrow>.\<close> 55) | |
assumes true_PL: \<open>A \<turnstile> \<top>\<close> | |
and false_PL: \<open>{\<bottom>} \<turnstile> p\<close> | |
and impI_PL: \<open>A \<union> {p} \<turnstile> q \<Longrightarrow> A \<turnstile> (p .\<longrightarrow>. q)\<close> | |
and mp_PL: \<open>A \<turnstile> p .\<longrightarrow>. q \<Longrightarrow> A \<turnstile> p \<Longrightarrow> A \<turnstile> q\<close> | |
and notI_PL: \<open>A \<turnstile> p .\<longrightarrow>. \<bottom> \<Longrightarrow> A \<turnstile> .\<not> p\<close> | |
and notE_PL: \<open>A \<turnstile> .\<not> p \<Longrightarrow> A \<turnstile> (p .\<longrightarrow>. \<bottom>)\<close> | |
and conjI_PL: \<open>A \<turnstile> p \<Longrightarrow> A \<turnstile> q \<Longrightarrow> A \<turnstile> (p .\<and>. q)\<close> | |
and conjE1_PL: \<open>A \<turnstile> p .\<and>. q \<Longrightarrow> A \<turnstile> p\<close> | |
and conjE2_PL: \<open>A \<turnstile> p .\<and>. q \<Longrightarrow> A \<turnstile> q\<close> | |
and disjI1_PL: \<open>A \<turnstile> p \<Longrightarrow> A \<turnstile> (p .\<or>. q)\<close> | |
and disjI2_PL: \<open>A \<turnstile> q \<Longrightarrow> A \<turnstile> (p .\<or>. q)\<close> | |
and disjE_PL: \<open>A \<turnstile> p .\<or>. q \<Longrightarrow> A \<turnstile> p .\<longrightarrow>. r \<Longrightarrow> A \<turnstile> q.\<longrightarrow>. r \<Longrightarrow> A \<turnstile> r\<close> | |
and equivI_PL: \<open>A \<turnstile> p .\<longrightarrow>. q \<Longrightarrow> A \<turnstile> q .\<longrightarrow>. p \<Longrightarrow> A \<turnstile> (p .\<longleftrightarrow>. q)\<close> | |
and equivE1_PL: \<open>A \<turnstile> p .\<longleftrightarrow>. q \<Longrightarrow> A \<turnstile> p .\<longrightarrow>. q\<close> | |
and equivE2_PL: \<open>A \<turnstile> p .\<longleftrightarrow>. q \<Longrightarrow> A \<turnstile> q .\<longrightarrow>. p\<close> | |
\<comment> \<open>non intuitionistic rules\<close> | |
and absurd_PL: \<open>A \<turnstile> .\<not> (.\<not> p) \<Longrightarrow> A \<turnstile> p\<close> | |
and ex_mid_PL: \<open>A \<turnstile> p .\<or>. (.\<not> p)\<close> | |
begin | |
text \<open>In the following, we will first retrieve the classical logic operators semantics coming from previous introduction and elimination rules\<close> | |
lemma non_consistency: | |
assumes \<open>A \<turnstile> .\<not> p\<close> | |
and \<open>A \<turnstile> p\<close> | |
shows \<open>A \<turnstile> q\<close> | |
by (metis assms(1) assms(2) false_PL mp_PL notE_PL singleton_iff transitivity2_L) | |
\<comment> \<open>this direct result brings directly many remarkable properties of implication (i.e. transitivity)\<close> | |
lemma imp_PL: \<open>A \<turnstile> p .\<longrightarrow>. q \<longleftrightarrow> A \<union> {p} \<turnstile> q\<close> | |
apply (intro iffI impI_PL) | |
apply(rule mp_PL[where p=p], meson UnI1 assumption_L transitivity2_L) | |
using assumption_L by auto | |
lemma not_PL: \<open>A \<turnstile> .\<not> p \<longleftrightarrow> A \<union> {p} \<turnstile> \<bottom>\<close> | |
using notE_PL notI_PL imp_PL by blast | |
\<comment> \<open>Classical logic result\<close> | |
lemma notnot_PL: \<open>A \<turnstile> .\<not> (.\<not> p) \<longleftrightarrow> A \<turnstile> p\<close> | |
apply(rule iffI, simp add:absurd_PL) | |
by (meson mp_PL notE_PL Un_upper1 Un_upper2 assumption_L infer_def monotonicity_L not_PL singletonI subsetD) | |
lemma conj_PL: \<open>A \<turnstile> p .\<and>. q \<longleftrightarrow> (A \<turnstile> p \<and> A \<turnstile> q)\<close> | |
using conjE1_PL conjE2_PL conjI_PL by blast | |
lemma disj_PL: \<open>A \<turnstile> p .\<or>. q \<longleftrightarrow> A \<union> {.\<not> p} \<turnstile> q\<close> | |
proof | |
assume a:\<open>A \<turnstile> p .\<or>. q\<close> | |
have b:\<open>A \<turnstile> p .\<longrightarrow>. (.\<not> p .\<longrightarrow>. q)\<close> | |
by (intro impI_PL) (meson Un_iff assumption_L insertI1 non_consistency) | |
have c:\<open>A \<turnstile> q .\<longrightarrow>. (.\<not> p .\<longrightarrow>. q)\<close> | |
by (simp add: assumption_L impI_PL) | |
from a b c have \<open>A \<turnstile> .\<not> p .\<longrightarrow>. q\<close> | |
by (erule_tac disjE_PL) simp_all | |
then show \<open>A \<union> {.\<not> p} \<turnstile> q\<close> | |
using imp_PL by blast | |
next | |
assume a:\<open>A \<union> {.\<not> p} \<turnstile> q\<close> | |
hence b:\<open>A \<turnstile> .\<not> p .\<longrightarrow>. q\<close> by (simp add: impI_PL) | |
then show \<open>A \<turnstile> p .\<or>. q\<close> | |
apply(rule_tac disjE_PL[OF ex_mid_PL, of A p \<open>p .\<or>. q\<close>]) | |
by (auto simp add: assumption_L disjI2_PL disjI1_PL impI_PL imp_PL) | |
qed | |
lemma equiv_PL:\<open>A \<turnstile> p .\<longleftrightarrow>. q \<longleftrightarrow> (A \<union> {p} \<turnstile> q \<and> A \<union> {q} \<turnstile> p)\<close> | |
using imp_PL equivE1_PL equivE2_PL equivI_PL by blast | |
corollary valid_imp_PL: \<open>\<tturnstile> (p .\<longrightarrow>. q) = ({p} \<turnstile> q)\<close> | |
and valid_not_PL: \<open>\<tturnstile> (.\<not> p) = ({p} \<turnstile> \<bottom>)\<close> | |
and valid_conj_PL: \<open>\<tturnstile> (p .\<and>. q) = (\<tturnstile> p \<and> \<tturnstile> q)\<close> | |
and valid_disj_PL: \<open>\<tturnstile> (p .\<or>. q) = ({.\<not> p} \<turnstile> q)\<close> | |
and valid_equiv_PL:\<open>\<tturnstile> (p .\<longleftrightarrow>. q) = ({p} \<turnstile> q \<and> {q} \<turnstile> p)\<close> | |
using imp_PL not_PL conj_PL disj_PL equiv_PL valid_def by auto | |
text\<open>Second, we will combine each logical operator with the consequence operator \<open>Cn\<close>: it is a trick to profit from set theory to get many essential | |
lemmas without complex inferences\<close> | |
declare infer_def[simp] | |
lemma nonemptyCn: \<open>Cn(A) \<noteq> {}\<close> | |
using true_PL by auto | |
lemma Cn_true: \<open>Cn({\<top>}) = Cn({})\<close> | |
using Cn_same true_PL by auto | |
lemma Cn_false: \<open>Cn({\<bottom>}) = UNIV\<close> | |
using false_PL by auto | |
lemma Cn_imp: \<open>A \<turnstile> (p .\<longrightarrow>. q) \<longleftrightarrow> Cn({q}) \<subseteq> Cn(A \<union> {p})\<close> | |
and Cn_imp_bis: \<open>A \<turnstile> (p .\<longrightarrow>. q) \<longleftrightarrow> Cn(A \<union> {q}) \<subseteq> Cn(A \<union> {p})\<close> | |
using Cn_same imp_PL idempotency_L inclusion_L infer_def subset_insertI by force+ | |
lemma Cn_not: \<open>A \<turnstile> .\<not> p \<longleftrightarrow> Cn(A \<union> {p}) = UNIV\<close> | |
using Cn_false Cn_imp notE_PL not_PL by fastforce | |
lemma Cn_conj: \<open>A \<turnstile> (p .\<and>. q) \<longleftrightarrow> Cn({p}) \<union> Cn({q}) \<subseteq> Cn(A)\<close> | |
apply(intro iffI conjI_PL, frule conjE1_PL, frule conjE2_PL) | |
using Cn_same Un_insert_right bot.extremum idempotency_L inclusion_L by auto | |
lemma Cn_conj_bis: \<open>Cn({p .\<and>. q}) = Cn({p, q})\<close> | |
by (unfold Cn_same) | |
(meson Supraclassical_logic.conj_PL Supraclassical_logic_axioms insert_subset) | |
lemma Cn_disj: \<open>A \<turnstile> (p .\<or>. q) \<longleftrightarrow> Cn({q}) \<subseteq> Cn(A \<union> {.\<not> p})\<close> | |
and Cn_disj_bis: \<open>A \<turnstile> (p .\<or>. q) \<longleftrightarrow> Cn(A \<union> {q}) \<subseteq> Cn(A \<union> {.\<not> p})\<close> | |
using disj_PL Cn_same imp_PL idempotency_L inclusion_L infer_def subset_insertI by force+ | |
lemma Cn_equiv: \<open>A \<turnstile> (p .\<longleftrightarrow>. q) \<longleftrightarrow> Cn(A \<union> {p}) = Cn(A \<union> {q})\<close> | |
by (metis Cn_imp_bis equivE1_PL equivE2_PL equivI_PL set_eq_subset) | |
corollary valid_nonemptyCn: \<open>Cn({}) \<noteq> {}\<close> | |
and valid_Cn_imp: \<open>\<tturnstile> (p .\<longrightarrow>. q) \<longleftrightarrow> Cn({q}) \<subseteq> Cn({p})\<close> | |
and valid_Cn_not: \<open>\<tturnstile> (.\<not> p) \<longleftrightarrow> Cn({p}) = UNIV\<close> | |
and valid_Cn_conj: \<open>\<tturnstile> (p .\<and>. q) \<longleftrightarrow> Cn({p}) \<union> Cn({q}) \<subseteq> Cn({})\<close> | |
and valid_Cn_disj: \<open>\<tturnstile> (p .\<or>. q) \<longleftrightarrow> Cn({q}) \<subseteq> Cn({.\<not> p})\<close> | |
and valid_Cn_equiv: \<open>\<tturnstile> (p .\<longleftrightarrow>. q) \<longleftrightarrow> Cn({p}) = Cn({q})\<close> | |
using nonemptyCn Cn_imp Cn_not Cn_conj Cn_disj Cn_equiv valid_def by auto | |
\<comment> \<open>Finally, we group additional lemmas that were essential in further proofs\<close> | |
lemma consistency: \<open>Cn({p}) \<inter> Cn({.\<not> p}) = Cn({})\<close> | |
proof | |
{ fix q | |
assume \<open>{p} \<turnstile> q\<close> and \<open>{.\<not> p} \<turnstile> q\<close> | |
hence "{} \<turnstile> p .\<longrightarrow>. q" and "{} \<turnstile> (.\<not> p) .\<longrightarrow>. q" | |
using impI_PL by auto | |
hence \<open>{} \<turnstile> q\<close> | |
using ex_mid_PL by (rule_tac disjE_PL[where p=p and q=\<open>.\<not> p\<close>]) blast | |
} | |
then show \<open>Cn({p}) \<inter> Cn({.\<not> p}) \<subseteq> Cn({})\<close> by (simp add: subset_iff) | |
next | |
show \<open>Cn({}) \<subseteq> Cn({p}) \<inter> Cn({.\<not> p})\<close> by (simp add: monotonicity_L) | |
qed | |
lemma Cn_notnot: \<open>Cn({.\<not> (.\<not> \<phi>)}) = Cn({\<phi>})\<close> | |
by (metis (no_types, opaque_lifting) notnot_PL valid_Cn_equiv valid_equiv_PL) | |
lemma conj_com: \<open>A \<turnstile> p .\<and>. q \<longleftrightarrow> A \<turnstile> q .\<and>. p\<close> | |
using conj_PL by auto | |
lemma conj_com_Cn: \<open>Cn({p .\<and>. q}) = Cn({q .\<and>. p})\<close> | |
by (simp add: Cn_conj_bis insert_commute) | |
lemma disj_com: \<open>A \<turnstile> p .\<or>. q \<longleftrightarrow> A \<turnstile> q .\<or>. p\<close> | |
proof - | |
{ fix p q | |
have \<open>A \<turnstile> p .\<or>. q \<Longrightarrow> A \<turnstile> q .\<or>. p\<close> | |
apply(erule disjE_PL) | |
using assumption_L disjI2_PL disjI1_PL impI_PL by auto | |
} | |
then show ?thesis by auto | |
qed | |
lemma disj_com_Cn: \<open>Cn({p .\<or>. q}) = Cn({q .\<or>. p})\<close> | |
unfolding Cn_same using disj_com by simp | |
lemma imp_contrapos: \<open>A \<turnstile> p .\<longrightarrow>. q \<longleftrightarrow> A \<turnstile> .\<not> q .\<longrightarrow>. .\<not> p\<close> | |
by (metis Cn_not Un_insert_left Un_insert_right imp_PL notnot_PL) | |
lemma equiv_negation: \<open>A \<turnstile> p .\<longleftrightarrow>. q \<longleftrightarrow> A \<turnstile> .\<not> p .\<longleftrightarrow>. .\<not> q\<close> | |
using equivE1_PL equivE2_PL equivI_PL imp_contrapos by blast | |
lemma imp_trans: \<open>A \<turnstile> p .\<longrightarrow>.q \<Longrightarrow> A \<turnstile> q .\<longrightarrow>.r \<Longrightarrow> A \<turnstile> p .\<longrightarrow>.r\<close> | |
using Cn_imp_bis by auto | |
lemma imp_recovery0: \<open>A \<turnstile> p .\<or>. (p .\<longrightarrow>. q)\<close> | |
apply(subst disj_PL, subst imp_contrapos) | |
using assumption_L impI_PL by auto | |
lemma imp_recovery1: \<open>A \<union> {p .\<longrightarrow>. q} \<turnstile> p \<Longrightarrow> A \<turnstile> p\<close> | |
using disjE_PL[OF imp_recovery0, of A p p q] assumption_L imp_PL by auto | |
lemma imp_recovery2: \<open>A \<turnstile> p .\<longrightarrow>. q \<Longrightarrow> A \<turnstile> (q .\<longrightarrow>. p) .\<longrightarrow>. p \<Longrightarrow> A \<turnstile> q\<close> | |
using imp_PL imp_recovery1 imp_trans by blast | |
lemma impI2: \<open>A \<turnstile> q \<Longrightarrow> A \<turnstile> p .\<longrightarrow>. q\<close> | |
by (meson assumption_L impI_PL in_mono sup_ge1 transitivity2_L) | |
lemma conj_equiv: \<open>A \<turnstile> p \<Longrightarrow> A \<turnstile> ((p .\<and>. q) .\<longleftrightarrow>. q)\<close> | |
by (metis Un_insert_right assumption_L conjE2_PL conjI_PL equiv_PL impI2 imp_PL insertI1 sup_bot.right_neutral) | |
lemma conj_imp: \<open>A \<turnstile> (p .\<and>. q) .\<longrightarrow>. r \<longleftrightarrow> A \<turnstile> p .\<longrightarrow>. (q .\<longrightarrow>. r)\<close> | |
proof | |
assume "A \<turnstile> (p .\<and>. q) .\<longrightarrow>. r" | |
then have "Cn (A \<union> {r}) \<subseteq> Cn (A \<union> {p, q})" | |
by (metis (no_types) Cn_conj_bis Cn_imp_bis Cn_union Un_insert_right sup_bot.right_neutral) | |
then show \<open>A \<turnstile> p .\<longrightarrow>. (q .\<longrightarrow>. r)\<close> | |
by (metis Un_insert_right impI_PL inclusion_L infer_def insert_commute insert_subset subset_eq sup_bot.right_neutral) | |
next | |
assume "A \<turnstile> p .\<longrightarrow>. (q .\<longrightarrow>. r)" | |
then have "A \<union> {p} \<union> {q} \<turnstile> r" | |
using imp_PL by auto | |
then show "A \<turnstile> (p .\<and>. q) .\<longrightarrow>. r" | |
by (metis (full_types) Cn_conj_bis Cn_union impI_PL infer_def insert_is_Un sup_assoc) | |
qed | |
lemma conj_not_impE_PL: \<open>A \<turnstile> (p .\<and>. q) .\<longrightarrow>. r \<Longrightarrow> A \<turnstile> (p .\<and>. .\<not> q) .\<longrightarrow>. r \<Longrightarrow> A \<turnstile> p .\<longrightarrow>. r\<close> | |
by (meson conj_imp disjE_PL ex_mid_PL imp_PL) | |
lemma disj_notE_PL: \<open>A \<turnstile> q \<Longrightarrow> A \<turnstile> p .\<or>. .\<not> q \<Longrightarrow> A \<turnstile> p\<close> | |
using Cn_imp Cn_imp_bis Cn_not disjE_PL notnot_PL by blast | |
lemma disj_not_impE_PL: \<open>A \<turnstile> (p .\<or>. q) .\<longrightarrow>. r \<Longrightarrow> A \<turnstile> (p .\<or>. .\<not> q) .\<longrightarrow>. r \<Longrightarrow> A \<turnstile> r\<close> | |
by (metis Un_insert_right disjE_PL disj_PL disj_com ex_mid_PL insert_commute sup_bot.right_neutral) | |
lemma imp_conj: \<open>A \<turnstile> p .\<longrightarrow>. q \<Longrightarrow> A \<turnstile> r .\<longrightarrow>. s \<Longrightarrow> A \<turnstile> (p .\<and>. r) .\<longrightarrow>. (q .\<and>. s)\<close> | |
apply(intro impI_PL conjI_PL, unfold imp_PL[symmetric]) | |
by (meson assumption_L conjE1_PL conjE2_PL imp_trans infer_def insertI1 validD_L valid_imp_PL)+ | |
lemma conj_overlap: \<open>A \<turnstile> (p .\<and>. q) \<longleftrightarrow> A \<turnstile> (p .\<and>. ((.\<not> p) .\<or>. q))\<close> | |
by (meson conj_PL disjI2_PL disj_com disj_notE_PL) | |
lemma morgan: \<open>A \<turnstile> .\<not> (p .\<and>. q) \<longleftrightarrow> A \<turnstile> (.\<not> p) .\<or>. (.\<not> q)\<close> | |
by (meson conj_imp disj_PL disj_com imp_PL imp_contrapos notE_PL notI_PL) | |
lemma conj_superexpansion1: \<open>A \<turnstile> .\<not> (p .\<and>. q) .\<and>. .\<not> p \<longleftrightarrow> A \<turnstile> .\<not> p\<close> | |
using conj_PL disjI1_PL morgan by auto | |
lemma conj_superexpansion2: \<open>A \<turnstile> (p .\<or>. q) .\<and>. p \<longleftrightarrow> A \<turnstile> p\<close> | |
using conj_PL disjI1_PL by auto | |
end | |
subsection \<open>Compact Logic\<close> | |
text\<open>If the logic is compact, which means that any result is based on a finite set of hypothesis\<close> | |
locale Compact_logic = Tarskian_logic + | |
assumes compactness_L: \<open>A \<turnstile> \<phi> \<Longrightarrow> (\<exists>A'. A'\<subseteq> A \<and> finite A' \<and> A'\<turnstile> \<phi>)\<close> | |
begin | |
text \<open>Very important lemma preparing the application of the Zorn's lemma. It states that in a compact logic, we can not deduce \<open>\<phi>\<close> | |
if we accumulate an infinity of hypothesis groups which locally do not deduce phi\<close> | |
lemma chain_closure: \<open>\<not> \<tturnstile> \<phi> \<Longrightarrow> subset.chain {B. \<not> B \<turnstile> \<phi>} C \<Longrightarrow> \<not> \<Union>C \<turnstile> \<phi>\<close> | |
proof | |
assume a:\<open>subset.chain {B. \<not> B \<turnstile> \<phi>} C\<close> and b:\<open>\<not> \<tturnstile> \<phi>\<close> and \<open>\<Union> C \<turnstile> \<phi>\<close> | |
then obtain A' where c:\<open>A'\<subseteq> \<Union> C\<close> and d:\<open>finite A'\<close> and e:\<open>A' \<turnstile> \<phi>\<close> using compactness_L by blast | |
define f where f:\<open>f \<equiv> \<lambda>a. SOME B. B \<in> C \<and> a \<in> B\<close> | |
have g:\<open>finite (f ` A')\<close> using f d by simp | |
have h:\<open>(f ` A') \<subseteq> C\<close> | |
unfolding f by auto (metis (mono_tags, lifting) Union_iff c someI_ex subset_eq) | |
have i:\<open>subset.chain {B. \<not> B \<turnstile> \<phi>} (f ` A')\<close> using a h | |
using a h by (meson subsetD subset_chain_def subset_trans) | |
have \<open>A' \<noteq> {} \<Longrightarrow> \<Union> (f ` A') \<in> {B. \<not> B \<turnstile> \<phi>}\<close> using g i | |
by (meson Union_in_chain image_is_empty subset_chain_def subset_eq) | |
hence j:\<open>A' \<noteq> {} \<Longrightarrow> \<not> \<Union>(f ` A') \<turnstile> \<phi>\<close> by simp | |
have \<open>A' \<subseteq> \<Union>(f ` A')\<close> | |
unfolding f by auto (metis (no_types, lifting) Union_iff c someI_ex subset_iff) | |
with j e b show False | |
by (metis infer_def monotonicity_L subsetD valid_def) | |
qed | |
end | |
end | |